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Abstract—This work shows that two well-known spatial and
temporal mobility metrics for mobile ad hoc networks (MANETs)
have drawbacks, possibly leading to invalid results. Based on
the concept of spatial dependence in the absence of move-
ment among mobile nodes, we propose mobility metrics able
to promptly capture spatial and temporal dependence among
mobile nodes. Through simulation, we compared the proposed
metrics over a diversified set of synthetic mobility models. The
results revealed that our spatial metrics can capture spatial
dependence in scenarios having different levels of node pause
time. Our temporal metric also demonstrated to be better suited
for capturing different levels of temporal dependence, without
being biased by node speed. Thus, the proposed mobility metrics
can accurately capture spatial and temporal node behavior in
MANETs.

Index Terms—ad hoc network; mobility metric; spatial depen-
dence; temporal dependence;

I. INTRODUCTION

To support the growth and development of mobile ad hoc

networks (MANETs), researchers from industry and academia

have designed a variety of protocols, spanning the physical

to the application layer. Analytic modeling and simulation

are amongst the most used methods for evaluating MANET

protocols. The former has limitations due to the lack of

generalization, and the intrinsic high level of complexity [5].

The latter is by far the most used method for designing and

evaluating MANET protocols.

A mobility model is one of the most important components

in the simulation of MANETs. This component describes the

movement pattern of mobile nodes (e.g., people, vehicles), im-

pacting on protocol performance [2], [4], [11], [15], topology

and network connectivity [3], [8], [16], data replication [10],

and security [7]. Bai et al. [2] demonstrated that the perfor-

mance of a protocol can vary dramatically depending on the

adopted mobility model.

Mobility models can be classified into four categories: ran-

dom, temporal-based, spatial-based (or group-based), and with

geographic restriction [1] (Figure 1). Aiming at measuring

quantitatively and qualitatively mobility models, one can use

mobility metrics.

Bai et al. [2] proposed a framework to analyze the impact

of mobility on performance of routing protocols for MANET.

They proposed two metrics to quantify the spatial and temporal

dependence of mobile nodes. Since then, several works has

been based on these metrics for many purposes [13], [14],

Fig. 1. Categories of mobility models in MANETs [1].

[17], [19], [20]. However, we show that those metrics have

important drawbacks (Section III). After that, we introduce

spatial and temporal metrics that overcome the described

limitations, and also propose another spatial metric, based on

the average distance among nodes (Section IV).

In order to evaluate the proposed metrics, we conducted an

extensive simulation using four well know synthetic mobility

models (Section V). Afterwards, we perform a comprehensive

analysis of metrics behavior (Section VI).

II. TERMINOLOGY

The following terminology is needed to define the mobility

metrics, and it will be used throughout this paper:

• T - Simulation time;

• N - Number of mobile nodes;

• X, Y - Length and width of the scenario;

• R - Radio communication range;

• x(i, t) is the x-coordinate of node i at time t (idem for

y(j, t)).
• θ(i, t) is the velocity angle of node i at time t.
• v(i, t) is the velocity of node i in the time t and

v(i, t0..tk) means that the velocity of node i remains

constant from t0 to tk.
• Cos(i, j, t) is the cosine of angle between the velocities

of nodes i, j:

Cos(i, j, t) =
~v(i, t) • ~v(j, t)
|~v(i, t)| · |~v(j, t)| (1)

• SR(i, j, t) is the speed ratio between nodes i, j at time

t:

SR(i, j, t) =
min(~v(i, t), ~v(j, t))

max(~v(i, t), ~v(j, t))
(2)
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• D(i, j, t) is the Euclidean distance between nodes i, j at

time t:

D(i, j, t) =
√

(x(j, t)− x(i, t))2 + (y(j, t)− y(i, t))2

(3)

• ρ(Mp,m): indicates the Pearson correlation between the

parameter p of the mobility model M and the metric m.

