
A DHT-based Scalable and Fault-tolerant Cloud Information Service

Radko Zhelev
Institute on Parallel Processing
Bulgarian Academy of Sciences

Sofia, Bulgaria
zhelev@acad.bg

Vasil Georgiev
Faculty on Mathematics and Informatics
University of Sofia “St. Cl. Ochridsky”

Sofia, Bulgaria
v.georgiev@fmi.uni-sofia.bg

Abstract — In this paper, we present an Information Service
designed for maintaining resource information in Cloud
datacenters. We employ a P2P cluster of super-peers that share
the resource information and load of related activities in a
Distributed Hash Table (DHT) based manner. Our DHT does
not employ the standard keyspace range-partitioning, but
implements more complicated algorithm to enable better
distribution and fault-tolerance in the Cloud datacenter
context. We implement a prototype of the proposed system and
conduct comparative measurements that illustrate its scalable
and fault-tolerant capabilities.

Keywords – Cloud, Information Service, DHT, Scalability

I. INTRODUCTION

A Grid Information Service is software component,
whether singular or distributed, that maintains information
about resources in a distributed computing environment [1].
An Information Service has an Update Interface for
populating resource data by Producers of resource
information and a Query Interface for retrieving it by
interested Consumers - system administrators, resource
reservation and capacity planning tools, job schedulers, etc.

In this paper, we present an Information Service that is
suitable for maintaining data about resources in a Cloud
datacenter. It overcomes many limitations of existing Grids
solutions taking advantage from the Cloud-specific context.
Our system is formed of a P2P cluster of dedicated super-
peers [2], where datacenter resource information is structured
as a Distributed Hash Table (DHT). Our DHT employs a
non-traditional keyspace partitioning algorithm that trades
off better performance and fault-tolerance capabilities for
disadvantages that are not of importance to the Cloud.

The remainder of the paper is organized as follows:
related work on Grid Information Services and peer-to-peer
based resource discovery is provided in Section 2. Section 3
presents our system architecture, distribution algorithm and
relative use-cases. In Section 4, we describe the prototype
implementation and technology. Results from experimental
evaluation are presented in Section 5. Discussion on our
approach and outlook to future research complete the paper.

II. RELATED WORK OVERVIEW

A. Information Services Organization

A taxonomy based on system organization [3] classifies
the Information Services into – centralized, hierarchical and

decentralized. Centralization refers to the allocation of all
query processing capabilities to single resource. All lookup
and update queries are sent to a single entity in the system.
Systems including R-GMA [4], Hawkeye [5], GMD [6],
MDS-1 [7] are based on centralized organization [3].
Centralized models are easy to manage but they have well
known problems like scalability bottleneck and single point
of failure. Hierarchical organizations overcome some of
these limitations at the cost of overall system manageability,
which now depends on different site specific administrators.
Further, the root node in the system may present a single
point failure similar to the centralized model. Systems
including MDS-3 [8] and Ganglia [9] are based on
hierarchical organization. Performance evaluation of most
popular Grid solutions – R-GMA, MDS-3 and Hawkeye,
could be found at [13]. Decentralized systems, including
P2P, are coined as highly scalable and resilient, but
manageability is a complex task since it incurs a lot of
network traffic. Two sub-categories are proposed in P2P
literature [10]: unstructured and structured. Unstructured
systems do not put any constraints on placement of data
items on peers and how peers maintain their network
connections. Resource lookup queries are flooded
(broadcasted) to the directly connected peers, which in turn
flood their neighboring peers. Queries have a TTL (Time to
Live) field associated with maximum number of hops, and
suffer from non-deterministic result, high network
communication overload and non-scalability [17]. Structured
systems like DHTs offer deterministic query search results
within logarithmic bounds on network message complexity.

B. Distribute Hash Tables (DHT)

The foundations of DHT are an abstract keyspace and a
partitioning scheme that splits ownership of this keyspace
among the participating nodes [11], see Figure 1. Indexing
could be one-dimensional or multi-dimensional, i.e., based
on preliminary defined set of multiple search attributes [18].
Each node maintains a set of links to other nodes
(neighbors), thus forming an overlay network. A lookup
query is redirected to the neighbor that is owner of closest
keyspace to the searched key, until the responsible node for
that key answers the query. The keyspace partitioning has the
essential property that removal or addition of one node
changes only the set of keys owned by nodes with adjacent
portions, and leaves all other nodes unaffected. Since any
change in ownership typically corresponds to bandwidth-
intensive movement of objects stored in the DHT from one
node to another, minimizing such reorganization is required

This research is supported by the National Science Fund Proj.
ДДВУ02/22-2010

55Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

to efficiently support fault-tolerance and high rates of churn
(node arrival and failure) [12].

