UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A DHT-based Scalable and Fault-tolerant Cloud Infomation Service

Radko Zhelev

Institute on Parallel Processing

Bulgarian Academy of Sciences
Sofia, Bulgaria
zhelev@acad.bg

Abstract— In this paper, we present an Information Service
designed for maintaining resource information in Cébud

datacenters. We employ a P2P cluster of super-peetsat share
the resource information and load of related activies in a
Distributed Hash Table (DHT) based manner. Our DHTdoes
not employ the standard keyspace range-partitioning but

implements more complicated algorithm to enable bétr

distribution and fault-tolerance in the Cloud datacenter

context. We implement a prototype of the proposedystem and
conduct comparative measurements that illustrate & scalable
and fault-tolerant capabilities.

Keywords — Cloud, Information Service, DHT, Scaldityi

l. INTRODUCTION

Vasil Georgiev

Faculty on Mathematics and Informatics
University of Sofia “St. Cl. Ochridsky”
Sofia, Bulgaria
v.georgiev@fmi.uni-sofia.bg

decentralized. Centralization refers to the allocabf all
query processing capabilities to single resourdeloakup
and update queries are sent to a single entitii@nsystem.
Systems including R-GMA [4], Hawkeye [5], GMD [6],
MDS-1 [7] are based on centralized organization. [3]
Centralized models are easy to manage but they Wwalle
known problems like scalability bottleneck and #ngoint

of failure. Hierarchical organizations overcome sormf
these limitations at the cost of overall system aggability,
which now depends on different site specific adstiators.
Further, the root node in the system may presesingle
point failure similar to the centralized model. ®yss
including MDS-3 [8] and Ganglia [9] are based on
hierarchical organization. Performance evaluatiormost
popular Grid solutions — R-GMA, MDS-3 and Hawkeye,

A Grid Information Service is software component,could be found at [13]. Decentralized systems, uidiclg

whether singular or distributed, that maintainsoinfation
about resources in a distributed computing enviremnfil].
An Information Service has an Update
populating resource data by Producers of
information and a Query Interface for retrieving by

interested Consumers - system administrators, resou
reservation and capacity planning tools, job sclezdpetc.

In this paper, we present an Information Servic th
suitable for maintaining data about resources i€laud
datacenter. It overcomes many limitations of emgtGrids
solutions taking advantage from the Cloud-spedfiatext.
Our system is formed of a P2P cluster of dedicatgukr-
peers [2], where datacenter resource informatiatristured
as a Distributed Hash Table (DHT). Our DHT emplays
non-traditional keyspace partitioning algorithm ttheades
off better performance and fault-tolerance capissli for
disadvantages that are not of importance to thadClo

P2P, are coined as highly scalable and resilient, b
manageability is a complex task since it incursot df

Interface fometwork traffic. Two sub-categories are proposedPiP
resourciterature [10]: unstructured and structured. Winstired

systems do not put any constraints on placemerdatd
items on peers and how peers maintain their network
connections. Resource lookup queries are flooded
(broadcasted) to the directly connected peers, wimcurn
flood their neighboring peers. Queries have a TTimg to
Live) field associated with maximum number of hopsd
suffer from non-deterministic result, high network
communication overload and non-scalability [17TuStured
systems like DHTs offer deterministic query searebults
within logarithmic bounds on network message comiple

B. Distribute Hash Tables (DHT)
The foundations of DHT are an abstract keyspaceaand

The remainder of the paper is organized as followspartitioning scheme that splits ownership of theydpace

related work on Grid Information Services and peepeer
based resource discovery is provided in Sectidde2tion 3
presents our system architecture, distribution rittygo and
relative use-cases. In Section 4, we describe thotype
implementation and technology. Results from expenital
evaluation are presented in Section 5. Discussionoar
approach and outlook to future research complet@#per.

