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Abstract—Cognitive radio networks operating in the digital
television white spaces are of particular interest for their practical
applications. In this paper, we review several parametric and non-
parametric test statistics commonly used in spectrum sensing.
Both single-antenna as well as multiple antenna techniques are
considered. For a selected subset of these techniques, an accurate
performance assessment is carried out in the presence of a
DVB-T primary signal generated using a software-defined real-
time transmitter. Sensing performance is assessed both through
Monte Carlo simulation and using a real software-defined radio
implementation. Different channel profiles are considered. The
obtained results show the performance of each algorithm in
terms of detection probability under fixed false alarm rate and of
Receiver Operating Curve (ROC). Moreover, these results permit
to establish clear relationships between the considered algorithms
in case of DVB-T primary signals.

Keywords-Cognitive radio networks; spectrum sensing; white
spaces; software-defined radio; DVB-T; eigenbased detectors.

I. INTRODUCTION

The following paper is an extended version of a previous
work that the same authors presented at COCORA 2013 [1].
Here, a wider analysis is performed and a broader set of results
is shown.

The ever increasing demand for higher data rates in wire-
less communications is strongly driving the search for new
communication technologies able to exploit transmission op-
portunities wherever available. Unused channels in licensed
radio-frequency (RF) bands, like those assigned to TV broad-
casters, are one of the most attractive opportunities, since these
enjoy favorable propagation conditions and feature fairly large
bandwidths. As a matter of fact, some of the most relevant
developments in this context are aimed at exploiting the so-
called TV white spaces to provide broadband Internet access
or other kind of wireless services through high-speed wireless
communications carried out in the unused TV channels.

The cognitive radio concept [2] has been readily applied
to TV white spaces networks and today white-space cognitive
systems are one of the most active research fields in cognitive
radio networks.

Some of the fundamental features and requirements of
white-space cognitive systems include their ability to avoid
interference to those who hold the right to use a certain band
(the Primary Users, PU), while simultaneously performing
high-speed communications. Such systems must as well be
able to harmoniously coexist with other cognitive white-space

systems (also called Secondary Users, SU) who operate on
an non-interference basis with respect to PUs and may be
operating in the same area. To these purposes, cognitive
radio networks and the systems of which they are composed
need to gain awareness of the surrounding electromagnetic
environment. This is typically performed by using dedicated
subsystems or relying on data provided by external entities.

Remarkable techniques used to gain said awareness include
the access to geographically-referenced data bases containing
spectral occupation information, spectrum sensing techniques,
or a combination thereof. In this paper, we are mainly
concerned with the investigation, analysis and performance
evaluation of spectrum sensing techniques for white-space
cognitive radio systems.

According to the cognitive radio paradigm, each node in
a CR network must be equipped with an efficient spectrum
sensor [3] a unit that makes the node able to gain aware-
ness of the available transmission opportunities through the
observation of the surrounding electromagnetic environment
in a given range of frequencies. The sensor’s ultimate goal
consists in providing an indication to the node regarding
whether a primary transmission is taking place in the observed
channel. Such indication is determined as the result of a binary
hypothesis testing experiment wherein hypothesis H0 (H1)
corresponds to the absence (presence) of the primary signal.
Thus, the sensing unit collects 1 ≤ n ≤ N samples of kind

y(n)|H0
= w(n) (1)

y(n)|H1
= x(n) + w(n), (2)

where x(n) are samples of the primary signal as it is received
by the spectrum sensor and w(n) are noise samples.

Given the vector y = (y(1), ..., y(n), ..., y(N) of acquired
samples, the sensing algorithm computes a test statistics
T (y) and compares it against a predefined threshold θ. The
performance of each detector is usually assessed in terms of
probability of detection Pd and probability of false alarm Pfa

Pd = P(T (y) > θ|H1) (3)
Pfa = P(T (y) > θ|H0), (4)

as a function of the signal-to-noise ratio (SNR) ρ, which is
defined as

ρ =
E‖x(n)‖2
E‖w(n)‖2 . (5)
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Several methods have been proposed for the computation of
the test statistics: a comprehensive description can be found
in [4] and references therein. In this paper, we consider a
subset that includes most of the widely used algorithms:
energy detection, multi-antenna eigenvalue based techniques,
either under known or unknown noise variance hypothesis,
and techniques exploiting specific signal characteristics, like
the lagged-autocorrelation technique used to detect the cyclic
prefix of OFDM signals [5][6][7].

Non-parametric methods are generally applicable to any
kind of primary signal, since these methods do not make any
assumption on the characteristics of such signal. Parametric
methods, instead, assume a partial knowledge of some of the
primary signal characteristics. The parametric method herein
considered (lagged autocorrelation) has been applied to OFDM
signals with cyclic prefix, but it can be straightforwardly
applied to any other kind of cyclostationary signal, i.e., to
almost all digitally modulated signals.

