
An Analysis of Android Smartphones as a Platform for Augmented Reality Games

Andrés L. Sarmiento, Margarita Amor, Emilio J. Padrón, Carlos V. Regueiro
Dept. Electronics and Systems

University of A Coruña
A Coruña, Spain

andreslopezsarmiento@gmail.com, margarita.amor@udc.es, emilioj@udc.es, cvazquez@udc.es

Abstract—In this work, we analyse the capabilities of an An-
droid smartphone with the OpenGL ES API for the rendering
of synthetic realistic images. The aim is to find out the facilities
and the main limitations of the platform for the development
of augmented reality games. Thus, our research covers mainly
three fields: an analysis of the information provided by the
camera, a study of the tracking and positioning capabilities
of current smartphones and an outline of the rendering
facilities usually found in these devices. The performance, in
terms of frames per second and latency, has been tested in
different smartphones, in addition to evaluate the reliability
and efficiency of the sensors and the quality of rendering.
In order to show all the results obtained from this study we
have developed an augmented reality game trying to combine
quality, performance and velocity of response.

Keywords-Augmented reality; Android; Positioning sensors;
Image processing; Realistic image synthesis

I. INTRODUCTION

Smartphones have gathered functionalities and features of
an increasingly number of different devices, from those used
in a more professional environment (i.e., mobile devices,
electronic agendas, GPS) to others with recreational aspects
(such as cameras or video game consoles). Although this
means an obvious saving of money and space, the major
advantage of these new devices is the integration of all
those capabilities in increasingly complex and innovative
applications.

Most of the operating systems available for these devices
have been developed ad hoc for each model. Android [1],
however, has a very different origin since it is a multi-
platform linux-based OS promoted by a group of companies.
This open source and cross-platform nature, together with
the growth it has experienced over the past few years, made
us adopt Android as the platform for this work.

Augmented reality (AR) [2] is one of the newest and
most popular applications that have recently shown up within
the sphere of smartphones. Most of the existing proposals
may be classified at one of the following three groups:
AR browsers; applications that allow us to move through a
completely synthetic environment; and, lastly, applications
that use the camera information to show virtual objects in
the phone.

AR browsers are outdoor AR applications that do geopo-
sitioning of virtual objects in the real world by using the ori-

entation sensors and the GPS or a triangulation positioning
system to determine the position where they must be placed
[3], [4]. The information about the objects to be positioned is
pre-computed and these applications do not demand a great
accuracy in the positioning and orientation of the mobile
device.

The second type of AR applications use only the move-
ment and orientation of the device to readjust the vision of a
synthetically generated scene [5], [6]. In these applications
all elements are generated in a virtual scene that is shown
in the mobile screen. The image captured by the camera can
also be shown, but it has not any influence in the applications
as it is not processed by the device.

Finally, some applications apply artificial vision tech-
niques [7], [8]. This type of applications processes the
perceived image and uses that information to put the virtual
models in the right place. Obviously, this approach means
higher computational requirements and a greater application
complexity. As a consequence, there are really few AR
applications in Android based on exploiting data obtained
by the camera and most of them are basically technical
demonstrations.

In our research, we focus on this last line of work since
the best approach to integrate synthetic information with the
immediate real-time data from the environment in a realistic
scenario such as a dynamic and complex environment seems
to be the exploitation of both the camera and the positioning
sensors of these devices. Since Android is a brand new plat-
form, analysing the viability of this kind of AR application is
a necessary preliminary step. This analysis is complemented
in this work with the development of a simple AR game for
indoor environments as a demonstration of the possibilities
of this approach.

Thus, Section II goes into the study of Android smart-
phones as an AR platform. We have divided our analysis
in three big sections: firstly, a study of the possibilities for
processing the information captured by the camera; next,
a survey of the positioning and tracking capabilities of
these smartphones in an indoor environment and, lastly, the
possibilities for real-time rendering of realistic models. A
brief outline of all the aspects studied in the analysis is in
the end of this section. Section III describes the AR game
we have developed taking into account the results from our

71Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table I: Technical data for the smartphones used in our tests.