II. RELATED WORK OVERVIEW

A. Information Services Organization

A taxonomy based on system organization [3] clessif
the Information Services into — centralized, hiehéal and

This research is supported by the National Sci€uece Proj.
JUIBY02/22-2010

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

among the participating nodes [11], see Figurendlexing
could be one-dimensional or multi-dimensional,, ilmased
on preliminary defined set of multiple search htites [18].
Each node maintains a set of links to other nodes
(neighbors), thus forming an overlay network. A Kop
query is redirected to the neighbor that is owrfeclosest
keyspace to the searched key, until the responsiae for
that key answers the query. The keyspace partitipinas the
essential property that removal or addition of ormle
changes only the set of keys owned by nodes wicadt
portions, and leaves all other nodes unaffectedceSany
change in ownership typically corresponds to badtwi
intensive movement of objects stored in the DHTrfrone
node to another, minimizing such reorganizatioretpuired

55

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

to efficiently support fault-tolerance and highesbf churn

(node arrival and failure) [12].
2’-1 0

® ®)

B’s
responsibility

W\
y\

[t s
/i C’s
’ responsibility
. N C ’/
— =
o ~ >
responsibility S =

D’s
Figure 1. DHT keyspace partitioning ring.

Ill. SYSTEM OVERVIEW

A. Systemarchitecture

Our system architecture has three layers - Figuhe the
bottom layer are the Producers of resource infaomat

exchange periodic pings with each other to detesbine
participant gets down or becomes inoperable. Thuss,
designate two states of a cluster nodwatlable (1) andnot
available (0). We define a terntluster state as follows:
considering we have a cluster of N nodes, the systelers
them in a sorted sequence, assigning static indegath
node {G, C, ..., G}. A cluster state is represented by a list
of N Booleans showing the availability of each nadehe
respective index. We can consider that every nodéé
cluster ‘knows’ the entire cluster state, sincergmee can
detect if any other node goes down - when resptmsiee
ping is not received in a predefined time frame.

Cluster State={f b, ... by4}, bi=0o0r1 ()]

C. DHT Keyspace partitioning algorithm

Our cluster acts as a DHT, i.e., every node isaesiple
for a certain subpart of the whole set of resourdi¢isin the
datacenter. Respectively, every resource has aairtert

These are the datacenter nodes with all hardwate anggngnsible node where its data is stored. Our BRiploys

software resources as well as any physical or &ébgintities
that produce resource information updates. Producss the
Update Interface to provide resource status updatebe

System on the upper layer. The Information Serincéhe

middle layer is formed by a cluster of dedicatedle®
(super-peers), each of which having a local storRgeource
data is distributed within the cluster and storgdHe cluster
nodes in a deterministic way. The up-most layerissisted
of Consumers of resource information that use ther®)
Interface to retrieve data from the Information\ges.

- Cloud Datacenter
u
O[] o ~
£ = F, 5
=
E scheduling & capacity Cloud
S Query
Interface
HEH B8 B B
o & : k 3 -]S-ture - Store .
= | I | | Information
s wl @ & @ i Service
» B Bl B B = Cluster
y i y) Update
"""""""""""""""""""""" Tnterface
A 1L
g ANNENn o = R
= ser
‘g LL1LL 1| LSS Accounts Maintenance
& Datacenter Nodes & Devices Porcedures

Figure 2. System architecure overview.

B. TheInformation Service Cluster

Our Information Service is a distributed systenmmnfed
of a cluster of dedicated nodes. Every node maiatai
connections to all others (scheraery-to-every). The size
of the cluster, in terms of number of participatimages, may
vary in accordance with the volume of the datacesmd the

a non-traditional keyspace assigning algorithmisltone-
dimensional and based on the resource id as fallows

We build all permutations of cluster node indexes a
order them lexicographically [15], assigning to leac
permutation an index number. Thus, for N nodes axehN!
in count permutations in the following lexicogragddiorder:

PO = CJ! QL! ey Q\‘-ZY CN-l' (2)
Pl = Q)! QI.! ey Q\-lv Cn-2-

i:');u-l =G G -, G, G

We then use some well-defined hash function that
calculates an integer number out from the resaoidtce

