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Abstract— The vast proliferation of wireless networking 
devices, coupled with the trend for short-range 
communications in dense residential environments, imposes 
new challenges for the efficient addressing of problems 
resulting from co-existence of heterogeneous devices (e.g., 
interference) under capacity and energy constraints. This 
paper proposes and evaluates a cooperative distributed 
algorithm for power control and interference mitigation based 
on ad-hoc communication of heterogeneous yet peer 
networking devices, driven by enhanced situation awareness 
and learning capabilities; the learning capabilities evolve the 
way a network element perceives its environment. The gains of 
this approach are highlighted through its application in WiFi 
APs. The results reveal that the introduction of learning 
capabilities in cooperative power control leads to interference 
mitigation while introducing minimum overhead in the 
network nodes. 

Keywords– co-existence; interference mitigation; cooperative 
power control; learning; data mining. 

I.  INTRODUCTION 

The acute proliferation of wireless networking devices 
enables “anytime” and “anywhere” communications. This 
trend together with large scale deployment of heterogeneous 
radio access networks in short range context (APs, pico-cells, 
etc.) and in dense environments (i.e., residential areas) 
impose the need for developing mechanisms addressing 
issues related to co-existence in an efficient way; capacity 
and energy efficiency impose different constraints in the 
system whereas the mentioned co-existence results in high 
interference levels. 

In such communication environments, power control 
mechanisms can be utilised to mitigate interference and 
enable reduced power consumption, extended battery 
lifetime, reduced cost, improved reliability and overall utility 
from the network perspective and, at the same time, 
improved QoS from the user perspective. Given the devices’ 
heterogeneity and diversity, such mechanisms should be 
developed following a cooperative and distributed paradigm. 

In this paper, a cooperative and distributed algorithm is 
presented and evaluated for addressing interference 
mitigation through power control among the networking 
devices which participate in the optimization procedure. In 
fact, the algorithm provides considerable enhancements and 
extensions to existing algorithms for cooperative power 
control [1][2], so as to further strengthen situation awareness, 

environmental perception, and knowledge-based decision 
making. Specifically, the proposed solution is applicable to 
short-range wireless networking environments, where 
heterogeneous devices belonging to different owners are able 
to exchange interference and power information thus 
exploiting inherent ad-hoc communication capabilities. 
Moreover, the algorithm deploys learning capabilities to the 
devices in order to facilitate the evaluation of the previous 
decisions and better interpret the environment conditions.  

The rest of this paper is structured as follows: Section II 
presents proposed solutions available in the literature; 
Section III provides background information regarding fuzzy 
logic and k-Means; in Section IV, the baseline reference 
algorithm for cooperative power control is briefly described. 
Section V presents the learning-assisted algorithm by 
providing the case study which has been developed in the 
context of this paper whereas the proposed learning 
framework is described thoroughly afterwards followed by 
the presentation and analysis of the experimental results. 
Finally, Section VI concludes the paper. 

II. RELATED WORK 

The cooperative transmission power control adjustemnt 
has attracted the interest of researchers, given the benefits 
stemming from the introduction of power control schemes; 
thus several solutions have been proposed in the literature. In 
[3], Sun et al. propose to formulate the power control 
problem using a non-cooperative game; the solution 
converges once Nash equilibrium [1] is reached. The strategy 
for the transmission power identification is related to the 
Shannon capacity [10] on the one hand and the energy waste 
due to the caused interference on the other. In [4], an 
algorithm that allows for transmission power and 
transmission frequencies to be chosen simultaneously by 
cognitive radios competing to communicate over a frequency 
spectrum is being proposed; the solution is based on a 
cooperative game theoretic approach. The aim of this 
solution is to reduce the sensed interference by mainly 
considering the negative impact of every user to its 
neighborhood. In [5], a cooperative game-theoretic 
mechanism for optimizing power control is also proposed. In 
this solution, issues such as network efficiency and user 
fairness are seriously taken into account in order to optimize 
a SINR-based utility function. In [6], Bennis and Niyato 
propose a reinforcement learning framework (i.e., learning 
through trials and errors) for interference avoidance in 3G 
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networks where a femto BS/AP gradually learns how, to 
adapt the channel selection strategy until reaching 
convergence by interacting with its local environment. 
Finally, Dirani and Altman in [7], propose a solution that 
addresses the problem of inter-cell interference coordination 
on OFDMA wireless networks by enhancing a fuzzy 
inference system with a reinforcement learning framework. 
This framework aims at dynamically adjusting power on 
parts of each base station’s bandwidth, in order to control the 
interference it produces to its neighboring cells. In this paper 
an algorithm described in [1] and [2] is being further 
enhanced; the key idea is to strengthen the available 
solutions with learning capabilities so as to integrate in the 
cooperative power control scheme enhanced situation 
perception. The proposed solution is based on a hybrid 
model which exploits the merits of fuzzy logic and data 
clustering. 

