
Bluetooth and Filesystem to Manage an Ubiquitous Mesh Network

Nicola Corriero - Emanuele Covino - Giovanni Pani
University of Bari

Departiment of Computer Science
Italy, Bari, Via Orabona 4, 70125

Email: {ncorriero,covino,pani}@di.uniba.it

Eustrat Zhupa
University of Vlora

Sheshi Pavaresia, Skele,
Vlora, Albania

Email: ezhupa@univlora.edu.al

Abstract—Hixosfs is a filesystem that lets you manage a
network of Bluetooth devices. We have analyzed this filesystem
in contexts of great movement and file sharing systems which
requires high performance time. We study the system both for
the management and to extract statistics.

Keywords-Ubiquitous mesh; ad hoc networks; sensor net-
works; Bluetooth; Tracking.

I. INTRODUCTION

Ubiquitous multimedia computing will change the way we
operate and interact with the world with the development of
numerous interesting ubiquitous multimedia applications.
Our purpose is to create a layer among operating systems,
middleware and user devices to facilitate the modeling of
the system and to make possible the efficient use of the
embedded devices. The main idea is the use of bluetooth
technology to create an ad-hoc indoor network. The system
has been implemented using embedded systems linked to
each other using bluetooth connection or an ad-hoc wire-
less network. In each of these, a hixosfs filesystem based
database has been used to improve the performance.

For such reasons the choice is to try an innovative
solution: hixosfs.
Hixosfs is a Linux filesystem that can be included in the
standard Linux kernel. Differences respect to the widely
used ext2 filesystem are additional features for storing and
efficiently retrieving data.

We introduce scenarios, the critical points of these sce-
narios, other approaches and our solution. We explain the
architecture of our system and all of its components. We
explain how it’s possible to build an alternative simple
approach to this problem with a common filesystem. Finally
some comparitions with other approaches.

II. SCENARIO AND CRITICAL POINTS

In this work we present an update of the scenario
presented in [12]. Two scenario: bluetooth markentig, file
sharing in a mesh network. Bluetooth marketing. In this
context, there are mobile devices that stop or pass near a
place of interest (library, cinema, stadium). Some device has
bluetooth and is available to receive data from our system.
Our device must periodically scan the environment looking

for some device bluetooth and try to establish an exchange
of data used to send content usually advertising media.
The second scenario is a laboratory or a library where
people want to share information such as music files. When
each user enters within range Action Bluetooth antenna
automatically start the sharing of files in a profile stored
on their devices (Openmoko).
In the context described above it’s possible to identify some
critical points of the system. In such points we see the
differences with the other solutions offered by the market.
In changing contexts is necessary to have softwares which
react in short time. The case of bluetooth devices is lampant.
Each device stays in the antenna covered area for few
seconds. During this short period the antenna should verify
the presence of device services (so verifying the presence of
Push) and establish a connection with it if it has not been
contacted before. Checking if the device is already in the
database of the contacted devices can be time consuming.
Contexts on move suggests to use intelligent systems that
can decide in a small time.
Client-server systems are not recommended to manage con-
texts where we need speed of reaction. Embedded system
that can decide for themselves are advised.
Despite everything you need to use servers to handle large
informations about the contexts.
Send sms bluetooth to someone on the move or turn on
the light in an environment requiring considerable reaction.
Embedded systems are designed for a permanent use and to
carry out little well-defined tasks.

III. OTHER APPROACHES

Normally these situations are handled using PCs with
large primary and secondary memories that make possible
the use of every operating system and every mean for saving
and managing information.
Other approaches of the system require the use of complex
databases over servers and/or embedded databases over
embedded machines.

In the embedded systems we have evident problems of
memory that during the time have solicited light-weight and
high-performance ad-hoc solutions. Sqlite [8] is an appli-
cation that implements all the functionalities of a database

85

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

using simple text files. This enlighten the execution load
of the system and facilitates the integration of the system
inside an embedded system. However, the system installation
produces a certain load to the mass memory.
Currently Linux fs as ext2 [7], ext3, reiserfs allows to
manage with metainformation related to a file with xattr
feature. Patching the kernel with xattr you have a way to
extend inode attributes that doesn’t physically modify the
inode struct. This is possible since in xattr the attributes
are stored as a couple attribute-value out of the inode as a
variable length string. Generally the basic command used to
deal with extended attributes in Xattr is attr that allows
to specifies different options to set and get attribute values,
to remove attributes to list all of them and then to read or
writes these values to standard output. The programs we
implemented in our testing scenario are based on this user
space tool.

