UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

ZeDDS — Fault-Tolerant Data Management in
Wireless Sensor Networks with Mobile Users

Jens Kamenik*
OFFIS
Escherweg 2
26121 Oldenburg, Germany
Email: jens.kamenik @offis.de

Abstract—Ubiquitous wireless sensor networks (WSNs) consist
of sensor nodes which may communicate with each other via
unreliable communication links. Furthermore, the sensor nodes
themselves may fail. Ubiquitous WSNs may be used in application
scenarios where they autonomously monitor the environment and
are only sporadically visited by the mobile user for harvesting the
collected sensor data. Thus, high availability of the measured data
is of paramount priority. But how can the mobile user formulate
this QoS requirement and how can a WSN - honoring such
a QoS requirement — be efficiently implemented? We propose
ZeDDS' a middleware and control framework for providing
high available data storage in WSNs. In ZeDDS, we assume
that the WSN is meant for collecting and dependably storing
measured data until the mobile user contacts the WSN for
data harvesting. ZeDDS enables the mobile user to explicitly
specify a particular replication strategy exhibiting a certain data
availability and energy consumption. At run-time, ZeDDS is
appropriately configured and replicates the measured sensor data
according to the replication strategy specified. We evaluate our
ZeDDS implementation in terms of write operation availability
measurements of a WSN consisting of TelosB sensor nodes using
three different well-known replication strategies.

Keywords-wireless sensor networks; distributed data storage;
data replication

I. INTRODUCTION

In application scenarios where sensor data is temporarily
stored within the WSN - instead of transferring the data
directly to a base station — data availability is an important
factor. Depending on the application scenario of the WSN,
the required level of data availability may differ. A powerful
concept for increasing data availability is data replication.
Every sensor node of a WSN that collects sensor data owns
a data object. This data object may be realized by multiple
copies of the sensor data located at different nodes, including
the sensor node that owns the object. Such a copy is called
a replica. Additional to its own data object and a replica
belonging to it, a sensor node may host replicas of sensor
data objects of other nodes of the WSN. There exist different
replication strategies for managing the replicas of a data
object. The replication strategies differ in the level of data
availability they provide and the communication costs they
generate.

Unfortunately, often, an increase in data availability also
leads to an increase in communication costs. Therefore, the
mobile user of such WSNs needs to adjust the level of data

* Supported by the German federal state of Lower Saxony with funds of the
European Regional Development Fund (ERDF), research project CogniLog.

1ZeDDs is the German acronym for “Dependable & energy-efficient data
management in WSNs”

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

Christoph Peuser, Volker Golliicke, Daniel Lorenz,
Roland Piechocki, Merlin Wasmann, Oliver Theel

Carl von Ossietzky University of Oldenburg
26111 Oldenburg, Germany
Email: theel @informatik.uni-oldenburg.de

availability of the measured data to find a good trade-off
between data availability and communication costs. In one of
our previous works [1], we proposed a method to optimize
data availability and communication cost according to the
query workload of a WSN. This method can be used as
a decision support for the mobile user to find a suitable
replication strategy (or a combination of replication strategies)
that meets the availability and energy requirements of the
WSN application. To the best of our knowledge, up to now,
there has been no implementation of a framework for WSNs
that allows an end-user requirement-driven customization of
the replication strategy — without changing the underlying
implementation and that is flexible enough to support many
and even completely new replication strategies. Additionally,
the framework supports switching between replication strate-
gies at run-time, for instance, in order to react to modified
application requirements. In a typical ubiquitous scenario, a