III. RELATED WORK

Bai et al. [2] proposed, in their IMPORTANT framework,

two mobility metrics that should be able to quantify spatial

and temporal movement dependence among mobile nodes.

Both metrics are based on the cosine similarity between the

velocities of nodes (Equation 1).

The first one is the Degree of Spatial Dependence between

nodes i, j at time t (DSD(i, j, t)), defined in Equation 4.

DSD(i, j, t) = Cos(i, j, t) • SR(i, j, t) (4)

Therefore, the average degree of spatial dependence (DSD)

is given as the average between all nodes during the simula-

tion. Group-based mobility models (e.g., RPGM [9]) should

present high values for DSD.

The second mobility metric proposed by Bai et al. is the

Degree of Temporal Dependence (DTD) (Equation 5), which

is calculated similarly to DSD but it considers the difference

of velocities between two time slots. Thus, the current velocity

of a mobile node is dependent on its past moving pattern. This

metric reflects the smoothness of node movement.

DTD(i, t, t′) = Cos(~v(i, t), ~v(i, t′)) • SR(~vi(t), ~vi(t
′)) (5)

Temporal mobility models (e.g., Gauss-Markov [12]) should

present high values for DTD, while strongly random models

should have null DTD (i.e., zero). For the former models,

node velocity changes incrementally, unlike the abrupt changes

occurring in random models (e.g., Random Waypoint).

Based on the work by Bai et al. [2], Zhang et al. [20]

extended and developed the concept of a very similar spatial

mobility metric, called Spatial Dependence (SD). The authors

used this metric in the design of a distributed group mobility

adaptive clustering algorithm (i.e., DMGA) [20]. However,

both DSD and SD present the same limitation, which is

described in next section.

A. Limitations on Previous Metrics

The main limitation on the DSD metric (Equation 4) is

that it does not consider spatial dependence (correlation) in the

absence of node movement. While two nodes i, j are pausing,

their correlation is always zero (i.e., Cor(i, j, t) = 0), what is
not necessarily true because nodes i and j might have paused

(i.e., switched to velocity zero) just because there is some

dependence between them.

To demonstrate that the assumption may be wrong, con-

sider two mobile nodes, B and C, which are moving in

accordance to the movement pattern of their leader, node A

(Figure 2). At time t0, nodes B and C are inside node’s A

Fig. 2. Example of a group mobility scenario.

TABLE I
PAUSE CORRELATION PROBLEM IN A GROUP MOBILITY SCENARIO.

Nodes Movement (t:0..9) Pause (t:10..19)

v(i,t)

A 15 m/s 0 m/s
B 18 m/s 0 m/s
C 16 m/s 0 m/s

DSD(i,j,t)

A,B 0.71 0
A,C 0.87 0
B,C 0.53 0

transmission range and they all start moving to points A’,

B’, and C’ where v(A, t0..t9) = 15m/s, θ(A, t0..t9) = 0,
v(B, t0..t9) = 18m/s, θ(B, t0..t9) = β, v(C, t0..t9) =
16m/s and θ(C, t0..t9) = α. By that time, they stop from t10
to t19. For this group mobility scenario, the DSD metric just

captures the correlation during the movement period (i.e., from

t0 to t9), while the correlation is considered null during pause

times (Table I). There is a clear spatial dependence among

nodes during pause times, but it is not captured by the DSD

metric. From t0 to t9 the total degree of spatial dependence

is .7034. By time t = 19, DSD has decayed to .3517. In case

the nodes continue paused for an additional 10 s, the DSD

decreases to .2345. Thus, the higher the node pause time, the

lower the metric value. Therefore, it is paramount considering

the correlation during pause periods.

IV. CONTRIBUTIONS

We propose the Improved Degree of Spatial Dependence

(IDSD), a spatial mobility metric which is able to capture

both movement and pause correlation among mobile nodes.

