UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A 3D Simulation Framework for Safe Ambient-Assisted Home Care

Carlos Velasquez, Christophe Soares
INESC Porto and UFP
University Fernando Pessoa
Porto, Portugal
{carlosv,csoares} @ufp.edu.pt

Abstract—The Safe Home Care project focuses on assem-
bling safe home assisted-living environments built on au-
tonomous Off-The-Shelf systems. We argue that these smart
spaces will contribute to relieve the pressure on health sys-
tems by providing the means for ambulatory and daily life
assistance. However, the integration of disparate sovereign
systems will not be easy to accomplish since the number of
interaction scenarios will be impossible to predict and evaluate
a priori. Therefore, we propose the SHC reflective middleware
framework, conceived with two goals in mind: i) manage the
safe integration of off-the-shelf systems (cf. interference-free)
by exploiting reflection and 3D virtual world simulation; ii)
provide non-intrusive pervasive interface mechanisms for home
assisted-living actors. In this paper, we focus specifically on the
first goal by providing the means for generating 3D simulations;
the states generated during simulation are then analyzed by
a graph-pruning algorithm to perceive feature interactions in
pre-deployment phases. We evaluate our approach on specific
home care use cases.

Keywords-3D simulation, safe home care, interference-free,
reflective middleware, graph-based interference pruning.

I. INTRODUCTION

The world population is getting older. Home care plays
an important role in elderly care as it can be integrated in
daily routines without much disruption and target preventive
services to those with higher risk factors, potentially de-
creasing health care costs [1]. Numerous technologies exist
and have been proposed for home care [2], often acquirable
as off-the-shelf (OTS) components that are independent
of other components in the home. Functional interactions
between these components are difficult to predict a priori
and may result in beneficial or detrimental behavior of the
home as a whole. We are particularly interested in cap-
turing functional interferences between OTS systems (e.g.,
two or more systems requiring simultaneous user attention,
temperature being adjusted differently by two systems, etc.)
but also interferences that may be due to physical features
(e.g., location, sound and electromagnetic interferences).
The SHC system aims to address such interferences between
components in the home (cf. feature interactions), i.e., rep-
resent and detect interacting features and handle consequent
malfunctions or miss behaviors.

The general approach of the Safe Home Care (SHC)
project [3] is to capture the behavior of the home and its

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

Ricardo Morla
INESC Porto, FEUP
University of Porto
Porto, Portugal
rmorla@inescporto.pt

Rui S. Moreira, José M. Torres, Pedro Sobral
ISUS Unit @ FCT
University Fernando Pessoa
Porto, Portugal
{rmoreira, jtorres, pmsobral} @ufp.edu.pt

components and match it against the normal or expected
behavior by pruning states in an observed sequence of
states. The observed sequence of states of the home and
its components can be captured directly from the home by
introspection through sensors and management interfaces, or
generated by simulation. The simulation-based approach has
the potential for exploring more scenarios, which in turn may
trigger the detection of additional interactions. Additionally,
simulation can be used to anticipate potential interactions
before deploying the new components in a home. In this
paper we present a framework for simulation and detection
of interactions between components in a home care scenario.
This simulation framework is integrated in our SHC system
providing introspection and interference detection, which we
present in Section 2. We present the requirements, archi-
tecture, and working modes of the simulation framework in
Section 3, and evaluate it with a specific home care scenario
in Section 4. We conclude with a review of the related work
in Section 5 and with final remarks in Section 6.

II. THE SHC SYSTEM
A. Goals

The next generation of home smart spaces will be
crammed with diverse OTS system that may be indepen-
dently assembled. Therefore, it is imperative to be able to
assess their compatibility and detect possible interferences,
before deployment and to dynamically monitor and manage
interactions between these systems, after deployment. The
SHC system is being built with these goals in mind, i.e.,
i) provide a simulation environment to exhaustively explore
different interaction scenarios between the OTS systems and
ii) reify real-time state information that can be used to
monitor and safely adapt home environments. In this paper
we focus on the simulation aspects that may able us to recre-
ate critical or unpredictable OTS systems interactions and,
thus, evaluate if these systems can coexist or if additional
management components should be incorporated to resolve
identified interferences.

