
Pervasive Computing in Embedded Systems: Designing Cooperative Applications
for Real Environments

Alberto Zambrano Galbís

Department of New Technologies

ETRA Research and Development

Valencia, Spain

azambrano.etra-id@grupoetra.com

Abstract— The dramatic growth of the amount of information

that is made available through computer systems and the

increasing need to access relevant information anywhere at any

time are more and more overwhelming the cognitive capacity

of human users. Instead of providing the right information at

the right time, current computer systems are geared towards

providing all information at any time. For many future

applications, the integration of embedded systems from

multiple smart spaces is a primary key to provide a truly

seamless user experience. The project PECES has worked

during the last two years to offer the technological basis to

enable the global cooperation of embedded devices residing in

different smart spaces in a context-dependent, secure, and

trustworthy manner. The main output of this paper relies on

the set of tools developed to create PECES based applications

in an easy and understandable way for developers.

Keywords-pervasive; embedded; smart space; WICO;

security; middleware; context; ontology.

I. INTRODUCTION

The dramatic growth of the amount of information that
is made available through computer systems and the
increasing need to access relevant information anywhere at
any time are more and more overwhelming the cognitive
capacity of human users. This is an immediate result of the
design goal of providing transparent access to all available
information that guides the development of today’s
information and communication technology. Thus, instead
of providing the right information at the right time, current
computer systems are geared towards providing all
information at any time. This requires humans to explicitly
and repeatedly specify the context of the required
information in great detail.

The vision of Pervasive Computing aims at solving these
problems by providing seamless and distraction-free support
for user tasks with devices that are invisibly embedded into
the environment. In order to provide task support in an
unobtrusive and intuitive way, the devices are equipped with
wireless communication and sensing technology. This
allows them to cooperate with each other autonomously,
i.e., without manual intervention, and it enables them to
perceive relevant parts of the physical world surrounding
their human users.

Together with the richer input and output capabilities
realizable by the joint utilization of these embedded devices,

this can greatly reduce the cognitive load that is put on users
when they need to access information.
While there are various approaches towards enabling the
vision of Pervasive Computing, existing approaches are
mostly focusing on concepts to realize smart spaces, such as
smart meeting rooms or offices. However, truly seamless
support for user tasks requires the development of one
system that exposes a single and unifying image to its
human users. This requires the integration of multiple smart
spaces with each other and with information system
infrastructure that exists today as shown in Figure 1.

Figure 1. Pervasive Computing Vision

The increasing number of devices that are invisibly
embedded into our surrounding environment as well as the
proliferation of wireless communication and sensing
technologies are the basis for visions like ambient
intelligence, ubiquitous and pervasive computing, whose
benefits and impact on the economy and society are
undeniable. Efforts in related projects have enabled smart
spaces that integrate embedded devices in such a way that
they interact with a user as a coherent system. However, they
fall short of addressing the cooperation of devices across
different environments. This results in isolated ‘islands of
integration’ with clearly defined boundaries such as the
smart home or office. For many future applications, the
integration of embedded systems from multiple smart spaces
is a primary key to provide a truly seamless user experience.
Nomadic users that move through different environments
will need to access information provided by systems

Smart Stations & Smart Shops Smart Transportation Smart Offices Smart Homes

Sm
ar

t S
p

ac
es

“I
n

te
gr

at
ed

 Is
la

n
d

s”

Networked Devices
(e.g. WICOs)

System & Application
Boundaries

System Boundaries

Networked Devices

Application
Boundaries

In
te

gr
at

ed
 W

o
rl

d

Internet

Webservers & Services

321Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

embedded in their surroundings as well as systems
embedded in other smart spaces. Depending on their context
and on the targeted application, this can be smart spaces in
their vicinity such as ‘smart stores’, or distant places with a
specific meaning such as their home or their office or
dynamically changing places. The project PECES has
worked during the last two years to offer the technological
basis to enable the global cooperation of embedded devices
residing in different smart spaces in a context-dependent,
secure, and trustworthy manner.

The result is a comprehensive software layer that consists
of a flexible context ontology, a middleware that is capable
of dynamically forming execution environments that are
secure and trustworthy, and a set of tools to facilitate
application development.

This paper will provide an overview of the results of the
research carried out in PECES project, showing how a
developer can make use of the software layer provided by
using the development tools to create applications that allow
the collaboration of embedded devices across different
smart spaces, being them co-located or remote. Section II
will describe the main building blocks of the software
solution proposed, Section III and IV show how to develop
and applications using PECES respectively and Section V
makes an overview of the process to design test cases.
Finally, Section VI describes one of the applications that
have been developed and successfully implemented in a real
environment as a matter of fact of the applicability of
results.

