
Extending a Middleware for Pervasive Computing to Programmable Task
Management in an Environment of Personalized Clinical Activities

Giuliano Ferreira, Iara Augustin,
Giovani Rubert Librelotto,

Fábio L. da Silva, Alencar Machado
Federal University of Santa Maria

Technology Center
Avenida Roraima 1000, 97105-900

Santa Maria, RS, Brazil
Email: {august,librelotto}@inf.ufsm.br,

giuliano@cpd.ufsm.br, alencar.ufsm@gmail.com

Adenauer Correa Yamin
Catholic University of Pelotas

Rua Felix da Cunha, 412, 96010-100
Pelotas,RS, Brazil

Email: adenauer@ucpel.tche.br

Abstract—Currently, Pervasive Computing has focused on
the development of programmable and interactive environ-
ments, which are intended to help the user in daily activities.
The health system of the future envisages the use of Pervasive
Computing as a way of optimizing and automating clinical
activities. Under such perspective, the present study has tried
to adapt a middleware for pervasive environment management
to support and manage the accomplishment of clinical tasks
(pervasive applications that help physicians perform their
activities), fulfilling some requirements of activities-oriented
computing, and creating a tool that will help physicians in their
daily tasks. So, ClinicSpace can be seen as a system context
aware pervasive oriented clinical tasks.

Keywords-Ubiquitous Computing; middleware; daily activi-
ties oriented computing; end-user programming; clinical activ-
ities.

I. INTRODUCTION

The first systems of pervasive computing have concen-
trated on the creation of middleware for management and
availability of the ubiquitous environment, aiming at un-
derstanding its requirements and need [6][3][14]. Systems
available at that time made possible to create some concepts
inherent to the nature of the pervasive space: commu-
nication, mobility, context-awareness and daily activities.
Communication and mobility have been approached for a
long time; context is currently being handled; but daily
activities require further efforts, because they are in an early
phase, where what is desirable has still to be defined [10].

The current focus of Pervasive Computing is turned
towards processing daily human activities in the most in-
tegrated way as possible to the real environment known by
the final user (user-centric computing). Under such perspec-
tive, one of the major application areas is Health Care, it
already faces situations where information from the physical
world is proactively acquired and automatically integrated to
applications (virtual world) [15].

Then, we can consider that Pervasive Health (or Ubi-
Health) is in its first generation, trying to understand the
needs, features and technologies required to design systems
that will create the hospital of the future [9]. The project
Hospitals of the Future envisages the use of technologies
that will make an intelligent space, reactive and proactive,
where information management systems will take decisions
and will adapt to the situations they detect [11].

However, one argues that the system proactivity should
not be too strict, once it is designed in a generalized way
and not customized. If the physician wants to make things
his way, he must be able to do so and interact, command
and interfere in the tasks/activities managed by the pervasive
system. Therefore, the pervasive system is required to focus
on the end-user (physicians) and provide support to his daily
tasks, balancing between proactivity (act in the place of the
user) and customization (individual way of performing a
task).

Based on such premises, the proposal of the project “Clin-
icSpace: Support to clinical tasks in the hospital environment
of the future based on Ubiquitous/Pervasive Computing
technologies” is to develop a pilot-tool that makes it possible
to physicians to customize his tasks, which are managed
and performed by a middleware in a pervasive environment.
The main goal in the customization of tasks is to reduce the
impact of interference of the automated system in a clinical
environment and, therefore, minimize the high rejection to
computational systems that such interference may cause.
So, the middleware must provide mechanisms for users to
run, stop, resume and schedule their tasks. Moreover, it
should also control the trigger of tasks in response to context
changes.

This paper is organized in the following sections: Sec-
tion 2 discusses how clinical activities/tasks were mod-
eled; Section 3 discusses the architecture for programming
and running tasks, briefly discussing target middleware for

478

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

pervasive environments upon which the current study was
based, as well as changes made to adapt the middleware to
the activities-oriented computing and clinical environment
requirements; Section 4 introduces a use case about the tasks
management system; Section 5 discusses the prototyping and
evaluation of developed architecture; Section 6 describes
some related works and eventually Section 7 makes final
considerations about the study.

II. TASK-ORIENTED COMPUTING

Clinical activities, such as outpatient care, are processes
that take place collaboratively, in a coordinated and dis-
tributed way, in a given space and can be aided by compu-
tational applications [1]. According to the Theory of Human
Activity [13], human activities can be modeled with a subject
(who practices an activity), an objective (what to do), an
action (process to accomplish the objective) and operations
(how the action is performed). From that theory we derive
the concepts adopted to model tasks for the construction of
the ClinicSpaces software architecture.