B. Overview

The system architecture is organized in two major levels,
Base and Meta-Level, connected through a reflective Mid-

61

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

dleware layer. The Base-level comprehends all the software
and hardware necessary to interact with the physical envi-
ronment. The Meta-level is composed essentially by a 3D
Virtual Environment and a relational database. The 3D vir-
tual environment, implemented in OpenSim, is the primary
interface with the SHC system; the database, implemented in
MySQL, is the repository of all the information reified from
our System. The Reflective Middleware layer provides the
connection glue between both levels and offers: i) a man-
agement interface (developed in PHP); ii) an interference
engine (developed in Java), and iii) a simulation framework,
which incorporates a C# .NET component to control/interact
with the Avatar, a series of PHP scripts for scheduling the
simulation and several LSL scripts (Linden Script Language)
for programming the behavior of the different simulation
elements.

Reflective Middleware |
Lie i i
_'J') Simulation Framework ‘

| A
D

Interference Engine ‘

Virtual
Environment

R

Meta Level

Sensors / Actuators
1
OTS Applications API
1
SHC System GUI |
[

Base Level

Figure 1. System Architecture

C. Simulation

The simulation framework makes use of OpenSim, a free
version of the Second Life Simulator. This is a general-
purpose programmable 3D platform, which offers intrinsic
3D modeling characteristics (e.g., notion of space, volume,
time, behavior, etc.). For example, the sound propagation
may be attenuated or blocked by a wall; thus communi-
cation between objects may be affected by their coordi-
nates/location. Hence, the recreation of the home environ-
ment becomes easier and physically analogous to reality.
OpenSim offers also a scripting language (cf. LSL), which
permits to associate behavior to simulation objects (cf. Prims
or Primitives). These building blocks can be re-shaped, re-
colored and programmed to respond to events (e.g., touch,
listen, etc.). Finally, by providing an open source framework
unbolts and stimulates future contributions from the research
community. Another advantage offered by the proposed
simulation framework is the possibility to fully simulate a
Human being, either by using an autonomous-deterministic
agent (upcoming, a more proactive-intelligent agent) or a
user-controlled agent. The former follows a specific sched-
uled scenario, testing as many predicted interactions as pos-
sible; the later, permits us to exploit unpredictable reactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

of human controlled avatars (cf. virtual human representa-
tions) thus introducing variability in the simulation scenario.
Finally, the proposed simulation framework integrates with
the the SHC interference engine that analyses the observed
states of OTS systems to detect unpredictable behavior.
These states may be introspected both from the base-level
components or generated by the simulation framework.

D. Interference

Our approach for interference detection relies on a graph
representation of system state sequences derived from the
interaction between residents and OTS systems. Directed
graphs were used to represent: i) the expected behavior of
isolated systems (Graph of Expected States - GoES), i.e.,
all state sequences resulting from the regular operation of
each system; ii) the observed behavior of combined systems
(Graph of Observed States - GoOS), i.e., the actual state
history of all elements built via runtime introspection.

The GoES represents how applications should behave
(i.e., without interference) while the GoOS represents what
is the current/observed systems behavior. An algorithm is
used to extract the expected behavior from the observed
behavior (cf. State Pruning Algorithm — SPA [3]). If the SPA
ends up without being able to prune every state sequence
in GoOS then it assumes one of two things: i) there are
interferences or feature interactions that should be handled;
ii) there are state sequences or malfunctions not captured in
the existing GoES that should be considered.

This paper proposes a simulation platform that collects
state changes from different kinds of systems (e.g., enter-
tainment, communication, health related devices). Using the
SPA on this large state database it is possible to expose
unforeseen interactions between applications that otherwise
are hard to notice.

