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Abstract — In this paper, we present an Information Service 
designed for maintaining resource information in Cloud 
datacenters. We employ a P2P cluster of super-peers that share 
the resource information and load of related activities in a 
Distributed Hash Table (DHT) based manner. Our DHT does 
not employ the standard keyspace range-partitioning, but 
implements more complicated algorithm to enable better 
distribution and fault-tolerance in the Cloud datacenter 
context. We implement a prototype of the proposed system and 
conduct comparative measurements that illustrate its scalable 
and fault-tolerant capabilities. 
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I. INTRODUCTION 

A Grid Information Service is software component, 
whether singular or distributed, that maintains information 
about resources in a distributed computing environment [1]. 
An Information Service has an Update Interface for 
populating resource data by Producers of resource 
information and a Query Interface for retrieving it by 
interested Consumers - system administrators, resource 
reservation and capacity planning tools, job schedulers, etc. 

In this paper, we present an Information Service that is 
suitable for maintaining data about resources in a Cloud 
datacenter. It overcomes many limitations of existing Grids 
solutions taking advantage from the Cloud-specific context. 
Our system is formed of a P2P cluster of dedicated super-
peers [2], where datacenter resource information is structured 
as a Distributed Hash Table (DHT). Our DHT employs a 
non-traditional keyspace partitioning algorithm that trades 
off better performance and fault-tolerance capabilities for 
disadvantages that are not of importance to the Cloud.  

The remainder of the paper is organized as follows: 
related work on Grid Information Services and peer-to-peer 
based resource discovery is provided in Section 2. Section 3 
presents our system architecture, distribution algorithm and 
relative use-cases. In Section 4, we describe the prototype 
implementation and technology. Results from experimental 
evaluation are presented in Section 5. Discussion on our 
approach and outlook to future research complete the paper. 

II. RELATED WORK OVERVIEW 

A. Information Services Organization 

A taxonomy based on system organization [3] classifies 
the Information Services into – centralized, hierarchical and 

decentralized. Centralization refers to the allocation of all 
query processing capabilities to single resource. All lookup 
and update queries are sent to a single entity in the system. 
Systems including R-GMA [4], Hawkeye [5], GMD [6], 
MDS-1 [7] are based on centralized organization [3]. 
Centralized models are easy to manage but they have well 
known problems like scalability bottleneck and single point 
of failure. Hierarchical organizations overcome some of 
these limitations at the cost of overall system manageability, 
which now depends on different site specific administrators. 
Further, the root node in the system may present a single 
point failure similar to the centralized model. Systems 
including MDS-3 [8] and Ganglia [9] are based on 
hierarchical organization. Performance evaluation of most 
popular Grid solutions – R-GMA, MDS-3 and Hawkeye, 
could be found at [13]. Decentralized systems, including 
P2P, are coined as highly scalable and resilient, but 
manageability is a complex task since it incurs a lot of 
network traffic. Two sub-categories are proposed in P2P 
literature [10]: unstructured and structured. Unstructured 
systems do not put any constraints on placement of data 
items on peers and how peers maintain their network 
connections. Resource lookup queries are flooded 
(broadcasted) to the directly connected peers, which in turn 
flood their neighboring peers. Queries have a TTL (Time to 
Live) field associated with maximum number of hops, and 
suffer from non-deterministic result, high network 
communication overload and non-scalability [17]. Structured 
systems like DHTs offer deterministic query search results 
within logarithmic bounds on network message complexity. 

B. Distribute Hash Tables (DHT) 

The foundations of DHT are an abstract keyspace and a 
partitioning scheme that splits ownership of this keyspace 
among the participating nodes [11], see Figure 1. Indexing 
could be one-dimensional or multi-dimensional, i.e., based 
on preliminary defined set of multiple search attributes [18]. 
Each node maintains a set of links to other nodes 
(neighbors), thus forming an overlay network. A lookup 
query is redirected to the neighbor that is owner of closest 
keyspace to the searched key, until the responsible node for 
that key answers the query. The keyspace partitioning has the 
essential property that removal or addition of one node 
changes only the set of keys owned by nodes with adjacent 
portions, and leaves all other nodes unaffected. Since any 
change in ownership typically corresponds to bandwidth-
intensive movement of objects stored in the DHT from one 
node to another, minimizing such reorganization is required 
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to efficiently support fault-tolerance and high rates of churn 
(node arrival and failure) [12]. 