Transfer query
results

Mobile user
with ZeDDS client
Sensor,

>>éﬁ

s | [

0 [4

Mobile,
base
data

reads ey vy rd

Fig. 1: Application scenario with mobile base station
mobile user deploys a WSN in the environment for monitoring
an environmental phenomenon (Figure 1). A sensor node of
such a WSN consists of a micro-controller, a limited amount
of memory, multiple sensors, energy supply, and a wireless
transceiver. The wireless transceiver allows the sensor nodes
to communicate with each other and with a unique mobile
base station. The mobile base station, e.g., a hand-held device
or notebook, is carried by the mobile user for the purpose
of harvesting the sensor data of the WSN. Thus, the mobile
base station is only sporadically connected to the WSN,
for example, as long as the mobile user moves within the
communication range. The mobile base station is the primary
interface of the mobile user to the WSN. With a particular
client running on it, the mobile user has the ability to configure
the WSN in terms of a suitable replication strategy. The user

11

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

can further initiate measurements by (1) instructing the WSN
what sensor data must be recorded and how long the recording
should last (i.e., the user issues a corresponding query for
sensor data). Then, the mobile user “disconnects,” i.e., he or
she leaves the communication range of the WSN. On return,
he or she can (2) gather the results that were recorded during
his or her absence. The WSN’s task in the meantime is to
dependably store all collected sensor data during that time
frame and keep it “ready to be harvested” by the mobile user
with high probability at any time. Thus, the data must be
managed in a highly available fashion until the mobile base
station reconnects. More precisely, our application scenarios
exhibit the following system requirements:

1) replication strategies can be specified and even changed
at run-time without altering the framework implementa-
tion, i.e., “reprogramming the whole WSN,”

2) the framework should be able to support multiple sensors
per sensor node,

3) sensor data should be stored on the sensor nodes
themelves,

4) sensor data can be erased after harvesting, and

5) at least one query should be allowed to be effectuated
at every sensor node at any time.

In fulfillment of these requirements, we propose ZeDDS: a
middleware and control framework for providing available data
storage in WSNs. In ZeDDS, the WSN dependably stores
measured data as long as the mobile user has not harvested it.
ZeDDS enables the mobile user to specify a replication strat-
egy that exhibits a desired, sufficiently high data availability
and sufficiently low energy consumption. At run-time, ZeDDS
replicates the measured sensor data according to the specified
replication strategy. The evaluation of our implementation is
done by measurements of the write operation availability on a
WSN consisting of TelosB sensor nodes using three different
replication strategies whose availabilities and message costs
are well-known.

The remainder of this paper is organized as follows: In
Section II, we introduce basic concepts and terminology as-
sociated with data replication and (data) replication strategies
as it is used throughout the paper. In Section III, we review
related work on different approaches for distributed data
storage in WSNs employing data replication. In Section IV,
we describe the ZeDDS architecture and explain adapted
SQL command syntax and semantics used for controlling the
ZeDDS framework. Furthermore, in Section V, we validate our
implementation by measurements of write operation availabil-
ities of three different replication strategies on a WSN existing
of TelosB sensor nodes. Finally, Section VI concludes the

paper.
II. PRELIMINARIES

In this paper, we consider WSNs with n sensor nodes and a
unique (mobile) base station. At any particular point in time, a
sensor node is either in failed state (i.e., “down”) or in working
state (i.e., “up”). The average behavior of a sensor wrt. to up
and down time periods, the so-called node availability p, is
given by as follows:

B MTTF 0
P=MTTF ¥ MTTR

where MTTF is the mean time to failure and MTTR is the
mean time to repair. For simplifying purposes, we assume

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

that the node availability of every sensor node is identical.
Operations are either read or write operations. A read opera-
tion is the reading of stored sensor data from the WSN and a
write operation writes measured data to the WSN data storage.
Operations are initiated by a query, that specifies on which
sensor node operations are executed and how long and how
often they are executed. The availability of the write operation
can be approximated by A,,, calculated as follows:

number of successful write operations
total number of write operations tried

w — (2
The availability of the read operation can be approximated
by A,, calculated correspondingly. For different replication
strategies closed formulas for the operation availability are
known (see [2]). They, in general, depend on a strategy-specific
parameter set, the total number of nodes n and the node
availability p

