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Abstract—The Digital Marketplace is a market-based
framework where network operators offer communications
services with competition at the call level. It strives to address
a tussle between the actors involved in a heterogeneous
wireless access network. However, as with any market-like
institution, it is vital to analyse the Digital Marketplace from
the strategic perspective to ensure that all shortcomings are
removed prior to implementation. This paper presents some
preliminary results of such an analysis.
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I. INTRODUCTION

With the advent of 4th Generation wireless systems, such
as WiMAX and 3GPP Long Term Evolution (LTE), the
world of wireless and mobile communications is becoming
increasingly diverse in terms of different wireless access
technologies available [1], [2]; each of these technologies
has their own distinct characteristics. Mirroring this diver-
sity, multimode terminals (GSM/UMTS/Wi-Fi) currently
dominate the market permitting the possibility of selecting
the most appropriate access network to match the Quality
of Service (QoS) requirements of a particular session/call.
A number of approaches have examined this issue utilising
techniques as disparate as neural networks [3] and multiple
attribute decision making [4]. The applicability of these
techniques can be extended to fixed networks that employ
multihoming where the problem becomes one of path
selection [5], [6].

This work complements previous studies of intelligent
network selection by considering economic aspects. From
this perspective the exclusive one-to-one relationship be-
tween network operators and their subscribers no longer
holds; subscribers are free to choose which operator and
which access technology they would like to utilise at
call set-up time. From the users’ perspective, different
coverage and QoS characteristics of each access network
will lead to the ability to seamlessly connect at any time,
at any place, and to the technology which offers the most
optimal quality available for the best price. This is referred
to as the Always Best Connected networking paradigm [7].
From the network operators’ perspective, on the other
hand, the integration of wireless access technologies will
allow for more efficient usage of the network resources,
and might be the most economic way of providing both
universal coverage and broadband access [1].

On the other hand, since many different actors with
opposing interests are involved, it may also lead to a

‘tussle’ [8]. For example, the end-users seek to obtain
the best quality for the best price, while the network
operators aim at maximising their profit and performing
efficient load balancing. The conflict will become even
more aggravated should the service provision be separated
from the network operators [9]. Hence more sophisticated
management techniques may be required to manage such
a complex system.

Over the last decade, several different approaches have
been proposed as possible solutions to the problem when
economic competition is considered. Antoniou et al., and
Charilas et al. model the problem as a noncooperative
game between wireless access networks which aims at
obtaining the best possible tradeoff between networks’
efficiency and available capacity, while, at the same time,
satisfying the users’ QoS [10], [11]. Ormond et al. propose
an algorithm for intelligent cost-oriented and performance-
aware network selection which maximises consumer sur-
plus [12], [13]. Niyato et al. propose two game-theoretic
algorithms for intelligent network selection mechanism
which performs intelligent load balancing to avoid network
congestion and performance degradation [14]. Khan et al.
model the problem as a procurement second-price sealed-
bid auction where network operators are the bidders and
user is the buyer [15], [16]. Lastly, Irvine et al. propose a
market-based framework called the Digital Marketplace
(DMP), where network operators offer communications
services with competition at the call level [17]–[19].

Although each proposed solution is technically valid,
only the DMP strives to address tussle between the actors
involved. Not only does the DMP consider the technical
challenges but also the economic issues. However, as with
any market-like institution, it is vital to analyse the DMP
from the strategic perspective (using game theory, or oth-
erwise) to ensure that all shortcomings are removed prior
to implementation. This paper presents some preliminary
results of such an analysis.

The rest of this paper is organised as follows. In
Section II, an overview of the DMP is given. Section III
presents the results of the analysis. Section IV discusses
future work, while Section V draws conclusions.

II. THE DIGITAL MARKETPLACE

The DMP was developed with the heterogeneous mobile
and wireless communications environment in mind, where
users have the ability to select a network operator that
reflects their preferences best on a per-call basis. In other
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Figure 1. The Digital Marketplace (adapted from [17])

words, the end-users have the freedom of choice, while the
network operators manage service requests appropriately.