IDHash = hashFunction(Resourceld))
Any hash function [16] that produces chaoticallyesa
integers would do the job. The remainder producgd b

dividing the hash code to the number of permutati(!)
would give us a certain permutation index from the
lexicographical order of permutations:

r = IDHash mod N!, £1[0, N!-1]. 4
As a result, we have a distribution function (cBtthmaps
resource ids to certain permutations of clusteesod

d(Resourceld) -> = {Cyo, Gy, ... Gn1}- 5)
The mapping of resource id to a certain permutatibn
nodes (Formula 5), we interpret as followg; i€ the primary
responsible node for that resource and must handBy is
considered secondary responsible (fault-toleranoee and
overtakes the handle upon the resource whgnisCnot
operable. ¢ is third responsible, ready to handle the

amount of resources subject of monitoring. All r@de resource when gand G, are not available, and so forth.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

56

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

It could be analytically proven that as far as pict
hashes are chaotically spread integers, this #hgoiieads to
a normal distribution of resources over the resjpbesiodes
for any state of cluster. We have chosen to keepytecal
discussion beyond the scope of this paper. It cbeldilso
proven, if not considered obvious, that our aldnit
preserves the essential property of DHTs that apmeand

disappearing of a cluster node concerns only thefskeys Monitor information Service Information Service
owned by this very node. This means rebalancingldvba Applications Cluster Cluster
done with minimal number of redirections and withou p—
. T uster
redundant swapping of responsibilities. Update Store R
Resource Information
D. Fault-tolerance Information LoCALLY
i X . Pr— .| Cluster | . Store
In previous section, we defined how Fault-tolerance v 2 Nodei Replica
responsibilities are rebalanced, but data can caialy Broadcast
survive node failures if not being replicated. Takle Fault- Replicas Cluster | . Store
tolerance, we define that system could be confitjwh t-----t3{ Nodek Rapties

predefined ‘level of replication’ (LR) denoting thember of
copies that should be kept within the cluster. dwihg our
distribution algorithm, the copies of each resouteta are
placed on the first LR in count nodes from the péation
(of nodes) mapped to the respective resource (Har&)u

E. Use-cases

This section describes Cloud Information Servideteel
use-cases and our sequence of actions in theitihgnd

Use-casel: Resource Lookup Query

Monitor

Information Service Information Service

Cluster Cluster

Redirect to
= Responsible | |-
Cluster
Node

Figure 3. Resource Lookup Query sequence.

Applications

Cluster
Node 0

Cluster
Node 0

Request
Recource
State
by ID

Retrieve
2 from

Cluster
Nodei

Cluster
Node k

local
store

Cluster
Node N

Cluster
Node N

The Consumer of resource information requests aures
state by given id, contacting random node in tHerination
Service Cluster. The node receiving the requediraets the
call to the currently responsible node for thabtese. The
responsible node retrieves the data from its Istak.

Use-case 2: Massive Searching/Listing of Resources
Monitor
Applications

Information Service Information Service

Cluster Cluster

List Cluster | N Cluster | || List my

Resources Node 0] Node 0 portion
(by |
fitler) ;

Cluster Broadcast N Cluster | .| List my

__________ > Nodei |y request Node k portion

Cluster] | Cluster | .| List my

Node N 4 Node N portion

Figure 4. Massive Query Listing sequence.

The Consumer of resource information requestst afisll
resources within the datacenter, potentially fteby some

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

criteria. The request is passed to a random clusbele,
which broadcasts it to all other (live) nodes. Eveode in
the cluster retrieves from its local store the stbef
resources, on which he is current owner that yatisé
supplied filtering criteria.

Use-case 3: Resource Information Update

Figure 5. Resource Information Update sequence.

The Producer of resource information sends resostates
update to the responsible node for the target resohe
responsible node stores locally the resource irdtion and
sends replicas according the preconfigured level of
replication. In Cloud environment, we consider that
datacenter worker nodes could be redirected to exinto
their currently responsible cluster node. If tlisiot feasible

for some specific situation, the use-case shouttplsi be
extended with one redirection step internally ie thuster,
similarly to Use-case 1.

