
Tangible Applications for Regular Objects:

An End-User Model for Pervasive Computing at Home

Spyros Lalis
1
, Jarosław Domaszewicz

 2
, Aleksander Pruszkowski

2
, Tomasz Paczesny

2
,

Mikko Ala-Louko
3
, Markus Taumberger

3
, Giorgis Georgakoudis

1
, Kostas Lekkas

1

1
CERETETH

&

University of Thessaly

Volos, Greece

{lalis, ggeorgak, kolekkas}@inf.uth.gr

2
 Institute of Telecommunications

Warsaw University of Technology

Warsaw, Poland

{domaszew, apruszko,

t.paczesny}@tele.pw.edu.pl

3
 VTT Technical Research

Centre of Finland

Oulu, Finland

{mikko.ala-louko,

markus.taumberger}@vtt.fi

Abstract—This paper describes an end-user model for a

domestic pervasive computing platform formed by regular

home objects. The platform does not rely on pre-planned

infrastructure; instead, it exploits objects that are already

available in the home and exposes their joint sensing, actuating

and computing capabilities to home automation applications.

We advocate an incremental process of the platform formation

and introduce tangible, object-like artifacts for representing

important platform functions. One of those artifacts, the

application pill, is a tiny object with a minimal user interface,

used to carry the application, as well as to start and stop its

execution and provide hints about its operational status. We

also emphasize streamlining the user’s interaction with the

platform. The user engages any UI-capable object of his choice

to configure applications, while applications issue notifications

and alerts exploiting whichever available objects can be used

for that purpose. Finally, the paper briefly describes an actual

implementation of the presented end-user model.

Keywords—Sensor and actuator networks, ubiquitous and

pervasive computing, smart homes, system and application

management, user interaction, tangible interfaces.

I. INTRODUCTION

The continuous technological developments in the area of
embedded computing and networking make it possible to
digitally augment regular home objects with computing,
sensing, actuation and communication capabilities, making
them not only smart but also capable of cooperation with
each other. In the near future, the household is likely to be
populated with a host of such objects, ranging from usual
appliances like a refrigerator, an electric kettle, or a TV, to
infrastructural elements like doors, windows, and lamps,
down to small devices such as temperature sensors, smoke
detectors, and motion sensors.

Significant potential for advanced functionality can be

created by transforming a collection of digitally-augmented

regular objects into an open pervasive computing platform

that allows home automation applications to exploit the

different sensing and actuation capabilities of participating

objects in a combined way. For instance, one application

could employ temperature sensors and smoke detectors to

infer the presence of fire. Another application could save on

the electricity bill by controlling the operation of lights and

appliances based on the user’s activity and demand-response

offers of the electric utility. Yet another application could

double check that a window is not left open unintentionally

while the thermostat setpoint for the heater located in the

same room is above the outside temperature.

A multi-object computing platform, as described above,

can be implemented by letting the nodes embedded in

objects expose the local sensing and actuating capabilities in

a suitable way, as well as communicate with each other to

provide other middleware-level services to the applications.

However, the underlying software and hardware is only a

part of the challenge. An equally important aspect is to

consider how the end-user perceives and interacts with such

a platform. By no means should such a platform be yet

another user-attention hungry technology, introducing

complex or awkward processes of installation, configuration

and administration. This is absolutely crucial if one wishes

for it to be embraced by the general public.

This paper describes an end-user model for multi-object

computing platforms based on regular digitally-augmented

home objects. In the spirit of ubiquitous computing [1], our

work is based on the premise that the platform should

require the end-user to expend as little mental energy (and

be bothered with explicit manual input and intervention) as

possible. The main contributions of the end-user model are

as follows. First, we advocate a low-profile, incremental

process of platform formation. Second, we introduce

tangible, object-like artifacts, such as the community key and

the application pill, to represent important platform entities

and functions. Third, we streamline the conventional user

interaction with the platform, for the cases that cannot be

handled using these special objects. The paper also

describes a concrete implementation which is being pursued

in the POBICOS project [2]. Notably, the presented end-

user model is largely platform-independent and could be

realized using different combinations of networking,

hardware and software technologies.

The rest of the paper is organized as follows. Section II

gives an indicative scenario and lists the main elements of

the envisioned multi-object pervasive computing platform.