The conceptual framework of the DMP is shown in
Figure 1. The DMP is defined using a four-layer communi-
cations stack: application layer, services layer, networks
layer, and medium layer. The end-users who effectively
reside in the application layer are able to negotiate network
access on a per call basis. To this end, they have two ways
of accomplishing it: they can either go into a business
relationship with a service provider (service agent, SA,
in Figure 1) who will act on their behalf, or they can
personally participate in the negotiation process with a
network operator (network agent, NA). In both cases, the
process is supervised by a market provider (market agent,
MA), and takes place in the services layer. Before the
negotiation occurs, the end-user is required to forward her
service requirements to either the SA or the NA. This is
done using a common communications channel referred
to as a logical market channel (LMC). The LMC itself is
negotiated between the MA and the registered NAs at the
marketplace initialisation stage.

The network selection mechanism in the DMP is based
on a procurement first-price sealed-bid (FPA) auction.
The network operators represent the sellers (or bidders)
who compete for the right to sell their product (transport
service) to the buyer; i.e., either the service provider or
the end-user. However, unlike in a standard procurement
FPA auction, here, bidders do not bid only on prices, but
also on reputation; i.e., when selecting the winner, the
buyer takes into consideration both the offered price of
the product and the bidder’s reputation. The reputation
is directly proportional to the number of calls that have
been decommitted in the past by the respective network
operator.

An FPA auction, in an economic terminology, is an
example of an allocation mechanism; that is, a system
where economic transactions take place and goods are
allocated [20]. As briefly mentioned in the Introduction,
it is vital to analyse it from the strategic perspective, and
establish what the most probable outcome will be; how
the bidders will most likely bid; etc. In this way, all the
shortcomings and inefficiencies can be addressed prior to
implementation.

III. MODELLING AND ANALYSIS

A. Notation and Preliminaries

The following notation and concepts are assumed
throughout the rest of this paper.

1) Probability Theory and Statistics: Let X denote a
random variable (r.v.) with the support [a, b], where a < b

and a, b ∈ R. By FX we mean a cumulative distribution
function of the X r.v.; therefore, for any x ∈ R, FX(x) =

P{X ≤ x}, where P{X ≤ x} denotes the probability of the
event such that X ≤ x. If FX admits a density function, it
shall be denoted by fX ≡ F ′X .

The expected value of X, denoted by E[X], is defined
as E[X] =

∫∞
−∞ xdFX(x). Similarly, if u is a function of X,

then the expected value of u(X) is defined as E[u(X)] =∫∞
−∞ u(x)dFX(x).

Let X1, . . . , Xn be independent continuous r.v.s with
distribution function F and density function f ≡ F ′. If
we let Xi:n denote the ith smallest of these r.v.s, then
X1:n, . . . , Xn:n are called the order statistics [21], [22]. In
the event that the r.v.s are independently and identically
distributed (i.i.d.), the distribution of Xi:n is

FXi:n
(x) =

n∑
k=i

(n
k

)
(F (x))k(1− F (x))n−k, (1)

while the density of Xi:n can be obtained by differentiating
Eq. (1) with respect to x [23]. Hence,

fXi:n
(x) =

n!

(n− i)!(i− 1)!
f(x)(F (x))i−1(1− F (x))n−i.

2) Game Theory: Let ΓB = [N, {Si}, {ui(·)},Θ, F (·)] be
a Bayesian game with incomplete information. Formally,
in this type of games, each player i ∈ N has a utility
function ui(si, s−i, θi), where si ∈ Si denotes player i’s
action, s−i ∈ S−i = "j 6=iSj denotes actions of all other
players different from i, and θi ∈ Θi represents the type
of player i. Letting Θ = "i∈NΘi, the joint probability
distribution of the θ ∈ Θ is given by F (θ), which is assumed
to be common knowledge among the players [24]–[26].

In game ΓB , a pure strategy for player i is a function
si : Θi → Si, where for each type θi ∈ Θi, si(θi) specifies the
action from the feasible set Si that type θi would choose.
Therefore, player i’s pure strategy set Si is the set of all
such functions.