Figure 1. DHT keyspace partitioning ring.

III. SYSTEM OVERVIEW

A. System architecture

Our system architecture has three layers - Figure 2. In the
bottom layer are the Producers of resource information.
These are the datacenter nodes with all hardware and
software resources as well as any physical or logical entities
that produce resource information updates. Producers use the
Update Interface to provide resource status updates to the
System on the upper layer. The Information Service in the
middle layer is formed by a cluster of dedicated nodes
(super-peers), each of which having a local storage. Resource
data is distributed within the cluster and stored by the cluster
nodes in a deterministic way. The up-most layer is consisted
of Consumers of resource information that use the Query
Interface to retrieve data from the Information Service.

Figure 2. System architecure overview.

B. The Information Service Cluster

Our Information Service is a distributed system formed
of a cluster of dedicated nodes. Every node maintains
connections to all others (scheme every-to-every). The size
of the cluster, in terms of number of participating nodes, may
vary in accordance with the volume of the datacenter and the
amount of resources subject of monitoring. All nodes

exchange periodic pings with each other to detect if some
participant gets down or becomes inoperable. Thus, we
designate two states of a cluster node – available (1) and not
available (0). We define a term cluster state as follows:
considering we have a cluster of N nodes, the system orders
them in a sorted sequence, assigning static index to each
node {C0, C1, ..., CN}. A cluster state is represented by a list
of N Booleans showing the availability of each node at the
respective index. We can consider that every node in the
cluster ‘knows’ the entire cluster state, since everyone can
detect if any other node goes down - when response to the
ping is not received in a predefined time frame.

 Cluster State = {b0, b1, … bN-1}, bi = 0 or 1. (1)

C. DHT Keyspace partitioning algorithm

Our cluster acts as a DHT, i.e., every node is responsible
for a certain subpart of the whole set of resources within the
datacenter. Respectively, every resource has a certain
responsible node where its data is stored. Our DHT employs
a non-traditional keyspace assigning algorithm. It is one-
dimensional and based on the resource id as follows.

We build all permutations of cluster node indexes and
order them lexicographically [15], assigning to each
permutation an index number. Thus, for N nodes we have N!
in count permutations in the following lexicographical order:

P0 = C0, C1, …, CN-2, CN-1.
P1 = C0, C1, …, Cn-1, Cn-2.
...
Pn!-1 = CN-1, CN-2, …, C1, C0.

We then use some well-defined hash function that

calculates an integer number out from the resource id.

 IDHash = hashFunction(ResourceId). (3)

Any hash function [16] that produces chaotically spread
integers would do the job. The remainder produced by
dividing the hash code to the number of permutations (N!)
would give us a certain permutation index from the
lexicographical order of permutations:

 r = IDHash mod N!, r ∈ [0, N!-1]. (4)

As a result, we have a distribution function (d) that maps
resource ids to certain permutations of cluster nodes:

 d(ResourceId) -> Pr = {Cr0, Cr1, … CrN-1} . (5)

The mapping of resource id to a certain permutation of
nodes (Formula 5), we interpret as follows: Cr0 is the primary
responsible node for that resource and must handle it. Cr1 is
considered secondary responsible (fault-tolerance) node and
overtakes the handle upon the resource when Cr0 is not
operable. Cr2 is third responsible, ready to handle the
resource when Cr0 and Cr1 are not available, and so forth.

Cloud Datacenter

Query
Interface

Update
Interface

Information
Service
Cluster

(2)

56Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

It could be analytically proven that as far as produced
hashes are chaotically spread integers, this algorithm leads to
a normal distribution of resources over the responsible nodes
for any state of cluster. We have chosen to keep analytical
discussion beyond the scope of this paper. It could be also
proven, if not considered obvious, that our algorithm
preserves the essential property of DHTs that appearing and
disappearing of a cluster node concerns only the set of keys
owned by this very node. This means rebalancing would be
done with minimal number of redirections and without
redundant swapping of responsibilities.

D. Fault-tolerance

In previous section, we defined how Fault-tolerance
responsibilities are rebalanced, but data can not actually
survive node failures if not being replicated. To enable Fault-
tolerance, we define that system could be configured with
predefined ‘level of replication’ (LR) denoting the number of
copies that should be kept within the cluster. Following our
distribution algorithm, the copies of each resource data are
placed on the first LR in count nodes from the permutation
(of nodes) mapped to the respective resource (Formula 5).