 
Figure 1.  DHT keyspace partitioning ring. 

III.  SYSTEM OVERVIEW 

A. System architecture 

Our system architecture has three layers - Figure 2. In the 
bottom layer are the Producers of resource information. 
These are the datacenter nodes with all hardware and 
software resources as well as any physical or logical entities 
that produce resource information updates. Producers use the 
Update Interface to provide resource status updates to the 
System on the upper layer. The Information Service in the 
middle layer is formed by a cluster of dedicated nodes 
(super-peers), each of which having a local storage. Resource 
data is distributed within the cluster and stored by the cluster 
nodes in a deterministic way. The up-most layer is consisted 
of Consumers of resource information that use the Query 
Interface to retrieve data from the Information Service. 

Figure 2.  System architecure overview. 

B. The Information Service Cluster 

Our Information Service is a distributed system formed 
of a cluster of dedicated nodes. Every node maintains 
connections to all others (scheme every-to-every). The size 
of the cluster, in terms of number of participating nodes, may 
vary in accordance with the volume of the datacenter and the 
amount of resources subject of monitoring. All nodes 

exchange periodic pings with each other to detect if some 
participant gets down or becomes inoperable. Thus, we 
designate two states of a cluster node – available (1) and not 
available (0). We define a term cluster state as follows:  
considering we have a cluster of N nodes, the system orders 
them in a sorted sequence, assigning static index to each 
node {C0, C1, ..., CN}. A cluster state is represented by a list 
of N Booleans showing the availability of each node at the 
respective index. We can consider that every node in the 
cluster ‘knows’ the entire cluster state, since everyone can 
detect if any other node goes down - when response to the 
ping is not received in a predefined time frame. 

 Cluster State = {b0, b1, … bN-1}, bi = 0 or 1. (1) 

C. DHT Keyspace partitioning algorithm 

Our cluster acts as a DHT, i.e., every node is responsible 
for a certain subpart of the whole set of resources within the 
datacenter. Respectively, every resource has a certain 
responsible node where its data is stored. Our DHT employs 
a non-traditional keyspace assigning algorithm. It is one-
dimensional and based on the resource id as follows.  

We build all permutations of cluster node indexes and 
order them lexicographically [15], assigning to each 
permutation an index number. Thus, for N nodes we have N! 
in count permutations in the following lexicographical order: 

 
P0 = C0, C1, …, CN-2, CN-1. 
P1 = C0, C1, …, Cn-1, Cn-2. 
... 
Pn!-1 = CN-1, CN-2, …, C1, C0. 
 
We then use some well-defined hash function that 

calculates an integer number out from the resource id.  

 IDHash = hashFunction(ResourceId). (3) 

Any hash function [16] that produces chaotically spread 
integers would do the job. The remainder produced by 
dividing the hash code to the number of permutations (N!) 
would give us a certain permutation index from the 
lexicographical order of permutations: 

 r  = IDHash mod N!,  r ∈ [0, N!-1]. (4) 

As a result, we have a distribution function (d) that maps 
resource ids to certain permutations of cluster nodes: 

 d(ResourceId) -> Pr = {Cr0, Cr1, … CrN-1} . (5) 

The mapping of resource id to a certain permutation of 
nodes (Formula 5), we interpret as follows: Cr0 is the primary 
responsible node for that resource and must handle it. Cr1 is 
considered secondary responsible (fault-tolerance) node and 
overtakes the handle upon the resource when Cr0 is not 
operable. Cr2 is third responsible, ready to handle the 
resource when Cr0 and Cr1 are not available, and so forth. 
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It could be analytically proven that as far as produced 
hashes are chaotically spread integers, this algorithm leads to 
a normal distribution of resources over the responsible nodes 
for any state of cluster. We have chosen to keep analytical 
discussion beyond the scope of this paper. It could be also 
proven, if not considered obvious, that our algorithm 
preserves the essential property of DHTs that appearing and 
disappearing of a cluster node concerns only the set of keys 
owned by this very node. This means rebalancing would be 
done with minimal number of redirections and without 
redundant swapping of responsibilities. 