Player i’s expected utility given a profile of pure strate-
gies (s1(·), . . . , sN (·)) is given by

ũi(s1(·), . . . , sN (·)) = E[ui(s1(θ1), . . . , sN (θN ), θi)], (2)

where the expectation is taken over the realisations of
the players’ types, θ ∈ Θ. Now, in game ΓB , a strategy
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profile (s∗1(·), . . . , s∗N (·)) is a pure-strategy Bayesian Nash
equilibrium if it constitutes a Nash equilibrium of game
ΓN = [N, {Si}, {ũi(·)}]; that is, if for each player i ∈ N ,

ũi(s
∗
i (·), s∗−i(·)) ≥ ũi(si(·), s∗−i(·)) (3)

for all si(·) ∈ Si, where ũi(si(·), s−i(·)) is defined as in
Eq. (2).

B. Problem Definition and Assumptions

The formal description of the network selection mech-
anism employed in the DMP is as follows. The model
is a modified version of procurement FPA auction. Thus,
formally, it represents a Bayesian game of incomplete
information, ΓB , as defined in Section III-A2. There are
N bidders who bid for the right to sell their product to the
buyer.

Formally, each bidder i ∈ N is characterised by the
utility function ui(·) such that

ui(b, c, r) =


bi − ci if β(bi, ri) < min

j 6=i
β(bj , rj),

0 if β(bi, ri) > min
j 6=i

β(bj , rj),
(4)

where b = (bi, b−i) represents the bid price vector, c =

(ci, c−i) the type vector, and r = (ri, r−i) the reputation
vector. The type of each bidder is assumed to represent
the cost of (or minimum price for) the service under
consideration. Let β : R+ × [0, 1]→ R+, defined by

β(bi, ri) = wprice · bi + wpenalty · ri ∀i ∈ N, (5)

denote the compound bid. The winner of the auction is
determined as the bidder whose compound bid is the
lowest one; i.e., bidder i is the winner if

β(bi, ri) < min
j 6=i

β(bj , rj).

In the event that there is a tie

β(bi, ri) = min
j 6=i

β(bj , rj),

the winner is randomly selected with equal probability.
It is, moreover, assumed that the price and reputation

weights (wprice, wpenalty) are announced by the buyer to all
bidders before the auction. Thus, there is no uncertainty in
knowing how much the buyer values the offered price of
the service over the reputation of the seller (or vice versa).
Furthermore,

wprice + wpenalty = 1, 0 ≤ wprice, wpenalty ≤ 1.

In order to simplify the notation, it is assumed throughout
the rest of this paper that w = wprice.

The buyer and the bidders are risk neutral.
The costs ci for each i ∈ N are private knowledge. Thus,

they are particular realisations of the r.v.s Ci for each i ∈ N .
Furthermore, it is assumed that each Ci is i.i.d. over the
interval [0, 1], and admits a continuous distribution function
FC and its associated density function fC .

Similarly, the reputations ri for each i ∈ N are private
knowledge. Thus, they are particular realisations of the
r.v.s Ri for each i ∈ N . Furthermore, it is assumed that each
Ri is i.i.d. over the interval [0, 1], and admits a continuous

distribution function FR and its associated density function
fR. It is crucial to observe that the higher the reputation,
the lower the value of ri.

The bidding strategy functions bi = bi(ci, ri) : [0, 1] ×
[0, 1]→ R+ are nonnegative in value for all i ∈ N .

In equilibrium, every bidder i ∈ N uses the same strictly
increasing in all of its variables bidding strategy function;
i.e., bi = bi(ci, ri) = b(ci, ri), ∀i ∈ N . In this case, the
equilibrium profile (b∗(·), . . . , b∗(·)) is called symmetric.

The aim is to solve the game for pure-strategy symmet-
ric Bayesian Nash equilibrium(-a) as defined in Eq. (3),
Section III-A2.

C. Analysis and Results

First of all, it should be noted that the problem is
far more complicated than the one encountered when
solving standard FPA auction. Thus, the arguments and
the heuristic approach of derivation of the equilibrium
bidding strategy, although effective in standard FPA setting
(for example, see [27]–[29]), are useless in this case. Not
only is the bidding strategy function b(ci, ri) dependent on
two variables, but also the probability of winning involves
finding the minimum of a linear combination of b(Cj , Rj)

and Rj r.v.s; that is,

P{i wins} = P

{
β(bi, ri) < min

j 6=i
β(bj , rj)

}
.