The main contributions of this paper are (i) an introductory
review of the most relevant spectrum sensing algorithms, (ii)
the application of such algorithms to real DVB-T signals gen-
erated using a software-defined real-time transmitter [8], (iii)
the application of different realistic channel profiles and (iv)
the complexity assessment performed through the software-
radio implementation of the considered sensing algorithms.
The algorithms’ performance and complexity are evaluated
and compared in realistic conditions, providing useful results
for practical realizations.

II. PRIMARY SIGNAL

The DVB-T standard [9] specifies a set of coded OFDM
transmission schemes to be used for broadcasting of multi-
plexed digital television programs.

The transmitted signal consists of a sequence of fixed-
duration OFDM symbols. A cyclic prefix (CP) is prepended
to each symbol in order to avoid inter-symbol interference
over frequency-selective fading channels. The most relevant
parameters of DVB-T signals are shown in Table I.

The signal bandwidth is approximately 7.61 MHz, with
an intercarrier frequency spacing of 8MHz. A subset of the
available 2048 subcarriers (in 2k mode) or 8192 subcarri-
ers (in 8k mode) are used to carry higher layer data and
PHY-layer signalling information. The latter consists of pilot
sequences, either allocated to fixed subcarriers (continual
pilots) or scattered throughout OFDM symbols according to
a periodic pattern, which are used for channel estimation at
the receiver side, and Transmission Parameter Signaling (TPS)
information, wherein encoded information about the current
transmission parameters used on data subcarriers is delivered.

OFDM symbols with CP are grouped into frames and
superframes: each frame consists of 68 symbols and each
superframe consists of 4 frames.

In our study, we used a real encoded and modulated MPEG
transport stream (TS) with code rate 5/6, 64-QAM constella-
tion and CP ratio 1/4. The resulting bit rate is approx. 24.88

TABLE I
MAIN PARAMETERS OF DVB-T.

2k mode 8k mode
Symbol duration (TU ) 224µs 896µs

Guard interval duration (∆) 7− 56µs 28− 224µs
Number of active subcarriers 1705 6817
Subcarrier spacing (approx.) 4464Hz 1116Hz
CP duration ratio (∆/TU ) 1/4, 1/8, 1/16, 1/32

Constellations QPSK, 16-QAM, 64-QAM
Code rate 1/2, 2/3, 3/4, 5/6, 7/8

Mbits/s. At the sensing unit, the DVB-T signal was sampled
at the nominal rate of 64/7 Msamples/s.

A. DVB-T signal characteristics

As a common assumption in the literature on spectrum
sensing, the primary signal is modeled as a Gaussian pro-
cess. Fig. 1 shows that, in the case of DVB-T signals, this
assumption is well motivated. In fact, Fig. 1(a) shows the
pdf of the real and imaginary parts of the DVB-T signal’s
complex envelope. Clearly, the Gaussian distribution is very
well approximated. A more accurate evaluation is provided
in Fig. 1(b), where the quantile-quantile plot of the DVB-T
distribution vs. a zero-mean Gaussian distribution with same
variance is shown.

B. Channel characteristics

Let us assume that the primary signal is detected
through K sensors (receivers or antennas). Let y(n) =
[y1(n) . . . yk(n) . . . yK(n)]

T be the K × 1 received vector at
time n, where the element yk(n) is the n-th discrete baseband
complex sample at receiver k.

Typically, a flat Rayleigh fading channel is considered in the
literature. In such case, the received signal can be modeled as
a linear mixture model of kind

y(n) = hx(n) + v(n), (6)

where h is the K-element channel vector of size K×1 whose
elements hn ∼ NC(0, σ

2
h) are mutually independent. Moreover

we apply the following normalization:
K∑

n=1

hnh
∗
n = K. (7)

Moreover, v(n) is the additive white Gaussian noise dis-
tributed as NC(0K×1, σ2

vIK×K).
In order to assess the performance of the considered al-

gorithms in a more realistic case, we used a frequency- and
time-selective channel model, the 6-path Typical Urban (TU6)
mobile radio propagation model developed by the COST 207
European project [10]. This profile is a frequency- and time-
selective Rayleigh fading channel model. Given x(t) and y(t)
the input and output signal respectively, it can be expressed
as follows:

y(t) =

M∑

i=1

γie
−jθix(t− τi), (8)

where:



111

International Journal on Advances in Telecommunications, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/telecommunications/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

−250 −200 −150 −100 −50 0 50 100 150 200 250

0

2

4

6

·10−3

P
ro
b
ab

il
it
y

DVB-T real part

Gaussian pdf

−250 −200 −150 −100 −50 0 50 100 150 200 250

0

2

4

6

·10−3

Amplitude

P
ro
b
ab

il
it
y

DVB-T imaginary part

Gaussian pdf

(a) Estimated probability density function.
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(b) Quantile-quantile plot.