385

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Section III introduces the end-user model, with focus on the

special tangible artifacts and the aspect of user interaction.

Finally, Section IV outlines the implementation in the

POBICOS project, and Section V discusses related work.

II. VISION

Our vision of how pervasive computing could be
accomplished in the home based on regular objects is
illustrated via the following scenario:

Maria and Peter decide to buy some new appliances.

While browsing the stores they notice that some items have a
“community-enabled” sticker. A salesperson explains that
this is a new technology which makes it possible for regular
objects to cooperate. The couple decides to buy a kitchen
stove and a TV. They are also given a special community-
enabled “key” object for free. At home, after reading the
(surprisingly short) manual, they bring the key object close
to the TV and press a button to register it with the platform.
The process is repeated for the stove. As nothing fancy
happens, the couple quickly forgets about this technology.

Weeks later Peter buys a cook book. He notices that it
comes with a small community-enabled object labeled as
“the new home safety application pill by CoolApps Ltd”. He
registers the pill object following the usual process, and then
pushes a button on the pill to start the application.

One day Peter is baking a cake. He goes to the balcony to
get some fresh air and stays there for a while. Suddenly, he
hears a rather unusual alarm tone coming from the bedroom.
As Peter enters the house, he sees a message on the TV
screen informing him about a problem with the stove. He
rushes back to the kitchen and is relieved to see that the stove
turned itself off just before his cake was about to turn into
coal. Peter recalls that some time ago Maria bought a new
community-enabled enabled alarm clock for their bedroom
and, fortunately, registered it with the platform.

 Peter recalls that, according to the manual, the home
safety application comes with some pre-set parameters that
can be modified to customize its behavior. Peter uses the TV
to browse these settings, and decides to change the default
policy for alerts to enable the engagement of voice messages.

This simple scenario captures, to a large extent, several

key elements of our vision. These are described in more
detail in the following.

A. Unplanned, incremental formation from regular objects

The user forms the multi-object computing platform in an
incremental way, by adding objects to it. This can be done at
any point in time and without thinking about the objects’
digital augmentation, a particular platform configuration, or
a specific application. The user buys objects in order to
employ them according to their natural functionality (a lamp
is bought and placed at a particular location to light that
area), not because they can contribute to the platform. Most
often, the user is not even aware of the capabilities the object
may provide to the platform. Contrary to a system that is
engineered for a specific purpose, there is no a priori
specified arrangement or reliance on infrastructure.

B. Open, multi-application platform

The user can add new and remove existing applications

at any point in time. Multiple applications may co-exist and

run concurrently, subject to the resource constraints of the

objects that make up the platform. Like in conventional

systems, applications are typically developed by third

parties that are not affiliated with object manufacturers.

C. Tangible artifacts for straightforward administration

Special, object-like, physical artifacts are used to embody
important platform entities and functions which the user
should be aware of and to which the user should have
immediate access. For instance the “key” is required to add
and remove objects to/from the platform and the “application
pill” is used to start/stop the execution of a particular
application. Making special entities and functions tangible
and representing each of them with a different physical
object relieves mental ambiguities (as to which object should
be used to perform a function) and simplifies interaction (a
dedicated, single-function object can have a tuned interface
compared to a general-purpose object that is loaded, perhaps
even over-loaded, with several different functions).

D. Streamlined user interaction

Ideally, user interaction occurs solely via the tangible
artifacts introduced for platform formation and application
management. However, in practice, additional interaction is
often needed: (i) to let applications notify or alert the user;
(ii) to let the user configure applications. The former is a
one-way communication towards the user; the expected user
reaction is to act in the real world, not to interact with the
platform or application. In the latter case, the user, not the
platform, is in charge of the interaction, i.e., the user chooses
when to engage in the interaction and which object to use to
do the setup. Importantly, in both cases, the platform is self-
contained, relying on the native interaction capabilities of
regular objects that are already available in the home. There
is no reliance on computer-like objects such as a PC, a PDA
or a mobile phone. While such objects are allowed to
participate in the platform, they are not required to support
user interaction.

III. END-USER MODEL

Along the lines of Section II, we propose an end-user
model that describes, in a more formal and structured way,
how the user perceives and interacts with the platform. The
model consists of (i) basic terminology, (ii) special objects
the user must be aware of, and (iii) a generic interaction
pattern for the more conventional aspects of user interaction
with the platform. The model is presented in a canonical
way, striving for a clean separation of entities, roles and
functionalities. Relevant use cases are described with
reference to the scenario given in Section II.