(For simplicity the possibility of a tie has been neglected.)
Simplification of the problem by letting b(ci, ri) = b(ci)

for all i ∈ N is also insufficient. Going even further and
assuming that every bidder knows the reputations of their
opponents does not simplify the problem enough for the
analytical analysis to be viable. Then the problem becomes

max
bi

E

[
bi − ci

∣∣∣∣ wbi + (1− w)ri < min
j 6=i

(wb(Cj) + (1− w)rj)

]
.

Noting that

min
j 6=i

(wb(Cj) + (1− w)rj) ≥ wmin
j 6=i

b(Cj) + (1− w) min
j 6=i

rj ,

and assuming that w 6= 0, yields

max
bi

E

[
bi − ci

∣∣∣∣ b−1

(
bi +

1− w
w

(ri −min
j 6=i

rj)

)
< min

j 6=i
Cj

]
(6)

where we have used the fact that b(·) is strictly increasing,
and hence, it is invertible and minx b(x) = b(minx x) for all
x.

Let C1:N−1 = minj 6=i Cj be the lowest order statistic of
an i.i.d. random sample Cj for all j 6= i with the distribution
function FC1:N−1

. Hence, the identity (6) becomes

max
bi

(
bi−ci

)(
1− FC

(
b−1

(
bi +

1− w
w

(ri −min
j 6=i

rj)

)))N−1

(7)
where we have used the fact that the distribution function
of an ith order statistic of an i.i.d. random sample is defined
as in Eq. (1).

Finally, recalling that at a symmetric equilibrium bi =

b(ci) and letting k =
(1−w)

w
(ri −minj 6=i rj), the identity (7)

253Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



becomes

b′
(
b−1(b(ci) + k)

)
·
[
1− FC(b−1(b(ci) + k))

]N−1

= (N − 1)(b(ci)− ci)
[
1− FC(b−1(b(ci) + k))

]N−2

· fC(b−1(b(ci) + k)). (8)

It is rather difficult (if even possible) to solve the resulting
ordinary differential equation in (8). Therefore, it can be
concluded that even serious simplification of the problem
is not enough to heuristically derive an optimal bidding
strategy function for each player i ∈ N .

1) Special Case w = 0: However, the problem becomes
simpler when w = 0. For then, the utility of each bidder i
is

ui(b, c, r) =


bi − ci if ri < min

j 6=i
rj ,

0 if ri > min
j 6=i

rj .
(9)

Since the probability of winning, i.e., the probability of
the event such that ri < minj 6=iRj for all i ∈ N , does not
depend on the value of the bid, bi, it is clear that bidders
will have an incentive to bid abnormally high.

Proposition 1. In the Digital Marketplace, when ci are
i.i.d. over the interval [0, 1] for all i ∈ N and ri are
i.i.d. over the interval [0, 1] for all i ∈ N , the bidders will
have an incentive to bid abnormally high whenever w = 0.
That is, bi →∞ for all i ∈ N .

The formal proof of Proposition 1 is given in Appendix A.
2) Special Case w = 1: When w = 1, on the other hand,

the problem becomes that of standard FPA auction. The
utility of each bidder i is given by

ui(b, c, r) =


bi − ci if bi < min

j 6=i
bj ,

0 if bi > min
j 6=i

bj .
(10)

The bidders will then try to solve, for all i ∈ N

max
bi

E

[
bi − ci

∣∣∣∣ bi < min
j 6=i

b(Cj)

]
= max

bi
E

[
bi − ci

∣∣∣∣ b−1(bi) < min
j 6=i

Cj

]
= max

bi
E
[
bi − ci

∣∣ b−1(bi) < C1:N−1

]
= max

bi

∫ 1

b−1(bi)
(bi − ci)dFC1:N−1

(t)