A = f(parameter set,n,p). 3)

As an example, a read operation for extracting all sensor data
should be issued by a base station to a WSN consisting of
n = 3 sensor nodes. Within the WSN, the sensor data is
read and written according to the Majority Consensus Strategy
(MCS) [3]. The operation availabilities are compared with the
corresponding operations of a WSN not using replication. With
MCS, at least two sensor nodes must be read (written) in order
to guarantee consistency of the sensor data read (written).
Without replication, all sensor nodes have to be read because
every sensor node hosts only its local data. The availability of
the read operation with MCS replication can be calculated by

the following formula
>)

k=251

MCS __
A =

(1=p) k. 4)

For the availability of the read operation without replication
A, all three sensors must be available. Thus, the availability
is calculated by A¥° = p3. Figure 2 shows that using MCS,

p=0.6

s
@@

Read data from 57 ..

Read data from S1...53

Ave = p? =0.216 AMCS = (.648
(a) Sensor read without repli- (b) Sensor read with MCS
cation replication

Fig. 2: Comparison of operation availabilities

the availability of the read operation (Figure 2b) is three times
higher than without replication (Figure 2a). The reason is that
using MCS, one sensor node is allowed to fail (Figure 2b) and
the read operation still remains available. Without replication
all sensor nodes must be available for data harvesting.

For evaluating ZeDDS, the MCS [3], the Grid Protocol [4],
and the Tree Quorum Protocol (TQP) [5] are used.

12

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The Grid Protocol arranges the sensor nodes as a (logical)
grid structure, e.g., a 3x3 grid. Then, for the read operation,
a complete column must be locked. For a write operation, a
complete column and at least one node of every column must
be locked (i.e., five nodes for a 3x3 grid).

TQP uses a tree for logically arranging the sensor nodes. For
a read operation, the root node must be contacted (and locked).
If this fails, then a majority of its children must be contacted.
If some of the children have failed, then the majority of the
children of the failed children must be contacted. This process
is repeated recursively until the leaf nodes are reached. For
a write operation, the root node and a majority of its child
nodes must be contacted as well as a majority of the child
nodes children. This process is also recursively repeated until
the leaf nodes are reached and a majority on every level of
the tree has been contacted.

Every set of nodes that, depending on the particular repli-
cation strategy used, fulfills the conditions for replica collec-
tion is called a read quorum or write quorum, respectively.
Furthermore, note that closed solutions for the calculation of
write and read operation availabilities of MCS, Grid and TQP
exist (see, for example, [2]).

To support a variety of replication strategies, General Struc-
tured Voting (GSV) [6] has been introduced. With GSV, repli-
cation strategies are modeled as directed acyclic graphs. These
graphs, called voting structures, consist of physical nodes
representing a replica each and virtual nodes for grouping
purposes. Each node is associated with a number of votes.
With the help of votes, quorums for read and write operations
can be derived. To derive a quorum from the voting structure,
votes are collected from the nodes. A physical node directly
provides its vote if it is up and not locked in a conflicting
manner. For a virtual node, votes are first collected among its
children and a vote is only provided if enough votes could be
collected among them. If enough votes could be collected for
the voting structure’s root node, then all the replicas of the
participating physical nodes form a quorum of the requested
operation. Figure 3 shows a voting structure for MCS. The root

Ry .3
2,2

1
0,0

2] [72]

I 1
B |
0,0 0,0

Fig. 3: A voting structure for MCS with three nodes

node requires two votes for both a read and a write quorum,
while each of the physical nodes has a single vote assigned.