III. SIMULATION FRAMEWORK
A. Requirements

The simulation framework has four major requirements.
First, like other general purpose frameworks, it should be
possible to integrate real world elements to generate ac-
tions/events and stimulate virtual world representatives; such
causal connection will enable us to test the integration of
new OTS systems alongside with existing/deployed systems;
this connection though cannot be reflected back on the real
world since the new simulated prims do not have their
counterpart real objects (e.g., a simulated air conditioning
prim cannot change the temperature in the real environment).
Second, the framework should provide the means to facilitate
the creation of simulations; this is achieved by the use
of pre-programmed prim inventories; such prims coupled
with a set of base LSL scripts may reduce the time to
shape the appearance and behavior of simulation scenarios.
Third, the framework should provide the means to select/use
different types of simulation, i.e., deterministic, intelligent

62

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

and user-driven simulation; the deterministic simulation fol-
lows/triggers a scheduled set of events for a given scenario
and permits to analyze the pre-programmed reactions of
surrounding prims; the user-driven simulation permits to
introduce some variability in the simulation environment
through the use of an Avatar directly controlled by a human;
the intelligent simulation also follows a given schedule but
using prims programmed with probabilistic action/reaction
models. Fourth, the simulation framework should provide
several levels of introspection, i.e., enable to select/unselect
the type of information that may be collected from base-
level (e.g., select which sensor type systems or APIs we
may use); this will influence the amount of data generated
during simulation, and will allow us to adapt the simulation
to the level of introspection facilities that we may have of the
environment. The simulation framework is fully integrated
in the SHC Reflective Middleware. This allows its use
for detecting interferences between deployed and new OTS
systems, thus proving a powerful tool for the integration of
ubiquitous systems.

B. Architecture

The SHC Middleware uses a deterministic manager com-
ponent for driving simulations based on pre-scheduled
events and pre-programmed prim’s behavior. This manager
uses two different components: the scheduler, which is a
PHP/MySQL component that triggers events on prims (e.g.,
VoIP call, Drug Dispenser alarm, etc.); the client agent, a
C#/ OpenMetaverse component, that permits to control the
Avatar via scheduled events, just like a prim, replicating
programmed user activity (cf. Full Simulation mode) [4] It
is also possible, for a human, to directly control an Avatar
via any Second Life Viewer (cf. Semi Simulation mode). A
3D scenario uses several prims, one for each OTS system.
Prims have their own scripts, which allow to individually
program and customize different actions and reactions. We
use a Master Control prim that serves as a communication
proxy between the base-level elements and their counterpart
3D meta-level representations. This unique prim permits to
use only one HTTP connection between the base and meta-
levels, thus simplifying the scripts on the other prims.

All prims listen for commands sent by the Master Control
prim and act according to their programmed behavior. For
example, if the Master Control sends the message “Phone
Ring” then the phone prim reacts by changing its state to
“Ringing”. Every state change is registered in the SHC
database. The Master Control may also be used by the
SHC middleware to reflect prim state changes back into
their base-level originals. The simulation may be driven by
pre-scheduled events that trigger state changes on specific
prims. These events will propagate state changes throughout
other prims that will react according to pre-programmed
scripts (cf. deterministic control). To increase variability the
simulation framework offers also the possibility for a human

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

controlled prim to drive the simulation, i.e., to trigger event
changes through direct ad hoc interactions with prims. In
addition, base-level elements may also trigger state changes
in their reified prims, increasing again simulation variability.
Next sub-sections will detail these two types of simulation

supported by SHC.