III.  BACKGROUND 

A. Fuzzy logic 

Fuzzy logic is an ideal tool for dealing with complex 
multi-variable problems; the nature of the decision making 
mechanism makes it very suitable for problems with often 
contradictive inputs. A fuzzy reasoner consists of three 
parts, namely: 

• The fuzzifier, which undertakes to transform the 
input values (crisp values) to a degree that these 
inputs belong to a specific state (e.g. low, medium, 
high, etc) using the input membership functions.  

• The inference part, which correlates the inputs and 
the outputs using simple “IF...THEN...” rules. Each 
rule results to a specific degree of certainty for each 
output; these degrees then are being aggregated.  

• The defuzzifier, where the outcome of the 
abovementioned aggregation is being mapped to the 
degree of a specific state that the decision maker 
belongs to. Several defuzzification methods exist; 
the most popular is the centroid one, which returns 
the center of gravity of the degrees of the outputs, 
taking into account all the rules, and is calculated 
using the following mathematical formula: 
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B. k-Means  

k-Means is a well known data-mining clustering 
technique. The core idea of data clustering is to partition a 
set of N, d-dimensional, observations into such groups that 
intra-group observations exhibit minimum distances from 
each other, while inter-group distances are maximized. k-
Means [8] is based on the following objective function: 
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where c is the number of clusters, Gi is the ith group, xk is the 
kth vector in group Ji and represent the Euclidean distance 

between xk and the cluster centre ci. The partitioned groups 
are defined by using a membership matrix described by the 
variable U. Each element Uij of this matrix equals to 1 if the 
specific jth data point xj belongs to cluster i, and 0 otherwise. 
The element Uij is analyzed as follows: 
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This means that xj belongs to group i, if ci is the closest of all 
centers.  

IV.  COOPERATIVE POWER CONTROL- BASELINE 

ALGORITHM 

In this section we describe the baseline algorithm as 
proposed on [1] and [2]; both approaches propose a scheme 
for distributed interference compensation in Cognitive Radio 
that operates in license exempt spectrum bands. The solution 
concerns ad-hoc networks and is based on an information 
exchange scheme towards the identification of the 
appropriate transmission power levels. Each independent 
node of the topology sets its power by considering individual 
information as well as information related to the neighboring 
nodes. More specifically, a node sets its power level by 
considering its Signal to Interference plus Noise Ratio 
(SINR) and the interference caused to its neighbors. The 
main idea of this approach is to prevent users to operate in 
the maximum transmission power levels.  

The authors assume a set of node pairs L that operate in 
the same frequency. The SINR for the ith pair is given below 
[1]:  
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Where 
• pk

i: transmission power for user i on channel k 
• hii: link gain between ith receiver and ith transmitter 
• no : noise level (equals 10-2) 
• pk

j: transmission power for all other users on channel 
k, assuming that j ∈{1,2,…,L} and j≠i 

• hji: link gain between ith receiver and jth transmitter 
It is also assumed that the channel is flat-faded without 

shadowing effects. Since the channel is static, the only 
identified attenuation is the path loss h (channel attenuation 
or channel gain). Given that indoor urban environments are 
considered, the channel gain is hji = dji

-3, where d is the 
distance between the jth transmitter and the ith receiver.  

The decision for the transmission power levels takes into 
account the negative impact (i.e., interference) of a node to 
its neighboring nodes. This is formalized using Equation 5 
which captures the notion of interference price; such price 
reflects the interference a user causes to other users within its 
transmission range and is given by: 
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where, 
• ui(γi(p

k
i)=θilog(γi(p

k
i)): logarithmic utility function, 

• θi: user dependent parameter. 
Both of the algorithms presented in [1] and [2] are based 

on a tradeoff between the capacity of a user and the 
interference caused to the corresponding neighborhood. This 
balance is being captured by the following objective 
function: 

( ( ))
k k k

i j jii i i
j i

p pu hαγ π
≠

− ⋅⋅ ∑
                 (6) 