The second contribution is the proposal of the Improved

Degree of Temporal Dependence (IDTD), a temporal mobility

metric based on DTD [2]. Besides the pause correlation

problem, DTD was not able to distinguish temporal from

atemporal mobility models [2]. We verified that this is due

to improperly computing that metric: instead of computing

DTD(i, j, t) for each time slot t, it should only be computed

when the velocity v(i, t) changes in magnitude or direction.

With this simple modification, IDTD can, in addition to other

benefits, distinguish temporal and atemporal mobility models.

IDTD is also substantially less impacted by node speed.

In addition to that, it has higher correlation to parameter
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α, a memory level parameter commonly defined in tempo-

ral models such as Gauss-Markov [12] and Semi-Markov

Smooth [21].

Our third contribution is a novel spatial mobility metric,

named Degree of Node Proximity (DNP), which is capable of

distinguishing group-based mobility models from others. Be-

sides that, simulation results show that DNP is less impacted

by node pause time than DSD.

A. Pause State Movement Dependence

It is reasonable to consider that spatial dependence between

two nodes i, j at a pause time step t, DSD(i, j, t), will be
equal to the average of the last K values. The higher the

average pause time, greater is the value of K . Thus, the

Improved Degree of Spatial Dependence metric equation is

given by:

IDSD(i, j, t) =

{

PC(i, j, t) if ~v(i, t) = ~v(j, t) = 0,

DSD(i, j, t) otherwise.
(6)

where PC(i, j, t) is the pause correlation between nodes

i, j at time t. It is computed as follows:

PC(i, j, t) =
1

K

t−1
∑

k=t−K

DSD(i, j, k) (7)

where K is a function of the average pause time, a typical

mobility model input parameter1.

B. Improved Degree of Temporal Dependence

As explained previously, the metric DTD (Equation 5)

should be computed only when the node velocity changes,

otherwise, it will not be able to promptly catch the temporal

node behavior of a mobility model. Thus, we have that

IDTD(i, t) = 0 if v(i, t) = v(i, t− 1) and θ(i, t) = θ(i, t− 1),
and IDTD(i, t) = DTD(i, t) otherwise. Therefore, the Im-

proved Degree of Temporal Dependence (IDTD) metric is

defined as follows:

IDTD =
1

P

N
∑

i=1

T
∑

t=1

IDTD(i, t) (8)

where P is the number of tuples (i, t) such that IDTD(i, t) 6=
0.

C. Degree of Node Proximity

We propose a spatial mobility metric based on the distance

between pairs of nodes, called Degree of Node Proximity

(DNP ). Let AD be the average distance between all nodes

during the simulation, and MAD be the maximum average

distance expressed in units of transmission range, R. Formally

speaking:

1In fact, some mobility models have the maximum pause time (MPT )
parameter instead of average pause time (APT ). For those cases, pause time
generally has an uniform probability distribution function, and then APT =

MPT/2.

Fig. 3. Example of Maximum Average Distance (MAD).

AD =
1

N(N − 1)/2

N
∑

i=1

N
∑

j=i+1

∑T

t=1
D(i, j, t)/R

T
(9)

MAD =

√
X2 + Y 2

2Ṙ
(10)

Suppose a scenario where its width is 600 m, its length is

800 m, and the node transmission range is 100 m. Then, the

maximum average distance, MAD, is given by 5R (or 500
m). Figure 3 illustrates exactly this situation.

The proportion about AD and MAD gives a notion about

the degree of mobility dependence. When the average distance

among the nodes is constantly low, then this probably means

that nodes follow some sort of group-mobility movement. For

this reason, we define our spatial mobility metric DNP as

expressed in Equation 11.

DNP = 1− AD

MAD
(11)

DNP values normally range from 0 to 1. Spatial mobility

models (e.g., RPGM [9]) should present high DNP values,

while other models should present lower values. Next, we

present an extensive simulation using these metrics and a

heterogeneous set of mobility models.

