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Abstract— The vast proliferation of wireless networking
devices, coupled with the trend for short-range
communications in dense residential environments,mposes
new challenges for the efficient addressing of prdéms
resulting from co-existence of heterogeneous device(e.g.,
interference) under capacity and energy constraints This
paper proposes and evaluates a cooperative distrited
algorithm for power control and interference mitigation based
on ad-hoc communication of heterogeneous yet peer
networking devices, driven by enhanced situation aareness
and learning capabilities; the learning capabilitis evolve the
way a network element perceives its environment. Thgains of
this approach are highlighted through its applicaton in WiFi
APs. The results reveal that the introduction of larning
capabilities in cooperative power control leads tanterference
mitigation while introducing minimum overhead in the
network nodes.

Keywords— co-existence; interference mitigation;oqerative
power control; learning; data mining.

l. INTRODUCTION

The acute proliferation of wireless networking aded
enables “anytime” and “anywhere” communicationsisTh
trend together with large scale deployment of logieneous
radio access networks in short range context (pies;cells,
etc.) and in dense environments (i.e., residerdiaas)

impose the need for developing mechanisms addressi

issues related to co-existence in an efficient waapacity
and energy efficiency impose different constraimsthe
system whereas the mentioned co-existence resultsgh
interference levels.

In such communication environments, power contro

mechanisms can be utilised to mitigate interfereaod
enable reduced power consumption,
lifetime, reduced cost, improved reliability andeoal utility
from the network perspective and, at the same tim
improved QoS from the user perspective. Given thecgs’
heterogeneity and diversity, such mechanisms shbeld
developed following a cooperative and distributadagigm.

In this paper, a cooperative and distributed algoriis
presented and evaluated for addressing
mitigation through power control among the netwogki
devices which participate in the optimization pihoe. In
fact, the algorithm provides considerable enhancésnand
extensions to existing algorithms for cooperativewer
control [1][2], so as to further strengthen sitoatawareness,
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extended batte

€

interferen

environmental perception, and knowledge-based idecis
making. Specifically, the proposed solution is #&gllle to
short-range wireless networking environments, where
heterogeneous devices belonging to different owarsable

to exchange interference and power information thus
exploiting inherent ad-hoc communication capabtiti
Moreover, the algorithm deploys learning capabtitio the
devices in order to facilitate the evaluation of fhrevious
decisions and better interpret the environment itiomd.

The rest of this paper is structured as follows:tige Il
presents proposed solutions available in the titeea
Section Il provides background information regagdfuzzy
logic and k-Means; in Section 1V, the baseline mefiee
algorithm for cooperative power control is brieflgscribed.
Section V presents the learning-assisted algorithyn
providing the case study which has been developetthe
context of this paper whereas the proposed learning
framework is described thoroughly afterwards fokanby
the presentation and analysis of the experimemsillts.
Finally, Section VI concludes the paper.

Il RELATED WORK

The cooperative transmission power control adjustem
has attracted the interest of researchers, giverbémefits
stemming from the introduction of power control sctes;
thus several solutions have been proposed intdratire. In
rLS], Sun et al. propose to formulate the power nt
problem using a non-cooperative game; the solution
converges once Nash equilibrium [1] is reached. Stretegy
for the transmission power identification is rethte® the
Shannon capacity [10] on the one hand and the gnexgte
Idue to the caused interference on the other. In §4]
algorithm that allows for transmission power and
&ansmission frequencies to be chosen simultangdogl

ognitive radios competing to communicate oveegdency
spectrum is being proposed; the solution is basedao
cooperative game theoretic approach. The aim of thi
solution is to reduce the sensed interference bijnlypna
considering the negative impact of every user t® it
neighborhood. In [5], a cooperative game-theoretic
(%Eechanism for optimizing power control is also megd. In

is solution, issues such as network efficiency aser
fairness are seriously taken into account in otdaptimize
a SINR-based utility function. In [6], Bennis andyato
propose a reinforcement learning framework (i.eariing
through trials and errors) for interference avomaimn 3G
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networks where a femto BS/AP gradually learns htw, betweenx, and the cluster centie The partitioned groups
adapt the channel selection strategy until reachingre defined by using a membership matrix descripethe
convergence by interacting with its local enviromtme variableU. Each element); of this matrix equals to 1 if the

Finally, Dirani and Altman in [7], propose a sobrti that
addresses the problem of inter-cell interferenagdioation

on OFDMA wireless networks by enhancing a fuzzy

inference system with a reinforcement learning &rauork.
This framework aims at dynamically adjusting povear
parts of each base station’s bandwidth, in ordeotdrol the
interference it produces to its neighboring céfisthis paper
an algorithm described in [1] and [2] is being et

enhanced; the key idea is to strengthen the almilab

solutions with learning capabilities so as to in&tg in the
cooperative power control
perception. The proposed solution is based on aidyb
model which exploits the merits of fuzzy logic addta
clustering.

