
Personalized Security in Mobile Environments Using Software Policies

Mhammed Chraibi

School of Science and Engineering

Al Akhawayn University in Ifrane

Ifrane, Morocco

M.Chraibi@aui.ma

Hamid Harroud
School of Science and Engineering

Al Akhawayn University in Ifrane

Ifrane, Morocco

H.Harroud@aui.ma

Abdelilah Maach
Ecole Mohammadia des Ingenieurs

University Mohamed V

Rabat, Morocco,

maach@emi.ac.ma

Abstract - With the advance of technology and the widespread

of mobile devices that enable users to have access to a wide

range of services wherever they are, and whenever they want,

many security issues arise. Both users and service providers

feel the need to protect themselves from the large number of

threats that are present on every network. Some time ago,

users could have access to services only if they were physically

present in a certain, predefined, area. This gave a lot of user

personal information to the service providers which helped

them secure their systems and their transactions with users.

Now, it is not anymore the case. Therefore, the need arose for a

novel way, for mobile users and service providers, to secure

their information and their transactions. In this paper, we

show that combining software policies and context information

provides users and service providers with confidentiality, data

integrity, data availability, and accountability.

Keywords- mobility; security; software policies; context

I. INTRODUCTION

With the emergence of mobile technologies and the

perpetual improvement of context aware technologies, users

make use of their small devices, such as smartphones,

laptops, and personal digital assistants (PDAs) and take

advantage of the surrounding services in their environment

that they need to achieve their everyday life tasks. To be

able to receive the most appropriate and personalized

services, users build their own profiles within which they

find themselves obliged to disclose personal information as

in [1]. There is obviously a threat to privacy as not all the

service providers need access to all the information

available in the profile. A tradeoff between the amount of

personal information released through the profile and user

privacy has to be made.

Another aspect that makes it even more important to

protect the user’s information is mobility. Ideally, the user

must be able to move from one environment to the other and

still receive the same services if not more services that are

adapted to his profile while being protected. In this paper,

we tackle the security issues that rise from user’s mobility,

and show how software policies can be used to enforce

security in mobile environments. The fact that users can

transport their policies with them wherever they go, added

to the fact that users can express their security needs in

terms of policies make software policies a suitable solution

for mobile users. In addition, users can decide which

specific information to disclose to a specific service

provider. Moreover, well designed policies enable users to

take advantage of context information to enhance security.

Combining the rules with context information allows the

user not only to take advantage of his knowledge of the

specificities of the action that he will be conducting, but also

the knowledge of environment conditions that he might not

be aware of. The user, the service provider, and the security

management component, each must have their own policies

that will help regulate and secure any transaction and/or

action that takes place.

The rest of this paper is organized as follows: In

Section 2, there is an overview of the work that has been

done on security in mobile environments and policy-based

systems. In Section 3, we present the policies that we have

designed and show how context information can be

incorporated. Section 4 contains a thorough description of

the different components of our policy-based security

system and how it achieves security. Section 5 contains a

scenario that takes places at Al Akhawayn University and

that shows the functioning of the policy-based security

management system. Finally, the conclusion and future

work section is presented.

II. RELATED WORK

Different aspects of security are handled using software

policies at different levels and applications. Policies have

been used to provide security management for sensor

networks such as SecSNMP [2]. SecSNMP allows

administrators to dynamically manage the security settings

using policies. Settings include availability, authentication,

confidentiality, integrity, non-repudiation, freshness, and

survivability [2]. The second example of systems using

policies to achieve security is proposed by [3] and uses

security policies in a slightly different manner. This multi-

agent system is a good example of great importance to us as

one of the most interesting features in agent systems is their

mobility and their adaptability. Basically, agents are

supposed to move from an environment to another and

autonomously adapt and provide/use services. Software

policies are used to identify the security threat and launch

the security mechanism that is needed to deal with it. Just

like in our system, one issue is to identify the nature of the

threats that could exist in different environments.

27Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

mailto:M.Chraibi@aui.ma
mailto:H.Harroud@aui.ma
emailto:maach@emi.ac.ma

Figure 1. Security management in mobile environments

Our contribution is the design of a system, based on policies,

that allows mobile users define their own security concerns

and deal with them the way they want in whatever

environment they are. Figure 1 shows where our policy-

based security management system fits.

In the context of this paper, ensuring security involves

providing the users with the tools to achieve confidentiality,

data integrity, availability, and/or accountability. Achieving

confidentiality means avoiding and preventing disclosure of

information to unwanted parties. There are several tools that

are used; the most known is encryption of the data that is

stored, and the data that is being transmitted on the network.