A. Basic terminology

1) Community-enabled object: a regular object that
provides sensing, actuation, and computing capabilities to
the platform. Community-enabled objects can be marked,

386

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

e.g., with a sticker, so that the user can distinguish them
from objects that are not community-enabled.

2) Object community: a collection of community-

enabled objects in a home participating in the same platform

(Figure 1). An object community is formed by adding and

removing community-enabled objects in an explicit yet

dynamic fashion. It represents a well-defined scope in terms

of security vis-à-vis objects that are not part of the

community, as well as in terms of the operational range of

applications that run in the community.

B. Tangible artifacts

1) The community key object: The key object is used to

add and remove other objects to/from the community (it also

generates and transfers security-related keys and credentials

in the background). It is the first object that must be

acquired and it is mandatory to form an object community

and to control its membership. The prototypical user

interface for the key object is (Figure 2a): (i) a keypad for

entering the name and PIN for an object community; (ii)

two buttons, for triggering the addition and removal of

objects; (iii) a LED for indicating the status and result of the

last action; and (iv) close range communication ability with

other objects for exchanging data in a safe manner without

requiring a shared secret.

Use case: Initializing the key object

Peter and Maria switch on the community key for the first

time. The LED on the key turns red. They enter a name and

a PIN of their choice for their object community. The LED

turns green, indicating it is ready to be used.

Use case: Adding an object to the community

Maria switches on the key and enters the name and PIN of

the object community. The LED on the key turns green. She

brings the key close to a newly purchased, community-

enabled alarm clock and presses the “add” button. The LED

on the key blinks for a few seconds and then turns green.

Maria successfully added an object to the community.

Use case: Removing an object from the community

Peter turns on the key and enters the name and PIN. He

brings the key close to the alarm clock and presses the

“remove” button. The LED on the key blinks for a few

seconds and then turns green. Peter successfully removed

the alarm clock from the community.

.

2) The application pill object: Each applications is

packaged in a distinct community-enabled object, called the

application pill. The pill serves as a deployment and control

vehicle for the application: it is used to start/stop application

execution in the community and provides basic status

information about the operation of the application. The user

conceptually identifies the pill which the application itself;

in other words, for the user, the pill is the application.

Just like any other object, a pill must be added to the
object community via the key before starting the application.
The prototypical interface for the pill is (Figure 2b): (i) a
push-button or switch to start/stop the application; and (ii) a
LED for indicating the status of the application. One can
imagine application pills being sold in stores and kiosks or
given out for free bundled with products related to the
application. At home, an application pill can be placed at
location that allows for a casual periodic monitoring of its
status LED.

Use case: Starting an application

Peter gets a home safety application pill object. He adds the

pill to the community following the usual process. He then

pushes the pill button to start the application. The LED on

the pill blinks for several seconds and eventually turns

green, indicating that the application is running.

Figure 1. An indicative object community: bidirectional arrows

indicate community-enabled objects, the dashed line around

objects indicates the boundary of the community.

Figure 2. Tangible community artifacts: (a) key object,

(b) application pill object, (c) panic button object.

 (a) (b) (c)

387

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Use case: Stopping an application

Peter wishes to stop the home safety application. He picks

the application pill and depresses its button. The LED on the

pill starts blinking. After a few seconds it turns off,

indicating that the application has been stopped.

3) The panic button object: This object is used to

forcefully terminate all applications running in the

community at the push of a single button (Figure 2c). This

could be required in case applications start behaving

erratically or if the user feels uneasy about the overall

platform behavior. The panic object can be likened to the

master power switch in the electricity panel of a house or

the reset button of a personal computer. As already

mentioned, each application can be stopped by depressing

the button of the respective pill. However, searching for and

interacting with each individual pill can be quite stressful if

the user is in a hurry. What’s more important, stopping an

application via the pill corresponds to a soft shutdown,

under the control of the application program, which is

clrealy undesirable when the application is malfunctioning.

Use case: Killing all applications

Maria notices an obscure object behavior without being able

to infer what causes the problem. She quickly walks to the

hallway and presses the button of the panic object attached

on the main electricity panel. Soon, the weird behavior stops

and the LEDs of all application pill objects turn off. Being

more relaxed, Maria arranges for the technician to drop by

the next day in order to get a closer look at the problem.