Ill.  BACKGROUND

A. Fuzzylogic

Fuzzy logic is an ideal tool for dealing with cormyl
multi-variable problems; the nature of the decisiaking
mechanism makes it very suitable for problems witien
contradictive inputs. A fuzzy reasoner consiststlofee
parts, namely:
The fuzzifier, which undertakes to transform the

input values (crisp values) to a degree that thes

inputs belong to a specific state (e.g. low, medium
high, etc) using the input membership functions.
The inference part, which correlates the inputs an
the outputs using simple “IF...THEN...” rules. Each
rule results to a specific degree of certaintydach
output; these degrees then are being aggregated.
The defuzzifier, where the outcome of the

abovementioned aggregation is being mapped to the
degree of a specific state that the decision maker

belongs to. Several defuzzification methods exist

taking into account all the rules, and is calcuate
using the following mathematical formula:

 Juse ()

Usoe = 1)
[ ue(w)du

B. k-Means

k-Means is a well known data-mining clustering
technique. The core idea of data clustering isauitpn a
set of N, d-dimensional, observations into suchugsothat
intra-group observations exhibit minimum distandssm
each other, while inter-group distances are maxchixk-
Means [8] is based on the following objective fioict

I=23 = [ )y H’&-GHJ
i=1 K % €G

wherec is the number of cluster§; is the 1" group,x, is the

c

2

i=1

)

K™ vector in groupJ; and represent the Euclidean distance
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scheme enhanced situation

[ ]
e
the most popular is the centroid one, which returns 4
the center of gravity of the degrees of the outputs

specificj” data pointx; belongs to cluster i, and 0 otherwise.
The element;; is analyzed as follows:

U

1, ifoj -G HZSHXJ- —Cy 2, for eachk#i

0, otherwise

®3)

This means tha belongs to group if ¢ is the closest of all
centers.

ij

IV. COOPERATIVEPOWERCONTROL- BASELINE
ALGORITHM

In this section we describe the baseline algoritiasn
proposed on [1] and [2]; both approaches proposehame
for distributed interference compensation in CdgeiRadio
that operates in license exempt spectrum bandssdlodon
concerns ad-hoc networks and is based on an infamma
exchange scheme towards the identification of the
appropriate transmission power levels. Each indegen
node of the topology sets its power by consideiriag/idual
information as well as information related to theéghboring
nodes. More specifically, a node sets its poweelldwy
considering its Signal to Interference plus Noisati®R
(SINR) and the interference caused to its neighbohe
main idea of this approach is to prevent userspgraie in
the maximum transmission power levels.
€ The authors assume a set of node pairs L that tepiera
the same frequency. The SINR for tfepair is given below

él] :

) (4)

k pk'hn
(p)=—"=FF—7—
]/| pl n0+§pj.hji

Where

p: transmission power for useon channek

hi: link gain between'ireceiver and" transmitter

n, : noise level (equals 7

pkj: transmission power for all other users on channel
k, assuming that € {1,2,...,L} and i

h;i: link gain between"i receiver and'] transmitter

It is also assumed that the channel is flat-fadétonrt
shadowing effects. Since the channel is static, dhby
identified attenuation is the path ldsgchannel attenuation
or channel gain). Given that indoor urban environitieare
considered, the channel gain his = d;®, whered is the
distance between thB jransmitter and thd'ireceiver.

The decision for the transmission power levels sdkéo
account the negative impact (i.e., interferencea afode to
its neighboring nodes. This is formalized using &@n 5
which captures the notion of interference priceghsprice
reflects the interference a user causes to otlees wdgthin its
transmission range and is given by:

k_ aul(7|(p|k))
i 6(2 pTh“)

j#

(5)
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where,

o U(yi(P)=6log(i(p)): logarithmic utility function,

e 0;: user dependent parameter.