Fig. 1. Statistics of the DVB-T signal.

- M is the number of paths equal to 6;
- γi is the average path gain of the ith path (listed in

Tab. II-B);
- θi is the phase shift from scattering of the i’th path,

modeled as a uniformly distributed random variable in
[−π, π];

- τi is the relative delay of the ith path (listed in Tab. II-B);
where the classical doppler spectrum is defined as:

G(f ; fD) =
1√

1− (f/fD)2
. (9)

In our simulation the Doppler spread fD has been set to 10
Hz, corresponding to a pedestrian mobile profile.

TABLE II
TYPICAL URBAN PROFILE (TU6).

Tap number Delay τi (µs) Average gain γi (dB)

1 0.0 -3
2 0.2 0
3 0.5 -2
4 1.6 -6
5 2.3 -8
6 5.0 -10

III. TEST STATISTICS

As explained in the previous section, the detector
builds its test statistic from K sensors (receivers or
antennas) and N time samples. The symbol y(n) =
[y1(n) . . . yk(n) . . . yK(n)]

T denotes the K×1 received vector
at time n, where the element yk(n) is the n-th discrete
baseband complex sample at receiver k.

The noise is modeled as an additive white Gaussian noise
process with zero mean and variance σ2

v = N0/2, N0 being
the two-sided power spectral density of noise.

The received samples are stored in a K ×N matrix:

Y , [y(1) . . .y(N)] . (10)

The sample covariance matrix R is:

R ,
1

N
Y Y H . (11)

We will denote by λ1 ≥ . . . ≥ λK the eigenvalues of R,
sorted in decreasing order.

The usual criterion for comparing two tests is to fix the false
alarm rate Pfa and look for the test achieving the higher Pd .
The Neyman Pearson (NP) lemma [11] is known to provide the
Uniformly Most Powerful (UMP) test, achieving the maximum
possible Pd for any given value of Pfa . The NP criterion is
applicable only when both H0 and H1 are simple hypotheses.
In our setting this is the case when both the noise level σ2

v

and the channel vector h are a priori known. The NP test is
given by the following likelihood ratio:

TNP =
p1(Y;h, σ2

s , σ
2
v)

p0(Y;σ2
v

. (12)

For the considered model, the expressions of p0 and p1
can be found in [12]. The NP test provides the best possible
performance, but requires exact knowledge of both h and
σ2. For most practical applications, the knowledge of h is
questionable. The noise variance is somewhat easier to know:
since we only consider thermal noise, if the temperature is
constant some applications may possess an accurate estimation
of it.

Many spectrum sensing algorithms have been proposed in
the literature. Reviews and comparisons can be found, for
example, in [4][13][14]. In this paper, we consider some of the
most popular tests, with the aim of comparing them against
true DVB-T signals. The considered tests are divided in three
classes.
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A. Non-parametric tests, known noise variance

These tests are non-parametric, i.e., do not exploit the
knowledge of the signal characteristics. An excellent esti-
mation of the noise variance σ2

v is supposed (obtained, for
example, during a long training phase).

Roy’s Largest Root Test (RLRT): this method tests the
largest eigenvalue of the sample covariance matrix against the
noise variance. The test statistic is

TRLRT =
λ1
σ2
v

. (13)

The RLRT was originally developed in [15]. Performance
analysis can be found, for example, in [16][17][14].

Under H1, the asymptotic behavior of λ1/σ2
v has a phase

transition phenomenon [18], which depends on the SNR. In
case of a single signal the critical value can be expressed
as [19]:

ρcrit =
1√
KN

. (14)

If the SNR ρ is lower than the critical value, the limiting
distribution of λ1/σ2

v is the same as that of the largest noise
eigenvalue, thus nullifying the statistical power of a largest
eigenvalue test. If the SNR is higher, the largest eigenvalue
λ1 depends on the signal plus noise power, while the smallest
K1 eigenvalues depends on the noise only. The optimality of
RLRT in the class of “semi-blind” algorithms was pointed
out in [17]. For a single emitting source, if the SNR is
above the identifiability threshold given by (14), the signal
is detectable by the largest eigenvalue λ1 value. Starting
from the NP test and using the asymptotic expansion of the
hypergeometric function, it was shown in [17] that, under
known noise variance, distinguishing between H0 and H1 in
the asymptotic regime (N → ∞ with K fixed) depends to
leading order only on λ1. For Gaussian signals and not too
low signal-to-noise ratio, the RLRT is the best test statistics
in this class.

Energy Detection (ED): the test statistic is the average
energy of the received samples, normalized by the noise
variance:

TED =
1

KNσ2
v

K∑

k=1

N∑

n=1

|yk(n)|2 . (15)

The energy detection method is probably the most popular
technique for spectrum sensing, also thanks to its simplicity.
Analytical performance expressions for this detector are well-
known in the literature (e.g., [20]).