= max
bi

(bi − ci)(1− FC1:N−1
(b−1(bi))), (11)

where, as before, C1:N−1 = minj 6=i Cj be the lowest order
statistic of an i.i.d. random sample Cj for all j 6= i with the
distribution function FC1:N−1

, and its associated density
fC1:N−1

. The first-order condition yields

1− FC1:N−1
(b−1(bi))− (bi − ci)

fC1:N−1
(b−1(bi))

b′(b−1(bi))
= 0. (12)

Recalling that at a symmetric equilibrium bi = b(ci), the
identity (12) becomes

b′(ci)− b(ci)
fC1:N−1

(ci)

1− FC1:N−1
(ci)

= −ci
fC1:N−1

(ci)

1− FC1:N−1
(ci)

,

or equivalently,

(b(ci)(1− FC1:N−1
(ci)))

′ = −cifC1:N−1
(ci).

Since b(1) = 1, we have

b(ci) =
1

1− FC1:N−1
(ci)

∫ 1

ci

tdFC1:N−1
(t)

=
N − 1

(1− FC(ci))N−1

∫ 1

ci

t(1− FC(t))N−2fC(t)dt. (13)

Thus, the symmetric bidding strategy in Eq. (13) is
the most likely candidate for a symmetric pure-strategy
Bayesian Nash equilibrium of the standard FPA auction
when w = 1.

Proposition 2. In the Digital Marketplace, when ci are
i.i.d. over the interval [0, 1] for all i ∈ N and ri are
i.i.d. over the interval [0, 1] for all i ∈ N , the symmet-
ric equilibrium bidding strategy function of the standard
procurement first-price sealed-bid auction,

b∗FPA(ci) =
1

1− FC1:N−1
(ci)

∫ 1

ci

tdFC1:N−1
(t), (14)

constitutes a symmetric pure-strategy Bayesian Nash equi-
librium of the Digital Marketplace variant of a procure-
ment first-price sealed-bid auction whenever w = 1.

The formal proof of Proposition 2 is given in Appendix A.
The next natural question to ask is whether b∗FPA(·)

constitutes an equilibrium for w 6= 1. The following
conjecture summarises this point,

Conjecture 3. In the Digital Marketplace, when ci are
i.i.d. over the interval [0, 1] for all i ∈ N and ri are
i.i.d. over the interval [0, 1] for all i ∈ N , w = 1 whenever
the symmetric equilibrium bidding strategy function of
the standard procurement first-price sealed-bid auction,
b∗FPA(·), constitutes a symmetric pure-strategy Bayesian
Nash equilibrium of the Digital Marketplace variant of a
procurement first-price sealed-bid auction.

The conjecture can be rephrased as “If w 6= 1, then
b∗FPA(·) does not constitute a symmetric pure-strategy
Bayesian Nash equilibrium of the Digital Marketplace
variant of a procurement first-price sealed-bid auction.”
The formal proof of this statement is rather difficult.
However, the following argument shows why it might
hold.

Suppose for the time being that b∗(ci) = b∗FPA(ci) for
every value of the price weight w ∈ [0, 1]. It is possible
to estimate numerically how well such a bidding strategy
performs for all values of w. To this end, a simple
Monte Carlo simulation scenario was constructed where
the bidders’ costs and reputations were pseudo-randomly
generated and drawn from a uniform distribution U(0, 1).

Table I and Figure 2 depict a particular output from the
simulation for N = 3 bidders. In this particular example,
for w ∈ (0.65, 1], bidder 1 who is characterised by the
lowest cost of all three bidders, wins the auction; that
is, his compound bid is the lowest. At w = 0.65, an
intersection occurs of bidder 1’s and 3’s compound bids,
and after that, for w ∈ [0, 0.65), bidder 3 becomes the
winner. If the simulation was repeated n times, and the
intersection would fall within a close neighbourhood of
w = 0.65 in the vast majority of cases, then b∗(·) is quite
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Table I
THE OUTPUT FROM ONE RUN OF THE MONTE CARLO SIMULATION

FOR N = 3 BIDDERS

Cost, ci Reputation, ri Bid, b∗(ci)
Bidder 1 0.2548 0.3889 0.5032
Bidder 2 0.2728 0.5528 0.5152
Bidder 3 0.4084 0.2031 0.6056

likely to be an equilibrium bidding strategy in the interval
w ∈ (0.65, 1]. This is predicated on the fact that, as w → 1,
the offered price dominates the value of the compound
bid; that is, the offered price is weighted more than the
reputation (see Eq. (5)).