Thus, clinical activities were modeled in tasks (actions).
For example, the activity “outpatient care” can be modeled
as a mixed task that identifies the patient automatically, looks
for his electronic medical records, reviews pending tests,
etc., displays them to the physician, and makes it possible
that the physician adds information during the visit. Thus, a
task that will proactively help the physician during patient’s
visits is created. This task can also be linked to other tasks,
so that the activity can be modeled in the most complete
way as possible. For example, it could be connected to a
task of tests request and/or treatment prescription [12].

Tasks can be customized according to how the user
(physician) can perform his activities. The goal is to cre-
ate abstractions so that the computational system can fit
the real features of the clinical environment. Thus, in the
same way as actions are composed of operations, tasks are
composed of sub-tasks. Sub-tasks are pervasive applications
that maintain a direct relation with computational artifacts
(applications, services and resources) and make available the
computational support to customized tasks, which together
model the clinical activity to be performed. Sub-tasks are
concerned to the applications of the pervasive health care
electronic system (pEHS) [8], such as finding the electronic
records, viewing tests and management systems of the per-
vasive environment, extended to tasks handling (Section 3)
Both tasks and subtasks were modeled through specific on-
tologies [5], containing information regarding identification
(user that created the task, clinical expertise, description of
functionalities) and management (status, required resources,
contexts supported).

So that, through the Tasks Edition Interface (a program-
ming tool oriented to the end-user, see Figure 1), a task is
programmed intuitively by the physician through clustering
of sub-tasks and tasks, in a sequence that reflects the way

Figure 1. Task Edition Interface

Figure 2. System architecture for tasks managing and programming

how the user performs his activity (customization). At the
same time, customization can also be made at the sub-task
level, with the configuration of specific parameters, which
change the way how the sub-task processes its functionality.

III. TASK MANAGEMENT

As we see, the ubiquitous systems bring new challenges
to different areas. Among them is the development of
a new middleware that, besides managing the pervasive
environment, must manage users’ daily tasks. Middleware
must allow users to customize (program), run, stop, resume,
schedule their tasks and control how they respond to context
changes. Our challenge in this work, within the scope of the
ClinicSpaces project, was to adapt a pervasive environment
management middleware to manage the users’ tasks as well
(physicians), meeting the requirements of user-centric and
daily activities support in the clinical environment [9].

The architecture designed for programming and manage-
ment of tasks (see Figure 2), is organized in levels that reflect
the system views:

∙ Higher level, composed of end-user (physician) who
interacts with the tool to build and edit his tasks that
would be triggered by changes in context (reactive).
The ClinicSpaces interface is based on principles of the

479

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Visual Programming paradigm, with a hybrid solution
that uses graphic elements (icons and diagrams).

∙ Intermediate level, composed of mapping and conver-
sion of tasks defined by the user in pervasive applica-
tions and by the management of tasks programmed by
the middleware;

∙ Lower level, composed of the set of the middleware
services for pervasive environment management and
supports the execution of pervasive applications.

A. EXEHDA - middleware to pervasive environment man-
agement

Middleware EXEHDA - Execution Environment for
Highly Distributed Applications [2] is used to manage the
pervasive environment where tasks will be performed. This
middleware aims at creating and managing a pervasive envi-
ronment providing a virtual environment to the user, where
applications have the style “follow-me” [7]. Thus, EXEHDA
makes it possible to the user to access its computational
environment regardless of place and time.

EXEHDA was designed to easily add new components. It
is structured in a minimum kernel (required to boot) and ser-
vices loaded on demand, which are organized in subsystems
that manage: (a) distributed execution; (b) communication;
(c) context recognition and adaptation; (d) pervasive access
to resources and services. EXEHDA sub-systems are formed
by services, and each service defines an interface and may
be implemented in different ways, suitable to the types of
devices that will be supported. Services provided by EXE-
HDA are customizable at the host level, and are determined
by the execution profile, which defines the set of services to
be activated and the parameters for their execution, besides
associating each service to a specific implementation. This
way, services can be “plugged” with no need to have the
middleware’s kernel modified [4].