The last approaches we have compared is to avoid to use
a particular filesystem to manage these scenario. We have
compared our solution with an ext2 filesystem and some
script in bash.

IV. OUR SOLUTION

An ad-hoc filesystem created inside the kernel will be used
to handle the data provided by the various sensors of the
network. The communication of the devices will be realized
using an ad-hoc network implemented with aodv. Finally,
the devices will have a linux distribution created ad-hoc with
the necessary programs only. Python has been choosed as
a programming language for the scripts to make the system
independent from the final device. For this reason it has been
necessary to install only a python compiler in the devices,
saving a lot of space.

A high performance software infrastructure is needed in
dynamic systems if we consider the time factor. Nowadays
the embedded systems are spreading very rapidly. Little
computers designed to spend limited energetical and eco-
nomical resources, but with precise and well defined duties.
On the other side, modern operating systems are designed to
use all the resources. Our suggestion is to use the embedded
devices like bluetooth antennas, placed by the entrances. The
limited dimensions of the embedded devices make possible
an adequate use of the space.

V. SYSTEM ARCHITECTURE

A. Hixosfs

Hixosfs [10] is as an ext2 Linux filesystem (fs) extension
able to classify and to manage metadata files collections in
a fast and high performant way. This is allowed since high
priority is given to the storing and retrieving of metadata
respect tags because they are managed at fs level in kernel
mode.
The hixosfs core idea is that information regarding the

content of a metadata of a file belong to the fs structure
itself.

Hixosfs has been used to tag multimedia files and blue-
tooth devices as well as user profiles. In this way all the
load has been transfered to the kernel that handles and
organizes the hixosfs files as occurrs. The servers and the
clients contain partitions that can read and set the hixosfs
tags so to manage the database.

In the case of bluetooth file, hixosfs extends the inode
definition with a struct tag:

struct tag {
#ifdef CONFIG_HIXOSFS_BLUEZ
char macbyte1[3];
char macbyte2[3];
char macbyte3[3];
char macbyte4[3];
char macbyte5[3];
char macbyte6[3];
char devicename[40];
char scanningdate[9];
unsigned int tag_valid;
#endif
}

The struct tag has four fields for a total of about 100 byte
of stored information, theoretically an inode can be extended
until 4 kb then it’s possible to customize it with many tags
for your purpose. It’s convenient to choose tags that are
most of the time used in the file search to discriminate
the files depending their content. We choose here what was
able to maximize the time of search musical files by most
commonly used criteria as album or author name and so on.

In our experiment we understood the limits of the origi-
nary idea of hixosfs that suggests the compiling of an ad-hoc
filesystem for each type of tag. In our system was necessary
to compile 3 different filesystems with 3 different types of
tags (music, user profile, bluetooth). For such a reason we
decided to use a generic version of hixosfs with a generic
structure in which is possible to insert file representative tags
case by case.

struct tag {
#ifdef CONFIG_HIXOSFS_TAG
char tag1[30];
char tag2[30];
char tag3[30];
char tag4[30];
unsigned int tag_valid;
#endif
}

In our partition there was only a hixosfs filesystem
mounted in RAM with three folders containing files provided
by three running processes: bluetooth devices detecting,
musical files manager and user profiles.

An example of file handling.
chbluez -m sets the mac address of the device.
chbluez -n device name (when detected).
chbluez -d date of the first detection of the device in
the system.

86

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

B. Bluetooth

There are two types of services used for file transfer:
• Object File Transfer
• Object Push
Most of the bluetooth devices implement ”Object File

Transfer” service, in which for file transfer is necessary an
authentication using a unique PIN number on both client
and server.

Around 40% of the devices implement the ”Object Push”
service in which is possible to send files without using
any PIN number. However, to receive a file is necessary
to accept a connection request. This technique facilitates the
interaction cause you don’t need any PIN number, even if
in the majority of the devices there is a hardware lock in
case of repeated connection requests via the Push protocol.

C. AODV

We are choosing to use the routing AODV (Ad hoc
On demand Distance Vector) protocol, because it’s suited
for route discovery and routes maintenance within ad hoc
network.
To this purpose a Linux kernel and a mini distribution have
been compiled and analyzed in the case of an handhelds
HTC blue-angel and for Openmoko. Then it has been
extended including the Manet support, specially compiling
the aodv-uu, the AODV protocol implementation realized
by the Uppsala University[4]. At this point we are ready
to generate a mesh network. Etherogeneous nodes like
handhelds, work station, notebook, mobile phone, router,
having wifi connectivity with Linux operating system and
aodv-uu module installed, can contribute to the creation of
a decentralized newtork, working in a mobile context.