As specified in [8], using encryption can be the solution to

attacks like eavesdropping. Confidentiality can also be

enforced using access control as only the parties that have

access to the data are allowed to access it. There are different

access control methods, such as RBAC (Role Based Access

Control), MAC (mandatory Access Control), and TrustAC

(Trust-based Access Control) that are discussed in [9] and

[10]. Access control does not only provide with

confidentiality, it also enforces accountability (keeping track

of the logs). However, it cannot ensure the confidentiality of

the data transferred on a network. Another way to enhance

security in a mobile environment is to use IPv6. The latter

contains security enhancements that try to overcome the

shortcomings of IPv4. For example, resistance to scanning is

only possible under IPv6 addressing scheme [11].

Nevertheless, using IPv6 cannot guarantee that unwanted

parties can stop regular users from accessing data or services

that they are supposed to have access to. In other words, using

IPv6 does not provide with availability.

From the previous discussion about the types of

security that can be achieved and the tools that are used to

achieve them it is noticeable that there are at least three

approaches to security. The first approach is one that is

meant to protect from a specific type of attacks. A good

example is encryption which provides confidentiality by

avoiding the dangers of eavesdropping attacks. Further,

access control management provides with availability and

integrity. However, if interactions take place through a

network, access control mechanisms cannot provide with

confidentiality. The second approach is meant to provide

with security at a certain level only. For example, IPv6

provides with security at the low levels of the OSI reference

model. The use of IPv6 does not provide with security at the

application level. Finally, the third approach is the one that

provides different types of security at different levels. Our

work fits in this third category. As shown in Figure 2,

service providers, as much as users, can specify any type of

security at any level. Some services might require the

encryption of the data being transferred, while others may

emphasize on the need to use IPv6 for the transfer of the

data. The combination of encryption and the use of IPv6 is

therefore possible through policies.

Context information can also be included in policies in

order to enforce security. In fact, by knowing some key

context information, one can design specific policies that

would enforce, for example, access control [12]. Instead of

requiring a simple username and password combination, a

service might require some additional confidential

information only known by the user and the service. Or, the

service could require that the transaction take place in an

encrypted way. Another requirement would be asking a

trusted third party to certify the identity of the user. These

actions enforce integrity, availability and confidentiality. It

is based on such real life examples that we built our policy

model by integrating context information within policy

conditions.

III. POLICIES IN SECURITY

Before getting into the details of how policies help

achieve confidentiality, data integrity, availability, and

accountability, we present first our policy model and its

structure.

Figure 2. Security at different levels

A. Types of Policies

In fact, in our system there are two types of software

policies. Authorization policies, as defined in [4], are rules

28Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

that are usually enforced in access control systems. In our

case authorization policies are rules defined by the service

providers to determine whether an action is authorized if a

certain set of conditions is fulfilled. On the other hand,

obligation policies are defined either by the security system

or by users. They refer to actions that are to be enforced

when a set of predefined conditions is fulfilled. Also, the

obligation conditions are triggered by a change in the

context in opposition to authorization policies that are only

triggered by incoming external requests (from service

clients). An incoming request is itself considered as a

change in the context. To make things clear, an example of

an obligation policy would be one that obliges all service

providers to request authorization from the security system

to perform a certain action whenever they receive a request.

Figure 3. Structure of the policy

B. Structure of Policies

Several policy specification languages exist in the

literature. We opted for ponder as a basis to model our

policies because it is appropriate for quickly changing

environments. This is due to the way policies are

represented. In fact, policies could be represented using

XML which facilitates the editing, modification and use of

the policies [5] [7]. However, even though we were inspired

by Ponder [7], while designing our policies, the most

important concern was to enable service providers to

express the business rules that they work with and context

information. In Figure 3 we present the structure of the

policies that we designed.

The first attribute of a policy is the policy ID. It is a

number unique to every policy. In fact, this number is the

only policy attribute that is assigned by the security system

and not the policy owner. Assigning an ID helps in the

operations of search. The next attribute of a policy in our

system is the type. As specified previously, our system

handles two major types of policies namely: obligation

policies and authorization policies. The type of policies is

very important when it comes to handling requests and

notifications (changes in the context). In the case of

requests, only authorization policies are used, while in the

case of a notification, only obligation policies are used.