A pervasive scenario, as a hospital, defines a personal
virtual environment that should follow the user in his
movement. This movement can involve both logical mo-
bility (data, code and computation) and physical mobility
(resources and devices in use). We refer to this feature of
environment and applications as follow-me semantics.

The Pervasive Access Subsystem of EXEHDA is re-
sponsible for implementing the resources availability at
anywhere, at anytime. To manage these functionalities, the
middleware maintains information about user, applications,
resources and services. Applications are not installed in the
traditional way, meaning that the application’s executable
code is neither stored in nor managed by the user’s virtual
environment service. In fact, application installation consists
only of copying the application’s launching descriptor to
the users virtual environment. The executable code for the
application is still provided on-demand by the Application
DataBase (ABD) service by the time the application starts
to execute in a given device. Application profiles (resource

descriptors and shared data) are stored in the Application
Virtual Environment (AVE), which disappears when the
application has finished its execution.

As a user physically moves (by carrying its current device
- user mobility - or changing the device being used - terminal
mobility), his currently running applications, in addition
to the user’s virtual environment, need to be continuously
available to him, following the user’s movement in the
pervasive space.It is desirable that, when the system state
changes, the middleware dynamically reallocate, reschedule
and restructure the (logical and physical) resources available
for the application. Application is managed by Distribution
Execution subsystem which is responsible by lauching,
migration and controling of execution through interaction
with other subsystems. Application is on-demand installed
by the ABD service in the target device. The executable
code for the application is continually provided on-demand
according to the Executor service.

The assembling of the context state information, which
guides many of the middleware operations and also the
application’s adaptive behavior, is accomplished by the
Context Recognition and Adaptation subsystem, through the
cooperative operation of the services Monitor, Collector and
Context Manager. The produced context state information
feeds both functional (that modifies the code being exe-
cuted) and non-functional (related to scheduling and re-
source allocation) adaptation processes, which are managed
by the AdaptEngine and Scheduler services respectively. The
adaptation model adopted is collaborative and it is reached
by two forms: (i) adaptation commands, by explicit calls
to some of the middleware’s services, and (ii) adaptation
policies implicitly guide middleware’s operations. Adapta-
tion policies are in the form of XML documents, deployed
together with the application’s code when it is installed in
the BDA pervasive repository. Typically, adaptation policies
are defined at development-time by the application designer.

With respect to communications, EXEHDA currently pro-
vides, through the services Dispatcher, WORB, and CC-
Manager, three types of communication primitives, each
addressing a distinct abstraction level. The Dispatcher ser-
vice corresponds to the lower abstraction level, providing
message-based communications. Message delivering is done
through per-application channels, which may be configured
to ensure several levels of protection for the data being
transmitted. Protection levels range from data integrity,
using digital signatures, to privacy through encryption.
Additionally, the Dispatcher uses a checkpointing/recovery
mechanism for the channels, which is activated when a
planned disconnection is in course. This feature may or
may not be activated by the upper communication layers
depending on its particular demands. In order to make easier
the development of distributed services, EXEHDA’s also
provides an intermediary solution for communications, based
on remote method invocations, through the WORB service.

480

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The programming model supported by WORB is similar to
Java RMI, though it is turned to the pervasive environment
while RMI is not. Specifically, WORB remote method
invocations, differently from Java RMI, do not require the
device to keep connected during the entire execution of the
method in the remote node. At a higher level, the EXEHDA’s
CCManager provides tuples-space based communications. It
builds on the WORB service, which already handles planned
disconnections, providing applications with an anonymous
and asynchronous communication model.

B. Adapting the EXEHDA to manage the personalized clin-
ical task

EXEHDA was projected in modular way to easy the
future adaptation. Due to the flexible features of EXEHDA,
as the integration of new services, the adaptation of the
middleware to the new tasks management was modeled as
a new subsystem, named Sub-system of distributed task
management (SDTM). The SDTM services shown in Figure
2 are: (i) Task Management Service, responsible for manag-
ing tasks execution; (ii) Tasks Access Service, responsible
for the pervasive access to the user’s task repository; (iii)
Tasks Context Service, responsible to make available the
context information relevant to tasks; (iv) Inference Service,
responsible for the identification and activation of tasks
based on context or schedule; (v) Active Tasks Service,
responsible for the pervasive access to user’s active tasks;
(vi) Interception Service, responsible for connecting SDTM
to a system of electronic records, which makes the access
available to clinical applications.