III. RELATED WORK

The first implementations of SQL-like query mechanisms
for WSNs were Cougar [7] and TinyDB [8]. Cougar and
TinDB model a WSN as a database and implement filters on
the sensor nodes. This allows processing of the sensor data
close to the source of the sensor data and reduces the need to
transfer raw sensor data that is filtered out in a later step across
the network. TinyDB implements a so-called Acquisitional
Query Processor (AQP) that reduces the energy consumption
of queries. For example, the AQP composes multiple queries
into one query in order to save communication overhead. Al-
ternatively, the sequence of operations having different energy

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

costs is reordered in a way that the cheapest operation is used
first to decide whether an expression is valid. For example, the
expression (IF expensive sensor > 100) AND (cheap sensor
< 50) THEN read out sensor X) is reordered such that the
cheap sensor is queried first.In the middleware Sensceive [9]
sensing is separated from the network management to allow
the end user to focus on the sensing instead of being concerned
with networking details. Sensceive also uses SQL-like query
mechanisms. SwissQM [10] and Corona [11] implement a
virtual machine on the sensor nodes. SwissQM provides a
generic high-level framework for tasks typical in WSNs, e.g.,
event-processing, data pipelines and finite state automata. SQL
can be uses as query language but other query languages
are also possible, e.g., XQuery. Corona [11] uses an adapted
SQL and runs within a Java virtual machine on the Sun
SPOT platform. Corona is multi-user and multi-query capable
and minimizes sensor activations in WSNs by caching sensor
values and attributing them with a freshness value. Corona is
able to guarantee a freshness level of read senor data. Senceive
and SwissQM are available as TinyOS 2.x implementations.
Corona requires a Java-VM.

Data replication strategies are well-understood in classic
distributed systems. In WSN research, though, data replication
is still in its infancy. For example, in [12], [13], and [14], only
simple Read One Write All (ROWA) strategies are used. In
[15] growth codes are used instead of replication to increase
the persistence of sensed data. A Quorum-based approach for
replication of service directories in WSNs is shown in [16].
A middleware comparable to ZeDDS is shown in [17]. Here,
a WSN is used to store data persistently.

IV. ARCHITECTURE

In this section, we describe the layout of our middleware
and control framework ZeDDS.

A so-called client application is running on the mobile
base station. It is responsible for parsing a user-initiated query,
interpreting it and sending the resulting commands to the
sensor nodes addressed in the query. The client application
parser internally generates simple message objects from the
query. From these objects a Message Creator generates the
necessary messages (Figure 4) to control the node application.
The ZeDDS-BNF (BNF stands for Backus Naur Form) is

QueryTextField
SELECT * FROM 2 START IN 25 WHILE 10s SAMPLEPERIOD 25 QUERYID 1;

Query-String

SimpleMessageObject tinyos.Message

ZeDDS Parser Message Creator ZeDDS Sender

Send message
through socket
SimpleQueryObiject

or
SimpleStrategyObject

Fig. 4: The client application parsing process

comparable to the BNF of the Corona Project [11] or TinyDB
[8] — but adapted to our requirements, i.e., to our need
of specifying and controlling replication strategies. A query

13

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

is specified using a variant of the classic SELECT-FROM-
WHERE statement having the usual semantics. Our adaption
includes commands and options for

¢ spec. an interval in which sensors should be sampled,

« filtering sensor data,

« killing queries,

« switching replication strategies,

« collecting statistical data, and

o receiving the results of a completed query at the mobile
base station.

The most important command is STRATEGY used for repli-
cation strategy switching. Using this command and followed
by the name of the chosen replication strategy as well as
the keyword TO accompanied by a node id, the strategy for
the particular sensor node is configured. The strategies are
defined in the form of voting structures (refer to Section II),
that are stored in separate text files. With this mechanism, new
replication strategies can be easily integrated. The STATISTIC
command, followed by a node id, allows the gathering of
statistical data, e.g., the battery state of the node or the number
of messages sent and received. The KILL command followed
by QUERYID allows to stop a running query and deletes
the related, stored data. Results of a completed query can be
harvested using the GET command followed by a particular
QUERYID.

A query is constructed similar to a SQL query. As an
example, a query involving all sensors of node with id 2,
a sampling period of 2 seconds and an overall sampling
duration of 10 seconds is shown in Listing 1.