V. SIMULATION

To verify the ability that our proposed mobility metrics have

to capture spatial and temporal dependence among mobile

nodes, we selected the following mobility models (the same

displayed in Figure 1):

• Random Waypoint (RWP) [6]: is probably the simplest

and most used mobility model in MANET simulation

studies. It has just three parameters: minimum and max-

imum speeds, and maximum pause time.

• Reference Point Group Mobility (RPGM) [9]: is a group-

based model where the movement of the leader of a group

influences the movement of all its members. The distance

between the leader and his members should not be greater

than a threshold, called maximum distance from center

(MDC). RPGM is more applicable for battle field or

rescue operations scenarios.
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TABLE II
MOBILITY MODELS SELECTED FOR SIMULATION.

Feature RWP [6] RPGM [9] GM [12] MAN [2]

Randomness high moderate variable moderate
Group-based X
Temporal X
Grid-based X

• Gauss-Markov (GM) [12]: in this model the velocity

of mobile node is assumed to be correlated over time

and modeled as a Gauss-Markov stochastic process. GM
is a temporally dependent mobility model whereas the

degree of dependency is determined by the memory level

parameter α (0 < α < 1).
• Manhattan (MAN) [2]: is a grid-based model where

nodes follow specific paths (e.g., streets) distributed in a

rectangular grid. It is suitable for modeling the movement

of vehicular wireless networks.

The results presented in this paper depend on some assump-

tions which are required for computing mobility metrics:

i. Communication between nodes is always bidirectional

during the simulation.

ii. R is constant and equal for all nodes.

iii. N is constant during the simulation.

iv. The scenario has a two-dimensional square geometry.

Table II summarizes the main characteristic of the selected

mobility models. RPGM and MAN models are classified

as having moderate randomness. The former, because the

movements of regular nodes are limited to their leader’s, and

in the latter node movements are limited due to obstacles

spread over the scenario (e.g., city blocks). Gauss-Markov

(GM) presents variable randomness, since it depends on the

value of the memory parameter α.

BonnMotion [18] was employed for mobility scenario gen-

eration producing the synthetic traces for the mobility models.

For all scenarios, 100 nodes moved over an area of 1000m x

1000m for a period of 900 seconds. Transmission range was

set to 100, 150, and 200 meters. For the RPGM model, the

number of nodes per group (NG) was set to 10, 25, and 50,

which represents scenarios with 2, 4, and 10 groups of mobile

nodes. Maximum pause time and memory parameter were set

to a large range of values (see Table III).

All graphs present results with a confidence level of 99%,

based on 10 repetitions for each one of more than 1,400

generated mobility scenarios. In some situations, the interval

length is smaller than the symbol used in the legend, making

it barely visible.

VI. ANALYSIS

Firstly, we compare the performance of the temporal metrics

DTD and IDTD. Then we show how the node pause time

affects the spatial metrics DSD and IDSD. Lastly, we also

show that our proposed metric, degree of node proximity

(DPN ), is able to differentiate the mobility models used in

our simulation, and that it is not impacted by node pause time.

Fig. 4. Degree of Temporal Dependence (DTD) percentage histograms.

A. Temporal Metrics

Table IV shows the basic descriptive statistics for the

mobility metrics. In general, random models showed moderate

DTD values, what was not expected. For some scenarios, the

DTD value for Random Waypoint and RPGM even surpassed

GM’s. The percentage histogram of DTD clearly reveals

this shortcoming (see Figure 4). On the other hand, IDTD
properly identified the Gauss-Markov model as the unique

temporal model among all under consideration, and the metric

correctly considered that the other models should have values

close to zero (Table IV).

The second problem with DTD metric is that it is very

little impacted when changing the memory parameter α in

the Gauss-Markov model (Figures 5, 6, and 7). The unique

visible change happened when α = .99. However, IDTD
demonstrated a higher correlation with α (.91 versus .35,
Table V), and consequently is better in capturing different

levels of temporal dependence than DTD.

