
On an Information Architecture for Mobile
Applications

Sathiamoorthy Manoharan
Department of Computer Science

University of Auckland
New Zealand

Abstract—A number of websites are not easily viewable on
modern mobile devices such as smart phones and tablets. To
reach the audience one needs to architect information services
so that the information can be rendered to suit the target
device. This paper describes an information architecture suitable
for delivering content to both native applications as well as
browser-based mobile web applications. A case study based on
a University environment is presented as an evaluation.

Keywords-Mobile applications; information organization; in-
formation architecture; browser-based mobile applications.

I. INTRODUCTION

Most websites that view well on a large desktop or laptop
screen do not view well on the browsers of small-screen
mobile devices. Some content providers such as BBC therefore
provide a mobile version of their site when they detect that
the requester is a mobile device. Some content providers also
provide a native application that takes into account the user-
interface paradigm of the device, and thus enabling a much
better user experience on the device.

In this paper, we investigate the pros and cons of native ap-
plications and browser-based mobile applications, and discuss
the requirements of an information architecture to suit both
application types. We also present an experimental case study
of developing a native application for use within a University
environment.

The rest of the paper is organized as follows. Section II
reviews some of the related work. The related work includes
device capability recognition, content adaptation, and caching.
Section III compares native applications to browser-based
mobile applications. It also discusses a content delivery system
built upon several of the ideas arising from the related work
presented in section II. Section IV presents some requirements
for an information architecture for content organization. Sec-
tion V illustrates an experimental case study of developing
a native application for use within a University environment.
The final section concludes the paper with a summary.

II. RELATED WORK

A. Adapting Web Content to Mobile Devices

Some of the early work was to adapt the desktop web
content to mobile devices either manually or automatically.
Early mobile devices only had WAP access [1] rather than
HTTP access, and supported only WML [2]. Oliveira and
Camarao describe an early system that adapts HTML content

for delivery to mobile devices [3]. The system, implemented in
Haskell, converted HTML to WML so that the mobile micro-
browsers were able to render the content. Google implemented
a similar but a more sophisticated system that integrated into
their search engine [4].

Mobile devices have a limited screen size. Consequently,
modern mobile devices allow large content to be resized on-
device to fit their screen, and allow zooming and panning the
content so that areas of interest can be examined. While such
zoom and pan access is fine for an occasional use, continuous
browsing with zoom and pan can be tiresome.

Xie et al. describe how large pictures can be intelligently
adapted to suit small screens [5]. This approach essentially
identifies the regions of interests in the source picture so that
these regions can be tailored to the target device. This is in
contrast to the simplistic approach of re-sizing the pictures.

Lum and Lau present a content adaptation system that
breaks large content into small coherent pieces tied together
by a relationship [6]. In a broad sense, this is somewhat similar
to the approach Xie et al. take in the context of pictures [5].
Lum and Lau consider textual content only.

The converted or adapted content will usually have temporal
locality, meaning that recently delivered content may be re-
delivered to other clients. Thus a suitable caching system to
retain converted content over a period of time is required.
Techniques from web caching can be employed in the mobile
context [7]. Both textual and media contents benefit from
caching upon conversion. Kara and Edwards describe such
a caching architecture for pre-stored videos [8]. The system
can equally be used for other type of content.

B. Device Capabilities for Content Adaptation

The Open Mobil Alliance (formerly the WAP forum) pro-
posed user-agent profiles (UAProf in short) to tackle the explo-
sive growth of a variety of mobile devices [9]. These profiles,
based on the Composite Capability/Preference Profiles [10],
contain the information that describe the capabilities of the
devices. The profiles are simply XML files. HTTP requests
from mobile clients contain an HTTP header, called X-Wap-
Profile (or in older systems Profile), that points to the location
of the profile. A server serving these requests therefore is able
to consult the profile for any device-specific information. See
Figure 1 that shows a set of headers including the X-Wap-
Profile from a typical mobile device.

258Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

User-Agent: SonyEricssonP990i/R100 Mozilla/4.0
(compatible; MSIE 6.0; Symbian OS; 306) Opera 8.60

Accept: text/html, application/xml, application/xhtml+xml,
multipart/mixed, image/png, image/jpeg, image/gif,
image/x-xbitmap, */*, text/x-vcard, text/x-vcalendar,
image/vnd.wap.wbmp

Accept-Charset: windows-1252, utf-8, utf-16,
iso-8859-1;q=0.6, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Pragma: no-cache
X-Wap-Profile:

“http://wap.sonyericsson.com/UAProf/P990iR100.xml”
Content-Length: 0
X-Nokia-CONNECTION MODE: TCP
X-Nokia-BEARER: GPRS
X-Nokia-gateway-id: NWG/4.1/Build89
Via: WTP/1.1 Vodafone wap2FTC

(Nokia WAP Gateway 4.1/CD13/4.1.89),
1.1 vlsp1:9010 (squid/2.5.STABLE10)

Fig. 1. A sample HTTP request from a mobile device. The header for user-
agent profile, X-Wap-Profile, is shown emphasized.