Both of the algorithms presented in [1] and [2] based

Moreover, it would be a major benefit for the netiwo
administrators to enable network elements to evitieevay
they interpret their environment; this could beiacbd by
changing the shape of the input membership funstidm

on a tradeoff between the capacity of a user arel thorder to tackle the static definition of the sitoat

interference caused to the corresponding neighledrhbhis

perception, we propose a feedback based learnimgnse

balance is being captured by the following objextiv that evaluates how the network performed after a

function:
uz(PY-a-pXxh, ©

The first part indicates a relation to the Shancapacity
for the corresponding user, while the second ptuwes the
negative impact in terms of interference priced thaiser
causes to its neighborhood. Tadactor is introduced so as
to capture uncertainties in the network; these mairgies
are related to how correctly each network noderbesived
and compiled information regarding the interfereqeiee
which should have been available by the node’shiics.
This is related to the fact that once a networknelat adjusts
its transmission power it informs its neighborsaim ad-hoc
manner. This implies that even though a networkneh
has collected information from all of its neighbarrder to
adjust its transmission, the gathered data couldbselete
and, as a consequence they will not capture theerur
neighborhood’s state. The obsolescence of thefémesrce
prices is related to the update interval (i.e., fregiodic
update) of each network element. In [d]is set in a static
manner as 25%. In [2] a fuzzy reasoner is introducerder
to identify, in a more dynamic way, uncertainties the
network based on the network’s status; the inpuisnper of
users, mobility, update interval) of the fuzzy i@ capture
the volatile nature of the ad-hoc network, whertbasoutput
of the fuzzy reasoner is theterference Weight. Thea factor
is defined as P Interference Weight + 1p( has the
maximum value of the Interference Weight).

transmission power adjustment, in terms of therfietence
prices.

V. LEARNING ENHANCED COOPERATIVEPOWER
CONTROL FRAMEWORK

A. Case Sudy

In this paper, we apply the previously describedtzm
in WiFi networks for the interference mitigation. oké
specifically, we suggest that the WiFi APs showdperate
in order to minimize the caused interference byustig
their transmission power. In the envisaged topolegy
assume the presence of several WiFi APs locatethan
considered area. These APs communicate via wiréléss
in order to exchange their interference valueseBam these
values each network element adjusts its transnmgsiover
(Figure 1).

Given the assumption that the APs communicate
asynchronously and each one might have its locaity-
update interval, it is possible that the APs araware of the
current network’s status (from the messages exa)arfdis
implies that the use of the fuzzy reasoner is i@ in
order to capture the uncertainties [2]; the newlieaiion
area though, poses the need for modification ofitipeits
and the inference engine of the fuzzy logic colgrolThus,
the number of the WiFi APs in the vicinity, the roen of
users in the vicinity (associated to WiFi APs) dinel update
interval are used as inputs of the fuzzy reasofes. way a

The algorithm consists of three steps, namely, th&etwork element perceives its environment is basedhe

initialization, the power update and the interfeemrice
update. The former is related to the introductidrindial
valid transmission power and interference pricei@sl The
second concerns the transmission power update loastt
interference prices each node receives from itghheairs.
Finally, the latter captures the communication ¢ i
interference prices to the neighborhood, by evestwark
node. The second and the third steps are asynalsigno
repeated until the algorithm reaches a steady giate a
state where every network element has
transmission power for two consecutive time iterag).

The main deficiency of the afore-described schese i

related to the static definition of the environméné., a
factor that captures the network’s dynamics). Eirerthe
case where the fuzzy reasoner is used for captutieg
uncertainties in the network, the environment jptetation
model (i.e., membership functions of the fuzzy oeas) is
static. More specifically, in the latter case, #revironment
interpretation is based on expert’'s knowledge andduced
to the network elements by its input membershigtions.
This implies that all network elements that have f#ame
configuration have the same situation perceptiorwat.
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the same

input and output membership functions. As in [Bg tnputs’
membership functions initially are set to have ngalar
shape.

g

(E () 2

s Ad-hoc link
é WiFi AP

Figure 1 Envisaged network topology

Table | provides the rules of the inference of tinezy
reasoner. The most crucial input for the decisicaking
process is the update interval. The latter depitis
frequency of the information updates about therfiatence
price of a network element to its neighbors.
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TABLE I. RULES OF THE FUZZY REASONER