Likelihood Ratio Tests (LRT): different LRT-based detec-
tors were given in [13]. The complete, noise-dependent, log-
likelihood ratio test statistic is given by

TLRT = 2(N − 1)

[
log

(
σ2K
v

detR

)
+

(
trR

σ2
v

−K
)]

. (16)

Performance analysis for this test can be found, for example,
in [13].

B. Non-parametric tests, unknown noise variance

These tests are again non-parametric, but the noise variance
is supposed unknown.

Generalized Likelihood Ratio Test (GLRT): this method
uses as test statistic the ratio

TGLRT =
λ1

1
K tr(R)

. (17)

Performance analysis can be found for example in [21].
The class of “blind” detection tests includes all algorithms

where the noise variance σ2
v is unknown and not used in the

test statistic. It has been recently proved in [22] that the GLRT
procedure is optimal, asymptotically and even for finite sample
size, in a combined Neyman-Pearson/Bayesian sense, such that
it minimizes the average mean-square parameter estimation
error subject to an upper bound constraint on the false-alarm
probability. Therefore, the GLRT detector [12] is indeed the
best performing method in the blind eigenvalue-based class.

By a simple transformation, it is possible to relate GLRT
to RLRT. We first note that, since

1

TGLRT
=

∑K
i=1 λi
λ1

= 1 +

∑K
i=2

λ1
, (18)

the GLRT is equivalent to

T
′

GLRT =
λ1

1
K−1

∑K
i=2 λi

. (19)

In case of a single signal, the new denominator is the
average of the noisy eigenvalues and can be interpreted as the
Maximum-Likelihood (ML) estimate of the noise variance:

σ̂2
v =

1

K − 1

K∑

i=2

λi. (20)

As a consequence, we have obtained this equivalent formula-
tion of the GLRT:

T
′

GLRT =
λ1
σ̂2
v

. (21)

We can observe that the structure of RLRT (13) and
GLRT (17) is very similar: RLRT uses the true noise variance,
while GLRT uses its ML estimation computed within the
sensing slot by using the noise eigenvalues.

Eigenvalue Ratio Detector (ERD): the test statistic (also
called maximum-minimum eigenvalue, or condition number
test) is the ratio between the largest and the smallest eigenvalue
of R

TERD =
λ1
λK

. (22)

Performance analysis can be found, for example, in [23][19].
Noise-independent LRT (LRT-): an alternative log-

likelihood ratio was derived in [13], under the assumption of
unknown noise variance:

TLRT− = 2(N − 1)




1
K

∑K
i=1 λi(∏K

i=1 λi

)1/K




K

. (23)
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In statistics, this method has been known for many years as
the sphericity test [24][25]. Performance analysis for cognitive
radio applications can be found, for example, in [13].

C. Detectors based on cylic prefix autocorrelation

Primary signal detectors that exploit the presence of the
cyclic prefix (CP) in OFDM transmissions have been proposed
in the literature. In [5], the detectors based on CP correlation
described in [6] have been improved, applied to a real sce-
nario and implemented using a software-defined radio (SDR)
platform.

As previously stated, a DVB-T signal consists of OFDM-
modulated symbols of which a-priori knowledge of transmis-
sion parameters is assumed: the number of subcarriers, cyclic
prefix length, constellation type and the code rate. The aim of
parametric test statistics is to exploit the knowledge of signal
parameters (i.e., signal features) in order to improve primary
signals detection with high sensitivity.

The algorithm implemented in [5] using SDR is the
well known CP-based spectrum sensing. Assuming that each
OFDM symbol consists of Ns = Nc+Nd samples (where Nc
is the number of samples in the cyclic prefix and Nd is the
number of data samples), the CP correlation function (Eq. 3
in [5]), becomes:

R(CP)
xx [τ ] =

1

KNs

∣∣∣∣∣
K−1∑

k=0

τ−kNs−Nc+1∑

n=τ−kNs

x∗[n]x[n−Nd]

∣∣∣∣∣ . (24)

where K is the number of OFDM symbols on which we com-
pute coherent averaging and τ represents the synchronization
mismatch between our acquisition and the symbol start.

The coherent averaging taking the absolute value allows us
to improve sensitivity in presence of AWGN noise at the cost
of a larger observation interval.

Moreover, to enable the practical implementation of these
algorithms, it is necessary to define a noise estimation al-
gorithm to set a threshold that guarantees certain detection
performance in terms of probability of false alarm (Pfa) and
probability of detection (Pd). A slight improvement in terms of
noise estimation accuracy (i.e., correlation noise) with respect
to [5] is obtained by devising a suitable noise level estimator:
without any a-priori knowledge, the correlation noise estima-
tion should be performed by analyzing the received samples
when the H0 hypothesis is true. Hence, training periods with
only noise samples must be performed periodically (e.g.,
to track system temperature changes). To avoid dedicated
training, we observed that noise samples can be gathered
in a suitable interval between two consecutive correlation
maxima. The correlation function R̃ used to estimate the
average correlation noise level correspond to the function R,
excluding 2Nc samples around the detected maxima. In these
intervals, R̃(τ) = 0.