F. Utiliziing Non-replica Caches

Information Systems ambitious to provide efficient
management of resource data, and respectively —
competitive system performance, usually need tdémpnt
runtime caching in order to minimize the drawbaéimsn
slow disk 1/0 operations. Implementing runtime chn
distributed systems is usually a complicated tesikce
consistency of the cached data must be maintained v
synchronization messages or common access to a&dshar
memory. One of the major advantages of DHTs isthgle-
place responsibility for a given resource at anyranot in
time. Thus, our Information Service can abandon the
performance dropping complexity of maintaining wisited
caches and can use non-replica caches having trargee
that data will not be modified from different place

a

V.

We implement a prototype of the proposed systethen
Java programming language. Although Java byte code
running in a JVM is considered less performant thatively
compiled components, we consider it works fine éor
purposes. Since we will illustrate the system &fficy when
it scales to increasing number of cluster nodes, ftked
performance of each individual node is not of intgoce to
us. Our communication is a custom implemented ngessa
passing-like protocol on the top of Java TCP sackEbr
local storage on each node, we decided to use aQUyS
database. MySQL was chosen for two reasons. Eirstthe
most popular free database, it is vastly used andoi

PROTOTYPEAND TECHNOLOGY

57

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

expected to show any eccentric behavior that bidkses
results. And second, MySQL is also employed in ohthe
famous grid systems - the European Data Grid [hd]their
R-GMA implementation. In this sense, we also detitie
use the R-GMA data storing model: in R-GMA instanoé
given resource type are stored in a dedicated taitietable
structure (columns) corresponding to the attribugeghis
resource type. There is one table entry for evespurce
instance and the entry fields (columns) hold tHeesof the
underlying resource instance attributes [4]. Farr o
experiment, we created one table corresponding rto
example type of resource, see Table I.

—a— 2 500 users

00 —m— 500 users

600 + —+— 100 users

500

300

Throughput {queries fs)

200

100 !./

[+

Cluster Size
g (number of nodes)

TABLE I. EXAMPLE STRUCTURE OF AMONITOREDRESOURCETYPE

20000

SAMPLE_RESOURCES

Hash Str_value Num_value
iint :varchar iint

—&— 2,500 users

Resource_id
:varchar

Blob_value
:blob

—8—500 users

15000 -

\ —— 100 users

V. RESULTS

10000 -

A. Testbed Setup

Experiment was performed with six machines (InteteC
2 Duo E4600 2.4 GHz, 2GB RAM), which we used tarfor
clusters of different sizes — 1, 2, ..., 6. All mawts were
connected through a 100Mbps Ethernet LAN. The softw
equipment was: Linufebian 2.6.18.dfsg.1-12etch2; Java 6
update 26; and MySQL 5.0.32-Debian_7etch6-log. Client
workloads were generated on a laptop (Intel Cdbei@ 1.73
GHz, 1G RAM) with WindowsXP and Java @pdate 26.

B. Metricsand System Characteristics

Our experiments are focused on studying the fohgwi
system characteristics:

3000

Response-time (millseconds)

r——8—=
2 3

0 + Cluster size

{number of nodes)

4 5 5]

Figure 6. Resource lookup query scaling.

The results shown on Figure 6 illustrate that for a
sufficient number of users, i.e., when the systempuished at
its limits, the system throughput increases linedfbr 100
and 500 users the system quickly reaches the maximu
limited by the insufficient client load. From ugegrspective,
the speed-up in response time also improves linearl