II. THE MAIN BUILDING BLOCKS OF THE SOFTWARE

SOLUTION PROPOSED

As mentioned in the previous section, the software layer
provided consists in three key components and the
applications that allow the collaboration of devices across
different smart spaces are built on it. These components are:
a context ontology, a middleware and a set of tools to help
developers to build the applications.

The context ontology is the basis for capturing the
context of the cooperating objects and specifying groups of
cooperating objects in an abstract manner.

The middleware consists in a set of application-
independent services that enables the dynamic and context-
aware formation of a secure execution environment from a
set of cooperating objects. This encompasses an addressing
and grouping scheme with associated gateway concepts to
enable the interaction of cooperating objects between smart
spaces, a distributed registry for cooperating objects to
enable the dynamic formation of an environment on the basis
of applications requirements and all the associated concepts
and protocols to ensure that environments can be formed in a
secure manner and that the data-oriented communication
between cooperating objects is secure.

The development tools aims at simplifying the formation
of groups as well as the description of the context of the
cooperating objects that are part of the applications. These
tools have been created to support developers who want to
create applications using PECES middleware.

III. DEVELOPMENT OF APPLICATIONS USING

PECES

Structure of a typical PECES application shows the
structure of a typical PECES application, where several
devices, characterized by their context properties, are
grouped in collaborative smart spaces according to their
needs, capabilities and context, regardless of whether they
can establish local communication or they contact across
Internet. They can cooperate to create local or global smart
spaces. The locally available services can only be accessed
by those devices which are inside the communication range
while globally available services are published in the internet
and accessible remotely by any device.

Figure 2. Structure of a typical PECES application

Devices are grouped into smart spaces in an intelligent
manner, based on their context properties. Smart spaces are
defined by so called “Role specifications”, being a Role
Specification a set of rules that a device must fulfill in order
to become member of a certain smart space.

In order to allow a flexible, open and human-readable
way of defining these constraints in the Role specifications,
the PECES project has adopted the use of ontologies,
developing a custom extensible set of ontologies called
“Context Ontologies”. The context ontologies have three
main objectives inside the PECES middleware:

 Model the context properties of the devices (for
instance, services, device’s capabilities, locations,
ownerships, etc.).

 Model human-readable relationships between these
properties (for instance, “device offers service”,
“device is located at location” or “device is owned
by person”.

 Provide an engine that allows the middleware to
perform queries over the context properties, by using
the defined relationships (for instance, “select all
devices located at a certain location”, “select all
devices owned by a certain person”, and
combinations of type “select all devices located at a
certain location and owned by a certain person” or
“select all devices offering the service that is
required by a certain person”).

The middleware offers a set of context properties that
allow the operation of the middleware and the prototype
applications developed in the project. The context
ontologies can be easily extended to support further
applications, in case new concepts and relationships are
needed.

PAN

Internet
Globally available

services

Context properties
Context propertiesContext properties

Role Specifications

Context properties

Locally available

services

Context properties

Role Specifications

Global

Smartspace

Local

smartspace

322Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Summarizing:

 Devices are characterized by a set of context properties

 Role specifications define the characteristics a device
must have in order to become member of a smart space

 The formation of a smart space is not limited
physically, since three different types of smart spaces
can be defined:

- Device level smart spaces: intra-device.
- Local smart spaces: restricted to directly reachable

devices, independently of the communication
channel used (Ethernet, WiFi, Bluetooth...)

- Internet smart spaces: publicly defined smart
spaces, reachable by any device with access to the
internet

 PECES services offered by a certain device will be
available to the other partners of the smart spaces it is
part of

IV. IMPLEMENTATION OF APPLICATIONS USING PECES

A set of development tools has been developed inside the
PECES project, to assist developers in the design of new
applications using the PECES middleware. These
development tools are provided as an Eclipse plugin.

A. Project Set up

The development of a PECES application implies
working with several different projects within the Eclipse
environment. Usually, a developer will have to deal with
two projects:

A PECES project, which will be the working basis. This
kind of projects contains special files that store the
description of the whole system, and that are built step by
step during the development process, using the different
modules provided in the PECES development tools.
Several JAVA projects with PECES nature. These projects
contain the actual code that takes part of the different
software pieces that compose the whole application.
Usually, it will exist one JAVA project per device taking
part in the application.