Our optimized CP-based algorithm can thus be summarized
as follows:

1) Receive K(Nc+Nd)+Nd samples
2) Perform (24) over acquired samples

3) Record the correlation maximum and its index i
4) Copy only correlation noise values from function in 2.

excluding values that have index in the range i−Nc <
i < i+Nc

5) Decide if the channel is occupied by evaluating the
following metric:

maxR
(CP )
xx [τ ]

avgR̃
(CP )
xx [τ ]

R γ. (25)
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Fig. 2. Amplitude of the CP-based auto-correlation - 1 symbol vs. 10 symbols
observation.

Fig. 2 shows the amplitude of the CP-based autocorrelation
function with an observation window of respectively K = 1
and K = 10 symbols in an ideal channel scenario (infinite
SNR, no thermal noise). It can be observed that, for K = 10,
the ratio of the peak value over the maximum value observed
outside the cyclic prefix window is improved with respect to
K = 1.

IV. GNU RADIO IMPLEMENTATION

The SDR concept has been introduced almost twenty years
ago in [26] and it is innovative even nowadays. The main
scope of SDR is to improve the flexibility of radio commu-
nication devices by implementing the digital sections entirely
in software using dedicated or general-purpose processors.

Different SDR platforms have been developed in recent
and past years. Among these, an open platform called GNU
Radio has prevailed firstly in the academic community and
it is becoming frequently adopted even in industrial projects.
GNU Radio is a free and open-source software development
toolkit for the SDR implementation of transceivers [27]. GNU
Radio is not primarily a simulation tool, although it can be
used for this purpose. When paired with suitable RF front-
ends, a real radio transceiver can be realized. Typically, GNU
Radio uses, as RF front-end, the Universal Software Radio
Peripheral (USRP) devices by Ettus Research. The GNU Radio
environment is structured as a layer of C++ classes orga-
nized in components: the gnuradio-core component includes a
scheduler able to orchestrate the execution of signal processing
blocks. Transceiver systems can be modeled through a flow
graph, i.e., a set of interconnected signal processing blocks that
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Fig. 3. DVB-T signal through flat-fading channel.

the scheduler executes. Concerning the software structure, it
is possible to define models using a high-level object-oriented
language such as Python, thanks to an interfacing layer, the
Simple Wrapper and Interface Generator (SWIG), that permits
to call methods of classes written in C++ from Python. The
GNU Radio blocks can be connected to each other to form a
flow graph either by using Python or C++, which would result
in a higher efficiency. Finally, a graphical tool called GNU
Radio Companion (GRC) can be used to compose flow graphs
in a visual environment. GRC makes use of the eXtensible
Markup Language (XML) to store the flow graph designs.
The GNU Radio core components and libraries make available
several basic and advanced signal processing and math blocks
that make the implementation of transceivers much faster.
Users can create new blocks to implement new algorithms
that have not been developed yet.

A. Signal processing blocks

A module identifies a structure, which is possible to inte-
grate in the overall GNU Radio framework. It consists of one
or more signal processing blocks implemented as C++ classes
with a well-defined interface.

The main section of a signal processing block is its C++
core engine. The design of a block starts with the definition of
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Fig. 4. Gaussian signal through flat-fading channel.

the input and output ports, their data types and multiplicities.
These characteristics are defined in the block “signature”. A
constructor (the “make” method) contains all the initialization
code. The sample rates of input and output ports are, in
general, different, although some constraints are imposed by
some framework design choices. A difference in sample rates
between input and output must be notified to the runtime
component by calling the “forecast” method, which tells the
scheduler how many input items are required to produce a
given number of output items. The main signal processing
algorithm is defined in the “general work” method. It receives
the data stream provided by the runtime through its input
ports, processes it generating output items that are forwarded
to blocks connected to its output ports.

Special types of blocks are the sink and source. These are
characterized by the lack of either input or output ports. Each
flow graph must contain at least one source block and one
sink block. As an example, a special sink block is used to
connect the flow graph to a USRP device, which will be used
to transmit the radio signal.

V. EIGENBASED DETECTOR BLOCK

The two optimal non-parametric tests, RLRT and GLRT,
respectively for the class of “semi-blind” and “blind” detec-
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tors, have been implemented and tested in the GNU Radio
platform.

A. Eigenvalue algorithm

The most significant part of the GNU Radio block consists
in the computation of eigenvalues of the covariance matrix R.
Such computation is performed through 2 stages: the Lanczos
algorithm and the bisection method.
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Fig. 5. DVB-T signal through TU6 channel.

1) Lanczos algorithm: In order to choose the best possible
solution we have to take into account that the covariance
matrix R is Hermitian, hence the Lanczos method can be
applied.