SELECT + FROM 2 START IN 2s WHILE 10s
SAMPLEPERIOD 2s QUERYID 1;

Listing 1: QuerySet 1

The START IN option allows an additional specification
of a start delay (being 2 seconds in the example). Using
QUERYID, a unique id is associated with the query. This id is
subsequently used for managing the query, be it in the scope
of a KILL command or for harvesting the collected data using
a GET command. A query can additionally be attributed by
a filter or an aggregation operator. Such a filtering query is
shown in Listing 2.

SELECT = FROM 1 START IN 2s WHILE 32s
SAMPLEPERIOD 5s QUERYID 1 ADVANCED
FILTER 22.3 < temp;

Listing 2: QuerySet 2

Here, the keyword ADVANCED FILTER followed by a value
and a comparison operator configures the filter to only deliver
values from the temperature sensor lower than 22.3 degree.
An aggregation query is shown in Listing 3.

SELECT temp FROM 1 START IN 2s WHILE 30s
SAMPLEPERIOD 2s QUERYID 2 ADVANCED SUM temp 2;

Listing 3: QuerySet 3

For this kind of query, SQL aggregation operators like sum
(SUM), average (AVG), minimum (MIN) and maximum

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

ReplicationApp

QueryHandler DeleteReplicates

QueryConfiguration,

QueryTimer

i
I
|
i
|

Replicate Quorum !

Filter DataReplication StrategyHandler '
i

I

|

QueryConfiguration,

Replicate

X Storage
QueryTimer

i
I

|

!

| SensorDataCapture StorageHandler

!

|

Fig. 5: Architecture of the mote application

(MAX) can be chosen. Additionally, the type of the sensor
must be specified as well as the size of the window, i.e.,
the size determines the number of sensor measurements to be
considered for the aggregate operation. In our current imple-
mentation, the window size is limited to eight measurements.

The Sensor Node Application

The sensor node application is implemented as a TinyOS
application and is therefore running on sensor nodes, such as
TelosB. As communication layer, the (multi-hop capable) Blip
[18] (Berkeley IP v1.0) stack of TinyOS 2.1.1 has been used.
Due to the high complexity of the sensor node application,
the application was divided into “task-oriented” TinyOS com-
ponents connected via predefined interfaces. The components
are the QueryHandler, the Filter, the SensorDataCapture,
the DataReplication, the StorageHandler, and the Strate-
gyHandler (see Figure 5). An additional advantage of the
high modularization degree is, that we were able to develop
variants of the modules with different memory footprints
(note that TelosB is limited to 48KByte of Flash memory).
For example, the filter component exist in two versions, one
having extended functionality and a large memory footprint
whereas the other one exhibits reduced functionality but a
small memory footprint. Components have different tasks to
perform in the different phases of ZeDDS, as decribed next.

Query Phase: If a query is sent from the client, then
it will (Step 1) be received by the node’s QueryHandler
component. This component is responsible for starting, stop-
ping and killing queries. The QueryHandler passes the sam-
pling period information to the Filter component via the
QueryTimer interface, and the sensor types and the filtering
options via the QueryConfig interface (Step 2). The Filter
component configures its filter or aggregation functions with
these options and forwards all the other information to the
SensorDataCapture component (Step 3). This component
starts the measurement with the requested sensor types and
the configured sampling period information (Step 4). For each
set of sensor data, it hands back the acquired measurement
data to the Filter component via the Replicate interface (Step
5). After the data is filtered, it is handed on via the Replicate
interface to the DataReplication component (Step 6). The
DataReplication component assigns an index to the sensor
data and requests a quorum from the StrategyHandler compo-
nent via the Quorum interface (Step 7). The StrategyHandler
then builds a quorum based on the configured strategy (Step 8)
and hands it back to the DataReplication component (Step 9).
Then, this component attempts to replicate the data (Step 10)
using a two-phase commit protocol. If the attempt fails, then

14

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

it returns to Step 7. If the attempt is successful, then the node
application starts the next measurement by resuming Step 4.
These measurement steps are repeated until the query ends. If
a node is configured for replication and is part of a quorum,
then its DataReplication component will store measurement
data received from other nodes as well as local measurement
data by using the Storage interface from the StorageHandler
component. This component is responsible for the memory
management on the sensor nodes.