Older devices may not have any profile information. Be-
sides, there can be other issues with profiles: the profiles may
be erroneous, may not conform to the schema, or may simply
be absent at the location pointed to by the HTTP header.

For these reasons, some systems use an internal repository
of device capabilities. Microsoft’s ASP.NET mobile controls
(formerly the Microsoft Mobile Internet Toolkit) was one such
system which classified different devices based on the user-
agent string in the HTTP request [11]. WURFL (wireless
uniform resource file) is an open source profile repository
which encompasses known profiles [12]. WURFL provides
programmatic access to the repository for various languages
(including Java, PHP, and .NET).

While such systems do not rely directly on the presence of
the profile information in the HTTP header, they can become
out of date very quickly. For instance, the capabilities of a
newly-released mobile device may not exist in the repository
until an update to the repository. Thus a repository based on
dynamically caching user agent profiles is useful [13].

III. NATIVE APPLICATIONS VS. BROWSER-BASED MOBILE
WEB APPLICATIONS

Modern devices converge in terms of capabilities. Especially
in the high-end or smartphone market, the devices have similar
screen sizes and comparable resources and capabilities. With
this in mind, some content providers (such as BBC) provide
mobile sites targeted to this generic class of devices. In
addition, some content providers (such as BBC and New
Zealand Herald) provide native mobile applications that take
into account specific hardware or software features of the
device.

Native applications are device and/or operating-system spe-
cific, and thus several editions of these applications need to
be developed. However, a native application can exploit the
hardware and software features of the device to present a

user with a much richer experience than a comparable web
application. For instance, GPS capabilities of the device can be
used to integrate location-based services: selecting an address
may reveal the address on a map. Similarly, telephony services
can be integrated: selecting a phone number may prompt a
phone call.

A native application needs to be installed on the device.
This can result in an application overload on the device. If a
particular application or site is well-used by the user, then
it is worth the user’s while to install a native application;
otherwise a web application can be a better choice since a
web application is run through a browser.

For this reason, there is a case for developing both a
web application and a native application. For example, a
student or staff at a University may install a native application
for the University on the device; while a casual visitor to
the University may be better off using the University’s web
application (or site).

Thus both of the following are desirable:
1) browser-based mobile web applications adapting content

using device capabilities, and
2) device-specific native applications offering rich user

experience.
An architecture of a system capable of serving content for

both browser-based web applications and native applications
is illustrated in Figure 2.

Mobile Clients

Content Server

Content Cache

Profile Cache

Content Store

Profile Origin Profile Server

Web Server

Profile Management

Fig. 2. Architecture of a content distribution system.

The workflow in the architecture is as follows. The web
server receives the request for content from the mobile client
(either directly or through a WAP gateway).

For a browser-based application, the server examines the
header to get the profile location. If there is a profile location
present, then it passes this to the profile server and acquires
the profile. If there is no profile location present, it passes the
user agent string to the profile server, and gets a default profile
based on the user agent string. The profile and the request are
then passed to the content server. The content server forms

259Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

content tailored to the profile, keeps a copy of the tailored
content in the content cache for future re-use, and passes it
along to the web server. The web server then delivers the
tailored content as the response to the HTTP request.

For a native application, the web server passes un-tailored
content, sourced from the content server, over to the mobile
client where the content will be adapted to suit the device.
Profile management is not required for native applications.

IV. CONTENT ORGANIZATION: REQUIREMENTS FOR AN
INFORMATION ARCHITECTURE

Organizing content to suit intended delivery is a data design
task. This is specific to the audience of the content.

For a news organization (such as BBC and New Zealand
Herald), the main content is news items. Often, a picture is
associated with a news item. Such a picture can be used either
as an icon or to make an otherwise textual reading interesting.
A news item is categorized. Popular categorizations include
National, World, Sports, Business, and Technology. A news
item may fall into more than one category: for instance
Business and Technology.

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”Courses” xmlns=””

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Courses” type=”CoursesType”/>
<xs:complexType name=”CoursesType”>

<xs:sequence>
<xs:element name=”Course” type=”CourseType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”CourseType”>

<xs:sequence>
<xs:element name=”Title” type=”xs:string”

minOccurs=”1” maxOccurs=”1”/>
<xs:element name=”Code” type=”xs:string”

minOccurs=”1” maxOccurs=”1” />
<xs:element name=”Semester” type=”xs:string”

minOccurs=”1” maxOccurs=”1” />
</xs:sequence>

</xs:complexType>
</xs:schema>

Fig. 3. A sample XML schema for describing a list of courses

For a University, the main content for a student-oriented
application is a list of programmes and courses (see Figure 3
that shows a sample XML schema describing a list of courses).
In addition, there will be other items such as staff contact
details and current news from the University. If the application
is intended for a postgraduate student or a staff member, then
the requirements will be quite different.