Motorola Milestone GeeksPhone One Samsung Galaxy S
Android 2.1 Eclair 2.2 Froyo 2.2 Froyo

CPU ARM Cortex A8 ARM11 Samsung
550 MHz 528 MHz Hummingbird 1 GHz

GPU PowerVR SGX 530 built-in PowerVR SGX 540
Memory 256 MB 256 MB 512 MB
Display 3.7” 854x480 3.2” 400x240 4” 800x480
GPS 3 3 3
Acceler. 3 3 3
Compass 3 7 3
Camera 3 3 3

analysis, and Section IV shows the performance achieved
with our proposal. Finally, the conclusions we have reached
with this work are shown.

II. ANALYSIS OF THE CAPABILITIES OF AN ANDROID
SMARTPHONE WITH OPENGL ES

In this section, an analysis of the capabilities of the
Android platform in the context of AR is presented. Table I
shows the main features of the devices used in our study.
These devices are representative of the current smartphone
market.

A. Image capture and processing

The camera of a smartphone is of great importance for AR
applications, since the synthetic images are usually rendered
over real images obtained by the camera. If the image from
the camera is just being displayed, Android efficiently add
it to the rest of layers shown by the application. Otherwise,
if the image is going to be processed, it is captured by the
system and provided to the application as a vector of bytes in
a default format previously set in the camera. Many cameras
(such as the ones used in our analysis) only work with the
YUV image format.

Once an image from the camera is obtained, any image
processing technique may be applied on it. Since image
processing is usually a high-cost computationally task, any
operation has to be spawned in a different thread to the one
running the application’s GUI. Otherwise, non-responding
lags are probably to be experienced in the application.
Besides, it is also a good practice to code image processing
tasks in native code (C, C++) and use the NDK to integrate it
in the application [9]. This way, we can achieve an important
improvement, up to 400%, in the velocity of execution.

In order to analyse the possibilities of image capture
and processing at iterative rates we started studying the
maximum frequency at which data can be obtained, what
allow us to get the top level of performance that can be
achieved. Thus, this test captures the image and calls a naive
processing image code that just computes the frame rate
(fps, frames per second) with no additional computation.
The results obtained for a Motorola Milestone with Android

Table II: Image capture, decoding and visualisation on
Motorola Milestone with Android v2.1.

Image size FPS

560×320 3.90
280×320 4.45
280×160 4.95
140×160 5.10
15×15 5.15

v2.1 and a configuration of 10 fps as the maximum capture
frequency were 8.8 fps.

To study the effect of a simple image processing on
the performance, we have extended our test by adding
the display on the screen of the images obtained by the
camera. Since images are obtained from the camera in
YUV format and they must be in RGB to be displayed
by Android, this test program takes each image captured
by the camera, recodes it from YUV to RGB and gets
it displayed on the screen. Additionally, our test program
can be configured to encode only a region of the image.
The results of running our tests in the Motorola Milestone
are depicted in Table II. The table shows the fps rate as
a function of the size of the region to process. As can be
observed, a top value of 5.15 fps has been obtained, that does
not make possible to keep a fluid stream of images on the
screen. Furthermore, we have observed a delay of about one
second in what is being displayed. Considering the results,
we have kept the configuration of 10 fps as the maximum
frequency for the rest tests, since it has provided the best
results; probably because with this frequency the application
is not saturated with images it is not able to process. Other
tests adding different image processing algorithms, such as
colour segmentation based on pixel colour, were carried out
and similar execution times were obtained.

The obvious conclusion coming from the results of our
tests is that the image processing velocity is really low in
Android v2.1 and previous, obtaining a slow response even
after implementing optimisations such as using NDK and
running the processing in a different thread. The main reason
for this performance seems to be in the process the system
follows for each image captured by the camera, allocating
memory, saving a copy of the image, calling the function to
process it and, finally, removing the reference to the allo-
cated memory [10]. This whole process entails a completely
inefficient memory management, that is made still more
acute by the high cost of garbage collection in Android,
between 100 and 300 milliseconds. Not reusing the memory
assigned to each image results in a frequent invocation of
the garbage collector, burdening the performance.