Policies are either, system policies that are set by the system

administrator, service policies that are set by services when

they register to the security system, or mobile users’ policies

that are also set by the users when they enter the visited

environment. Mobility is in fact the major reason behind the

choice of a policy based security management system as it

allows mobile users and to carry with them their policies.

The next attribute in every policy is the subject. This

entity is extremely important as it is the one that has the

ability to enforce the policy’s action. After that, comes the

target which is the entity on which the policy’s action is

enforced. The action of the policy is also an attribute of the

policy that we defined. In most cases the action is a call for

a method that belongs to the target. This is another point that

makes this system usable as the service provider does not

need to change anything in its own configuration. It only

needs to provide this system with policies containing the

actual method calls that it uses.

The priority of the policy is an important attribute and

plays a major role in the system’s behavior. As a matter of

fact, it is only by using the priority attribute that we can

solve the problem of having two or more conflicting policies.

The audit and the active tags are two other policy attributes.

The audit allows the system to keep track of triggered

policies and the context of its triggering. Using this

information, the system enforces accountability as a main

security aspect provided by this system. The active tag

specifies if a policy is active or not, so that it is taken into

consideration when evaluating policies or not.

Finally, one of the most important attributes of the

policy is the set of conditions. There was a need for a

condition set that could be easily modified and that could

allow for expressing conditions in a simple manner. Two

decisions have been taken: the first one concerns the use of

first order logic which allows combining a set of conditions

using AND, OR, and NOT. The second decision concerns

the values contained in the conditions. In order to be able to

deal with all possible comparisons, three comparison

operators were used namely: equal, greater, less. The

structure of the condition set is shown in Figure 4.

Figure 4. Condition set structure

29Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

C. Context-driven Policies

From the structure of the policies described above it is

clear that the context information that will be included in the

policies will be part of the condition set. In our case we

consider that context information is time, location, and

user’s identity that refers to his profile. In the example of

policy shown in Figure 5, the context information included

is time that is represented by the year and the hour, the

location where we have the choice between two locations,

and the role of the user which needs to be provided by the

user profile server.

Figure 5. Policy example

IV. POLICY BASED SECURITY SYSTEM

A. Policy Management Component

Even though the applications that use policy-based

management systems might seem different, the architecture of

the policy management component remains the same. As

explained in [13], the policy management component is

mainly composed of 3 entities namely the PDP (Policy

Decision Point), the PEP (Policy Enforcement Point), and the

PIB (Policy Information Base). The role of the PDP is to take

the decision on whether to allow an action or not based on the

request’s details and the policies available in the PIB. The

PIB is a database that contains all the policies. Once an action

has been selected, the PDP sends a message to the PEP that is

responsible of enforcing the action on the target. In the next

section we show how this core system has been integrated to

our security system. The implementation of the PDP, PEP, and

PIB are specific to our system as we have defined our own

policy structure.

B. Policy-Based Security System Architecture

Figure 6 shows that the policy-based security

management system is composed of three major

components: the security engine, the repositories, and the

policy enforcement point. All the components of the system

take their data from the repositories. The system interacts

Figure 6. Policy-based security system architecture

with users and service providers through wrapper entities

that are the PEPs in our case.

The Repositories component contains all the data

repositories. First, there is the entity repository that contains

all the information about the entities, such as the locations

known to our system, the users, the set of activities, etc…

Then, there is the context repository; it contains all context

information that is of use to our system such as the time

(year, month, day, hour) that is provided by our system itself,

and other context information that is provided by the

context aware platform implemented in our research lab [6].

Also, there is the actions log that contains a log of every

policy that has been triggered, the necessary information to

help provide with accountability such as the identity of the

requester, whether it is an obligation policy or an

authorization one, and the subject and targets of the policy.

Another repository is the requests repository; it contains all

the requests that have been sent to our system. It also allows

the system administrator to keep track of the identity of the

requesters and hold them accountable in case of problem.

Finally, the last repository is the policy repository. It

contains all the policies being used in our system. This

means that it contains both obligation policies and

authorization policies. An important note is that we have

managed to keep the same format for both types of policies.