Query Result Phase (Harvesting): If all sensor data
measurements specified in a query have been completed,
then the results can be gathered by the base station. The
GET command, issued by the base station, is received by
the QueryHandler component. The QueryHandler compo-
nent acknowledges that the query has ended. If such an
acknowledgement has been received by the client application,
then a read quorum is constructed by the client application.
The client application then sends a request for data to the
nodes of the read quorum. These request are handled by the
StorageHandler component which sends the collected sensor
data back to the client application.

Maintenance Phase: If no query is running, then the
replication strategy may be changed by sending a new voting
structure to the sensor nodes StrategyHandler component.
The voting structure specifies the quorum building process. If
the QueryHandler receives the kill command, then it reini-
tializes the DataReplication component and terminates all
running measurements in the SensorDataCapture component.
Subsequently, the client application sends a quest to all nodes
with replicated data for deleting their stored measurement data.

V. EVALUATION

For the evaluation of ZeDDS, we extended the ZeDDS
architecture by a software component (the so-called Statis-
ticHandler) that lets the sensor nodes fail with an adjustable
probability of (1 — p). Failures were simulated by the nodes
on-the-fly meaning that a failed node did not take part in
the quorum building operation for a particular number of
rounds determined by the random number generator (RNG)
of a sensor node. For synchronization reasons, in the scope of
our experimental evaluation, we measured time in rounds. In
particular, we used one round as the minimal time period for
which a sensor node might fail if failed at all. The functionality
was as follows.

The client application starts the round by triggering the
RNG of every sensor node, except the node in charge of
writing. The latter one does not fail in the scope of the
evaluation. The RNG decides if the sensor node is in failed
state or in working state. If the node is in working state, then
it takes part in the replication process — otherwise it does
not. After that, the client application submits one query with
one write operation to the unique writing node. Depending on
the success of the operation, the writing node increments a
counter for the number of failed write operations wfq;1eq that
belongs to the statistical data collected. Furthermore, a counter
of the total number of write operations w;,:,; (Statistical data)
is incremented. Finally, the replicated data is deleted and this
particular round is finished. After a number of those rounds,
the statistical data is retrieved from the sensor nodes and
the write availability is calculated according to the following
formula.

A, = Wtotal — Wiailed (5)
Wtotal

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

We assumed exponential distributed time periods between
the points of repair and the points of failure. The exponential
distribution was derived through inverse transformation of a
normal distribution [19]. In our experiments, MTTR was set
to 1 round for minimizing overall measurement time. Having
a fixed MTTR, using Equation (1), different values of p were
be obtained simply by varying the MTTF value.

Measurement Setup: For the measurements, we used a
setup with 11 TelosB nodes and a PC with the ZeDDS client
application running on it. The 11 TelosB nodes subsumed
one sensor node that acquired sensor data and replicated them
according to the specified replication strategy (the writing node
had no local replica), nine sensor nodes that were used by the
replication strategies as replica storage and one IP-Basestation
that was needed as IP-Gateway for Blip. The measurements
were done using multi-hop communication being enabled.