connections were evenly spread to all cluster nodes

* Throughput — the number of processed queries in _199% " S i
unit of time. Our metric is: queries per second. &
+ Response-time (or Latency) — the time taken tcg 5°% 7 i
answer a query. Our metric is: milliseconds g Onode-3
« Utilization — the distribution of load over the ster E s - T
nodes. Our metric is: ratio of locally processed an #
redirected queries reported by each node. 8 a0% - e
« Fault-tolerance — utilization of the cluster nodes = Wnode-6
under churn (i.e., some cluster nodes get inopeyabl § 29% 7 E T e
and degradation of throughput and response-time. 3 i : ’HE?‘ I-ET[I
C. Resource Lookup Query Results (Use-case 1) o 3 3 i = g Clustersize (n)
In this use-case, monitoring applications retrimsource '__10”% 1 Onode-1
states _by given resource id from the system. Tdysthis & . I
scenario, we preliminary loaded the databases loriuster 00
nodes with volume of one million records - as éwere & M picide-3
one million resources of this typesdmple resources) S PUN ®node-4
throughout the Cloud datacenter. We added idensieblof & E—
records on all nodes - as if the system LR (level o g e
replication) was set at maximum. During a 10 mimegod, a M node-§
simulated “users” submitted blocking queries to $lgstem, éuf 20% ’_E_H B v
waiting for 1 second between successive querieenCl 3 . \
0% ; L .
5 5]

resource ids picked up by ‘users’ were chosenstoehastic
manner. We compared the system scalability witheiaging
number of users and increasing size of the cluster.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

1

2 3 4
Mumber of alive nodes (n) in a 6-size cluster

Figure 7. Utilization of cluster nodes.

58

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 7 illustrates the utilization of participadi cluster
nodes and the real benefit of our DHT keyspaceiloligion.
First, we compared the reported rates of locallycpssed
and redirected calls by each node (see sequenEmore 3)
for different cluster sizes. The results show thtnodes
process similar percentage of the received requestdly.
We also compared these rates in the fault-toleraceparios
using a fixed cluster size of 6 nodes and differamber of
non-operable ones. Results show that for any sfdtelover
rebalancing, the alive nodes are evenly utilizediragWe

Figure 9 illustrates the measured speedup for réifite
volumes of the query result set. We used modulations
upon the ‘Hash' field in the SQL where-clause tstriet the
proper subset of resources listed by each clustde frecall
that every node also holds replicas owned by atiogies).
The exact formula will be left beyond the scopéhid paper
to not overburden the exposition of experiments.

Again we measured the utilization of cluster nodes.
Results on Figure 10 show that all nodes retriegeak
subsets of resources for any cluster size, as agefor any

also checked (but are not placing diagram here} thaluster state including fault-tolerance rebalanciige also

throughput and response-time for fault-tolerancesesa
report the same rates as if there was a healtisyecléormed
of the respective number of alive nodes.

We made one more experiment for the Resource Looku

Query use-case. To show the benefit of utilizing-neplica
caches, we defined cache buffers on all nodesetlfsize -
100,000 entries. With a fixed volume of 1 millioesources
(of this resource type) in the whole datacenter,d&iche-hit
rates change with growing of the cluster as follovaode —
10% cache-hit-rate, 2 nodes — 20%, 3 nodes — 3@8n%so
on. By running our measurements again, we getparsu

linear growing of the throughput as shown in FigBre
7000

B60% hit—rate{l’ +— 12 500
__ 6000 -
= ¥ —=— 2,500
"]
§ 5000 / i
g
g 000 50% hit/rate
-
2 3000 - A
—
s sl —a
2 2000 o 40‘361’?9?;&'"
£ — : 30% o
10 20%
; Xy - - * Cluster size
{number of nodes)
1 2 3 4 5 -]

Figure 8. Resource lookup query scaling.

D. Massive Searching/Listing of Resources (Use-case 2)

Since these are more rarely triggered queries, used
result of reservation/allocation cases or in globgbtem

monitoring and maintenance, we only measured th

response-time speed up using one-client load. & glata

volume of 1 million resources was used for thisezipent.
14000 -

- o
£ 12000 |\, —+— 1,000,000
] ~.,
- b ”
210000 - “'-.,\ —se— 250,000
E A —e— 100,000
= 800D - LY
= M _=— 10,000
% 600D - S
E e —— 1,000
E 4000 % S
] . *—
* 2000 e e
- - — e ———%———% Cluster size
0 — ® B » a (number of nodes)
1 2 3 4 5 6