The Lanczos algorithm can be viewed as a simplified
Arnoldi’s algorithm [28] in that it applies to Hermitian
matrices. In the algorithm a series of orthonormal vectors,
q1, . . . , qn , is generated, which satisfy:

T = QTRQ. (26)
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Fig. 6. Comparison with the CP correlation method.

The matrix T is tridiagonal:

Tj =




α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βj−1
βj−1 αj−1 βj

0 βj αj




,

the iterative procedure is based on this three-term recurrence
relation:

βj+1 qj+1 = Rqj − αj qj − βj qj−1. (27)

More details on the procedure can be found in [29][30]. Here is
a short description of the simulation algorithm in pseudocode:

1: function LANCZOS(R,K)
2: q1 uniformly distributed random vector
3: q1 = q1/||q1||
4: α1 = qH1 Rq1

5: w1 = Rq1 − α1 q1

6: β1 = 0
7: β2 = ||w1||
8: for i = 2→ K do
9: qi = wi−1/βi
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10: αi = qHi Rqi
11: wi = Rqi − αi qi − βi qi−1
12: if i < K then
13: βi+1 = ||wi||
14: end if
15: end for
16: end function
The main problem of Lanczos algorithm is the stability,
using floating point arithmetic the orthogonality of the vectors
qj is quickly lost. Several stable orthogonalization schemes
have been proposed, such as [31], although none of these
methods have been applied in our GNU Radio block, since
we are basically interested in the computation of the maximum
eigenvalue of the covariance matrix. In fact, even with such
loss of orthogonality, the algorithm generates very good ap-
proximations of the largest eigenvalue. As proven in [32], the
Lanczos algorithm produces faster and more accurate results
than the power method.
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Fig. 7. CP based algorithm probability of detection curves considering a
different number of consecutive OFDM symbols.

2) Bisection algorithm: Once, after K iterations, the tridi-
agonal matrix T has been obtained, the maximum eigenvalue
can be simply computed through the bisection algorithm
(also called spectral bisection). The algorithm is an iterative
procedure based on the computation of the modified Sturm se-
quence, as explained in [33][34]. The original Sturm sequence,
for any number c, is based on the following recursive relation:

p0(c) = 1

p1(c) = α1 − c
pi(c) = (αi − c)pi−1(c)− β2

i pi−2(c), (28)

where [α1, . . . , αK ] and [β2, . . . , βK ] are respectively the
diagonal and off-diagonal elements of the matrix T. The
number f(c) of disagreements in sign between consecutive
number of the sequence is equal to the number of eigenvalues
smaller than c. However, the original sequence suffers from
underflow and overflow problems in floating-point arithmetic,

thus, the original sequence pi(c) is replaced by the sequence
qi(c) defined as

qi(c) = pi(c)/pi−1(c), (29)

now the number of eigenvalues smaller than c, f(c) is given
by the number of negative qi(c). Hence, the new recursive
relation is:

q1(c) = α1 − c
qi(c) = (αi − c)− β2

i /qi−1(c). (30)

The algorithm implemented in the GNU Radio block is a
slightly modified version of the bisection method described
in [33], which computes only the largest eigenvalue. The first
part of the algorithm exploits the Gershgorin circle theorem
to estimate the upper and lower bounds of the eigenspectrum
of the matrix T. In the following pseudocode the bisection
function has 6 parameters:
• α: diagonal elements of the matrix T;
• β: off-diagonal elements of T;
• K: order of the tridiagonal matrix;
• m: eigenvalue λm is computed, in this algorithm λK is

the largest eigenvalue (opposite notation w. r. t. III), so
m = K;

• γ: required precision for the computation of the eigen-
value, which affects the number of iterations;

• ε: machine epsilon, the smallest number for which 1+ε >
1 in the computer.

1: function BISECTION(α, β, K, m, γ, ε)
2: xmin = αK − |βK |
3: xmax = αK + |βK |
4: for i = K − 1→ 1 do
5: h = |βi|+ |βi+1|
6: if αi + h > xmax then
7: xmax = αi + h
8: end if
9: if αi − h < xmin then

10: xmin = αi − h
11: end if
12: end for
13: u = xmax
14: x = xmax
15: v = xmin
16: while (u− v) > 2ε(|v|+ |u|+ γ) do
17: p = (u+ v)/2
18: a = 0
19: q = 1
20: for i = 1→ K do
21: if q 6= 0 then
22: q = αi − p− β2

i /q
23: else
24: q = αi − p− |β/ε|
25: end if
26: if q < 0 then
27: a = a+ 1
28: end if
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29: end for
30: if a < m then
31: v = p
32: else
33: u = p
34: end if
35: end while
36: x = (u+ v)/2
37: return x
38: end function

B. Description of the “eigenbased” block

In order to work in the GNU Radio framework, the eigen-
based detector required the development of a new GNU Radio
block. All the details and guidelines on how to write a
block can be found, for example, in [35]. Fig. 8 shows the
“eigenbased” block.