The Tasks Access Service (TAS) role is to provide per-
vasive access to the tasks repository of each user, as well
as to the repository of sub-tasks, which is unique for all
the system, once they are not changeable. Through this
service, the Task Management Service searches the list of
tasks available to the user when his session starts, and
the customizable ontological description [5] of tasks to
be instantiated in pervasive applications and start to run.
Besides, this service makes available access to information
about tasks execution, which support the user’s preference
processing. The Tasks Access Service use the Pervasive
Access Sub-system from EXEHDA to access the user’s
virtual environment.

The Tasks Context Service encapsulates, within objects
used by tasks and sub-tasks, context information obtained
by the Context Recognition Sub-system from EXEHDA. In
our perspective, context is related to users, location, time and
resources. Thus, context can be handled in a simpler way by
the sub-tasks programmer and becomes more understandable
from the user’s point of view, who will access contexts that
he considers useful for the accomplishment of tasks. This is
necessary because the context provided by EXEHDA is in
form of raw data. The goal of this service is to gather this
information in form of objects with a simple API.

Figure 3. Architecture of the Tasks Distributed Management Sub-system

The Inference service processes historic information about
the execution of tasks to infer upon the tasks activation,
based on context change, in the user’s preference in some
contexts and scheduling. This way, the system proactivity is
improved. This service is still under definition, and was not
included in the tool pilot prototype.

The Tasks Management Service (TMS) role is to control
the execution of user’s tasks, enabling him to (i) trigger or
schedule the execution of a given task; (ii) stop and later
resume a task that was under execution; (iii) cancel a task
that does not need to be continued. For that end, TMS
makes an API available so that the user can control his tasks.
Such API is encapsulated in the graphic interface adequate
to the type of device and activity that is being modelled.
Besides, TMS manages the migration of tasks, so that they
can ”follow” the user when he changes device.

The Active Tasks Service was created with the goal of
keeping the active tasks of each user under a centralized
control. For if such control was distributed (carried out by
each TMS instance), it would require too much communica-
tion and processing to maintain tasks synchronized, making
management complex and even unfeasible for some portable
devices. Besides, a host is required where to the tasks should
be migrated if the user is not using any device.

As a consequence, the Active Tasks Service works in
an architecture client/server through HTTP requirements.
A host (server) keeps information about tasks active (for
each user) and clients make requests to obtain, add, exclude
and update tasks. The Active Tasks Service was based on
HTTP requests because there is already an infrastructure
in middleware for such type of communication. Thus, the
Active Tasks Service use the HTTP Service functionality
from EXEHDA in the same way as services of the Pervasive
Access Sub-system. A specific handler is used to convert
service requests into HTTP requests. Therefore, the use of

481

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

HTTP communication is transparent from the perspective
of other services that use the Active Tasks Service, which
makes possible to change the implementation without chang-
ing coding of clients from such service.

The Interception Service is responsible for handling events
generated by the Pervasive Health Care Electronic Register
(under definition). In order to fulfill the objective of the
project ClinicSpaces, i.e., to include the computational sys-
tem in the clinical environment reducing its interference in
the work of professionals, this service is aimed at intercept-
ing the events of pEHS and process them, triggering applica-
tions that will help the physician handle the event, requiring
the least possible interaction with the computational system.
For example, if an event requires the immediate attention
from the professional, the Interception Service may trigger
the interruption of running tasks and start a task that help
him to meet the event, for example, searching the patient’s
records (if this is the reason for the event).

The Interception Service can implement abstractions to
make the use of pEHS applications easier, which makes
possible to easily implement sub-tasks, considering that (i)
the ClinicSpaces architecture can be seen as a management
agent that facilitates the input of data in the healthcare
system used; (ii) each sub-task is associated to at least one
application of pEHS, which can be called to interact with the
user or can be used only in second plan; and (iii) the system,
through passing of parameters, can inform previously data
for the application, minimizing the data input from the user.

IV. USE CASE

This case study comprised patients seen at ophthalmo-
logical emergency service of the University Hospital of
Santa Maria (HUSM). Santa Maria is a tertiary and most
important general hospital of the center region of the state
of Rio Grande do Sul (Brazil) providing medical care to
a population of 1.1 millions inhabitants from 47 cities. It
is the biggest hospital, which provides ophthalmological
emergency in the region.

In the same way, their patients attend the ophthalmolog-
ical emergency service mainly being referred by general
physicians, nurses or an ophthalmologist, or also by their
own decision. There they are examined by an ophthalmol-
ogist, treated if necessary and sometimes referred for other
center.