This important issue with memory management is solved
in Android v2.2, that includes other significant improve-
ments as well, such as a Just in Time compiler. Regarding
image processing, the API has been enhanced with new

72Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table III: Image capture, decoding and visualisation in
devices with Android v2.2.

GeeksPhone Galaxy S
Size FPS Size FPS

400×240 3.90 800×480 5.70
200×240 4.50 400×480 7.10
200×120 5.00 400×240 8.00
100×120 5.50 200×240 8.75

15×15 5.80 15×15 9.20

methods that work with a buffer passed as a parameter,
removing the memory allocation and removal for each image
to process.

We have analysed the improvements in Android v2.2 by
running the same tests in two of our devices with the new
version of the OS. Table III shows the results obtained
with Android v2.2 for the simple capture and recoding test
previously outlined in Table II. As can be observed, there
is a performance increase of 50%, from 3.90 up to 5.70,
and taking into account a 50% increase in the image size as
well. The improvement is even more appreciable looking at
the visualisation delay, that has been reduced from around
1 second to 0.5 seconds. However, bearing these results in
mind, an efficiency analysis of the real world around us
makes necessary the use of data from other sources, e.g.,
positioning sensors.

B. Device positioning and orientation

In this subsection we outline the main positioning and
tracking sensors included in most Android smartphones:
accelerometer, compass and GPS. In order to check their
performance, some test were executed on our Milestone
phone, similar results were obtained in the rest of devices.

An accelerometer measures the proper acceleration of
itself, i.e., a change in velocity, that involves a change in
position. Mathematically velocity is the integral of acceler-
ation, and position is the integral of velocity. Smartphones
have usually three accelerometers, one for each spatial axis.
Theoretically, the position of a smartphone could be guessed
from data provided by these sensors. In practice, however,
the measures are not very accurate due to the presence of
gravitational and centripetal forces. Anyway, these sensors
are handy for knowing the device’s position relative to the
floor with simple trigonometric calculations.

Figure 1 depicts the values received while a user is
walking along the Z axis with the mobile vertical to the
floor (axis Y is perpendicular to the floor and axis X is
on the side). As can be seen, there is a regular pattern of
about a footstep per second, crests in axis Y . The lateral
movement enclosed to each footstep can also be observed,
but more complex movements would be hard to recognise.

A digital compass or magnetometer is a device that
measures the strength and direction of the magnetic fields
in its environment. Due to the magnetic field of the Earth, a

-2

0

2

4

6

8

10

12

5 5.5 6 6.5 7 7.5 8 8.5 9

m/s2

seconds

Z-axis accel
Y-axis accel

X-axis accel

Figure 1: Values obtained by the accelerometers of a Mo-
torola Milestone during a user’s walk.

-40

-20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

degrees Y-axis
X-axis
Z-axis

seconds

Figure 2: Values obtained by the compasses of a Motorola
Milestone with a 90◦ turn.

compass is usually employed as an orientation device since it
points out the Earth’s magnetic north. A smartphone usually
incorporates a chip that integrates three compasses arranged
to detect magnetic fields in the three spatial axes [11].
Figure 2 shows the results obtained by a test consisting of
making an abrupt 90◦ turn, almost instantaneous, just before
returning to the initial position by means of a slighter turn,
during about 3 seconds. As can be observed in the figure,
the compass is too slow in measuring the new position after
the first sudden movement, what introduces wrong values
during a short period. However, it behaves really well in the
presence of slight movements, with accurate values and very
little noise.

Therefore, to track the direction in which a smartphone
moves with Android is recommended to take together data
from the accelerometers and the compasses. By previously
setting a default position for the device when the application
starts we get enough accuracy, since measures of smooth
changes in the local environment are quite precise.