Tx Power adjustment Tx Power adjustment
Rule Num of Num of Update | Interference
Number| WiFi APs Users Interval price T T
1 Low Low Low Low A A
2 Low Low Mediunm Low I Il 1
3 Low Low High Medium T i T
4 Low Mediunr Low Low Figure 2  Timeline for Interference calculation darahsmission poer
5 Low Medium Medium Medium adjustment
6 Low Medium High Medium
7 Low High Low Medium The input vectorZz™; (i.e., num of WiFi APs, num of
8 Low High Medium Medium users, update interval) of each network elemenbeimg
9 Low High High High evaluated against a predefined fuzzy inferenceesysind
10 Medium Low Low Low results to am value which, in conjunction to the interference
11 Medium Low Medium Medium prices, is used for the calculation of the optimum
12 Medium Low High High transmission power. Comparing the interferenceegricist
13 Medium Medium Low Medium before the initiation of'l the transmission power adjustment
14 Mediunr | Mediumr | Mediurr Mediumr and the (i+1% we label the decision accordingly(i.e.; ¥
15 Medium Medium High High beneficiary, neutral or non beneficiary). The corgmm is
16 Medium High Low Medium done using the Euclidian distance metric. This edoce
17 Medium High Medium Medium results to a sety of labeled decisions which have been
18 Medium High High High correctly labeled (at a great level of certaintyotigh the
19 High Low Low Mediunm afore-described phase. Table Il presents the kéytgpof
20 High Low Medium Medium monitoring/labeling part of the developed algorithm
21 High Low High High
22 High Medium Low Medium TABLE II. MONITORING/LABELING ALGORITHM
23 High Medium | Medium Medium Input: | Approximation Parameter ¢, Sample Size N
24 High Mediumr High High - -
5 High High Low Medium Output: Set of observations S
2€ High High | Mediun High 1. O
27 High High High High 2. =0
] 3. while true
B. Proposed Algorithm 41 i+
The proposed learning algorithm consists of thraesp 4.2 Retrieve vector Z and IP”;
namely, the monitoring/labeling, the classificatiand the 4.3 a; € fuzzy logic ({# WIiFi APs, # Users,
adaptation of the fuzzy reasoner. Each network ehrhat Update Interval})
is part of the network monitors its own environmedgtery 4.4 Calculate Tx power
time that the network elements collaboratively et in 45 Wait for Z';,; and 1Py
transmission power adjustment, their interferenieep are 4.6 Calculate™,,
being compar.ed to the previous ones and the imegrte 4.7 If (P - ™©. <€) — Y=Neutral
factor calculations are being labeled as: Else (JF°° - I2°_[>¢) and (P -
e Beneficiaries: for the decisions that led to reurct Jfacior ' 0')_> Yi:' Beneficiary '
of the interference value caused to the neighboripg actol _jfacior cton
Else ([F°° - P | >¢) and (F°©, -
network elements, factor — o
) - - 141 <0)— Y;= Non Beneficiary
e Neutral: for the decisions that led to simila 18 SCSUlZ P Y.
interference values, thus the decision could not be— {Z i, w1, i}
characterized either as correct or wrong, >. return S

e Non Beneficiaries: the decision led to an increaise
the interference value caused to the neighborin
network elements.

More specifically, periodically, the network elenten
cooperatively identify the optimum transmission gow
using the methodology described in Section IV;itbetive
procedure requires finite number of steps (i.eximam 30
iterations). Before every periodic transmission pow
adjustment, the interference value is being compéwethe
value before the last transmission power adjustrie@gure
2).

On sequence, we formalate three clusters using the

si]abeled data in order to exclude the misclassfiath drom

the previous step; the clustering is performedgigiMeans
(Table 1I). Thus, each network element maintainsea of
three clusters, one for classifying every decisigme. By
representing each cluster to a 3D grid we map elasiter to

a geometrical object (i.e., spherg &ach sphere is centered
at G=2,'“'5/|C| and has radius;Bnax.,“||CE-S||.
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TABLE Ill. K-MEANS AND GEOMETRIC BOUNDS CALCULATOR
PROCEDURES
Input: Set of observations S, Cluster Size k
Output: Set of Bounds B
1. B<O
2. {Ci, R} = k-means(S, k)
3. B = Geometric_Bounds((R)
4. return B

For each couple of clusters i, j, the cluster asntg,

Enhanced Cooperative Power Control Framework we hav
conducted a series of experiments that materiafime
benefits from the introduction of the learning stiee The
modified version of [2], is used as the baseline tloe
comparisons. For the realization of the experimamhave
artificially created a dataset consisting of 100€eyxo-
random tuples. The dataset reflects network topesogith
a relatively small number of APs, as well as thiocated
users. Figure 5 provides the Interference weighg.,(i
outcome of the fuzzy reasoner) as a function of&Re’ and

define a lines that interconnects the two points. This line canthe users’ number, having as parameter the timervak

be described by the following set of equations:

P = X U (Y = X,), m=1..d )
Line ¢ intersects with spheres &d $in four points which
can be retrieved by substituting thg, values into the
following hypersphere equations:

D =Y (Pn—%)? =R’

d
Dj _)Z(pm_ym)zz RJ2

m=1

8
©

before (Figure 5 (a)) and after (Figure 5 (b)) tearning
procedure. It is apparent that the weight of therfierence
part of equation (3) is significantly affected, edson the
feedback from the learning procedure; this imptlest the
transmission power extraction procedure is affeatedell.
For the whole dataset we capture the values ofathe
factor; then we perform a fitting procedure in arde
identify the polynomial functions that capture metmost
suitable way the outputs. Figure 4 provides th® 8
polynomial degree functions of tlaefactor before and after

A simple way of identifying the bounds would be to the learning procedure. After the learning proceduhe

extract the intersection points which belong tofedént
hyperspheres and exhibit minimum distance from esglchr

fuzzy reasoner has become more sensitive to
environment; this is being captured by the variatid the

[11]Error! Reference source not found. Then, as shown in  new a values (0.0458) instead of the old ones €100

Figure 3, we map the identified bounds to the input !

membership functions of the fuzzy reasoner; thilte to
the modification of the environment perception cicle
network element.

Non

Neutral Beneficiary

Beneficiary

}

/

v

Non

Neutral © e
’ Beneficiary
W

Beneﬁcia,/rv

Figure 3 Clustering and bounds extraction meciasis

C. Experimentation Results
In order to prove the validity of the proposed lreag

Figure 5:
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Monitored instance

Figure 4 Interference weightvalues before and after the learning

procedure

For a given instance of the dataset, we identify th
transmission power before and after the learnirgguiure.
More specifically, following the approach presented?2],
we randomly create a set of experiments (10 diffiere
topologies) for the identified instance, and eviuthe

inerference_eight

Interference weight before (a) and gf¢the learning procedure
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algorithm performance. As depicted in Figure 6,taiar
deviations to the final power values can be notiedsbn
learning procedure is applied. In specific topoésgii.e.,

2" 3% and &) significant energy gains are achieved. In the

rest of the topologies the learning framework aotseless
significant gains but in no occasion energy wastics.

34 T

Pawer Leaming
—+— Power hlo-Leaming
—&— Pawer MAX

4

Power (dBm)

i
4 5 [
Topology Instances

3

Figure 6 Transmission Power before and afteraheing procedure

In Figure 7 the overall utility of the network ftie ten
(10) experiments
incorporation of the learning framework is sigréfitly

is presented. The utility with the

ameliorated compared to the one with the transomissi

power set to the maximum valid level. Moreovergathe
deployment of the learning algorithm, the netwddneents
achieve better results in the overall utility, iongparison to

the ones with the cooperative power control without

learning capabilities.
07

065
06

05

Utility

05
4

0481

Utility Leaming
—#— Utility No-Learning
—— Utility MAX
i i H . T
4 5 B 7
Topology Instances

3

1 2 g 9 0

Figure 7: Overall utility before and after the leiag procedure

VI. CONCLUSIONAND FURTHERWORK

This paper proposes an algorithm for power cordral
interference mitigation. The solution leverages the
proposals of [1] and [2], by introducing learnirgpabilities

in the network elements to optimize the environrakent

perception. The learning procedure captures théiypoor
the negative impact of an action (i.e., transmisgiower set
value) in the interference that a network elemenises to
its neighbors.

The novelty of our contribution is the combinatigithe
merits of fuzzy logic and data clustering for thetimal
interpretation of the network uncertainties and
incorporation to the cooperative power control feavork.
The network uncertainties have been identified gidime
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its

cluster overlaps; the latter are then being traedlan the
environment perception of the fuzzy reasoners, (irgut
membership functions).

In addition, this advanced mechanism for power rmbnt
has been validated through its application in WAPis. The
experimental analysis revealed that the learningnéwork
leads to minimization of the interference. Furtherey the
results prove that the incorporation of the leagnin
capabilities in the network elements lead to sigaift gains
in terms of less transmission power and higheitytithich
results to reduced interference. Our future wodkudes the
validation of the algorithm in additional topologiand the
minimization of the communication overhead.
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