ﬂ
'

Schedule

Deterministic
Manager

‘ Viewer ‘
? A

\ _ \

OpenSim i

/’Jﬁ\
Prim Master 8 Avatar //]
Control m

Location ‘

Manager

Drug

q Sound sensor
Dispenser

Telephone
sensor

Figure 2. Simulation Architecture

C. Full Simulation

All prims have scripts, which represent pre-programmed
deterministic reactions to certain events. The Schedule Man-
ager uses the Master Control prim for conveying events
to these prims. Each prim listens for given channels, thus
facilitating different types of communications (e.g., sound,
network, etc.). The Client Agent uses a login to control an
Avatar (cf. moveto(), touch(), etc) and, through it, interact
with the environment or other prims. For instance, if the
telephone starts ringing and the Avatar hears it then, it will
move toward the phone prim for answering the call (touching
it).

D. Semi Simulation

A pre-ordered set of events may be too limited for gen-
erating enough realistic prim interactions and thus influence
our ability to detect all possible interferences. To increase
more randomness in the simulation, a human may control
the Avatar to generate ad hoc interactions. Reifying real-time
state changes, on OTS systems, into their prim representa-
tives will have the same effect on generating unpredictable
interactions and state changes.

The Avatar may be controlled through a Second Life
viewer or the Client Agent (e.g., move, touch, etc.). The
Client Agent uses a prim attached to the Avatar to be enable
to indirectly control it. This prim is also used to interact
with the environment, simulating the Persona features (e.g.,
hearing certain events).

IV. APPLICATION SCENARIO AND SIMULATION
A. Scenario

The particular scenario to which we applied our simu-
lation represents an excerpt of the daily routine of Maria,

63

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

our elderly persona. Like every morning, Maria watches her
favorite TV show and, at 10:30 AM, the Drug Dispenser
(DD) triggers the alarm light and buzzer reminding her it is
time to take medication. Unlike every morning, however, this
time the phone rings just after the dispenser alarm is trig-
gered. She answers the phone and spends more time talking
to her friend than the DD alarm timeout, which disengages
the light and buzzer. According to the DD behavior, it will
then send a notification to the server, indicating that a pill
was not taken.

Figure 3. 3D home scenario with Maria, DD and VoIP interactions.

The depicted scenario includes 2 different OTS systems
(cf. VoIP Phone and DD) and a Persona. These systems were

inserted into a virtual environment in order to simulate their
interactions.

B. Simulation

This simulation model has two OTS systems plus the User
Avatar. It is the correlation between the states of these three
elements that our simulation will explore. As the scenario
says, at 10:30 AM the DD alarm should sound, this involves
a couple of steps. The DD API, simulated as a prim inside
the OpenSim, checks every 30 minutes for the need of a pill
intake, this is achieved through the following steps: first, the
API sends a message to the Master Control Prim, using the
virtual channels for communication, requesting a database
check at the requested time (10:30 AM); second, the Master
Control Prim receives the message and, through an HTTP
request method, contacts a PHP server, using the information
that the message brought, more accurately the day and time
needed. So far all is done in the virtual environment. Third,
the PHP server connects with the MySQL database using a
PHP method for the query. Fourth, once the query returns the
result, the server uses the connector of the Master Control
Prim and reconnects with the virtual environment returning
the result of the query. The connector is actually a URL that
can be used as an HTTP Socket but with the difference that
it connects directly with a specific prim inside the virtual
environment. Fifth, the Master Control Prim receives the
HTTP request and replies to the DD API the result; in this
case the result is DDRING to start ringing. This way the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

DD API sends the result message to the DD Prim, that starts
Ringing, which means sending the message “DD Ringing”
in the channel chosen as environment sound, and changes its
color and brightness to simulate the blinking. All these steps
are performed in milliseconds, which means that so far the
usage of the Master Control Prim is not a bottleneck. The
reason to use the DD API inside the OpenSim was the clock.
This way, if there is the need of speeding up the clock for
decreasing the total simulation time, the only clock needing
tampering will be the simulator clock.