The first part indicates a relation to the Shannon capacity 
for the corresponding user, while the second part captures the 
negative impact in terms of interference prices that a user 
causes to its neighborhood. The a factor is introduced so as 
to capture uncertainties in the network; these uncertainties 
are related to how correctly each network node has received 
and compiled information regarding the interference price 
which should have been available by the node’s neighbors. 
This is related to the fact that once a network element adjusts 
its transmission power it informs its neighbors in an ad-hoc 
manner. This implies that even though a network element 
has collected information from all of its neighbors in order to 
adjust its transmission, the gathered data could be obsolete 
and, as a consequence they will not capture the current 
neighborhood’s state. The obsolescence of the interference 
prices is related to the update interval (i.e., the periodic 
update) of each network element. In [1], α is set in a static 
manner as 25%. In [2] a fuzzy reasoner is introduced in order 
to identify, in a more dynamic way, uncertainties in the 
network based on the network’s status; the inputs (number of 
users, mobility, update interval) of the fuzzy reasoner capture 
the volatile nature of the ad-hoc network, whereas the output 
of the fuzzy reasoner is the Interference Weight. The a factor 
is defined as 1/β Interference Weight + 1 (β has the 
maximum value of the Interference Weight).  

The algorithm consists of three steps, namely, the 
initialization, the power update and the interference price 
update. The former is related to the introduction of initial 
valid transmission power and interference price values. The 
second concerns the transmission power update based on the 
interference prices each node receives from its neighbors. 
Finally, the latter captures the communication of its 
interference prices to the neighborhood, by every network 
node. The second and the third steps are asynchronously 
repeated until the algorithm reaches a steady state (i.e., a 
state where every network element has the same 
transmission power for two consecutive time iterations).  

The main deficiency of the afore-described scheme is 
related to the static definition of the environment (i.e., a 
factor that captures the network’s dynamics). Even in the 
case where the fuzzy reasoner is used for capturing the 
uncertainties in the network, the environment interpretation 
model (i.e., membership functions of the fuzzy reasoner) is 
static. More specifically, in the latter case, the environment 
interpretation is based on expert’s knowledge and is induced 
to the network elements by its input membership functions. 
This implies that all network elements that have the same 
configuration have the same situation perception as well. 

Moreover, it would be a major benefit for the network 
administrators to enable network elements to evolve the way 
they interpret their environment; this could be achieved by 
changing the shape of the input membership functions. In 
order to tackle the static definition of the situation 
perception, we propose a feedback based learning scheme 
that evaluates how the network performed after a 
transmission power adjustment, in terms of the interference 
prices. 

V. LEARNING ENHANCED COOPERATIVE POWER 

CONTROL FRAMEWORK 

A. Case Study 

In this paper, we apply the previously described solution 
in WiFi networks for the interference mitigation. More 
specifically, we suggest that the WiFi APs should cooperate 
in order to minimize the caused interference by adjusting 
their transmission power. In the envisaged topology we 
assume the presence of several WiFi APs located in the 
considered area. These APs communicate via wireless links 
in order to exchange their interference values. Based on these 
values each network element adjusts its transmission power 
(Figure 1).  

Given the assumption that the APs communicate 
asynchronously and each one might have its locally-set 
update interval, it is possible that the APs are unaware of the 
current network’s status (from the messages exchange). This 
implies that the use of the fuzzy reasoner is imperative in 
order to capture the uncertainties [2]; the new application 
area though, poses the need for modification of the inputs 
and the inference engine of the fuzzy logic controller. Thus, 
the number of the WiFi APs in the vicinity, the number of 
users in the vicinity (associated to WiFi APs) and the update 
interval are used as inputs of the fuzzy reasoner. The way a 
network element perceives its environment is based on the 
input and output membership functions. As in [2], the inputs’ 
membership functions initially are set to have triangular 
shape.  