Basically, all the things needed to be used with the
PECES development tools will be created within the PECES
project. The content of the other projects will be
automatically created, based on the description of the
application provided by using the PECES development
tools. At the end, the JAVA projects will contain the
structure of the final software pieces, including all the
PECES-related instantiations and initialisations. Work
beyond will include the actual implementation of the
services and the application logic.

B. Instantiating Devices

The first step in the definition of a PECES application is
the definition of how many kinds of devices will participate
on it. Usually, this corresponds to the number of software
pieces that will be necessary in order to run the whole
application. For instance, a simple service
provider/consumer application would have two software
pieces, thus two devices. Nevertheless, a more complex

application could have several different software pieces
collaborating among each other.

Once the number of devices has been decided, the
PECES Device Definition can be used to define them. This
task will result in the creation of several new JAVA projects
(as many as devices get defined), where the different
software pieces of the application will be built.

The devices needed to run the application have to be
instantiated, providing them a name and assigning each
device the extra PECES functionality that will be deployed
in it:

 Coordinator: the device will be then in charge of
defining and managing one or more smart spaces.

 Gateway: the device will be able to provide Internet
access to other devices.

The devices not being coordinators or gateways are just
members of the smart space.

As part of the instantiation, the developer has to select
the communication plug in to be deployed in the device
based on its features, namely:

 MxBluetoothTransceiver: for devices with Bluetooth
capabilities.

 MxIPBroadcastTransceiver: for devices with IP-
based network capabilities, using datagram sockets.

 MxIPMulticastTransceiver: for devices with IP-
based network capabilities, using multicast sockets.

 MxIRTransceiver: for devices with IRDA (infrared)
capabilities.

 MxSerialTransceiver: for communication via serial
connection over USB on Sunspots.

 MxSpotTransceiver: for radio stream
communications on Sunspots.

 EmulationTransceiver: needed for the debugging
tasks with the PECES development tools.

Figure 3 shows a screenshot of the development tools
interface with the different type of devices available and
those involved in the smart space application under
development.

Figure 3. Development Tools Screenshot

C. Defining Context Properties

The context properties of the devices are the key
elements on the intelligent behaviour of the PECES
applications. Devices use their available possibilities to be

323Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

aware of their context, and the PECES applications react to
this context by building new groups of devices and bringing
new services in function of the situation of any device at any
moment.

In order to model the behaviour of the PECES
application, it is necessary to specify which kind of context
information will be useful in order to reason which devices
must be able to take part of which groups, thus being able to
communicate with its partners and make use of their
services.

The PECES applications model these context properties
using ontologies. Ontologies are formal models of generic
concepts and the relations among them. They provide an
easy way of modelling the real world, and therefore any
logical condition over the context properties of the devices
that may be specified for the correct operation of the
application. Examples of context properties and conditions
that can be specified with ontologies could be “All red
devices owned by John Doe”, “All red devices owned by
John Doe and located in Valencia” (combination of several
properties).

The PECES project already delivers a set of context
ontologies that covers the basic concepts necessary to build-
up applications, and some further concepts used within the
project specific use-cases. These ontologies can always be
extended to cover new concepts necessary for new
applications.

PECES development tools provide an ontology editor
which automatically creates the instances of all the devices
defined with the PECES Device definition tool. Therefore,
the work of the developer will just focus in the following
points:

 Instantiating all smart spaces that will compose the
application

 Instantiating all the services to be implemented and
used in the application

 Instantiating all the properties of the devices, and
relate them to the proper devices

D. Role Specifications

The basis of any PECES application is its ability to build
up groups of collaborative objects in an intelligent manner,
based on their characteristics and the patterns provided by
the application designer. As it has been mentioned in
previous sections, the characteristics of a certain device
have to be formally modelled by using the context
ontologies. The next step is the design of constraints using
these characteristics that can be used later on to dynamically
build the smart spaces and group all devices with a common
background that can collaborate with each other to achieve
the objective of the application.
With this objective PECES provides a Role Specification
editor with specific tasks:

 Assign a specific Role Specification to each
device. It sets which coordinator will be in charge
of specifying the roles, thus managing the
corresponding smart space.

 Scope of the defined smart space. It specifies the
level where the role specification will be published

to (device level, space level –local- or Internet
level).

 Member’s minimum trust level. In case the
application uses security concepts, this field
specifies the trust level a coordinator must have in
another device to allow it to become member of the
smart space.