C. More convetional user interaction

A typical community will include several objects that do
not have considerable user interface capabilities. In fact,
objects like a window, a lamp or a motion detector do not
have any proper user interface at all. On the other hand,
objects like a TV or a digital frame can support (very) rich
user interaction. Our approach is to rely on objects with
advanced UI capabilities for configuring applications, while
at the same time letting applications engage even simple to
notify or alert the user. The key elements of our user
interaction scheme are as follows.

1) Notifications & alerts: Applications may occasionally

need to request the user’s attention; this is achieved through

notifications and alerts. The difference between the two is

that notifications convey a verbal message whereas alerts do

not carry such information (the user is responsible for

finding out the cause of the alert). Notably, the actual form

of notifications and alerts depends on the object that

provides this function, each object supporting a different,

perhaps complementary, flavor. Even simple objects like a

lamp or a doorbell can contribute in this respect, especially

for alerts, e.g., by blinking and respectively ringing at a

certain alarming pattern. Of course, more complex objects

with audiovisual capabilities, such as a TV or a radio, can be

employed to make notifications via text or voice messages.

Use case: Being alerted/notified by an application

Peter’s alarm clock in the bedroom and his wristwatch start

beeping intensely (alerts). He walks into the living room and

notices a message flashing on the TV screen warning him

about a possible hazard with the stove (a notification).

2) Application setup: Once started via the pill, an

application will ideally run without any interaction and

rarely issue alerts or notifications. However, in the general

case, some setup will be required, e.g., to change default

thresholds or specify user preferences. For this purpose,

each object that has a sufficiently powerful user interface is

expected to allow the user to browse the list of applications

running in the object community, and inspect or modify

their settings. The setup process follows the native

interaction style and look-and-feel of the object that

provides the application setup function (consider differences

between a remote-driven TV and a mobile phone with a

touch-screen). Importantly, the setup can be accomplished

with any UI-capable object, and the user can freely choose

the one that suits him best.

Use case: Configuring an application

Peter decides to inspect the settings of the home safety

application using the TV. He presses the “community

function” button on the remote and browses the application

list shown on the TV screen. He selects the home safety

application, reviews its settings and decides to change the

default policy for alerts. When the change is confirmed,

Peter presses the “community function” button on the

remote and the setup window disappears from the screen.

IV.IMPLEMENTATION

The presented platform concept and end-user model is

currently being implemented in the POBICOS project [2].

Several ideas and features of POBICOS have their roots in

ROVERS [3], which is a predecessor of this work. This

section gives an overview of the POBICOS platform and

briefly describes the system-level mechanisms used to

achieve the end-user functionality described in the previous

sections.

A. POBICOS platform overview

The POBICOS platform follows a middleware approach

whereby each object supports a standard API. Objects may

feature different middleware extensions depending on their

sensing, actuating and computing capabilities. The

application programming model is based on mobile code

units, called micro-agents, which execute on top of a VM

environment [4]. Each application typically consists of

several cooperating micro-agents that spread in the

community to exploit the capabilities of objects (Figure 3).

388

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The POBICOS middleware is implemented on top of

TinyOS v2 for the Imote2 from Crossbow using an eZ430-

RF2480 ZigBee subsystem from Texas Instruments for the

wireless communication between nodes. Regular objects are

prototyped using Imotes. A generic adapter box with an

Imote and a power level converter (Figure 4a) is used to

POBICOS-enable objects and external systems via RS232.

B. Adding and removing objects

The key object, implemented on an Imote, maintains a
registry with the addresses of all objects that are part of the
community. The registry is updated when an object is added
to or removed from the community. Registry updates can be
propagated to the community in an asynchronous fashion by
several objects (not just the key). To avoid inconsistencies,
the key assigns to each update a monotonically increasing
version number, enabling objects to detect duplicates and
take into account membership changes in the right order.

The close-proximity communication between the key

and the object being added/removed is implemented using

the short-range mode of the 802.15.4 radio on the Imote (in

principle, any near-field communication technology can be

used for this purpose). When the add/remove button is

pressed, the key establishes a connection with any object

that is close-enough to respond, retrieves the object’s

address and performs the requested interaction (updating the

registry as needed). Provided the range is small-enough, this

guarantees that the proper object will be addressed but also

that no other object can eavesdrop on the conversation.