D. Fault-tolerance  

In previous section, we defined how Fault-tolerance 
responsibilities are rebalanced, but data can not actually 
survive node failures if not being replicated. To enable Fault-
tolerance, we define that system could be configured with 
predefined ‘level of replication’ (LR) denoting the number of 
copies that should be kept within the cluster. Following our 
distribution algorithm, the copies of each resource data are 
placed on the first LR in count nodes from the permutation 
(of nodes) mapped to the respective resource (Formula 5). 

E. Use-cases 

This section describes Cloud Information Service related 
use-cases and our sequence of actions in their handling. 

 
Use-case1: Resource Lookup Query 

 
Figure 3.  Resource Lookup Query sequence. 

The Consumer of resource information requests a resource 
state by given id, contacting random node in the Information 
Service Cluster. The node receiving the request, redirects the 
call to the currently responsible node for that resource. The 
responsible node retrieves the data from its local store. 
 

Use-case 2: Massive Searching/Listing of Resources 

 
Figure 4.  Massive Query Listing sequence. 

The Consumer of resource information requests a list of all 
resources within the datacenter, potentially filtered by some 

criteria. The request is passed to a random cluster node, 
which broadcasts it to all other (live) nodes. Every node in 
the cluster retrieves from its local store the subset of 
resources, on which he is current owner that satisfy the 
supplied filtering criteria.  
 

Use-case 3: Resource Information Update 

 
Figure 5.  Resource Information Update sequence. 

The Producer of resource information sends resource status 
update to the responsible node for the target resource. The 
responsible node stores locally the resource information and 
sends replicas according the preconfigured level of 
replication. In Cloud environment, we consider that 
datacenter worker nodes could be redirected to connect to 
their currently responsible cluster node. If this is not feasible 
for some specific situation, the use-case should simply be 
extended with one redirection step internally in the cluster, 
similarly to Use-case 1.  

F. Utilizing Non-replica  Caches 

Information Systems ambitious to provide efficient 
management of resource data, and respectively – a 
competitive system performance, usually need to implement 
runtime caching in order to minimize the drawbacks from 
slow disk I/O operations. Implementing runtime caches in 
distributed systems is usually a complicated task, since 
consistency of the cached data must be maintained via 
synchronization messages or common access to a shared 
memory. One of the major advantages of DHTs is the single-
place responsibility for a given resource at any moment in 
time. Thus, our Information Service can abandon the 
performance dropping complexity of maintaining distributed 
caches and can use non-replica caches having the guarantee 
that data will not be modified from different places. 

IV. PROTOTYPE AND TECHNOLOGY 

We implement a prototype of the proposed system in the 
Java programming language. Although Java byte code 
running in a JVM is considered less performant than natively 
compiled components, we consider it works fine for our 
purposes. Since we will illustrate the system efficiency when 
it scales to increasing number of cluster nodes, the fixed 
performance of each individual node is not of importance to 
us. Our communication is a custom implemented message-
passing-like protocol on the top of Java TCP sockets. For 
local storage on each node, we decided to use a MySQL 
database. MySQL was chosen for two reasons. First, it is the 
most popular free database, it is vastly used and is not 
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expected to show any eccentric behavior that biases the 
results. And second, MySQL is also employed in one of the 
famous grid systems - the European Data Grid [14] and their 
R-GMA implementation. In this sense, we also decided to 
use the R-GMA data storing model: in R-GMA instances of 
given resource type are stored in a dedicated table with table 
structure (columns) corresponding to the attributes of this 
resource type. There is one table entry for every resource 
instance and the entry fields (columns) hold the values of the 
underlying resource instance attributes [4].  For our 
experiment, we created one table corresponding to an 
example type of resource, see Table I. 