The Security Engine is the component where all policy

manipulations are done. It contains the policy manager that

is responsible for reading the policies from the policy

repository and organizing them in such a way to be used by

30Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the two other components, namely the policy decision point

and the policy conflict manager. The policy manager is the

only component that accesses the PIB. Therefore, it is also

responsible for updating the policy set when new users and

new service providers register with the system. The policy

conflict manager sorts the list of policies in increasing order

of priority. Therefore, even though many policies may be

triggered by the same request only the last one to be

triggered will be taken into consideration due to the fact that

it bears the highest priority. The policy conflict manager

will go through all the policies that are relevant to a certain

event. Whenever it finds a policy that needs to be triggered

(when there is a match with the set of conditions) it keeps it

in memory. Therefore, if there is another one that needs to

be triggered it will erase the first one that was kept in

memory. Finally, as the conflict manager had ordered all

policies by priority and starts from the lowest priority up,

the last policy, available in memory, is the one that will be

triggered. Finally, the last component is the policy decision

point. This is the most important and critical component of

the system as it is responsible for evaluating the policies and

deciding whether a policy’s action is to be triggered or not.

The policy decision point is triggered either by an incoming

request that is external to the system, or by an internal event

that is a notification from the context manager of a change

in the environment’s context.

Figure 7. Notification / Request triggering of the PDP

 In the first case, an incoming request, the policy decision

point goes through the authorization policies specific to the

target of the request and triggers the action of the policies

specific to that target. In the case of a notification from the

context manager, it loads all obligation policies and checks if

policy conditions are satisfied for its action to be triggered.

 The policy enforcement point component has necessary

access rights to perform the action that is specified within a

policy. The user or the service provider provides all method

calls that are necessary to perform actions stipulated in its

policies at registration phase.

 Another part of the system contains the availability

provider, the integrity provider, the accountability provider

and the confidentiality provider. This part is abstract. In fact,

it shows the different security services that are provided by

the system. Its different components are achieved through the

combination of the work of both the policy management

engine and the context management engine. Every service

provider / user registered in our system provides its own set of

policies. These policies reflect the level of security that is

aimed by the service provider. For example, the condition set

of the policies provided could include context information,

such as the time, location, identity, role that the requester

must provide. In addition, the type of authentication required

could be specified in the policy set. For instance, is it only a

system authentication that is needed, or a service

authentication, or both. Our system also allows for the service

provider to request some other type of access control that is

not defined in it. An example would be requiring a digital

signature from a third party. All these access control methods

do provide the users of the system with Integrity, Availability,

and Privacy [12]. Finally, the fact of keeping a log of all

requests and policies that are triggered certainly enforces

Accountability.

The sequence diagram in Figure 8 gives a better

idea of how the different components of the system interact.

Once the user issues a request to the service provider, its

wrapper entity (PEP) intercepts it and sends it to the policy

decision point. After the policies are loaded by the policy

manager, the policy decision point checks which ones will

be triggered. In the case where context information is

needed, a request is sent to the context management entity.

After the conflict is resolved, the appropriate policy is

enforced on the target (service provider).

Figure 8. Request handling sequence diagram

The last components that are shown in the architecture,

the user profile manager, service provider manager and the

context manager, are outside our system. Figure 9 shows

how our system fits within the big picture of the project

being conducted in our research laboratory related to

context aware platform to Support Mobile Users with

Personalized Services [6].

31Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

V. MYCAMPUS SERVICE PROVISIONING

The scenario presented in this paper takes place in Al

Akhawayn University’s campus. One location in the campus

is the computing lab that allows students to have access to

printing, scanning, and internet connection services.

A student S1 gets into the location and requests some

services. The first service that he requests is printing a

document. Only registered users have access to the services

offered within the environment. The registration step

consists of providing the system with the information that

the user wants to share, and most importantly providing the

system with the user’s policies.

 In the case the system does not find any policy that

matches the user’s request then the default policy, which

does not allow any operation, is triggered In order to avoid

any type of conflict with user policies, the default one bears

the smallest priority

Figure 9. Context aware service provisioning in mobile environments

Another important system policy is the one that obliges

the service provider to go through the security system in

such a way that no request bypasses the security system.

This policy bears the highest priority.

A sample of printing service policies is shown in Figure

10. The printing service wrapper receives the user request in

the format shown in Figure 11. It forwards it to the policy

decision point. The PDP requires from the policy manager

the list of all authorization policies. A linked list of all

policies which are present in the PIB is created. After using

our conflict management technique, the ordered set of

authorization policies is sent to the policy decision point. In

terms of implementation, a simple sorting algorithm is used

and all the objects of the linked list are sorted by priority.

The PDP, then, before being able to compare the elements

of the request and those of the policies, makes use of an

XML parser to extract all elements of the request and those

of the policy being checked. If we observe the list of

authorization policies in Figure 10 we notice that there are

two authorization policies from the printer service provider.