Fig. 8. “Eigenbased” GNU Radio block.

The block has been developed in C++, furthermore a very
short part of code has been written in Python and XML in
order to make the block available in GNU Radio Companion.
The eigenvalue algorithm has been successfully tested in a
standalone C++ program up to K = 100, while in GNU Radio,
for real-time computational effort reasons, we limited K and
consequently the block input ports to 32. For simplicity we
have shown in Fig. 8 an 8-port block. Since we usually deal
with complex baseband signals, all the input must be of type
complex.

Five parameters can be set by the user:
• Antennas: it corresponds to K, the number of sensors

or the oversampling factor in case of single receiving
antenna.

• Samples: it corresponds to N , the number of samples
stored on each row of the Y matrix.

• Threshold: the test statistic is compared against this value.
• Test statistic: it can be chosen between RLRT or GLRT.
• Noise variance: this is required only for RLRT.
The output ports are described as follows:

• out test: type float, it’s the floating point value of the
computation of the test statistic.

• out bin: type short, after comparing the test statistic
against the threshold, it is equal to 1 if the out test is
larger than the threshold or equal to 0 otherwise.

VI. CP-BASED DETECTOR BLOCK

A well-known class of techniques that exploits a-priori
knowledge of parameters of the received signal is the so-called
feature-based detectors. In this subsection, an SDR implemen-
tation of an OFDM feature-based detector is discussed.

In order to enable fast symbol synchronization and also
avoid inter-symbol interference, the OFDM modulation pro-
vides a Cyclic Prefix (CP) insertion between consecutive
symbols. Every CP is obtained by copying the tail portion of
the OFDM symbol before its head, thus performing a cyclic
extension. The result is that the CP length uniquely charac-
terizes each OFDM-based standard. The DVB-T standard, for
example, provides four different CP lengths: 1/4, 1/8, 1/16,
1/32 of the OFDM symbol duration. The repetitive pattern
produced by the CP can be detected using the CP autocorrela-
tion function (24). Using GNU Radio and the USRP2, the CP-
based detection algorithm has been implemented and tested in
a real scenario. The resulting spectrum sensing unit is capable
of sampling the received signal at 12.5 MHz and calculating
(24) to verify the presence of the Cyclic Prefix (CP). In [5],
the detectors based on CP autocorrelation described in [6] have
been implemented, improved, and applied to a real scenario.
The implemented algorithm computes the accumulated auto-
correlation function over K OFDM symbols (24) and the test
statistics (25).

Fig. 11. “OFDM sense” GNU Radio block.

The developed GNU Radio block, shown in Fig. 11 features
the following parameters: number of data samples (NFFT ≡
Nd), the number of CP samples (NCP ≡ Nc) and the
threshold value. The block features one input port through
which the received signal is fed and two output ports through
which the result of the test statistics is provided in two different
numerical formats.

In this work, the USRP2 has been set to process a bandwidth
of 12.5 MHz.

Since the DVB-T signal consists of a continuous flow of
transmitted symbols, it is possible to perform the sample
processing in two steps:

1) buffering;
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Fig. 9. GNU Radio flow graph corresponding to the H0 case.

2) compute CP autocorrelation.
This aims at keeping the system responsive and effective. The
samples generated by the USRP2 are copied to the input buffer
in the general work function that returns no samples until
the input buffer is full. Once the buffer is ready, the input
from USRP2 is temporarily paused and the processing starts.
The samples processed in the general work function are sent
at the first output port using a stream of floats. The second
output port produces the estimated minimum correlation value,
which will be used to set the threshold. A probe block is
thus connected to the second output port in order to copy the
correlation minimum to the threshold parameter.

VII. SIMULATION AND RESULTS

The performance of the algorithms have been assessed
firstly through a numerical computing environment and then
using the SDR platform GNU Radio. The performance of each
algorithm is shown in terms of:
• the ROC (Receiver Operating Characteristic) curve ob-

tained by plotting the detection probability versus the
false alarm probability;

• the detection probability as a function of the signal-to-
noise ratio, with fixed false alarm rate (typically, Pfa =
0.01).

A. Simulation procedure

The Monte Carlo method has been used for our simulation.
In order to estimate the values of Pfa and Pd, NT = 10000
trials have been performed for each SNR value.

For each considered detection algorithm, we computed the
test statistics T1 corresponding to H1 (signal plus noise) and
T0 corresponding to H0 (noise). The estimated Pfa (resp. Pd)
value corresponding to a given threshold θ is then computed

as the empirical complementary cumulative distribution of T0
(resp. T1) at θ.