TABLE I.  EXAMPLE STRUCTURE OF A MONITORED RESOURCE TYPE 

SAMPLE_RESOURCES 
Resource_id 

:varchar 
Hash 
:int 

Str_value 
:varchar 

Num_value 
:int 

Blob_value 
:blob 

V. RESULTS 

A. Testbed Setup 

Experiment was performed with six machines (Intel Core 
2 Duo E4600 2.4 GHz, 2GB RAM), which we used to form 
clusters of different sizes – 1, 2, …, 6. All machines were 
connected through a 100Mbps Ethernet LAN. The software 
equipment was: Linux Debian 2.6.18.dfsg.1-12etch2; Java 6 
update 26; and MySQL 5.0.32-Debian_7etch6-log. Client 
workloads were generated on a laptop (Intel Core 2 Duo 1.73 
GHz, 1G RAM) with Windows XP and Java 6 update 26. 

B. Metrics and System Characteristics 

Our experiments are focused on studying the following 
system characteristics: 

• Throughput – the number of processed queries in a 
unit of time. Our metric is: queries per second. 

• Response-time (or Latency) – the time taken to 
answer a query. Our metric is: milliseconds 

• Utilization – the distribution of load over the cluster 
nodes. Our metric is: ratio of locally processed and 
redirected queries reported by each node. 

• Fault-tolerance – utilization of the cluster nodes 
under churn (i.e., some cluster nodes get inoperable), 
and degradation of throughput and response-time. 

C. Resource Lookup Query Results (Use-case 1) 

In this use-case, monitoring applications retrieve resource 
states by given resource id from the system. To study this 
scenario, we preliminary loaded the databases on all cluster 
nodes with volume of one million records - as if there were 
one million resources of this type (‘sample_resources’) 
throughout the Cloud datacenter. We added identical set of 
records on all nodes - as if the system LR (level of 
replication) was set at maximum. During a 10 minute period, 
simulated “users” submitted blocking queries to the system, 
waiting for 1 second between successive queries. Client 
connections were evenly spread to all cluster nodes. The 
resource ids picked up by ‘users’ were chosen in a stochastic 
manner. We compared the system scalability with increasing 
number of users and increasing size of the cluster. 

 

 
Figure 6.  Resource lookup query scaling. 

The results shown on Figure 6 illustrate that for a 
sufficient number of users, i.e., when the system is pushed at 
its limits, the system throughput increases linearly. For 100 
and 500 users the system quickly reaches the maximum, 
limited by the insufficient client load. From user perspective, 
the speed-up in response time also improves linearly.  

 

 
Figure 7.  Utilization of cluster nodes. 
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Figure 7 illustrates the utilization of participating cluster 
nodes and the real benefit of our DHT keyspace distribution. 
First, we compared the reported rates of locally processed 
and redirected calls by each node (see sequence on Figure 3) 
for different cluster sizes. The results show that all nodes 
process similar percentage of the received requests locally. 
We also compared these rates in the fault-tolerance scenarios 
using a fixed cluster size of 6 nodes and different number of 
non-operable ones. Results show that for any state of failover 
rebalancing, the alive nodes are evenly utilized again. We 
also checked (but are not placing diagram here) that 
throughput and response-time for fault-tolerance cases, 
report the same rates as if there was a healthy cluster formed 
of the respective number of alive nodes. 

We made one more experiment for the Resource Lookup 
Query use-case. To show the benefit of utilizing non-replica 
caches, we defined cache buffers on all nodes of fixed size - 
100,000 entries. With a fixed volume of 1 million resources 
(of this resource type) in the whole datacenter, the cache-hit 
rates change with growing of the cluster as follows: 1 node – 
10% cache-hit-rate, 2 nodes – 20%, 3 nodes – 30 %, and so 
on.  By running our measurements again, we get a super-
linear growing of the throughput as shown in Figure 8. 

 
Figure 8.  Resource lookup query scaling. 