The third problem is that DTD decreases with the incre-

ment of node speed. When maximum node speed (S) is 10

m/s, DTD is, on average, nearly 0.5. When S increases from

20 to 30,DTD decreases from 0.3 to 0.2 (Figures 5, 6, and 7).
Nevertheless, this relationship is almost imperceptible with the

IDTD metric.

B. Spatial Metrics

As stated in Section III-A, the degree of spatial dependence

DSD does not capture pause state spatial dependence (pre-

sented in Section IV-A).

Figure 8 shows the different effect that the variation of

maximum node pause time MPT causes on DSD and

IDSD in the RPGM model with 10 groups of 10 nodes

each. At point MPT = 0, both DSD and IDSD have

the same value, because nodes never stop moving. As the

node pause time increases, DSD quickly decreases. However,

IDSD increases a little bit and keeps at about the same level
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TABLE III
CONFIGURATION OF MOBILITY MODELS’ INPUT PARAMETERS FOR SIMULATION.

PARAMETER - unit Gauss-Markov [12] Random Waypoint [6] RPGM [9] Manhattan [2]

Simulation Time (T) - s 900

Number of nodes (N) 100

Transmission range (R) - m 100, 150, 200

Scenario’s length (X) - m 1000

Scenario’s width (Y) - m 1000

Minimum speed (s) - m/s 1, 3, 5

Maximum speed (S) - m/s 10, 20, 30

Average speed (AS) - m/s f(S)a 6, 11, 16

Speed Standard Deviation (SSD) f(S,AS) b f(s,AS) c

Maximum pause time (MPT) - s 0, 100, 200, 300, 400, 500, 600, 700, 800, 900

Number of nodes per group (NG) 10, 25, 50

Memory Parameter (α) .0, .2, .4, .6, .8, .99

Number of rows (NR) 10

Number of columns (NC) 10

Max. deviation from leader (MDC) - R 1

Speed change probability (SCP) 10%

Total number of experiments 2,700 540 8,100 2,700
a It is a function of maximum speed (S).
b It is a function between average (AS) and maximum speed (S).
c It is a function between average (AS) and minimum speed (s) for MAN model.

Fig. 5. Effect of memory parameter on the temporal mobility metrics (S =

10m/s, R = 150m).

Fig. 6. Effect of memory parameter on the temporal mobility metrics (S =

20m/s, R = 150m).

Fig. 7. Effect of memory parameter on the temporal mobility metrics (S =

30m/s, R = 150m).

until MPT = 500s, when then it starts decreasing. Similar

behavior also happens in Figures 9 and 10. Although IDSD
also decreases, this occurred in a much more slower fashion

than occurred withDSD. This is due to the smaller correlation

between MPT and IDSD (ρ(RPGMMPT , DSD) = −.58
and ρ(RPGMMPT , IDSD) = −.32, Table V).

Therefore, IDSD presents more accurate values for spatial

dependence among nodes than DSD. For most real scenarios,

where MPT is low or moderate, IDSD keeps nearly the

same value as for MPT = 0. Even in unusual scenarios,

where nodes stay longer paused than moving, IDSD still

presents higher spatial dependence values.

Concerning our second spatial mobility metric, Degree of

Node Proximity (DNP ), its histogram clearly distinguished

the spatial dependency model (RPGM) from others, and

showed similar patters for RWP and MAN models (Figure 11).

GM presented the lowest DNP standard deviation.

Figure 12 shows the effect that MPT causes on DNP
for all the mobility models that have that input parameter.
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Fig. 8. Effect of pause time on the spatial mobility metrics in RPGM with
10 groups (s = 3m/s, S = 20m/s, R = 150m).

Fig. 9. Effect of pause time on the spatial mobility metrics in RPGM with
4 groups (s = 3m/s, S = 20m/s, R = 150m).

In the RPGM model, MPT caused a constant small drop in

DNP . In the RWP model, DNP has a considerable drop for

MTP = 100s, but then it remains approximately constant.

On the other hand, the DNP in the MAN model was little

affected by MPT .