In our system we have cross-compiled code that im-
plements the AODV protocol for ARM architecture [1].
The implementation used provides a daemon that constantly
sends “ hello”message searching for other nodes. This way
when the user comes within range of another device to
authenticate.

D. Openmoko

To test hixosfs filesystem for music files we have choose
Openmoko Freerunner[5], an open source project with the
aim to port Linux on mobile device. Inside Freerunner Linux
os already works, we had just to patch the kernel with
our modifications and we choose to create hixosfs partition
inside a minisd with 2 gb of stored music file.

VI. EVALUATION OF SYSTEM’S PERFORMANCE

The testing scenario was implemented in a shop and in a
music laboratory. Every user was provided a Openmoko[5],
a bluetooth mobile, gps and wireless with Linux.

Inside the buildings there were embedded systems with
bluetooth antennas for identifying the users and send blue-
tooth sms.

A. Cinema

The aim of the experiment was sending advertisement sms
via bluetooth. The text of the sms was of multimedial type
and was addressed to promote objects of the shop itself.
Each user was invited to switch on the bluetooth device of
his mobile.

The antennas were in communication with the server for
sharing of the contents to send and at the same time to check
the mac addresses in order to avoid sending the same content
for more than once to a given mac address.

The system was handled in remote with a little web based
application for managing the synchronization of the blue-
tooth advertisement campaign with respect to the contents
and the hours. Every antenna was sending daily reports to the
server and all the data were handled in a hixosfs filesystem.
The reports were compressed in files of a hixosfs partition in
which for every campaign were registered: message sending,
message not accepted, disinterest of the user for the system.

The data of the experiment show that the system must
be promoted better. Only 10% of the users were aware of
the connection request and only 80% of those accepted the
message. The main problem (90%) that came out with a
observation of the log files is the fact that people didn’t
knew the system so not knowing what kind of messages
they were receiving, they choose to ignore the request or
just not accept.

B. Laboratory

The motivation of the experiment was to share some
multimedia files inside the laboratory based on the profile
of each user.

With every user there is a Rfid tag associated, an Open-
moko mobile with a bluetooth device. In the server there
have been loaded the musical preferences of each user. The
entrance of the lab is managed by an ”intelligent” system
that performs an authentication via a Rfid. Inside the lab
there is an ad-hoc wireless connection implemented with
aodv protocol. When the user is detected by the system, he
is profiled and some folders are shared containing musical
tracks coherent with the user profile. At the same time every
user shares musical tracks with the system. All the musical
tracks of the users are not on the server but in the device of
each user. Tracks are saved in hixosfs partition of the flash
memory where each file has been tagged. The music files
were tagged for the multimedia contents and for the profile.
Each file shared by the user A with profile P A has been
tagged with the elements of the profile P A.

The user B, with profile P B that has at least one element
same as in the profile P A, has the file sharing from the user
A. With such approach it was possible the to implement the
probably interesting file sharing between users with similar
profiles and avoiding probably not interesting file sharing
between users with different profiles.

87

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

VII. SCRIPTING

The final Linux distribution will contain only the python
interpreter and the essential commands without adding
programs for database management. The system therefore
includes a Linux kernel (2.6.23) patched with hixosfs and
a shell in Python through which you can either start the
daemons either use hixosfs. Pybox is a shell created to
enlighten the work load on the embedded systems. Pybox
has been written completely in Python and it occupies
less space in the device having interesting performances.
The Pybox project implements the rewriting in Python of
the basic commands of the system. To use Pybox in our
embedded systems we rewrote the commands interfaced
with hixosfs.

The system is thus platform independent. Using Python
has facilitated the porting of the system on ARM architec-
ture (Openmoko). System startup will mount a partition of
the flash memory is partitioned with hixosfs and through
openvpn also a remote folder (mounted via NFS) for sharing
the system log. Periodically, in fact, the system performs a
backup on the remote server.

A. Directory tree

The user process interface has been extended with the
two programs stattag and chtag to access or modify the new
inode information for one file. Ad hoc user mode tools have
been implemented to extract metadata and populate the
whole fs in one step. One example is the command addbluez
that extract mac address of bluetooth device to fill the inode.