GPS is a space-based global navigation satellite system

73Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 3: Test model for OpenGL ES.

that provides reliable location through an infrastructure
comprising a network of satellites. This system can be used
all around the world whenever there is an enough number of
visible satellites. Otherwise, less accurate measurements are
obtained or the device can even get out of network coverage,
usual problem in the indoor locations. The values obtained
by a GPS device points out its current position in the globe
with a few meters of precision, about 10 meters outdoor.
Besides, it doest not provide reliable information about the
direction or inclination of the device and data is obtained
with a delay of about 1 and 2 seconds. All this makes
difficult to realistically locate and move synthetic objects
that are close to the device.

Nowadays, an alternative method to GPS is network-based
tracking by using the service provider’s network infrastruc-
ture to identify the location of the device. Although this
technique has less accuracy than GPS, it has the advantages
of a shorter initialisation time and an important reduction
in power consumption, since only the telephone signal is
used. Additionally, it can provide better results in indoor
environments than GPS. Anyway, both the two methods are
compatible as they are not mutually exclusive.

C. Android and synthetic graphics

OpenGL ES [12] is the API for producing computer
graphics in Android. It is a subset of the standard OpenGL
designed for embedded devices and it has important simpli-
fications. We have carried out a group of test on the devices
shown in Table I to analyse the performance of graphic
synthesis in Android.

The first test focused on measuring performance as the
number of primitives to render increases. The experimental
results obtained for a scene with the model of Figure 3
replicated multiple times are shown in the column C1 of
Table IV. In view of these results it is clear that performance
gets worse as the number of polygons increases except for
Galaxy S, device in which we perceive a serious performance
loss starting from 300K points.

Column C2 of Table IV shows the results after adding a
texture to the model of Figure 3. This definitely improves
the visual aspect of the virtual objects with a minimum
loss of efficiency, up to a 17% for a model of 75000
points in our Milestone. Column C3 depicts the results when
including transparency effects. This hardly has influence on
performance comparing to the synthesis with textures. In

Table IV: Performance of OpenGL ES in Android (fps).

Points GeeksPhone Milestone Galaxy S
C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

3 K 35 35 35 33 30 30 30 30 55 55 55 55
9 K 18 19 19 15 30 29 29 28 55 55 55 55

15 K 12 10 10 10 29 26 26 25 55 55 55 55
30 K 8 - - - 25 22 22 19 55 55 55 55
75 K - - - - 18 15 15 12 55 53 53 50

100 K - - - - - - - - 55 44 44 41

Figure 4: Morphing animation: starting state on the left and
final state on the right.

column C4 the results are obtained after applying illumina-
tion to the models. The performance decreases now a 24% in
Milestone for a scene with 30K points. Obviously, this loss
of performance is due to the additional computation required
to get the colour of each pixel in the scene. Furthermore,
it is necessary to define the light sources in the scene,
setting its position, type, colour and intensity, in addition
to provide each vertex of the models with a normal vector.
As can be observed, the fall of performance in Galaxy S is
only noticeable for models with a certain complexity (100K
points).

As regards animation, among all the different methods
we have analysed the inclusion of morphing [13]. This
technique gets a smooth transition between two models,
using interpolation to compute the intermediate versions of
the models. Since a new position for each point in the model
has to be calculated for each frame, this kind of methods
have a high computational cost. The model in Figure 4
(around 800 points and 300 polygons) has been used to test
the performance of this kind of animation together with the
application of textures and illumination in our target devices.
The frame rates obtained for different scenes with this model
are shown in Table V (only the most interesting results were
measured). It can be observed that performance falls off
dramatically except for low-complexity scenes (8K in the
case of Galaxy S).

D. Discussion

An important deficiency in the image processing capabil-
ities of the platform has arisen, mainly in terms of image
capture latency (a minimum of 0.5 seconds in high-end
smartphones). The main AR applications of other platforms
use the information obtained after a complex analysis of
the images captured by the camera as the main source
of information for positioning the synthetic objects in the

74Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table V: Comparison of static (S) and animated (A) models
in the scene (fps).

Points GeeksPhone Milestone Galaxy S
S A S A S A

800 40 21 30 30 55 55
1,6 K 32 14 30 25 55 55
2,4 K 27 10 30 18 55 55
4 K 21 6 30 10 55 51
8 K - - 27 5 55 29

12 K - - - - 55 20
16 K - - - - 55 15

scene. In view of the results of our analysis, this kind of
applications are currently not possible at all in the Android
devices we have tested.