So far the DD is ringing, but a minute later the phone
starts Ringing as well. To test a different, more direct way of
communication, instead of a scheduled call, it was created
a phone like page to simulate a call directly from a web
page. With the scheduled DD API our approach functions
without the need for a user, but for the Phone a user as
to simulate the call, so at 10:31 AM the user inserts in the
web page a request for a call. This request is a simple button
that uses the Master Control connector just as before, and
sends the message ‘“PhoneRing” to the virtual environment.
Inside the virtual environment the Master Control Prim sends
the received message, using the communication channels,
to the Phone API Prim, named Asterisk. This API, in a
way similar to the DD API, communicates with the Phone
telling it to Ring. The ringing event consists in sending a
message ‘“PhoneRing” to the environment sound channel and
changing the phone color simulating the light in the visor.
As of now, both OTS systems are Ringing. According to
the planned scenario the Persona will answer the Phone
before the DD. But for this the Avatar needs to approach
the phone prim and touch it, simulating the answering state.
At 11 AM the DD gives a timeout and stops ringing. As
mentioned, there are two alternative avatar simulations, Full
and Semi Simulation. In Full Simulation, our approach uses
the Openmetaverse Library (LIBOMV) in order to create
a client agent, login the Avatar in the virtual environment
and use a schedule table to perform human like actions. In
our framework, after the login process has been achieved,
the avatar will be waiting for orders. In reality the code
serves to create a BOT (cf. Robot), normally used in video
games to create Artificial Intelligence characters; ours react
to commands like moveto and touch. For example, the
command moveto(X,y,z) is used to send the avatar to the
coordinates of the phone and the command touch(prim id)
is used to answer the phone (both the coordinates and
id are stored in the MySQL database). The connection to
database is made through the MySQL Library for .NET. In
Semi Simulation, the User will login in the VR, through
a viewer, and may control the avatar. The interaction with
other prims will be direct through “touch” or indirectly by
walking in a zone with sensors. To answer the phone, the
user must move to the Phone Prim and then touch it. The
Phone Prim, when touched, uses the same communication
process to send a message to the Phone API saying it was

64

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

answered. The Phone API sends a message saying the same
to the Master Control Prim that will use the same process
as before, communicate with the server indicating the new
phone state. The server will record this state in the database.
In both types of simulation, the Avatar has an attached Prim
that will send a message directly to the Master Control Prim
indicating the states of the Avatar (something like a human
API). In our example, the Avatar answers the Phone and
the system waits for the next interaction that will be the
timeout triggered by the DD API. This time the API needs
not to check the schedule, and sends two messages: first to
the DD prim, saying StopRinging that will make it change
to its original color and send a message to the environment
saying “low” (meaning low noise); second to the Master
Control with the timeout notification. The Master Control
will send the message to the server creating the new state.

Finally, the User will touch the Phone again, indicating
that the call is over. Every time a state is changed in either
of the prims the respective API (DD API, Phone API, or
Avatar API) will inform the Master Control Prim, which will
be responsible for sending the information to be recorded in
the server database (cf. recorded states in Table II).

Table T
COMMUNICATIONS IN THE SIMULATION SYSTEM

[Source [Destination | Message |
Master Control DD API DD On
DD API DD DD On
DD Environment | DD Ringing
Environment Person DD Ringing
Table II

SUBSET OF THE STATE TABLE ON SHC DATABASE

[Element [Feature [Value [Timestamp [Source [Type]
DD Alarm ON 10:30 AM DD Out
DD Ringing ON 10:30 AM DD In

Person Needs Pill ON 10:30 AM Person In
Phone Call In ON 10:31 AM Phone In
Phone Ringing ON 10:31 AM Phone In
Person Receives Call ON 10:31 AM Person In
Phone Call ON 10:32 AM Phone In
Person Answers Call ON 10:32 AM Person In
Phone Ringing OFF 10:32 AM Phone In
DD Take Pill OFF 11:00 AM DD In
DD Notify ON 11:00 AM DD Out
DD Alarm OFF 11:00 AM DD Out
DD Ringing OFF 11:00 AM DD In
Phone Call OFF 11:05 AM Phone In

C. Interference

The logical operation of the interference detection has
three steps: i) create the GoOS — read state values from the
SHC database and assemble a GoOS based on the known
expected states; ii) prune GoOS - based on the GoES,
remove correct state sequences from GoOS; and iii) interpret
results — from the state sequences left in the graph try to

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

identify the interference source. This last phase is currently
under work; for now our focus is on interference detection
without identifying the causality.