Data about patients were collected during interview and
ophthalmological examination. When a patient had more
than one diagnosis, only the most serious one was listed.
Veracity of the emergency was categorized as true or not-
true emergency. A true ocular emergency was considered
if there were risk of decreasing or loss vision, as well as
cases requiring immediate (same day) evaluation in either
an emergency department or an ophthalmology outpatient
department due the intensity of symptoms.

In this case we applied the middleware EXEHDA to
control daily tasks of an ophthalmologist. This way, he will
be able to create (personalize) a task that will help him in
this activity, through of Task Edition Interface (see Figure
1). For example, if the ophthalmologist usually first check
the latest information about the patient’s medical records, he
starts the task’s construction with a sub-task to search the
patient’s medical records. The tasks construction tool adds,
automatically, a sub-task to identify the patient using RFID
for example, since it is necessary to identify which medical
records should be accessed. Then, the physician adds a sub-
task to view the information in his preferable form.

Continuing the task’s composition, the ophthalmologist
may add a sub-task to register the information about the
patient’s care. In addition, a task to request examinations
could be added. It will register the request in patient’s
medical records and forward the request to the laboratory.

Finally, the ophthalmologist could add a task to prescribe
the medication or treatment. This task will register the
prescription in patient’s medical records and will print it.
When finished the task construction (personalization), it will
be stored in the User Virtual Environment.

A. Task Execution

When the ophthalmologist examines a patient (human
activity modeled as a set of tasks), the system interface
is accessible and the tasks are available [2]. The patient’s
examination task is programmed (customized) in advance
and triggered by the physician or by changes in context
(patient’s arrival detection). The Tasks Management Service
(TMS) accesses the Tasks Context Service (TCS) to obtain
the physician’s identification, device configuration and other
information required to instantiate the task. Processing the
ontological description of the task, TMS finds sub-tasks that
compose it and finds their code.

The first sub-task to be performed is the patient’s iden-
tification. For that end, TCS uses sensors managed by the
EXEHDA middleware, through of the context recognition
subsystem [2][6], to identify the patient that will be exam-
ined. The information that returns is sent to other sub-tasks.
Then, the sub-task that searches for the patient’s information
is triggered in the pEHS linked to the ClinicSpaces archi-
tecture. The information is then used as a parameter for the
next sub-task, which displays the data from the records in
the format the user selected. It is only from this moment
that the interaction between ophthalmologist and task starts,
because the execution of previous sub-tasks is transparent.

The system’s interface checks which tasks are available to
the user. These tasks – composed of other tasks and sub-tasks
– were validated at the time of creation and customization
of these tasks using TMS.

After the doctor reviews the information, he terminates the
application (sub-task) and TMS triggers the next sub-task,
which will store the ophthalmologist’s notes in the electronic

482

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

records (pEHS). This sub-task calls a specific application of
pEHS, and parameterizes it with the ophthalmologist’s and
patient’s identification. At the end of this sub-task, the next –
tests request – is triggered. This will be a task created by the
user or obtained from the system. This task is independent,
and can be performed in isolation.

The tests request task stores the ophthalmologist’s request
in the patient’s records and send it to the lab, which is
integrated to pEHS. At the end of this task, TMS triggers the
treatment prescription task, which is stored in the patient’s
records and sends it to the closest printer, obtained through
TCS.

The module decomposes and recomposes the tasks flow at
the execution point. The TMS decomposes a task into sub-
tasks. A task is represented by an XML file that links to
the XML files of the sub-task. The decomposition is done
when the system reads the XML files, instantiates objects
(sub-tasks), sets the parameters, and executes them.

V. PROTOTYPING AND EVALUATION

In order to validate the concepts discussed in this paper
and evaluate the impact of task management in middleware
and in execution of pervasive applications (tasks), a pilot
prototype of the Sub-system of Distributed Task Manage-
ment was developed. This prototype is composed by the
Task Management Service, Tasks Access Service, and Active
Tasks Service. All these services were were developed in
J2EE, as well EXEHDA middleware and its applications.
These services were integrated with the EXEHDA middle-
ware and instantiated in two nodes: one base node, that is
responsible for the cell’s management; and one common
node (client), representing a user’s device.