Objects that are part of the same community encode and

decode the messages exchanged between them over ZigBee

using a community-wide encryption key. This is generated

by the key object based on the name and PIN chosen by the

user, and is transmitted to each object as part of the addition

process. More details about the security approach and

respective key and registry management protocols in

POBICOS can be found in [5].

C. Starting and stopping applications

The application pill object is also implemented using an
Imote. It contains the entire application code bundle, i.e., the
binaries of all micro-agents of the application. The bundle is
loaded on the Imote from a PC via the serial port. Pressing
the application pill button leads to the instantiation of the
micro-agents on the local or remote nodes (under the control
of the application program). Depressing the button causes the
micro-agents to be removed.

D. Notification and alerts

The POBICOS middleware features special instructions
for notifying and alerting the user. Both types of instructions
range from a high abstraction level such as “alert using
whatever means possible” to more specific levels like “alert
visually” or “alert by siren sound”. Some objects support the
notification and alert instructions in a manner that is
compatible with their natural/native functionality. For
example, in the current prototype an alarm can be raised by a

variety of objects such as a TV (controlled via a POBICOS-
enabled set-top-box; Figure 4c), a lamp or a beeper (both
controlled via a POBICOS-enabled power plug; Figure 4b).

When a micro-agent invokes an abstract instruction at
runtime, it is mapped to a more specific instruction supported
by its host. Thus, applications using abstract notification and
alert instructions can exploit a wide range of objects, which
may provide different specific instructions; this obviously
comes at the price of having less control on the way the user
will be actually notified/alerted. It is up to the programmer to
decide what the meaningful tradeoff is for each occasion.

Last but not least, the POBICOS middleware provides a
primitive for instantiating multiple copies of micro-agent on
as many objects support the instruction(s) invoked by it. This
allows an application to engage several objects at once for
the purpose of alerts and notifications, thereby increasing the
probability of catching user attention. It is important to note
that this does not require any additional effort on behalf of
the programmer.

E. Application setup

The setup functionality is implemented based on (i) a
distributed protocol for fetching/updating the configuration
settings of all currently running applications, and (ii) a user
interface front-end for browsing and changing these settings.
The first component is part of the middleware core running
on the Imote. The second component is optional and needs to
be developed separately for each object, depending on its UI
capabilities. At this point, a front-end is available for the PC
which communicates with the first middleware component
on the Imote via the serial port. Proper UI front-ends are
under development for a TV set-top-box and a mobile phone.

V. RELATED WORK

In our model the user defines the operational and security
scope of the community by adding and removing objects via
the key object in a conscious and explicit way. The issue of
knowing which devices belong to the same system scope
also arises in mobile ad-hoc systems that allow wearable and
portable devices to dynamically participate in a personal area
network, e.g., the 2WEAR system [6] and the Spartan
BodyNet [7]. These systems assume that devices have been a
priori assigned a unique id indicating their owner and already

Figure 3. POBICOS platform concept: objects feature different

middleware extensions based on their capabilities, application

micro-agents are placed on available objects to exploit them.

389

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

hold security keys that can be used to encrypt data and to
perform a challenge-response scheme. In general, ad-hoc
wireless technologies provide network-level association
mechanisms based on a shared secret but do not specify how
a device ends-up with this information. ZigBee implements
its own security scheme but the transmission of keys from
the coordinator to a new device that joins the network occurs
via an ordinary open message exchange over wireless.

Significant research has been done on many aspects of
user interaction in smart spaces/environments, e.g., [8] [9].
Of particular importance are alternative methods of input and
control, e.g., see [10] for controlling devices via hand-based
gestures, or [11] for supporting voice-based interaction with
appliances. Our end-user model does rely on advanced UI. In
fact, it is designed to exploit regular objects that are likely to
be part of a household anyway, via modes and modalities the
user is already familiar with. Moreover, it does not focus
only on UI-capable objects but allows even simple objects to
be engaged for notifying/alerting the user.

The vision of ubiquitous computing [1] is for the system
to provide the desired functionality without distracting the
user. Our model is conceived along these lines, requiring
user intervention only for application configuration, which
happens under user control; the user decides when to start
such an interaction and is free to pick any UI-capable device
for this purpose. Notification and alarms are introduced as
first-class aspects of domestic computing since they play a
key role in raising user awareness.