A role specification defines which devices will be
members of a certain smart space. It is composed by one or
more rule sets. Each rule set defines certain constraints to be
applied on the devices’ properties (for instance, “a device
must be red”). Any member fulfilling one or more rule set
will become member of the smart space. A device fulfils a
certain rule set only if all the constraints contained there are
fulfilled (i.e., an AND condition is applied inside a rule set).
Figure 4 shows a number of examples which clarifies this
explanation.

 Devices

Red Green Blue

Small Big Small Big Small Big

Role specification 1 Rule set 1a

Red & small

X

Rule set 1b

Green & big

 X

Member X X

Role Specification 2 Rule set 2a

Blue

 X X

Rule set 2b

Red and small

X

Member X X X

Figure 4. Example of Devices Role Specification

E. Services

The PECES middleware facilitates the implementation of
services that, once implemented in a device, can be shared
among other members of the own smart space. Therefore,
services are an important piece of the whole PECES
application structure. In cooperation with other elements of
the middleware, it is possible to design services that will be
available only to certain types of devices, services that will
be available only to devices that can be trusted or even
services with several interfaces that will be accessible or not
based on the trust level or characteristics of the client
devices.

PECES provides a Service Editor which supports
developers in the implementation of services. Developers
will have to specify which device implements the service and
the availability of the service – device level, space level or
Internet level-.

A service is composed by one or more methods (interface
of the service) which can be called by clients, and which
generate a result based on the parameters received. For each
of the defined methods, PECES Service Editor tool will
create in the proper project an empty function with a
“TODO” comment inside, indicating to the developers where
to include the actual implementation of the service.

324Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

F. Hierarchical Role Specifications

There are applications where it can be useful to join all
members of smaller smart spaces into a single bigger smart
space. For instance, in a city full of smart cars, grouping all
devices attached to a car and implementing local user-
oriented services, it could be interesting to define a super-
group with all smart cars allowing the broadcast of traffic
information messages among all smart cars.

PECES provides a Hierarchical Role Specifications
definition tool to allow the developers to easily create all the
code necessary to define and instantiate such kind of smart
spaces:

The Hierarchical Role Specification editor offers the
following options:

 At a coordinator level, it specifies the device that
will instantiate the hierarchical role specification.

 At available smart spaces level, it shows all the
smart spaces defined in the project.

 At a selected smart spaces level, it holds the list of
smart spaces that will take part of the hierarchical
smart space.

G. Security Aspects

The PECES middleware offers a security layer that adds
extra functionalities to the application. Its use is completely
optional. The basis of the security layer is the following:

 Every device carries a certificate, signed by a
certain authority or by another certificate.

 Every device stores public certificates of other
devices, classified along three different trust levels:

o Full trust: certificates of devices with the
maximum level of trust.

o Marginal trust: certificates of devices with
a lower level of trust.

o No trust: certificates of not-trusted
devices.

 Every role specification can be associated to a
certain trust level, which is the minimum trust level
the coordinator must hold with another device in
order to assign him the role. Figure 5 shows a
graphical example which clarifies this concept.

Figure 5. Example of trust levels

PECES Security Configuration tool assists the developer
in the creation of the certificates necessary for the security

layer to work. Basically, one security configuration will be
needed for each certificate authority (roots in the trust level).

The security configuration implies the Root Certificate
Configuration, to allow the configuration of the Certification
Authority and the Client Certificate Configuration, to allow
the design of a certification chain.

V. DESIGNING TEST CASES

The PECES development tools offer all the necessary
mechanisms to run the application under development in a
testing environment, where the reactions of the different
software pieces to different events and changing situations
can be triggered and observed, thus helping in the validation
of the development process.

The tools offered are able to structure the testing process
in a set of test cases. A test case is understood as an
experiment; i.e., all the software pieces are run in parallel,
the situation to be tested is induced, and the reactions and
behaviour of the different pieces is observed (via its console
output and graphical visualizations).

A test case is hence defined by a sequence of events that
are induced in the testing environment where the different
software pieces are run. The sequence of events is defined by
the tester, with the objective of triggering and checking a
certain behavior of the application.

When defining a test case, the developer will have to
define the set of events to be used, ordering them in the
proper sequence afterwards.

The context of the devices under test can be modified by
introducing device context change events. This allows the
developer to introduce artificial changes in the context of the
devices under test, thus inducing changes in the behavior of
the application.

The tool also allows the developers to introduce
connection link change events to define which devices can
interact with each other. This is very useful when testing
local interactions between devices, or the behavior of the
operation when one of the devices in on longer available.