Table IIT
INTROSPECTED ENVIRONMENT INFORMATION

[Case | Element [Feature | Value | Type | Kind
A DD Alarm ON OouT APP
B DD Ringing ON IN APP
C DD Take Pill ON IN APP
D DD Take Pill OFF IN API
E DD Alarm OFF ouT APP
F DD Ringing OFF IN APP
G DD Low Drug ON IN API
H DD Notify ON OUT | API/APP
I DD Low Battery ON IN API
J DD Upside Down ON IN API
K Phone Call In ON OUT | API/APP
L Phone Ringing ON IN APP
M Phone Call ON IN API
N Phone Call OFF IN API
O Phone Call In OFF OUT | API/APP
P Phone Ringing OFF IN APP
Q User Needs Pill ON IN APP
R User Receives Call ON IN APP
S User Take Pill ON IN APP
T User Take Call ON IN APP

Table II represents a subset of the ‘“state” table taken
from 10:30 AM to 11:05 AM. This table results from the
scenario presented in IV-A. In order to look for interference
a GoOS is built from the database records (see Figure 4a).
This is achieved through a matching table (Table III) where
each case corresponds to an expected state. The state is
characterized by the component of the system (Element),
the activity (Feature, Value and Type) and the introspection
source (APP, API or both). Next, the Pruning Algorithm uses
the GoES (see Figure 4b) to remove correct sequence states
from the GoOS. In this example, paths <A,B,D,H.E,F>,
<R ,T> and <K,L,H,P,N> are removed. However, the SPA
returns the <Q> state since state <S> was not observed,
successfully identifying the interference, i.e., Maria does not
take her medicine as described.

¢

O-0-0-6-0

@-E-0-0-0--0-0

Figure 4. Graph of observed state - GoOS

65

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

V. ANALYSIS OF THE RELATED WORK

There are several simulation frameworks focusing specif-
ically on 3D representations of ubiquitous computing envi-
ronments. The UbiWise [5], from HP Labs, uses the Quake
IIT Arena graphics engine and offers two clients: UbiSim
(a 3D view of the virtual environment) and Wise (a close-
up view of devices that users may manipulate). DiaSim [6]
is a simulator for pervasive computing applications, coping
with widely heterogeneous entities. UbiREAL [7] provides
features to simplify the layout of 3D scenarios and simulate
communications (from MAC to Application layers). The
SHSim [8] is an OSGI-based Smart Home Simulator, which
offers system configuration facilities and provides device
transparent simulation. Only the last framework offers a real
transparent connection between the real-world and the sim-
ulation environment, but both real and virtual devices must
be OSGI compliant. A transverse difficulty in this area is
the integration of OTS devices. Most of these systems offer
a black box design (i.e., closing its internal architecture and
behavior) and proprietary technology (e.g., communication
protocols, programming languages, etc.), which poses diffi-
culties to simulation. Another important limitation of theses
frameworks is the lack of representation for human activities
and interactions. Actually, in [9] a simulation model for self-
adaptive applications, proposes two distinct representations:
i) a high-level model describing the activities of inhabitants
(e.g., take pill, answer phone); ii) a 2D model to map the
activities of the former model, thus allowing to associate
locations/objects to activities (e.g., “drug dispenser” to “take
pill”) and establishing usage profiles. Similarly, our approach
offers also physical modeling capabilities but is not limited
to location and may explore other 3D characteristics (cf.
space, volume, etc.). This may explore, for example, the
topology of the house and the location of an Avatar to
understand if it is able to hear a system (e.g., Phone or
DD) and move toward it (e.g., to answer the call or take the