 
Figure 1  Envisaged network topology 

Table I provides the rules of the inference of the fuzzy 
reasoner. The most crucial input for the decision making 
process is the update interval. The latter depicts the 
frequency of the information updates about the interference 
price of a network element to its neighbors.  
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TABLE I.  RULES OF THE FUZZY REASONER 

Rule 
Number 

Num of 
WiFi APs 

Num of 
Users 

Update 
Interval 

Interference 
price 

1 Low Low Low Low 
2 Low Low Medium Low 
3 Low Low High Medium 
4 Low Medium Low Low 
5 Low Medium Medium Medium 
6 Low Medium High Medium 
7 Low High Low Medium 
8 Low High Medium Medium 
9 Low High High High 
10 Medium Low Low Low 
11 Medium Low Medium Medium 
12 Medium Low High High 
13 Medium Medium Low Medium 
14 Medium Medium Medium Medium 
15 Medium Medium High High 
16 Medium High Low Medium 
17 Medium High Medium Medium 
18 Medium High High High 
19 High Low Low Medium 
20 High Low Medium Medium 
21 High Low High High 
22 High Medium Low Medium 
23 High Medium Medium Medium 
24 High Medium High High 
25 High High Low Medium 
26 High High Medium High 
27 High High High High 

B. Proposed Algorithm 

The proposed learning algorithm consists of three parts, 
namely, the monitoring/labeling, the classification and the 
adaptation of the fuzzy reasoner. Each network element that 
is part of the network monitors its own environment. Every 
time that the network elements collaboratively proceed in 
transmission power adjustment, their interference prices are 
being compared to the previous ones and the interference 
factor calculations are being labeled as: 

• Beneficiaries: for the decisions that led to reduction 
of the interference value caused to the neighboring 
network elements, 

• Neutral: for the decisions that led to similar 
interference values, thus the decision could not be 
characterized either as correct or wrong, 

• Non Beneficiaries: the decision led to an increase of 
the interference value caused to the neighboring 
network elements. 

More specifically, periodically, the network elements 
cooperatively identify the optimum transmission power 
using the methodology described in Section IV; the iterative 
procedure requires finite number of steps (i.e., maximum 30 
iterations). Before every periodic transmission power 
adjustment, the interference value is being compared to the 
value before the last transmission power adjustment (Figure 
2). 

Tx Power adjustment Tx Power adjustment

Ii
Ti Ti+1

Ii+1

 
Figure 2  Timeline for Interference calculation and transmission poer 

adjustment 

The input vector Z→i  (i.e., num of WiFi APs, num of 
users, update interval) of each network element is being 
evaluated against a predefined fuzzy inference system and 
results to an a value which, in conjunction to the interference 
prices, is used for the calculation of the optimum 
transmission power. Comparing the interference prices just 
before the initiation of ith the transmission power adjustment 
and the (i+1)th we label the decision accordingly(i.e., Yi is 
beneficiary, neutral or non beneficiary). The comparison is 
done using the Euclidian distance metric. This procedure 
results to a set (S) of labeled decisions which have been 
correctly labeled (at a great level of certainty) through the 
afore-described phase. Table II presents the key points of 
monitoring/labeling part of the developed algorithm. 

TABLE II.  MONITORING/LABELING ALGORITHM 

Input: Approximation Parameter ε, Sample Size N 
Output: Set of observations S 

1. S�O 
2. i=0  
3. while true 
4.1 i++ 
4.2 Retrieve vector Z→i and IP→i 
4.3 αi � fuzzy logic ({# WiFi APs, # Users, 

Update Interval}) 
4.4 Calculate Tx power 
4.5 Wait for Z→i+1 and IP→i+1 
4.6 Calculate Ifactor

i+1 
4.7 If (|Ifactor

i -  I
factor

i+1|< ε) → Yi=Neutral 
 Else (|Ifactor

i -  I
factor

i+1| > ε) and (Ifactor
i -  

I factor
i+1 > 0) → Yi = Beneficiary 

 Else (|Ifactor
i -  I

factor
i+1| > ε) and (Ifactor

i -  
I factor

i+1 < 0) → Yi = Non Beneficiary 
4.8 S � S U { Z→i+1, IP

→
i+1, Yi} 

5. return S 
 
On sequence, we formalate three clusters using the 

labeled data in order to exclude the misclassfied data from 
the previous step; the clustering is performed using k-Means 
(Table III). Thus, each network element maintains a set of 
three clusters, one for classifying every decision type. By 
representing each cluster to a 3D grid we map each cluster to 
a geometrical object (i.e., sphere Si). Each sphere is centered 
at Cj=Σi=1

|Ci|Si/|Ci| and has radius Rj=maxi=1
|Ci|||CEi-Si||. 
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(a)                                                                                         (b)  

Figure 5:  Interference weight before (a) and after (b) the learning procedure 

TABLE III.  K-M EANS AND GEOMETRIC BOUNDS CALCULATOR 
PROCEDURES  

Input: Set of observations S, Cluster Size k 
Output: Set of Bounds B 

1. B�O 
2. {Ci, Ri} = k-means(S, k) 
3. B = Geometric_Bounds(Ci, Ri) 
4. return B  
 
For each couple of clusters i, j, the cluster centers Ci,  

define a line ε that interconnects the two points. This line can 
be described by the following set of equations: 