Comparing the relationship between IDSD and MPT , and
between DNP and MPT , the difference is that in the last

one, there is a constant small decay of DNP , instead of in

Fig. 10. Effect of pause time on the spatial mobility metrics in RPGM with
2 groups (s = 3m/s, S = 20m/s, R = 150m).

Fig. 11. Histogram-DNP.

Fig. 12. Effect of pause time on the degree of node proximity metric.

the IDSD, when it starts to decay for higher MPT values.

Anyway, both IDSD and DNP are better than DSD, as they

are extensively less affected by MPT .

Fig. 13. Effect of number of nodes per group on metric IDSD and DNP
(RPGM).
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TABLE IV
DESCRIPTIVE STATISTICS FOR THE MOBILITY METRICS.

Metric Model Mean STD Min Max

Degree of RWP .007 .005 -.008 .029
Spatial RPGM .117 .126 .005 .805

Dependence GM .001 .005 -.012 .017
(DSD) MAN .013 .012 -.004 .058

Degree of RWP .226 .157 .042 .783
Temporal RPGM .175 .143 .003 .833

Dependence GM .355 .137 .17 .632
(DTD) MAN .076 .056 .02 .353

Improved RWP .010 .006 -.008 .032
Degree of RPGM .279 .176 .024 .881
Spatial GM .001 .005 -.012 .017

Dependence MAN .017 .011 -.004 .059

Improved RWP .000 .000 .000 .001
Degree of RPGM .000 .000 .000 .003
Temporal GM .744 .112 .53 .958

Dependence MAN .012 .025 .001 .105

Degree of RWP .299 .044 .245 .415
Node RPGM .558 .080 .374 .744

Proximity GM .271 .023 .261 .337
(DNP ) MAN .268 .023 .223 .321

TABLE V
CORRELATION MATRIX BETWEEN INPUT PARAMETERS AND MOBILITY

METRICS.

Metric Model R s S AS MPT NG α
DSD RWP .18 .00 -.64 .25

RPGM -.33 -.09 -.16 -.58 .38
GM -.07 .08 .08 -.17

MAN .16 .02 -.66 -.06

DTD RWP -.66 -.12 -.14 -.28
RPGM -.11 -.37 -.39 -.66 .00

GM .72 -.28 -.28 .35
MAN -.54 -.04 -.25 -.32

IDSD RWP -.06 .04 -.64 .31
RPGM -.59 .00 -.05 -.32 .67

GM -.07 .08 .08 -.17
MAN .05 .02 -.68 .00

IDTD RWP .00 .10 .05 -.51
RPGM .07 .10 .04 -.51 .00

GM .00 -.23 -.23 .91
MAN .00 .03 .06 -.58

DNP RWP .00 -.06 -.12 -.82
RPGM .24 .01 -.03 -.49 .77

GM .00 -.22 -.22 .31
MAN .00 -.00 .36 .69

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced the concept of pause state

movement dependence, which considers the possible existence

of spatial dependence among nodes in a mobile ad hoc

network (Section IV-A). From this concept, we proposed the

Improved Degree of Spatial Dependence (IDSD) mobility

metric. IDSD revealed to be better thanDSD [2] at capturing

the spatial dependence in scenarios having different patterns

of node pause times (Section VI-B).

We also proposed another spatial mobility metric, Degree

of Node Proximity DNP , which also presented better results

than DSD. Besides this, we also proposed a new temporal

mobility metric, called Improved Degree of Temporal Depen-

dence (IDTD) that demonstrated to be better than DTD [2]

in three aspects: capturing different levels of temporal de-

pendence, properly identified the Gauss-Markov model as the

unique temporal model among all under consideration in this

work, correctly setting other models to produce values near

zero, and it is not influenced by node speed.

For future work we plan to investigate the use of the

proposed mobility metrics in the design of mobility-aware

adaptive routing protocols for mobile ad hoc networks.
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