The user’s application, through API of the SDTM,
searches the tasks available for user and the tasks that were
initiated and do not terminated in previous session. As this
information is located in base node, the local instances of
the Tasks Access Service and Active Tasks Service generate
requests for their remote instances. Therefore, the operations
of these two services were monitored in experiments to
determine the impact of them on the system, in terms of
startup time of tasks and number of remote requests. On the
other hand, the tasks execution management is done, locally,
by the Tasks Management Service. Thus, this service was
monitored in terms of extra processing to control the tasks.

The experimentations showed that the impact of new
services, necessary for the tasks management, was mini-
mal, both in terms of middleware as user’s applications.
Moreover, the evaluation of services indicated points in the
prototype that can be improved, as the number of remote
requests, that although they are acceptable, they can be
reduced.

Therefore, in general, the evaluation of the experimenta-
tions showed that the proposal to extend a middleware for
pervasive computing to manage the daily tasks of health

Figure 4. Startup and control time for different situations in tasks
management

professionals is feasible and promising. The results were
very satisfactory, since the prototype worked together with
EXEHDA, performing their functions without generating
overhead in the middleware.

As can be seen in Figure 4, the average time for ini-
tialization and control of tasks are below a millisecond.
In the graph can be noted that the migration of tasks do
not have significant influence on time for management.
However, in the execution of the first task (after system
boot), the management time is influenced for the startup
of the middleware services. Moreover, the graph shown that
even in the management of concurrent tasks (5 to 10 tasks),
the overload of the system is minimal.

VI. RELATED WORKS

The ISAM [6] project, as well as Gaia [14], originated
a middleware for pervasive environment management that
integrates the premises of grid computing, mobile computing
and context-aware computing. EXEHDA [2][7] middleware
creates and manages a virtual environment for the user, in
which applications are executed in a distributed and context-
adaptable way. However, it does not approach the concepts
of daily activities.

The concept of Task-based Computing was introduced by
the Aura project [3] so that the middleware can manage the
pervasive environment proactively in a way that the user can
keep the continuity of his activities, at the same time as he
moves from one place to the other. In this project, tasks are
modeled as collections of services; the service description
is used to find the necessary resources or reconfigure the
middleware to run the task. The Aura system is automated
and proactive, and it urges the user to perform his tasks
according to predefined and preprogrammed settings, that
is, it does not allow for the customization of tasks (ser-
vices), which increases the interference of the system in the
environment.

The Activity-based Computing [10] project brings a pro-
posal for the use of Task Based Computing in health care
environments. A framework was developed in this project
that provides the required infrastructure to perform services

483

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

that will support the features inherent to the health care
professionals activities. Thus, services can be initialized,
suspended, stored, resumed in any device and at any time,
as well as they can be sent to other users or shared among
different users. The project aims also to allow developers of
clinical applications to incorporate in its programs support to
mobility, interruptions, concurrent activities and cooperation.

Some ideas taken from such projects had some influence
in our work. We highlight the use of EXEHDA middleware
and the Activity-based Computing project, which guided the
definition of concepts related to tasks in the health care
area. However, as one can observe in Figure 5, none of the
projects focuses on the final user as the ClinicSpaces does.
This project differential is that it enables ophthalmologist
to customize tasks and balance the proactive execution with
the control over the execution of tasks.

Figure 5. A comparison among ClinicSpaces’ related works

VII. CONCLUSION

Pervasive computing promises ubiquitously support to
users in accomplishing their tasks. Hardware and networking
infrastructure to make the pervasive computing come true are
increasingly becoming a reality. While this scenario repre-
sents an attractive computational environment, it poses three
major challenges in the form of heterogeneity, dynamism,
and execution context changes, all these are intensified
because of user’s mobility. Our project, named ClinicSpaces
develops a pilot tool that will allow the physician to con-
figure/program computational tasks that will help him in
daily professional activities. Thus, we intend to minimize
the avoidance of these professionals with relation to the
use of computational systems which have a pre-established
behavior.

ClinicSpaces’ architecture is innovative in that the system
can be customized according to the user’s characteristics, in
a way that professionals can use the computational system as
if it were an assistant that would help him in his activities, in-
stead of imposing the way how he should perform his work.
In order to make such ideas real, the present study aimed
at adapting a pervasive space management middleware to
support tasks execution using EXEHDA, because it employs
a lot of strategies in its services to allow the adaptation
to the current state of the execution context, such as on-
demand adaptive service loading and dynamic discovery and
configuration.