A user expects to see consistency in the look of an appli-
cation, whether browser-based or native. To achieve this, it is
important to have consistency across the content organization.
For instance, if phone numbers are stored, all numbers should
have a consistent format (e.g., +33 4 1234567). The database
schemas should reflect such consistency.

V. A CASE STUDY: A UNIVERSITY APPLICATION

For evaluation purposes, we constructed a native mobile
application for a University department. The application’s
intended audience is the undergraduate students in the depart-
ment.

The information provided by the department’s website was
rationalized in the context of a mobile application. For ex-
ample, large pictures are not useful in a mobile application.
Course information provided by the department along with the
contact details of the teaching and support staff were deemed
to be the most useful to the students. The department also
provides an RSS (Really Simple Syndication) news feed, and
this feed was picked up as a showcase. Some images depicting
the current departmental research activities were chosen to
decorate the application and to break the largely text-only feel.

The information is then populated consistently into a Con-
tent Store. A web service was set up to supply the various
content on demand. Two forms of the service were set up:
one a SOAP-based service [14] and the other a RESTful
service [15].

RESTful services, when based on HTTP GET, naturally
lend themselves to caching. They are also lean, not having
the overhead of SOAP. Besides, not all platforms support
SOAP-based services well. RESTful services, therefore, are
an attractive alternative.

The appendix provides some screenshots of a native mobile
application using the information services.

VI. SUMMARY AND CONCLUSION

It can be difficult to view a number of standard websites on
modern mobile devices (such as smart phones and, to some
extent, some tablets). This is because these sites do not take
into account the limited screen real-estate on mobile devices.
A native application on the device can virtually show the
same information as a standard website, but can do so in a
manner that fits tightly with the user-interface paradigm of
the device, thus presenting a much richer user experience than
a web page. This paper described an information architecture
suitable for delivering content to both native applications as
well as browser-based mobile web applications. A case study
based on a University environment is also presented as an
evaluation.

REFERENCES

[1] WAP Forum, “Wireless application protocol architecture specification,”
WAP Forum, Tech. Rep. WAP-210, July 2001.

[2] ——, “Wireless markup language specification,” WAP Forum, Tech.
Rep. WAP-191, February 2000.

[3] P. I. Oliveira and C. Camarao, “Adapting web contents to WAP devices
using Haskell,” in Proceedings of the XXI Internatinal Conference of
the Chilean Computer Science Society, Punta Arenas, November 2001,
pp. 223–232.

[4] Google, “How does Google modify web pages for mobile
viewing?” See http://www.google.com/wml. Last visited September
2011. [Online]. Available: http://www.google.com/support/webmasters/-
bin/answer.py?answer=35312

[5] X. Xie et al., “Browsing large pictures under limited display sizes,”
IEEE Transactions on Multimedia, vol. 8, no. 4, pp. 707–715, August
2006.

260Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[6] W. Y. Lum and F. Lau, “Relationship-aware content adaptation of
structured web documents for mobile computing,” in Proceedings of
the 11th International Conference on Parallel and Distributed Systems,
July 2005, pp. 168–174.

[7] D. Wessels, Web Caching. O’Reilly & Associates, Inc., 2001.
[8] H. Kara and C. Edwards, “A caching architecture for content delivery

to mobile devices,” in Proceedings of the 29th Euromicro Conference,
September 2003, pp. 241–248.

[9] WAP Forum, “User agent profile specification,” WAP Forum, Tech. Rep.
WAP-248, October 2001.

[10] G. Klyne et al., Composite Capability/Preference Profiles: Structure and
Vocabularies, January 2004, W3C recommendation.

[11] P. Yao and D. Durant, “Microsoft mobile internet toolkit lets your web
application target any device anywhere,” MSDN Magazine, vol. 17, no. 6,
June 2002.

[12] L. Passani et al., “WURFL: Wireless universal resource file.” [Online].
Available: http://wurfl.sourceforge.net/. Last visited September 2011.

[13] S. Manoharan, “Dynamic content management and delivery for mobile
devices,” in Proceedings of the International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies. Papeete,
French Polynesia: IEEE Computer Society, November 2007, pp. 63–67.

[14] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI,” Internet Computing, IEEE, vol. 6, no. 2, pp. 86
–93, Mar/Apr 2002.

[15] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of Cali-
fornia, Irvine, 2000.

APPENDIX

This appendix illustrates some screenshots from the case
study.

Selecting a person from the staff list shows a thumbnail
picture of the selected staff member.

Similarly selecting an email address invokes the mail appli-
cation on the device to compose an email to that address; and
selecting a phone number prompts to dial the selected number.

261Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