E. Use-cases

This section describes Cloud Information Service related
use-cases and our sequence of actions in their handling.

Use-case1: Resource Lookup Query

Figure 3. Resource Lookup Query sequence.

The Consumer of resource information requests a resource
state by given id, contacting random node in the Information
Service Cluster. The node receiving the request, redirects the
call to the currently responsible node for that resource. The
responsible node retrieves the data from its local store.

Use-case 2: Massive Searching/Listing of Resources

Figure 4. Massive Query Listing sequence.

The Consumer of resource information requests a list of all
resources within the datacenter, potentially filtered by some

criteria. The request is passed to a random cluster node,
which broadcasts it to all other (live) nodes. Every node in
the cluster retrieves from its local store the subset of
resources, on which he is current owner that satisfy the
supplied filtering criteria.

Use-case 3: Resource Information Update

Figure 5. Resource Information Update sequence.

The Producer of resource information sends resource status
update to the responsible node for the target resource. The
responsible node stores locally the resource information and
sends replicas according the preconfigured level of
replication. In Cloud environment, we consider that
datacenter worker nodes could be redirected to connect to
their currently responsible cluster node. If this is not feasible
for some specific situation, the use-case should simply be
extended with one redirection step internally in the cluster,
similarly to Use-case 1.

F. Utilizing Non-replica Caches

Information Systems ambitious to provide efficient
management of resource data, and respectively – a
competitive system performance, usually need to implement
runtime caching in order to minimize the drawbacks from
slow disk I/O operations. Implementing runtime caches in
distributed systems is usually a complicated task, since
consistency of the cached data must be maintained via
synchronization messages or common access to a shared
memory. One of the major advantages of DHTs is the single-
place responsibility for a given resource at any moment in
time. Thus, our Information Service can abandon the
performance dropping complexity of maintaining distributed
caches and can use non-replica caches having the guarantee
that data will not be modified from different places.

IV. PROTOTYPE AND TECHNOLOGY

We implement a prototype of the proposed system in the
Java programming language. Although Java byte code
running in a JVM is considered less performant than natively
compiled components, we consider it works fine for our
purposes. Since we will illustrate the system efficiency when
it scales to increasing number of cluster nodes, the fixed
performance of each individual node is not of importance to
us. Our communication is a custom implemented message-
passing-like protocol on the top of Java TCP sockets. For
local storage on each node, we decided to use a MySQL
database. MySQL was chosen for two reasons. First, it is the
most popular free database, it is vastly used and is not

57Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

expected to show any eccentric behavior that biases the
results. And second, MySQL is also employed in one of the
famous grid systems - the European Data Grid [14] and their
R-GMA implementation. In this sense, we also decided to
use the R-GMA data storing model: in R-GMA instances of
given resource type are stored in a dedicated table with table
structure (columns) corresponding to the attributes of this
resource type. There is one table entry for every resource
instance and the entry fields (columns) hold the values of the
underlying resource instance attributes [4]. For our
experiment, we created one table corresponding to an
example type of resource, see Table I.

TABLE I. EXAMPLE STRUCTURE OF A MONITORED RESOURCE TYPE

SAMPLE_RESOURCES
Resource_id

:varchar
Hash
:int

Str_value
:varchar

Num_value
:int

Blob_value
:blob

V. RESULTS

A. Testbed Setup

Experiment was performed with six machines (Intel Core
2 Duo E4600 2.4 GHz, 2GB RAM), which we used to form
clusters of different sizes – 1, 2, …, 6. All machines were
connected through a 100Mbps Ethernet LAN. The software
equipment was: Linux Debian 2.6.18.dfsg.1-12etch2; Java 6
update 26; and MySQL 5.0.32-Debian_7etch6-log. Client
workloads were generated on a laptop (Intel Core 2 Duo 1.73
GHz, 1G RAM) with Windows XP and Java 6 update 26.

B. Metrics and System Characteristics

Our experiments are focused on studying the following
system characteristics:

• Throughput – the number of processed queries in a
unit of time. Our metric is: queries per second.

• Response-time (or Latency) – the time taken to
answer a query. Our metric is: milliseconds

• Utilization – the distribution of load over the cluster
nodes. Our metric is: ratio of locally processed and
redirected queries reported by each node.

• Fault-tolerance – utilization of the cluster nodes
under churn (i.e., some cluster nodes get inoperable),
and degradation of throughput and response-time.