The first policy in the list will be dismissed because its

target is not the printer agent. The second policy will be

considered and its condition set will be checked against the

specifications of the request. The first condition will be

satisfied because the system will use its context provider

and know that the year is 2011 which is less than 2012 and

greater than 2009. Then it will check the next conditions

and find out that they hold because the document type is

PDF, the size is greater than 10000, the location is lab7, and

finally we assume that the request has been sent after 6PM.

Therefore, as no more policy conditions are to be checked,

the policy will be kept in memory and its action not yet

triggered.

Figure 10. Set of policies in the system

Figure 11. Request sent by the user

32Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The system then enforces the triggered policy via the PEP,

therefore, the document can be printed. Next is the insertion

in the log of a header stipulating that the policy’s action has

been triggered. It is done because the audit tag in the policy

is set to yes. Checking the system log allows identifying the

perpetrators, or the conditions under which the felony was

perpetrated.

VI. CONCLUSION

Throughout this paper we have shown that policies

represent an efficient way to provide with security at

different levels for the following reasons:

• Policies allow for mobility because a user can take with

him a set of policies wherever he goes.

• Policies allow for adaptability, as the user does not

need to adapt to any environment, only the policies he

provides manage his interactions.

• Policies allow users to specify the security

tools/mechanisms that they want to use.

• Policies allow users to incorporate context information

Currently, we are investigating the use of Personal Area

Network (PAN) as the entity that will represent a user with

his profile, preferences, and a set of policies. The PAN is

then going to compose/decompose with existing networks

in smooth and ambient manner as the user moves from one

location to another by means of policies.

REFERENCES

[1] M. Ouanaim, H. Harroud, A. Berrado, and M. Boulmalf, “Dynamic

user profiling approach for services discovery in mobile
environments”, Proceedings of the 6th International Wireless

Communications and Mobile Computing Conference ACM New

York, NY, USA, 2010, pp. 550-554, doi>10.1145/1815396.1815523
[2] Q. Wang and T. Zhang, “Sec-SNMP: Policy-Based Security

Managementfor Sensor Networks”, in Proc. International

Conferenceon Security and Cryptography (SECRYPT), 2008, pp.
222-226

[3] K. Boudaoud, Z. Guessoum, C. McCathieNevile, and P. Dubois,

“Policy-based security management using a multi-agent system”,
HPOVUA’2001, Berlin, Germany, June 2001

[4] C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P.

Samarati, “Towards privacy-enhanced authorization policies and
languages”, in: Proc. of the 19th Annual IFIP WG 11.3 Working

Conference on Data and Applications Security, Storrs, CA, USA,

August 2005, pp. 16-27.
[5] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A.

Uszok, “Semantic web languages for policy representation and

reasoning: A comparioson of KAoS, Rei, and Ponder”, in Proc.
International Semantic Web Conference, 2003, pp. 419-437.

[6] Y. Bouzid, H. Harroud, A. Berrado, and M. Boulmalf, “Context-

Aware Platform to Support Mobile Users with Personalized
Services”. in Proc. WINSYS, 2009, pp. 153-158.

[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,“The Ponder

policy specification language”, in Proc. POLICY, 2001, pp.18-38
[8] C. Brookson, “GSM (and PCN) security and encryption”,

http://www.brookson.com/gsm/gsmdoc.htm, 1994 <retrieved: 10,

2011>
[9] R. Sandhu, and P. Samarati, “Authentication, Access Control, and

Audit”, ACM Computing Surveys, 1996, Vol. 28, No. 1, pp. 241-

243.

[10] F. Almen´arez, A. Mar´ın, C. Campo, and C. Garc´ıa, “PTM: A

Pervasive Trust Management Model for Dynamic Open
Environments”, in FirstWorkshop on Pervasive Security, Privacy

and Trust PSPT’04 in conjunction with Mobiquitous 2004.

[11] M. H. Warfield, “Security Implications of IPv6”, Internet Security
Systems, 2003.

[12] K. Wrona, and L. Gomez, “Context-aware security and secure

context-awareness in ubiquitous computing environments”, XXI
Autumn Meeting of Polish Information Processing Society

Conference Proceedings, 2005, pp. 255-265.

[13] R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy
based admission control”, Informational RFC (RFC 2753), January

2000, pp. 1-20.

33Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://www.acm.org/publications
http://dx.doi.org/10.1145/1815396.1815523