D. Massive Searching/Listing of Resources (Use-case 2) 

Since these are more rarely triggered queries, used in 
result of reservation/allocation cases or in global system 
monitoring and maintenance, we only measured the 
response-time speed up using one-client load. The same data 
volume of 1 million resources was used for this experiment.   

 
Figure 9.  Massive queries scaling. 

Figure 9 illustrates the measured speedup for different 
volumes of the query result set. We used modulo functions 
upon the ‘Hash’ field in the SQL where-clause to restrict the 
proper subset of resources listed by each cluster node (recall 
that every node also holds replicas owned by other nodes). 
The exact formula will be left beyond the scope of this paper 
to not overburden the exposition of experiments.  

Again we measured the utilization of cluster nodes. 
Results on Figure 10 show that all nodes retrieve equal 
subsets of resources for any cluster size, as well as for any 
cluster state including fault-tolerance rebalancing. We also 
checked (but are not placing diagram here) that response 
times in the fault-tolerance cases remain the same as if there 
was a healthy cluster formed of the respective alive nodes. 

 
Figure 10.  Utilization of node for massive queries. 

E. Resource infromation Update (Use-case 3) 

Similarly to Use-case 1, for this scenario users submitted 
blocking queries to the system during a 10 minute period, 
while waiting for one second between successive calls.  

 

 
Figure 11.  Resource infromation update scaling. 
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We produced the results with fixed level of replication 
LR=3, since it is usually considered as best balanced 
between reliability of data and performance of the system. 
Results shown on Figure 11 are as expected and again close 
to the linearity. The particular choice of a replication method 
usually reflects strongly upon the system performance. In our 
case, we have chosen to buffer replicas in portions and push 
them into the databases within grouped transactions. This 
method performs much faster than storing of the original 
copies, but makes replicas to appear with a few seconds 
latency. Both are common effects in replica-maintaining 
systems. On Figure 12, we fairly illustrate the actual draw-
back we get from our case-specific replication method.  

 
Figure 12.  LR in 6-nodes cluster: degradation of throughput. 

VI. CONCLUSION AND FUTURE WORK 

Our Information Service approach provides important 
advantages, but strong limitations in the same time. First 
limitation comes from our DHT-based balancing, which 
normally requires employment of homogeneous cluster. The 
second limitation comes from our specific keyspace 
partitioning algorithm – we cannot easily add new nodes to 
the cluster, because the whole set of resources should be 
totally re-balanced. Notice that global rebalancing is not 
needed when existing nodes from the cluster die and come 
up again. We consider those limitations completely 
acceptable for the Cloud resource management. Dedicating a 
homogeneous cluster when building a farm of computers is 
not an obstacle; and growing of the cluster is usually related 
to extending of the physical datacenter, thus being a planned 
task in long terms. Extending of the cluster then should be 
done with a dedicated data migration procedure. In trade-off 
for these limitations, we get advantages that are of major 
importance for competitive systems as Clouds pretend to be. 
First, we overcome some major disadvantages of existing 
Grid systems imposed by the centralized or hierarchical 
organization. The proposed system combines benefits from 
the centralized and decentralized organizations, being 
centric-oriented, and scalable and failover-capable in the 
same time. The DHT-based balancing ensures performance 
efficiency in retrieval of resources with no more than one 
hop redirection. We also showed that utilizing non-replica 
caches enables Cloud manufacturers to achieve super-linear 
growing of system throughput via horizontal scaling, i.e., by 
employing more cluster nodes with enabled RAM buffer 
caches. Major improvement was also achieved in the fault-
tolerance rebalancing in comparison to the traditional DHTs. 

In traditional DHTs failing of a node causes its ‘orphaned’ 
portion of elements to be handled by one or two of its 
neighbors (see Figure 1). This ends up in uneven load over 
the nodes left alive. The proposed algorithm ensures equal 
utilization of the alive nodes for the failover rebalancing, 
preventing overloaded nodes to become a system bottleneck. 

Our future researches will be concentrated on analytical 
and simulation modeling of the system. We must also find 
the limits of growing of our cluster, having in mind that open 
connections are every-to-every. Effort should be spent in 
studying a modified system with introduced level of vicinity. 
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