C. Resource Lookup Query Results (Use-case 1)

In this use-case, monitoring applications retrieve resource
states by given resource id from the system. To study this
scenario, we preliminary loaded the databases on all cluster
nodes with volume of one million records - as if there were
one million resources of this type (‘sample_resources’)
throughout the Cloud datacenter. We added identical set of
records on all nodes - as if the system LR (level of
replication) was set at maximum. During a 10 minute period,
simulated “users” submitted blocking queries to the system,
waiting for 1 second between successive queries. Client
connections were evenly spread to all cluster nodes. The
resource ids picked up by ‘users’ were chosen in a stochastic
manner. We compared the system scalability with increasing
number of users and increasing size of the cluster.

Figure 6. Resource lookup query scaling.

The results shown on Figure 6 illustrate that for a
sufficient number of users, i.e., when the system is pushed at
its limits, the system throughput increases linearly. For 100
and 500 users the system quickly reaches the maximum,
limited by the insufficient client load. From user perspective,
the speed-up in response time also improves linearly.

Figure 7. Utilization of cluster nodes.

58Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 7 illustrates the utilization of participating cluster
nodes and the real benefit of our DHT keyspace distribution.
First, we compared the reported rates of locally processed
and redirected calls by each node (see sequence on Figure 3)
for different cluster sizes. The results show that all nodes
process similar percentage of the received requests locally.
We also compared these rates in the fault-tolerance scenarios
using a fixed cluster size of 6 nodes and different number of
non-operable ones. Results show that for any state of failover
rebalancing, the alive nodes are evenly utilized again. We
also checked (but are not placing diagram here) that
throughput and response-time for fault-tolerance cases,
report the same rates as if there was a healthy cluster formed
of the respective number of alive nodes.

We made one more experiment for the Resource Lookup
Query use-case. To show the benefit of utilizing non-replica
caches, we defined cache buffers on all nodes of fixed size -
100,000 entries. With a fixed volume of 1 million resources
(of this resource type) in the whole datacenter, the cache-hit
rates change with growing of the cluster as follows: 1 node –
10% cache-hit-rate, 2 nodes – 20%, 3 nodes – 30 %, and so
on. By running our measurements again, we get a super-
linear growing of the throughput as shown in Figure 8.

Figure 8. Resource lookup query scaling.

D. Massive Searching/Listing of Resources (Use-case 2)

Since these are more rarely triggered queries, used in
result of reservation/allocation cases or in global system
monitoring and maintenance, we only measured the
response-time speed up using one-client load. The same data
volume of 1 million resources was used for this experiment.

Figure 9. Massive queries scaling.

Figure 9 illustrates the measured speedup for different
volumes of the query result set. We used modulo functions
upon the ‘Hash’ field in the SQL where-clause to restrict the
proper subset of resources listed by each cluster node (recall
that every node also holds replicas owned by other nodes).
The exact formula will be left beyond the scope of this paper
to not overburden the exposition of experiments.

Again we measured the utilization of cluster nodes.
Results on Figure 10 show that all nodes retrieve equal
subsets of resources for any cluster size, as well as for any
cluster state including fault-tolerance rebalancing. We also
checked (but are not placing diagram here) that response
times in the fault-tolerance cases remain the same as if there
was a healthy cluster formed of the respective alive nodes.

Figure 10. Utilization of node for massive queries.

E. Resource infromation Update (Use-case 3)

Similarly to Use-case 1, for this scenario users submitted
blocking queries to the system during a 10 minute period,
while waiting for one second between successive calls.

Figure 11. Resource infromation update scaling.

59Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

We produced the results with fixed level of replication
LR=3, since it is usually considered as best balanced
between reliability of data and performance of the system.
Results shown on Figure 11 are as expected and again close
to the linearity. The particular choice of a replication method
usually reflects strongly upon the system performance. In our
case, we have chosen to buffer replicas in portions and push
them into the databases within grouped transactions. This
method performs much faster than storing of the original
copies, but makes replicas to appear with a few seconds
latency. Both are common effects in replica-maintaining
systems. On Figure 12, we fairly illustrate the actual draw-
back we get from our case-specific replication method.

Figure 12. LR in 6-nodes cluster: degradation of throughput.