Figure 9. Massive queries scaling.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

checked (but are not placing diagram here) thaporese
times in the fault-tolerance cases remain the sasriethere

was a healthy cluster formed of the respectiveeaiivdes.
1,200,000 1,200,000 -

1,000,000 n 1,000,000
Onode-1 Onode-1
- -
+ 800,000 - Bnode-z = 800,000 - Bnode-2
o o
'E H node-3 -E H node-3
% 600,000 - - 000,000 -
] ®node-4 '§ Enode-4
] g2
;E: 400,000 - Enode-5 = 490000 - Enode-5
4
‘s MWnode-6 % mnode-6
o - o §
E 200,000 |:|:|l]J[|:m E 200,000 H:m_ﬂjﬂﬂ
-] o
= 0 HLHL > 0 :
1 2 3 4 5 6 1 2 3 & 5 6

CLuster size (n) Live nodes (n) in a 6-size cluster

Figure 10.Utilization of node for massive queries.

E. Resourceinfromation Update (Use-case 3)

Similarly to Use-case 1, for this scenario usetsrstied
blocking queries to the system during a 10 minwggog,
while waiting for one second between successivs.cal

Z1000 - 7 _e—2500
E "
= B00 - e —=—500
E ol
B
= —— 100
=
—
Ei —m
g
-—
=

— ik & & F s 1

0 . . : . . :
Cluster size (n)
2 3 4 5 B
BOOD 4
o %
2 7000 1\ —+—2,500
Q A
& Gooo { ol
_— LY
£ \ —a 100
E 5000
AN
£ 4000 b
5 .,
ﬁ 3000 - e S =
% 2000 s,
= T
1000 I~
TR
0 A—— B | .
Cluster size (n)
1 2 3 4 5

Figure 11.Resource infromation update scaling.

59

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

We produced the results with fixed level of refdica
LR=3, since it is usually considered as best badnc
between reliability of data and performance of system.
Results shown on Figure 11 are as expected and algasie
to the linearity. The particular choice of a regtion method
usually reflects strongly upon the system perforeeain our
case, we have chosen to buffer replicas in portaospush
them into the databases within grouped transactidhgs
method performs much faster than storing of thejiai
copies, but makes replicas to appear with a fevorsic
latency. Both are common effects in replica-mairitej
systems. On Figure 12, we fairly illustrate theuattdraw-
back we get from our case-specific replication roéth

1400 -
1200 4
e —e— 2 500 users
ElCIDD 1 '*_—-*———-..,___. —m— 500 users
2 800 - —s— 100 users
)
£ 600
g ap0 ¥ " -
3‘ 200 -
£
o T T T T |
LR=1 LR=2 LR=3 LR=4 LR=5 LR=6 Level of Replication

Figure 12.LR in 6-nodes cluster: degradation of throughput.

VI. CONCLUSION AND FUTURE WORK

Our Information Service approach provides importantz

advantages, but strong limitations in the same .tiFiest
limitation comes from our DHT-based balancing, whhic
normally requires employment of homogeneous clu3tee

second limitation comes from our specific keyspacd8l

partitioning algorithm — we cannot easily add nevdes to
the cluster, because the whole set of resourcesldchoe
totally re-balanced. Notice that global rebalancisgnot
needed when existing nodes from the cluster diecamde
up again. We consider those
acceptable for the Cloud resource management. Btauica
homogeneous cluster when building a farm of complite
not an obstacle; and growing of the cluster is iguelated
to extending of the physical datacenter, thus baiptanned
task in long terms. Extending of the cluster thboutd be
done with a dedicated data migration proceduréeralte-off
for these limitations, we get advantages that drenajor
importance for competitive systems as Clouds pceterbe.
First, we overcome some major disadvantages oftiegis
Grid systems imposed by the centralized or hiereath
organization. The proposed system combines berfedits
the centralized and decentralized organizationsingbe
centric-oriented, and scalable and failover-capablehe
same time. The DHT-based balancing ensures perfargna
efficiency in retrieval of resources with no motean one
hop redirection. We also showed that utilizing meplica
caches enables Cloud manufacturers to achieve-8opar
growing of system throughput via horizontal scaling., by