Finally, the PECES development tools offer an execution
environment where the software pieces to be deployed in
different devices can be run, and certain conditions (the
events previously defined) can be induced, causing reactions
and interactions between the devices of the application that
can be observed and analyzed.

Once the simulation is finished, the developer can access
a test log to observe an aggregated and ordered version of the
console output of all devices. This tool provides all
information coming from the log of the PECES middleware,
and further user custom messages the different software
pieces can print. The lines in the shown log comply with the
following rules:

 Messages are ordered as they are produced,
independently of which is their source. This
facilitates the observation of interactions and cause-
effect relations between the different devices

 First item in every line identifies the source of the
message (name of the device)

Jane

Jane’s

devices

Jane’s

phone

Jane’s

laptop

Jane’s

accounts

Jane’s

bank

account

Jane’s

parking

account

John

John’s

devices

John’s

phone

John’s

laptop

John’s

accounts

John’s

bank

account

John’s

parking

account

Municipality

325Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

 Messages coming from the logging facilities of the
PECES middleware begin with some information
contained between brackets ([]), namely

 Type of message (ERR, DBG,LOG)

 Instant when the message is produced

 Class printing the message
The developer can use the logging facilities of the

middleware in order to ensure that this format is always
followed in the log files.

VI. IMPLEMENTATION OF APPLICATIONS USING PECES

One of the key challenges PECES technology addresses
is to provide the user with a seamless experience when
he/she moves through different smart spaces, being them
physical or virtual. A delicate balance between usefulness,
security and non-intrusiveness must be kept. Technology
must be there all the time, but the user must not see it, he/she
has to perceive just the benefits brought by the applications
enabled by PECES technology.

In this context, a Smart Access Control prototype has
been developed to validate the PECES’ main features in a
real environment. To get an idea of the scenario, imagine the
user, John Smith, travelling in his car. He has a PDA where
he planned his trip – a visit to one of his main customers to
hold an important meeting. The moment he got in the
vehicle, all smart devices on board – from the PDA to the in-
car satellite navigator - became aware of each other’s
presence. PECES enabled their mutual discovery and their
dynamic interaction. Based on the interests of the user, the
devices present the possible functionalities available and
offer the user a number of services.

The first service provided seamlessly to the user is the
localization of a parking near the meeting location. The
navigator automatically sets as destination point the parking
entrance and the system books a parking lot for John.

Whist he is driving, the car joins the smart space of the
cars in the area and receives real time notifications of the
traffic incidents, allowing the recalculation of the route until
the destination.

In the way to the customer’s office, there is an access
control. The smart car is automatically registered and the
user is charged the corresponding tax.

When John gets to the parking entrance, his car number
plate is recognized by a CCTV camera, the barrier opens and
John parks the car in a parking lot booked for him. At the
same time, John’s personal data is transferred with the
requested security to the parking system for invoicing. While
he parks, the reception management system of the building
negotiates with John’s personal device his personal access to

the building. He leaves the car and reaches reception. Once
he is in the building, he will get access to all the locations
and services that the system assigns to users with a ‘guest’
profile. Another user working in the customers’ company
will get access to different locations and services than John,
such as for example the schedule of his/her department
meetings or the monthly payment day.

Once John is back in the parking, he gets into his car and
approaches the exit. The camera recognizes the plate number
and automatically opens the barrier and invoices John, who
receives a message with the amount of money he has been
charged. Figure 6 shows a schema of the smart access
control application.

Figure 6. PECES Smart Access Control Application

ACKNOWLEDGMENT

PECES is a project funded by the European Commission
under the Seventh Framework Program. PECES Consortium
has actively participated in the elaboration of the contents of
this paper based on the work performed during the two years
the project has been running..

REFERENCES

[1] A. Zambrano, Z. Rak, S. Kirusnapillai, “Use Case Specification,”
December 2008

[2] W. Apolinarski, M. Handte, P. J. Marrón, A. Zambrano, Z. Rak, S.
Kirusnapillai, “Middleware Prototype,” September 2010

[3] A. Zambrano, Z. Rak, S. Kirusnapillai, “Development Tools
Specification,” April 2010

[4] A. Zambrano, Z. Rak, S. Kirusnapillai, “Development Tools
Prototype,” June 2011

[5] W. Apolinarski, M. Handte, P. J. Marrón, A. Zambrano, Z. Rak, S.
Kirusnapillai, “Middleware Prototype,” November
2010.1109/SCIS.2007.357670.

326Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