pilD).
VI. CONCLUSIONS AND FUTURE WORK

Computer simulation of home care scenarios represents
a powerful mechanism to gain a deeper insight about the
unpredictable cascade of events, which can occur and their
potential interference effects. In this work, we apply 3D
simulation to model the behavior of coexisting OTS systems
and understand their possible unplanned interactions, even-
tually, involving users. The presented simulation framework
allows the incremental deployment of new OTS systems in
the simulated scenario and, through this, detect in advance
possible interference problems. Due to these facts, we argue
that 3D simulation is a pivotal part of the proposed SHC
reflective middleware framework.

In this paper, we have presented the simulation framework
and have described an application scenario, which clearly
illustrates the mechanics behind the simulation environment.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

Presently, we are focused in enriching the simulation model
by creating alternative behavior models for the computer
agent who acts on behalf of the human user being simulated.
Another scheduled goal, to address in future work, will be
the generation of datasets, as outcome of the simulation,
that can be used to compare the performance of difference
systems.

ACKNOWLEDGMENT

Christophe Soares thanks FCT, Portugal, for PhD Grant
SFRH/BD/64210/2009.

Safe Home Care Project (Interference-free Home Health-
Care Smart Spaces using Search Algorithms and Meta-
Reality Reflection), sponsored by FCT Grant PTDC/EIA-
EIA/108352/2008.

REFERENCES

[1] E U. B. of the Census., “65+ in the united states,’
U.S. Government Printing Office, Washington, DC, Tech.
Rep. Current Population Reports, Special Studies, P23-190,
1996. [Online]. Available: http://www.census.gov/prod/1/pop/
p23-190/p23-190.pdf

[2] P. Gongalves, J. M. Torres, P. Sobral, and R. S. Moreira,
“Remote Patient Monitoring in Home Environments,” in
The First International Workshop on Mobilizing Health
Information to Support Healthcare - MobiHealthInf 2009
(in conjunction with BIOSTEC 2009), Porto, Portugal,
2009. [Online]. Available: http://isus.ufp.pt/wp-content/
uploads/2010/03/mobihealthinf2009.pdf

[3] R. M. R.S. Moreira, ‘“Project safehomehealthcare: Interference-
free home health-care smart spaces using search algorithms and
meta-reality reflection; fct grant ptdc/eia-eia/108352/2008,”
2010, http://isus.ufp.pt/2010/03/.

[4] “Openmetaverse library,” http://www.openmetaverse.org/
projects/libopenmetaverse, Last accessed March 2011.

[5] J. J. Barton and V. Vijayaraghavan, “Ubiwise, a ubiquitous
wireless infrastructure simulation environment,” HP LABS,
2002. [Online]. Available: http://www.hpl.hp.com/techreports/
2002/HPL-2002-303.pdf

[6] W. Jouve, J. Bruneau, and C. Consel, “Diasim: A parame-
terized simulator for pervasive computing applications,” IEEE
International Conference on Pervasive Computing and Com-
munications, vol. 0, pp. 1-3, 2009.

[7] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Ki-
tani, N. Shibata, K. Yasumoto, and M. Ito, “Ubireal: Realistic
smartspace simulator for systematic testing,” in the Sth Int’l
Conf. on Ubiquitous Computing (UbiComp2006, 2006.

[8] Z. Lei, S. Yue, C. Yu, and S. Yuanchun, “Shsim: An osgi-based
smart home simulator,” in Ubi-media Computing (U-Media),
2010 3rd IEEE International Conference on, july 2010, pp. 87
-90.

[9] M. Huebscher and J. McCann, “Simulation model for self-
adaptive applications in pervasive computing,” in Database
and Expert Systems Applications, 2004. Proceedings. 15th
International Workshop on, aug.-3 sept. 2004, pp. 694 — 698.

66