( ),  1...m m m mp x u y x m d= + ⋅ − =                 (7) 

Line ε intersects with spheres Si and Sj in four points which 
can be retrieved by substituting the pm values into the 
following hypersphere equations: 

2 2

1
( )
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A simple way of identifying the bounds would be to 
extract the intersection points which belong to different 
hyperspheres and exhibit minimum distance from each other 
[11]Error! Reference source not found.. Then, as shown in 
Figure 3, we map the identified bounds to the input 
membership functions of the fuzzy reasoner; this results to 
the modification of the environment perception of each 
network element. 

 
Figure 3  Clustering and bounds extraction mechanisms 

C. Experimentation Results 

In order to prove the validity of the proposed Learning 

Enhanced Cooperative Power Control Framework we have 
conducted a series of experiments that materialize the 
benefits from the introduction of the learning scheme. The 
modified version of [2], is used as the baseline for the 
comparisons. For the realization of the experiments we have 
artificially created a dataset consisting of 1000 pseudo-
random tuples. The dataset reflects network topologies with 
a relatively small number of APs, as well as the collocated 
users. Figure 5 provides the Interference weight (i.e., 
outcome of the fuzzy reasoner) as a function of the APs’ and 
the users’ number, having as parameter the time interval 
before (Figure 5 (a)) and after (Figure 5 (b)) the learning 
procedure. It is apparent that the weight of the interference 
part of equation (3) is significantly affected, based on the 
feedback from the learning procedure; this implies that the 
transmission power extraction procedure is affected as well.  

For the whole dataset we capture the values of the a 
factor; then we perform a fitting procedure in order to 
identify the polynomial functions that capture in the most 
suitable way the outputs. Figure 4 provides the 8th 
polynomial degree functions of the a factor before and after 
the learning procedure. After the learning procedure, the 
fuzzy reasoner has become more sensitive to the 
environment; this is being captured by the variation of the 
new a values (0.0458) instead of the old ones (0.0091). 

 
Figure 4  Interference weight a values before and after the learning 

procedure 

For a given instance of the dataset, we identify the 
transmission power before and after the learning procedure. 
More specifically, following the approach presented in [2], 
we randomly create a set of experiments (10 different 
topologies) for the identified instance, and evaluate the 
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algorithm performance. As depicted in Figure 6, certain 
deviations to the final power values can be noticed when 
learning procedure is applied. In specific topologies (i.e., 
2nd, 3rd and 8th) significant energy gains are achieved. In the 
rest of the topologies the learning framework achieves less 
significant gains but in no occasion energy waste occurs. 

 
Figure 6  Transmission Power before and after the learning procedure 

In Figure 7 the overall utility of the network for the ten 
(10) experiments is presented. The utility with the 
incorporation of the learning framework is significantly 
ameliorated compared to the one with the transmission 
power set to the maximum valid level. Moreover, after the 
deployment of the learning algorithm, the network elements 
achieve better results in the overall utility, in comparison to 
the ones with the cooperative power control without 
learning capabilities.  

 
Figure 7: Overall utility before and after the learning procedure 

VI. CONCLUSION AND FURTHER WORK 

This paper proposes an algorithm for power control and 
interference mitigation. The solution leverages on the 
proposals of [1] and [2], by introducing learning capabilities 
in the network elements to optimize the environmental 
perception. The learning procedure captures the positive or 
the negative impact of an action (i.e., transmission power set 
value) in the interference that a network element causes to 
its neighbors.  

The novelty of our contribution is the combination of the 
merits of fuzzy logic and data clustering for the optimal 
interpretation of the network uncertainties and its 
incorporation to the cooperative power control framework. 
The network uncertainties have been identified using the 

cluster overlaps; the latter are then being translated in the 
environment perception of the fuzzy reasoners (i.e., input 
membership functions).   

In addition, this advanced mechanism for power control 
has been validated through its application in WiFi APs. The 
experimental analysis revealed that the learning framework 
leads to minimization of the interference. Furthermore, the 
results prove that the incorporation of the learning 
capabilities in the network elements lead to significant gains 
in terms of less transmission power and higher utility which 
results to reduced interference. Our future work includes the 
validation of the algorithm in additional topologies and the 
minimization of the communication overhead.  
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