To create a directory tree with tagged files, there is the
command orderby, with syntax:
$ orderby [-mac | -names | -data]

The command scan -bluez can find inside fs files with a
specific content of tags and has the syntax.
$ scan -bluez -option [value | ALL]
Options are:
-datestart DATE -dateend DATE
-date DATE
-mac MAC
-name NAME

For example: where 00, 19, 2D, 14, C9, 93, ... are folders.

In the foils of the tree (representing each device) have
been created files to save the events:

• to send - to lock the device for other sending;
• sent - to identify the interaction (with positive or

negative result) with the device;
• ping - to save all the times in which the device is in

the scope of the bluetooth antennas;
• problem - to save all the problems of each mac

address.
$ scan -bluez -date all -mac AA:BB:CC:DD:EE:FF

Figure 1. orderby -mac

is the command to find all activity of mac
AA:BB:CC:DD:EE:FF.

B. Bluetooth

Lightblue [6] is a layer in python for handling bluetooth
devices. This layer offers high level functionalities .

For each functionality there is an appropriate error han-
dling. For example in case of denied connection the system
returns an error code.

Script for sending a bluetooth sms.
Input mac address, Push channel, path of the file in th
system, filename to display in the ending device.
import lightblue
def sendsms (mac , channel , pathfile , nomeoutput):

client = lightblue.obex.OBEXClient(mac, channel)
client.connect()
putresponse = client.put({"name": nomeoutput},
file(pathfile, ’rb’))
client.disconnect()
return;

Script for handling errors caused during bluetooth sms
sending. In case of error a file is created with all the
information regarding mac address, error and date of the
error.

VIII. EXT2 SOLUTION

We have created the same result as hixosfs folder tree
inside a simple ext2 fs. We have writen some simple bash
scripting to create our data log with a tree of folders and we
have created simple bash scripting to select data from this
tree.

A. Bash scripting

The particular organization of data in folders allow easy
reference data using sample scripts in bash. The following

88

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

script allows us to scan the “ database” the number of unique
devices discovered on a certain day every hour.

The system has a policy to store the log output of this
script every day to provide simple statistics for the owner
of the shop.

devicexhour.sh
echo -e "hour\t device"; data=$1
for hour in {00..24};
do
echo -en "$hour\t "
count=$(grep $data-$hour pushed/*/*/*/*/*/*/ping |

cut -c 1-29 | uniq | wc -l);
echo $count

done

The following script allows us to count how many minutes
each device is near of our antenna. With this information you
can determine the periods of day when most people stop near
the antenna and then inside the shop.

With the next script you can count the number of unique
devices to date input. With this script you can establish a
trend throughout the year the inflows of people inside the
shop.

devicexday.sh
count=0; data=$1;
for i in ‘ls pushed/*/*/*/*/*/*/ping‘;
do

grep $data $i> /dev/null;
if [$? -eq 0]; then let count=count+1;
fi

done
echo $data = $count

This is the most important script inside our antenna-
device. This script runs and creates a tree of folders as in
Figure 1 like hixosfs without hixosfs.

pushed no message.sh
while [true]
do
contatore=1
numrighe=0
sdptool search OPUSH > ./opush
fallito=‘cat opush | tail -1 |

grep ’Inquiry failed’ | wc -l‘
if [$fallito -ne 1]; then
{

cat ./opush >> log/logopush
date >> log/logopush
cat opush | grep -B 1 Service | grep Searchin |

awk ’{print $5}’ | sort -u > pushmac
for i in $(cat pushmac); do
echo -n $i; cat opush |
grep -A 9 $i | grep Channel; done
| grep :..: > macechannel
numrighe=‘wc -l macechannel | cut -c 1-2‘

}
...
if [$numrighe -ne 0]; then
{
sed -i s/Channel:/\\n/ macechannel
..
for i in $(seq $numrighe)
do
...
mac=${array[$j]}
channel=${array[$i]}
temp_dir=$(echo $mac | sed -e ’s/:/\//g’)
...
mkdir -p pushed/$temp_dir
touch pushed/$temp_dir/ping

DATA=‘date +%d-%m-%y-%H-%M‘
guardadata=‘grep $DATA pushed/$temp_dir/ping |
wc -l‘

if [$guardadata -eq 0]; then
{
echo $DATA >> pushed/$temp_dir/ping
...