The project is under development, it was implemented
but not yet tested by physicians. The actual utility will be

verified in a next field research. One of the contributions
of this work is the service architecture required to adapt
a pervasive environment management middleware to
the management of tasks in this environment, fulfilling
some requirements of activities-oriented computing to the
final user. Another outcome from this work is the pilot
prototype of an assistant (implemented as a middleware for
pervasive environment management) that helps physicians
in tasks management (daily activities). The next step of
our research is to assess the usability of this solution in
a real environment, after the insertion of the Pervasive
Electronic Health Care System (pEHS) and this architecture.

Acknowledgements – This work has been partially supported by Brazilians
Agencies FINEP/CNPq/MCT.

REFERENCES

[1] A. Ranganathan and R.H. Campbell, Supporting Tasks in a
Programmable Smart Home. In From Smart Homes to Smart
Care, v. 15. Amsterdam: IOS Press, 3-10, 2005.

[2] A. Yamin, I. Augustin, L.C. Silva, R.A. Real, and
C.F.R. Geyer, EXEHDA: adaptive middleware for building
a pervasive grid environment. In Frontiers in Artificial Intel-
ligence and Applications: Self-Organization and Autonomic
Informatics (I), vol. 135, pp. 203-219. IOS Press, 2005.

[3] D. Garlan, P. Steenkiste, and B. Schmerl, Project Aura:
Toward Distraction-free Pervasive Computing. In IEEE Per-
vasive Computing. New York, NY, 2002. pp. 22-31.

[4] G. Ferreira, I. Augustin, G.R. Librelotto, F.L. Silva, and
A.C. Yamin, Middleware for management of end-user pro-
gramming of clinical activities in a pervasive environment.
In Proceedings of the 2009 Workshop on Middleware for
Ubiquitous and Pervasive Systems. ACM New York, USA.
2009. pp 7-12.

[5] G.R. Librelotto, J.B. Gassen, M.C. Silveira, and L.O. Freitas,
OntoHealth - Um framework para o gerenciamento de ontolo-
gias em ambientes hospitalares pervasivos. In: II Workshop
on Pervasive and Ubiquitous Computing, 2008. pp. 31-42.

[6] I. Augustin, A.C. Yamin, L.C. Silva, R. Real, G. Frainer,
G. Cavalheiro, and C. Geyer ISAM: joing context-awareness
and mobility to building pervasive applications. In Mobile
Computing Handbook. I. CRC Press, New York, NY, 2004.

[7] I. Augustin, A.C. Yamin, and L.C. Silva, Building a Smart
Environment at Large-Scale with a Pervasive Grid Middle-
ware. In Grid Computing Research Progress. Nova Science
Publishers, Inc, 2008. pp. 182-186.

[8] J.B. Jorgensen and C. Bossen, Executable use cases: require-
ments for a pervasive health care system. IEEE Software.
21(2):34-41, 2004.

[9] J.E. Bardram, Hospitals of the Future: Ubiquitous Computing
support for Medical Work in Hospitals. In Proceedings of 5th
International Conference on Ubiquitous Computing, pp. 1-7.
2003.

484

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

[10] J.E. Bardram and H.B. Christensen, Pervasive Computing
Support for Hospitals: An overview of the Activity-Based
Computing Project. In IEEE Pervasive Computing, v. 6, issue
1, 44-51, 2007.

[11] J.E. Bardram and T.R. Hansen, Context-Based Workplace
Awareness. In Computer Supported Cooperative Work. v. 19,
issue 2, 105-138. Kluwer Academic Publishers. 2010.

[12] K.T. Unruh, M. Skeels, A. Civan-Hartzler, and W. Pratt,
Transforming clinic environments into information
workspaces for patients. In Conference on Human Factors in
Computing Systems. SIGCHI: ACM Special Interest Group
on Computer-Human Interaction. 2010. pp. 183-192.

[13] M. Kaenampornpan and E. O’Neill, Integrating History and
Activity Theory in Context Aware System Design. In Proceed-
ings of 1st International Workshop on Exploiting Context
Histories in Smart Environments, Munich, 2005.

[14] M. Roman, M. Román, C. Hess, R. Cerqueira, R.H. Campbell,
and K. Nahrstedt, Gaia: a Middleware Infrastructure to
Enable Active Spaces. In IEEE Pervasive Computing. New
York. 2002. pp. 74-83.

[15] U. Varshney, Pervasive Healthcare. IEEE Computer, 36(12):
138-140, 2003.

485

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