1 1

T T T T T T 05
09 - Prmeasured ~ |{ 0.9
Standard deviation x

0.8 1 os
07 | 107
> c
2 00 {06 2
E 05 L 5 - i os g
< 04 = 4 04 g
@

8 o3 Jos B
= 12}
02| 1 02

ke
0.1 b¥ 1o
0 0

0.1 01
0 100 200 300 400 500 600 700 800 900 1000
Rounds

Fig. 6: Stabilization measurement of the random number

generator

Before we started the measurements, the number of rounds
necessary to ‘“stabilize the RNG” was determined, i.e., the
number of rounds needed to get the standard deviation of the
RNG for a node availability p = 0.5 down to a stable level,
was measured. For this, we let the RNG on one node run for
1000 rounds and repeated the measurement 10 times. Then, we
calculated the mean, minimum and maximum values (Figure
6, upper graph) as well as the standard deviation (Figure 6,
lower graph). It can be seen that the RNG of TinyOS needs
approximately 200 rounds “to get stabilized to a standard
deviation of 0.03.” For accounting the stabilization of the

1

i V\)ICS 9 n‘weasure‘d »—9‘—«
MCS 9 write calculated
S 9 read calculated --------- |

0.9 -

0.8

0.7

0.6

0.5

0.4

0.3

Availability of write operation

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Node availability p

Fig. 7: Majority consensus with nine nodes
RNG, we let the measurements run for 300 rounds and took
the write availability A,, of the last round as a stable value.
The measurements were done for the strategy MCS with nine
nodes, for TQP with four nodes and for Grid with, again, nine
nodes. We varied the node availabilities p from 0.1 to 0.9 (in

15

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0.1 steps). For every step, the write availability was measured
within 300 rounds. The measurements for every strategy were
repeated five times and from the results, we calculated the
mean, the minimum and the maximum value and plotted them
as error bar together with the corresponding analytical values
for write (and read) availabilities (as shown in Figures 7, 8 and
9). For MCS with nine nodes, the read and write availabilities
are identical (see Figure 7).

" —_—
Grid 9 measured —+—

L Grid 9 write calculated

Grid 9 read t

0.9

0.8

0.7

0.6

0.5

0.4

Availability of write operation

0.3

0.2

0.1

o L2 ¥
0 01 02 03 04 05 06 07 08 09 1

Node availability p

Fig. 8: GRID protocol with nine nodes

The measurement for a single run of a single replication
strategy took five hours. Five repetitions accounted for 25
hours and for all three strategies an overall measurement time
of 75 hours was needed. An additional measurement of the
read availabilities would have doubled the measurement time
— thus, we decided to restrict our analysis to the write operation
in the scope of this paper. The measured write availabilities A,,
for all three strategies correlate very well with the analytical
results and we consider them sufficient to validate our ZeDDS
framework. The deviation from the theoretical values stem
from the still existing residual of the node availability at 300
rounds (Figure 6, lower graph) and the systematic error that
is introduced by the fact that our time unit is a round (and
thus, time must be natural multiplier thereof): RNG delivers
fractional round numbers that are mapped to multiples of one
round. Furthermore, occasional communication errors during
the measurement may further introduce inaccuracies.

1

TQP 4 measured —+—
0.9 TQP 4 write calculated o
: TQP 4 read calculated --------- [L

0.8

0.7

0.6

0.5

0.4

0.3

Availability of write operation

0.2

0.1

. e 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Node availability p

Fig. 9: TQP with four nodes

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented ZeDDS: a middleware and
control framework for providing high available data storage
in WSNs. In ZeDDS, a WSN has the task to dependably
store the measured data as long as the mobile user has not
returned to the WSN for data harvesting. ZeDDS enables the
mobile user to specify a replication strategy that has a known
availability and energy consumption. At run-time, ZeDDS

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

replicates the measured sensor data according to a specified
replication strategy. We described the ZeDDS architecture and
the adapted SQL commands to control the ZeDDS framework.
Furthermore, we successfully validated our implementation by
measurements of the write operation availability on a WSN
consisting of TelosB sensor nodes using the MCS, TQP and
Grid Protocol replication strategies. As future work, we plan
to extend the measurements to read operations. Furthermore,
we plan to also measure of the overall energy consumption
per replication strategy.