IX. PERFORMANCE MEASURES

The presented testing scenario is similar to the system
proposed in [12]. The differences are the extra time to test
the product and more detailed statistics.

In this section we present performance measurements
made on hixosfs. The monitored operation is reading tags
from musical file o bluetooth file.

Here we show that the disk performs better for indexing
and retrieving music over standard file systems but we didn’t
study so far the loss of performance respect other uses of
the fs. The idea in fact is that hixosfs will be used only for a
disk partition containing a musical data or bluetooth device
file collection to better organize and query such data and not
for the whole disk.

We measured in fact the time required to perform this
operations by hixosfs and we compared it with the time
needed in the case the data are stored in a common fs and
accessed by a Sqlite db.

Finally we have compared hixosfs solution with a simple
ext2 filesystem managed by simple bash scripting.

Figure 2. Unique devices per day and hour

A. Sqlite vs hixosfs vs ext2

After three months of testing in a cinema, our filesystem
contained about 20,000 unique mac address scanned by the
system. We have recreated the conditions both for the sqlite
database and in an ext2 filesystem to compare systems.

First we compared the search for single mac address in
the db.

89

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Figure 3. Average waiting time near antenna

A simple table mac have been created with:

• id smallint
• mac varchar(20)

We have insert into table 20.000 mac address generated by a
casual ad-hoc algorithm. We have created 20.000 files inside
a hixosfs partition and we have ordinated (by orderby
command) a tree of directory to store all informations
about every device. We have compared the time to execute
“scanbluez” that works with hixosfs and “bashbluez” a
simple bash scripting that works with ext2 filesystem.

We have compared time to execute a simple search of
one mac address (case A in Table I) .

During testing we had the need to see statistics on the
state of the system eg

• the number of devices that have agreed to receive SMS
advertising

• the device number that comes back regularly and how
often

• problems related to non-submission of the SMS adver-
tisement

Our system provided the files inside the folder which
contains for each device problems, and pings sent. We
created the database sqlite a second table “sent”

• id smallint
• data varchar(20)
• problem varchar(20)
• flag smallint;

We have populated this table with 150,000 records of
problems and on random times and we have compared the
statistics to extrapolate from the system (Figure 2). (case B
in Table I) .

Case\System sqlite scanbluez bashbluez
A 0m0.093s 0m0.004s 0m.010s
B 0m.183s 0m,012s 0m.098s

Table I

X. CONCLUSION AND FUTURE WORK

We presented hixosfs as a new solution to manage blue-
tooth marketing context. We tested this idea in a couple of
real context. We improved the tests in [12] applying to cases
where there are dependencies between data, when access to
data in databases is perhaps the most performant.The system
presented use also a platform-indipented code in Python
to manage bluetooth connectivity and hixosfs user space
program. We compared the idea with the standard approach
and we noticed how the approach is more performant. In the
future we need to improve the file system, adapting it to a
file system lighter than ext2.

REFERENCES

[1] Corriero, Cozza, Pistillo, and Zhupa. Wifi Mesh for HandHelds
in Linux, 978-989-8111-60-9, pag 380-383. ICWN 2008.

[2] Corriero and Cozza. The hixosfs music approach vs common
musical file management solutions, ISBN: 978-989-674-007-8,
pag. 189-193. SIGMAP 2009.

[3] Rubini. The “virtual filesystem” in Linux . Kernel Korner.
http://www.linux.it/∼rubini/docs/vfs/vfs.html.

[4] AODV-uu homepage - Uppsala University, http://www.it.uu.se/
research/group/coregroup, 12.2008

[5] Openmoko. http://www.openmoko.org, 03.2010. Home Page.

[6] Bea Lam. LightBlue: a cross-platform Python Bluetooth API.
03.2010. http://lightblue.sourceforge.net/

[7] Card, Ts’o, and Tweedie. Design and Implemen-
tation of the Second Extended Filesystem, http://
e2fsprogs.sourceforge.net/ext2intro.html.

[8] Sqlite. http://www.sqlite.org/. Home Page. 03.2010

[9] Kernel. Torvalds. www.kernel.org. Home Page. 03.2010

[10] Hixosfs. Hixos. www.di.uniba.it/ hixos/hixosfs. Home Page.
03.2009

[11] Corriero and Zhupa, An embedded filesystem for mobile and
ubiquitous multimedia, MMEDIA2010.

[12] Corriero and Zhupa, Hixosfs for ubiquitous commerce through
bluetooth, FutureTech2010.

90

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