Tangible interfaces and the importance of having special
objects dedicated to special functions have received a lot of
attention in the HCI domain, see [12] for an overview. In the
spirit of the community key proposed in our model, [7]
discusses the use of a lock-shaped object to enable privileged
functionality in a wearable system, while [13] proposes a
wristwatch as an authentication device for ubiquitous service
access. Also, the concept of the application pill has some
similarities with the 2WEAR application wallet [6] and the
personal server [14]. The former carries the code/state of
applications that exploit I/O peripherals found in the personal
area network. The latter serves as a personal data drive that
can connect to applications running on nearby PCs to
access/process this data. The main difference is that each pill
is dedicated to a single application and features a minimal UI
for controlling and monitoring its execution hence the pill is
in fact a tangible representation of the application itself.

ACKNOWLEDGMENT

This work is funded by the 7
th

 Framework Program of the
European Community, project POBICOS, FP7-ICT-223984.

REFERENCES

[1] M. Weiser, “The Computer of the 21st Century”, in Scientific
American, 256(3), 1991, pp. 78-89.

[2] POBICOS project web site. http://www.ict-pobicos.eu/

[3] J. Domaszewicz , M. Roj, A. Pruszkowski, M. Golanski, and K.
Kacperski, “ROVERS: Pervasive Computing Platform for
Heterogeneous Sensor-Actuator Networks”, Proc. WoWMoM 2006,
pp. 615-620.

[4] A. Pruszkowski, T. Paczesny, and J. Domaszewicz, “From C to VM-
targeted Executables: Techniques for Heterogeneous Sensor/Actuator
Networks”, Proc. WISES 2010, in press.

[5] P. Tarvainen, M. Ala-Louko, M. Jaakola, I. Uusitalo, S. Lalis, T.
Paczesny, M. Taumberger, and P. Savolainen, “Towards a
Lightweight Security Solution for User-Friendly Management of
Distributed Sensor Networks”, Proc. ruSMART 2009, pp. 97-109.

[6] S. Lalis, A. Savidis, A. Karypidis, J. Gutknecht, and C. Stephanides,
“Towards Dynamic and Cooperative Multi-Device Personal
Computing”, in The Disappearing Computer, LNCS 4500, 2007,
Springer, pp. 182-204.

[7] K. Fishkin, K. Partridge, and S. Chatterjee, “Wireless User Interface
Components for Personal Area Networks”, in IEEE Pervasive
Computing, 1(4), 2002, pp. 49-55.

[8] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer,
“EasyLiving: Technologies for Intelligent Environments”, Proc. HUC
2000, pp. 97-119.

[9] B. Johanson, A. Fox, and T. Winograd, “The Interactive Workspaces
Project: Experiences with Ubiquitous Computing Rooms”, in IEEE
Pervasive Computing, 1(2), 2002, pp. 67-74.

[10] ASM. Rahman, M. Hossain, J. Parra, and A. El Saddik, “Motion-path
based Gesture Interaction with Smart Home Services”, Proc. ACM
MM 2009, pp. 761-764.

[11] T. Kostoulas, I. Mporas, T. Ganchev, N. Katsaounos, A. Lazaridis, S.
Ntalampiras, and N. Fakotakis, “LOGOS: A Multimodal Dialogue
System for Controlling Smart Appliances”, in New Directions in
Intelligent Interactive Multimedia, SCI 142, 2008, Springer, pp. 585-
594.

[12] K. Fishkin, “A Taxonomy for and Analysis of Tangible Interfaces”,
in Personal and Ubiquitous Computing, 8(5), 2004, pp. 347-358.

[13] J. Al-Muhtadi, D. Mickunas, and R. Campbell, “Wearable Security
Services”, Proc. ICDCS Workshops 2001, pp. 266-271.

[14] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light,
“The Personal Server: Changing the Way we Think about Ubiquitous
Computing”, Proc. Ubicomp 2002, pp. 194 - 209.

Figure 4. POBICOS-enabling real objects: (a) the RS232 adapter; (b) the power socket; (c) the TV set-top-box.

(a) (b) (c)

390

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

http://www.ict-pobicos.eu/