On the other hand, multiple conclusions can be extracted
from the analysis carried out using the Android positioning
sensors. First of all, regarding the use of the built-in locating
and tracking sensors, the accelerometers and the compass
provide results relatively reliable with no important errors.
However, GPS gives an excessive error in the measure to
be used in the kind of AR indoor application we propose in
this work.

Lastly, we have detected restrictions in size and com-
plexity of the models to be rendered. From the results we
can deduce that the graphic hardware is powerful enough
to render non-excessively complex models with textures
and illumination. Therefore, in the game we propose in
the next section as an example of AR application, all the
render capabilities we have analysed have been applied, but
limiting the complexity of the model in order to get real
time rendering.

III. AN AR GAME IN AN ANDROID PLATFORM

To exploit the different aspects we have studied in our
analysis we have developed a simple AR game. In this game
each real-time image obtained by the camera is analysed and
it determines the apparition of ’enemies’ that the user/player
must hunt down. Thus, we have implemented a simple
system of events based on object colours and the different
enemies are drawn when a certain event is triggered. These
synthetic characters have to look as if they really were in
the real world so they must behave properly with camera
movements.

There are 4 different enemies in the game, each one
of them with specific reactions and movements: BatGhost
(Figure 5a), has been designed as an example of animation
by parts, with its wings moving independently to provide a
sense of flapping, HulkGhost (Figure 5b) with its blinking
eye is an example of animation using morphing techniques,
EmGhost (Figure 5c) was designed to have an enemy with
bouncing capabilities, that could jump over the player, and
SuperGhost (Figure 5d), that moves around the player while
approaching to him.

(a) BatGhost (b) HulkGhost

(c) EmGhost (d) SuperGhost

Figure 5: Three-dimensional models.

Figure 6: Event detection and triggering.

When it comes to rendering the different elements through
OpenGL ES calls, the operating system itself executes these
calls in a different thread, allowing a decoupled execution.
Furthermore, the reuse of memory is a constant issue in our
implementation, preventing the number of memory alloca-
tions as far as possible.

IV. EXPERIMENTAL RESULTS

This section presents the performance achieved by our AR
application. The resulting frame rates are shown in Table VI.
The different columns show the frames per second for image
processing (ImPr) and image synthesis (Syn) in each device.
The results in rows 2 and 4 (ImPr deact.) are obtained
by deactivating the image processing task once an event is
triggered, as described below.

In Motorola Milestone the image processing rate ranges
from 3.25 fps with no visible enemy to 2.75 fps when an
animated (morphing) enemy appears. Besides, the image
synthesis rate falls down from 15 fps to 8 fps with only an
animated model in the scene.

The performance is slightly worse in GeeksPhone One,
with a peak of 2.75 fps for image processing. As can be
seen, the main performance loss is mostly noticeable in the
graphic synthesis. While the stream of images obtained from
the camera is being processed, the performance values of
the graphic synthesis are lower than the ones for Motorola
Milestone in about 50%.

75Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table VI: Frame rates of the AR game.

Milestone GeeksPhone Galaxy S
Test ImPr Syn ImPr Syn ImPr Syn

Static 3.25 15 2.75 8 4.10 35
ImPr deact. 30 21 44

Anim. 2.75 8 2.50 3 3.60 23
ImPr deact. 28 17 41

In the case of Galaxy S we have obtained better results,
with a rate of image processing ranging from 3.6 fps to
4.1 fps along with a rate of synthesis of 35 fps for static
models and 23 fps for animated, aspect in which the im-
provement is more appreciable.

On the other hand, the performance loss in the processing
of the image has increased the delay in obtaining new
images from the camera, reaching now about 1 second in
our application.