employing more cluster nodes with enabled RAM huffe 1) p Ganesan, B. vang,

caches. Major improvement was also achieved infabk-
tolerance rebalancing in comparison to the tracéidHTs.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

limitations completely

In traditional DHTSs failing of a node causes itspiosaned’
portion of elements to be handled by one or twoitef
neighbors (see Figure 1). This ends up in unevad ter
the nodes left alive. The proposed algorithm ersegual
utilization of the alive nodes for the failover edéncing,
preventing overloaded nodes to become a systetetexdk.
Our future researches will be concentrated on &naly
and simulation modeling of the system. We must filsd
the limits of growing of our cluster, having in rdithat open
connections are every-to-every. Effort should bensgn
studying a modified system with introduced leveViginity.

REFERENCES

B. Yang and H. Garcia-Molina. Designing a superrpegwork, 19th
International Conference on Data Engineering (ICDBangalore,
India), Mar. 2003.

B. Plale, P. Dinda, and G. Laszewski. Key ConcaptsServices of a
Grid Information Service. ISCA 15th InternationabrBllel and
Distributed Computing Systems (PDCS), 2002

R. Ranjan, A. Harwood, and R. Buyya. Peer-to-peesell resource
discovery in global grids: a tutorial. IEEE Comm8arv Tutorials,
10(2), pp. 6-33, 2008

R-GMA System Specification Version 6.2.0:
gma.org/documentation/specification.pdf, 21.09.2011

D. Thain, T. Tannenbaum, and M. Livny. Condor amel &rid. Grid
Computing: Making the Global Infrastructure a Rgallohn Wiley
& Sons, NJ, USA, 2003.

J. Yu, S. Venugopal, and R. Buyya. Grid marketaory: A web and
web services based grid service publication dirgctéhe Journal of
Supercomputing, 36(1), pp. 17-31, 2006.

S. Fitzgerald, I. Foster, C. Kesselman, G. von éaski,W. Smith,
and S. Tuecke. A directory service for configuriiigh-performance
distributed computations. 6th IEEE Symp. on Highrfétenance
Distributed Computing, pp. 365-375. IEEE CS Pr&89y7.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. $&@man. Grid
information services for distributed resource ghgrilOth IEEE
International Symposium on High Performance Disitelol
Computing (HPDC-10'01), Washington, DC, USA, 20HEE CS.

F. Sacerdoti, M. Katz, M. Massie, and D. Culler.d&/iarea cluster
monitoring with ganglia. 5th IEEE International Gerence on
Cluster Computing (CLUSTER’03), Hong Kong.

D.S. Milojicic, V. Kalogeraki, R. Lukose, and K. jarajan. Peer-to-
peer computing. Technical Report HPL-2002-57, HB<,.2002.

[11] G. Manku. Dipsea: A Modular Distributed Hash Talfta. D. Thesis
(Stanford University), Aug. 2004.

[12] J. Li, J. Stribling, T. Gil, R. Morris, and M. F.aashoek. Comparing
the performance of distributed hash tables undeuarnch 3rd
International Workshop on Peer-to-Peer Systems, Fed

[13] X. Zhang, J. Freschl, and J. M. Schopf, A perforceastudy of
monitoring and information services for distributegistems, 12th
IEEE International Symposium on High Performancestiibuted
Computing (HPDC-12), 2003.

[14] The DataGrid Project: http://eu-datagrid.web.cérfee-datagrid,
21.09.2011

[15] S. Mossige. Generation of permutations in lexicpgieal order, , pp.
74-75, BIT , ISSN 1572-9125, Vol. 10 (1. 1970).

[16] D. Knuth. The Art of Computer Programming, volume(I®73),
Sorting and Searching pp. 506-542.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.r&eaand
replication in unstructured peer-to-peer netwod&th international
conference on Supercomputing, pp. 84-95, NY, USA22

and H. Garcia-Molina. Onesttourule them

all: Multidimensional queries in P2P systems. lod?iof WebDB, pp.
19-24, 2004.

(1]

(2]

(3]

[4] http:/ -

(5]

(6]

9]

[10]

60