VI. CONCLUSION AND FUTURE WORK

Our Information Service approach provides important
advantages, but strong limitations in the same time. First
limitation comes from our DHT-based balancing, which
normally requires employment of homogeneous cluster. The
second limitation comes from our specific keyspace
partitioning algorithm – we cannot easily add new nodes to
the cluster, because the whole set of resources should be
totally re-balanced. Notice that global rebalancing is not
needed when existing nodes from the cluster die and come
up again. We consider those limitations completely
acceptable for the Cloud resource management. Dedicating a
homogeneous cluster when building a farm of computers is
not an obstacle; and growing of the cluster is usually related
to extending of the physical datacenter, thus being a planned
task in long terms. Extending of the cluster then should be
done with a dedicated data migration procedure. In trade-off
for these limitations, we get advantages that are of major
importance for competitive systems as Clouds pretend to be.
First, we overcome some major disadvantages of existing
Grid systems imposed by the centralized or hierarchical
organization. The proposed system combines benefits from
the centralized and decentralized organizations, being
centric-oriented, and scalable and failover-capable in the
same time. The DHT-based balancing ensures performance
efficiency in retrieval of resources with no more than one
hop redirection. We also showed that utilizing non-replica
caches enables Cloud manufacturers to achieve super-linear
growing of system throughput via horizontal scaling, i.e., by
employing more cluster nodes with enabled RAM buffer
caches. Major improvement was also achieved in the fault-
tolerance rebalancing in comparison to the traditional DHTs.

In traditional DHTs failing of a node causes its ‘orphaned’
portion of elements to be handled by one or two of its
neighbors (see Figure 1). This ends up in uneven load over
the nodes left alive. The proposed algorithm ensures equal
utilization of the alive nodes for the failover rebalancing,
preventing overloaded nodes to become a system bottleneck.

Our future researches will be concentrated on analytical
and simulation modeling of the system. We must also find
the limits of growing of our cluster, having in mind that open
connections are every-to-every. Effort should be spent in
studying a modified system with introduced level of vicinity.

REFERENCES
[1] B. Yang and H. Garcia-Molina. Designing a super-peer network, 19th

International Conference on Data Engineering (ICDE), (Bangalore,
India), Mar. 2003.

[2] B. Plale, P. Dinda, and G. Laszewski. Key Concepts and Services of a
Grid Information Service. ISCA 15th International Parallel and
Distributed Computing Systems (PDCS), 2002

[3] R. Ranjan, A. Harwood, and R. Buyya. Peer-to-peer based resource
discovery in global grids: a tutorial. IEEE Commun Surv Tutorials,
10(2), pp. 6–33, 2008

[4] R-GMA System Specification Version 6.2.0: http://www.r-
gma.org/documentation/specification.pdf, 21.09.2011

[5] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid
Computing: Making the Global Infrastructure a Reality, John Wiley
& Sons, NJ, USA, 2003.

[6] J. Yu, S. Venugopal, and R. Buyya. Grid market directory: A web and
web services based grid service publication directory. The Journal of
Supercomputing, 36(1), pp. 17–31, 2006.

[7] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,W. Smith,
and S. Tuecke. A directory service for configuring high-performance
distributed computations. 6th IEEE Symp. on High Performance
Distributed Computing, pp. 365–375. IEEE CS Press, 1997.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC-10’01), Washington, DC, USA, 2001. IEEE CS.

[9] F. Sacerdoti, M. Katz, M. Massie, and D. Culler. Wide area cluster
monitoring with ganglia. 5th IEEE International Conference on
Cluster Computing (CLUSTER’03), Hong Kong.

[10] D.S. Milojicic, V. Kalogeraki, R. Lukose, and K. Nagarajan. Peer-to-
peer computing. Technical Report HPL-2002-57, HP Labs, 2002.

[11] G. Manku. Dipsea: A Modular Distributed Hash Table. Ph. D. Thesis
(Stanford University), Aug. 2004.

[12] J. Li, J. Stribling, T. Gil, R. Morris, and M. F. Kaashoek. Comparing
the performance of distributed hash tables under churn, 3rd
International Workshop on Peer-to-Peer Systems, Feb. 2004

[13] X. Zhang, J. Freschl, and J. M. Schopf, A performance study of
monitoring and information services for distributed systems, 12th
IEEE International Symposium on High Performance Distributed
Computing (HPDC-12), 2003.

[14] The DataGrid Project: http://eu-datagrid.web.cern.ch/eu-datagrid,
21.09.2011

[15] S. Mossige. Generation of permutations in lexicographical order, , pp.
74-75, BIT , ISSN 1572-9125, Vol. 10 (1. 1970).

[16] D. Knuth. The Art of Computer Programming, volume 3 (1973),
Sorting and Searching pp. 506–542.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. 16th international
conference on Supercomputing, pp. 84–95, NY, USA, 2002.

[18] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them
all: Multidimensional queries in P2P systems. In Proc. of WebDB, pp.
19–24, 2004.

60Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