The methodology is as follows:
1) Generate cost/reputation/bid triplet using the Monte

Carlo methods.
2) Find the winner for w = 1, bidder i, say (in Figure 2

that would be bidder 1).
3) Decrease the value of w until bidder i no longer

wins, and save the value of w for which that happens.
Henceforth, such an event shall be denoted by I, and
called the event when an intersection has occurred.

4) If the intersection did not occur, I = 0, increase the
counter that counts the frequency of such an event,
and then discard that run.

5) Repeat n number of times.
The case when n = 10, 000 runs, and N = 3 bidders

is depicted in the three figures: Figure 3 depicts the
evolution of the intersections against the length of the
simulation; Figure 4 shows the empirical density function
of the intersections; and Figure 5 depicts the empirical
distribution function of the intersections. The probability
of an intersection occurring equals P{I = 1} = 0.67. It
can be concluded from the figures that, on average, the
intersections occur at w̄ = 0.6, which represents the mean
of the distribution. However, the peak observed in a close
neighbourhood of w̄ is not significant enough to conclude
that bidding according to b∗(·) is the best strategy one can
take for w ∈ (w̄, 1].

A more formal argument goes as follows. Figure 5
depicts the probability that an intersection has occurred
within an interval (−∞, w] given that an intersection has
occurred, I = 1; that is, if the former event is denoted by
W , then the figure describes P{W ∈ (−∞, w] | I = 1}. From
this, the probability of winning for bidder i (as defined in
the list above) given any w is

P{winning | w} =

= 1− P{W ∈ [w,∞) ∩ I = 1}

= 1− P{W ∈ [w,∞) | I = 1}P{I = 1}

= 1− (1− P{W ∈ (−∞, w] | I = 1})P{I = 1}. (15)

In order to verify Eq. (15), set w ∈ {0.25, 0.75} and
run a Monte Carlo simulation which counts the number
of times when the bidder with the lowest cost is the
winner; i.e., the winner of the auction for w = 1. When
w = 0.25, P{winning | w = 0.25} = 1− (1−0.13)0.67 = 0.4171

according to Eq. (15), while the numerically obtained
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result P{winning | w = 0.25} = 0.4136. When w = 0.75,
P{winning | w = 0.75} = 1 − (1 − 0.68)0.67 = 0.7856

according to Eq. (15), while the numerically obtained
result P{winning | w = 0.75} = 0.7866.

Clearly, the prediction based on Eq. (15) converges to
the numerically obtained result. Moreover, it is worth not-
ing that for w = 0.25, bidding according to b∗(·) guarantees
the probability of winning for the bidder with the lowest
cost of only 0.4171 which is below 50%. Thus, the bidders
will definitely deviate from b∗(·) for low values of w. On
the other hand, for w = 0.75, b∗(·) seems to achieve a
relatively high probability of winning for the bidder with
the lowest cost; i.e., the probability of 0.7856. However, the
argument is incomplete in the sense that it only considers
the probability of winning rather than the expected utility.

IV. FUTURE WORK

There are a number of potentially fruitful research
directions worthy of further investigation. Firstly, a formal
proof or disproof of Conjecture 3 is a necessary step in
the analysis of the behaviour of the bidders.

Secondly, since the problem appears complex for N
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Figure 4. The histogram of the time series shown in Figure 3
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Figure 5. The empirical probability distribution associated with the
histogram in Figure 4

bidders, restricting it to N = 2 bidders might prove benefi-
cial. If the analysis was successful in this restricted case,
perhaps it would be possible to generalise the solution(s)
to an arbitrary N .

Lastly, the bidding model presented in this paper as-
sumes that the buyer has no budget constraints. A situation
virtually impossible in real life. Therefore, one of the fu-
ture directions would be to modify the model by allowing
the buyer to have a fixed budget.