REFERENCES
[1

—

J. Kamenik and O. Theel, “Optimized data-available storage for energy-
limited wireless sensor networks,” in Proc. of the 6th IEEE Int. Workshop
on Practical Issues in Building Sensor Network Applications (SenseApp
2010). Bonn, Germany: IEEE Computer Society, 2011, To apper in.
[2] H.-H. Koch, “Thesis (doctoral): Entwurf und Bewertung von Replika-
tionsverfahren,” Technische Hochschule Darmstadt, 1994.
R. H. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Trans. Database Syst., vol. 4, no. 2,
pp- 180-209, 1979.
S. Y. Cheung, M. H. Ammar, and M. Ahamad, “The grid protocol: A
high performance scheme for maintaining replicated data,” IEEE Trans.
on Knowl. and Data Eng., vol. 4, no. 6, pp. 582-592, 1992.
D. Agrawal and A. El Abbadi, “The generalized tree quorum protocol: an
efficient approach for managing replicated data,” ACM Trans. Database
Syst., vol. 17, no. 4, pp. 689-717, 1992.
O. Theel, “General structured voting: A flexible framework for mod-
elling cooperations,” in Proc. of the 13th Int. Conf. on Distributed
Computing Systems, Pittsburgh, PA, 1993, pp. 227-236.
P. Bonnet, J. Gehrke, and P. Seshadri, “Querying the physical world,”
Personal Communications, IEEE, vol. 7, no. 5, pp. 10-15, Oct 2000.
[8] S.R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122-173, 2005.
[9] C. Hermann and W. Dargie, “Senceive: A middleware for a wireless
sensor network,” in Proc. of the 22nd Int. Conf. on Advanced Information
Networking and Applications. Washington DC, USA: IEEE Computer
Society, 2008, pp. 612-619.
R. Miiller, G. Alonso, and D. Kossmann, “Swissqm: Next generation
data processing in sensor networks,” in Proc. of the 3rd Biennial
Conf. on Innovative Data Systems Research. Asilomar CA,USA:
www.crdrdb.org, 2007, pp. 1-9.
R. Khoury, T. Dawborn, B. Gafurov, G. Pink, E. Tse, and Q. Tse,
“Corona: Energy-efficient multi-query processing in wireless sensor
networks,” in DASFAA (2). Springer, 2010, pp. 416-419.
S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, and R. Govindan, “Ght:
A geographic hash table for data-centric storage in sensornets,” in Proc.
of the First ACM Int. Workshop on WSNs and Applications (WSNA).
ACM, 2002, pp. 78-87.
S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, and L. Yin,
“Data-centric storage in sensornets with ght, a geographic hash table,”
Mob. Netw. Appl., vol. 8, no. 4, pp. 427-442, 2003.
S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornets,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 1, pp. 137-142, 2003.
A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
Maximizing sensor network data persistence,” in Proc. of SIGCOMM
2006, Pisa, Italy, September 2006, pp. 255-266.
V. Raychoudhury, “Efficient and fault tolerant servicediscovery in manet
using quorum-based selective replication,” in Proc.of the 2009 IEEE Int.
Conference on Pervasive Computing and Communications. Washington
DC, USA: IEEE Computer Society, 2009, pp. 1-2.
J. Neumann, C. Reinke, N. Hoeller, and V. Linnemann, “Adaptive
quality-aware replication in wireless sensor networks,” in Proc. of the
2009 Int. Workshop on Wireless Ad Hoc, Mesh and Sensor Networks
(WAMSNET09), ser. Communications in Computer and Information
Science (CCIS), 2009, vol. 56, pp. 413-420.
S. Dawson-Haggerty, “Blip (Berkeley IP implementation for low-
power networks),” (Last access 14.07.2011) 2008. [Online]. Available:
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modelling.
John Wiley & Sons, 1991.

[3

[t

[4

[l

[5

—_

[6

—

[7

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

16