As commented, once an enemy is discovered it does not
keep still, it moves around the environment. To increase
the frame rate and achieve a good response and fluid
feeling we have stopped the image processing task while
the enemy remains active in the screen. This restricts the
appearance of multiple simultaneous enemies, but allow us
to get an outstanding improvement in the rendering, reaching
about 30 fps in Milestone, 21 fps in GeeksPhone and 44 fps
in Galaxy S, a performance high enough to achieve an
acceptable fluidity in an AR game.

V. CONCLUSIONS

In this work we present a study of the capabilities of
current smartphones in the context of AR applications. Thus,
to test the feasibility of this kind of applications we start
checking the main constraints in the obtaining of data from
the device’s camera. The maximum frame rate we can
obtained is less than 6 fps. The main limitation is the latency
in the image capture, near to 0.5 seconds in the best case.

Another point in our study has been to analyse the locating
and tracking features of these devices. From our tests we
have concluded that to obtain the device orientation is
relatively simple and reliable. Nevertheless, to guess the
device displacement is really complicated. Calculating it
using the values obtained by the accelerometers is not very
reliable, due to the numerical errors in the computation of the
double integration. Additionally, geolocation systems have
a margin of error too high for our requirements, about 10
meters.

With regard to the rendering of synthetic images with
the OpenGL ES library, we have tested the inclusion of
textures, illumination and transparencies. The performance
achieved in scenes with up to 15K points has been acceptable
for a mid-range smartphone as Motorola Milestone. Adding
models with morphing animation means a loss higher than
20% each time the number of points is doubled.

As a proof of concept, to show the possibilities within
the AR field of the different smartphones we have analysed,
an interactive AR video game has been implemented. The
performance we have achieved in this application is 3.25
images obtained through the camera per second and 28 fps
in the synthesis of graphics in a mid-high end smartphone
as Motorola Milestone. The results are better in a more
powerful device as Samsung Galaxy S, 4.1 processed images
per second and 35 fps, and appreciably worse in a low-
end device as GeeksPhone One, 2.75 processed images per
second and only 8 fps.

ACKNOWLEDGEMENTS

This work was partially supported by the Ministry of
Education and Science of Spain under the contracts MEC
TIN 2010-16735 and TIN 2009-07737 and also supported by
the Xunta de Galicia under the contracts 08TIC001206PR,
INCITE08PXIB105161PR and INCITE08PXIB262202PR.

REFERENCES

[1] M. Gargenta, Learning Android. O’Reilly, 2011.

[2] D. Wagner and D. Schmalstieg, “Making augmented reality
practical on mobile phones,” IEEE Computer Graphics and
Applications, vol. 29, no. 3, pp. 12–15, 2009.

[3] Layar, “Layar reality browser,” http://www.layar.com, last
access: 05/01/2011.

[4] T. Langlotz, C. Degendorfer, A. Mulloni, G. Schall, G. Reit-
mayr, and D. Schmalstieg, “Robust detection and tracking of
annotations for outdoor augmented reality browsing,” Com-
puter & Graphics, vol. 35, no. 4, pp. 831–840, 2011.

[5] MADfirm, “Sky siege,” http://madfirm.com, last access:
14/01/2011.

[6] Quest-Com, “Droidshooting,” http://www.quest-com.co.jp,
last access: 14/01/2011.

[7] H. Kato, “Artoolkit,” http://www.hitl.washington.edu/artoolkit,
Android port by A. Igarashi (2010), last access: 05/01/2011.

[8] N. SL., “Invizimals,” http://www.invizimals.com, last access:
05/01/2011.

[9] S. Lee and J. W. Jeon, “Evaluating performance of android
platform using native c for embedded systems,” in Int. Conf.
on Control, Automation and Systems, 2010, pp. 1160–1163.

[10] “Android Google Code. Issue 2794: Camera preview callback
memory issue,”
http://code.google.com/p/android/issues/detail?id=2794, last
access: 10/01/2011.

[11] “Asahi Kasei Microdevices. 3-axis electronic compass,”
http://www.asahi-kasei.co.jp/akm/en/index.html, last access:
10/01/2011.

[12] D. Astle and D. Durnil, OpenGL ES Game Development.
Thomson Course Technology, 2004.

[13] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time
Rendering. A. K. Peters, 2008.

76Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