V. CONCLUSIONS

This paper has presented some preliminary results of the
game-theoretic analysis of network selection mechanism
proposed in the Digital Marketplace. All things consid-
ered, it can be concluded that the analysis of the Digital
Marketplace variant of procurement first-price sealed-bid
auction is rather complex. It is, however, vital to have at
least partially accurate predictions of the behaviour of the
bidders prior to implementation.

The problem appears to be too complicated for the
analytical analysis to be successful in finding a closed-
form solution. On the other hand, some light was shed on
the problem when w = 0 and w = 1. In the first case, it
was shown that bidders will find it beneficial to submit
abnormally high bids, since their bid is independent of
the probability of winning the auction. In the latter case,
when w = 1, it was shown that the problem reduces to
a standard procurement first-price sealed-bid auction, and
hence, a symmetric equilibrium bidding strategy function
was derived and proved to indeed constitute an equilibrium
of the game. It was also pointed out (informally, using
Monte Carlo simulation) that the same bidding strategy
most likely does not constitute an equilibrium for values
of w 6= 1.

APPENDIX
PROOFS

Proof of Proposition 1: Let w = 0. Each bidder i will
then try to solve

max
bi

E

[
bi − ci

∣∣∣∣ ri < min
j 6=i

Rj

]
= max

bi
E [bi − ci | ri < R1:N−1]

= max
bi

∫ 1

ri

(bi − ci)dFR1:N−1
(t)

= max
bi

(bi − ci)(1− FR(ri))
N−1.

Since 1 − FR(ri) ≥ 0, ∀ri ∈ [0, 1], and since bi ∈ R+ and
R+ is not bounded from above, this implies that the
maximisation problem is unbounded; that is, bi → ∞,
which concludes the proof.

Proof of Proposition 2: Let w = 1. Suppose that
all but bidder 1 follow the symmetric equilibrium bidding
strategy, b∗FPA(·). We will argue that it is optimal for bidder
1 to follow b∗FPA(·) as well. First of all, notice that b∗FPA(·)
is a strictly increasing and continuous function. Thus, in
equilibrium, the bidder with the lowest cost submits the
lowest bid and wins the auction. It is not optimal for bidder
1 to bid b1 < b∗FPA(0). Suppose, therefore, that bidder 1
bids an amount b1 ≥ b∗FPA(0). Denote by ĉ1 = b∗−1

FPA(b1)

the value for which b1 is the equilibrium bid. Thus, bidder
1’s expected utility from bidding b∗FPA(ĉ1) while her cost
is c1 becomes

U(b∗FPA(ĉ1), c1) =

= E

[
b∗FPA(ĉ1)− c1

∣∣∣∣ b∗FPA(ĉ1) < min
j 6=1

b∗FPA(Cj)

]
= E

[
b∗FPA(ĉ1)− c1

∣∣∣∣ ĉ1 < min
j 6=1

Cj

]
= (b∗FPA(ĉ1)− c1)(1− FC1:N−1

(ĉ1))

=

∫ 1

ĉ1

tfC1:N−1
(t)dt− c1(1− FC1:N−1

(ĉ1))

= 1− c1 + FC1:N−1
(ĉ1)(c1 − ĉ1)−

∫ 1

ĉ1

FC1:N−1
(t)dt.
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We thus obtain that

U(b∗FPA(c1), c1)− U(b∗FPA(ĉ1), c1) =

= FC1:N−1
(ĉ1)(ĉ1 − c1)−

∫ ĉ1

c1

FC1:N−1
(t)dt ≥ 0

regardless of whether ĉ1 ≥ c1 or ĉ1 ≤ c1. We have thus
argued that if all other bidders follow the strategy b∗FPA(·),
bidder 1 with a cost c1 cannot benefit by bidding anything
other than b∗FPA(c1). Since similar argument can be used to
show that it is optimal for any other bidder i 6= 1 with cost
ci to follow b∗FPA(ci), b∗FPA(·) is a symmetric equilibrium
bidding strategy of the Digital Marketplace variant of
procurement first-price sealed-bid auction whenever w = 1,
which concludes the proof.
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