Here is a short description of the simulation algorithm in
pseudocode:

1: NB = 1000 . NB = number of threshold values
2: for all SNR values do
3: for i = 1→ NT do
4: for all detectors do
5: compute signal+noise test statistic T1(i)
6: compute only-noise test statistic T0(i)
7: end for
8: end for
9: for all detectors do

10: create vector of thresholds θ of NB equally spaced
values from min(T0) to max(T1)

11: create vector of NB elements Pfa

12: create vector of NB elements Pd

13: for i = 1→ NB do
14: for j = 1→ NT do
15: if T0(j) > θ(i) then
16: Pfa(i)← Pfa(i) + 1
17: end if
18: if T1(j) > θ(i) then
19: Pd(i)← Pd(i) + 1
20: end if
21: end for
22: Pfa(i)← Pfa(i)/NT
23: Pd(i)← Pd(i)/NT
24: end for
25: end for
26: end for
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Fig. 10. GNU Radio flow graph corresponding to the H1 case.

B. GNU Radio flow graphs

At a later stage, we assessed the performance of the algo-
rithms using SDR tools. We defined two different flow graphs
containing the “eigenbased” block shown in Fig. 8. In the first
flow graph (Fig. 9), corresponding to H0, only noise sources
have been connected to the “eigenbased” block inputs. This
configuration has been used to set the threshold θ according
to a fixed value of Pfa.

In the second flow graph, (corresponding instead to H1),
both noise and signal sources have been connected to the
“eigenbased” block inputs (Fig. 10). The primary signal is
read from a file containing a segment of DVB-T signal with
8k subcarriers, code rate 5/6, 64-QAM constellation and CP
ratio 1/4. The signal is sampled at the nominal rate of 64/7
Msamples/s.

C. Results

The results obtained for the DVB-T signal under linear
mixture models provided by flat fading Rayleigh channel are
reported in Fig. 3. First, we report the ROC curve then, by
setting the false alarm rate to 0.01, we plot the detection
probability as a function of the signal-to-noise ratio. By fixing
the detection probability, this allows to evaluate the differences
in terms of SNR between the algorithms, at the parity of
detection and false alarm probability.

Simulations have been performed assuming K = 10 anten-
nas and and observation interval corresponding to N = 50
samples.

Looking at Fig. 3, we observe that the best algorithm
for known noise variance is the RLRT, while GLRT is the

best under unknown variance. We note that these results
are in agreement with the results provided in the literature
for Gaussian signals. As a reference, results for the same
algorithms obtained by simulating Gaussian signal samples are
reported in Fig. 4 and are essentially identical to the previous
ones (as expected, since the Gaussian properties of the DVB-T
signal have been verified).

Under a more realistic model, the TU6 channel, the per-
formance of the algorithms are different, as can be observed
in Fig. 5. We see how both GLRT and RLRT lose their first
place when the received signal model is different from the
linear mixture one: simple energy detection becomes highly
competitive in this case. The difference between algorithms
with known and unknown noise variance is larger, too.

It is important to note that, in this work, we have assumes
a perfect knowledge of the noise variance for RLRT, LRT
and energy detection. Further analysis will be applied to study
their performance under imperfect noise variance knowledge,
and address its impact for real DVB-T signals (analysis for
Gaussian signals can be found, for example, in [36] for energy
detection and [14] for RLRT).

Furthermore, we compare the algorithms for unknown noise
variance against the technique exploiting the cyclic prefix au-
tocorrelation of the received signal [5][6] described before. For
such method, an interval corresponding to one OFDM symbol
has been considered. Moreover, in such case, the signal was
sampled at 12.5 Msamples/s. Here, the AWGN channel model
is adopted. In this case, we can observe that the performance
of this algorithm is similar to that of the GLRT. This single-
antenna algorithm does not require the computation of the
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Fig. 12. DVB-T signal through flat-fading channel with emulated sensors.

eigenvalues of the sample covariance matrix, but resorts to a
precise knowledge of the signal characteristics.

The performance of the proposed feature-based spectrum
sensing algorithm has been further evaluated sampling a
different number of consecutive OFDM symbols (1, 10, 100
symbols). Considering a constant false alarm probability of
0.1, the curves of Fig. 7 show how the detector sensitivity
improves with the number of OFDM symbols. Both in Fig. 6
and Fig. 7 the performance of the CP based method has been
estimated using GNU Radio through the procedure described
in Sec. VI.

WE also devised a solution for using the eigenbased detec-
tors in a single-antenna scenario. In Fig. 12, corresponding to
a flat-fading scenario, K = 10 sensors have been emulated
through oversampling of a factor K and demultiplexing the
received signal stream into K parallel streams. The K demul-
tiplexed and decimated outputs are written in matrix Y so
that the generic sample i of the original oversampled signal is
stored in row mod(i,K). As it can be noticed, the performance
is slightly worse w. r. t. Fig. 3, where the same parameters
N = 50 and K = 10 have been used.

Figs. 13 and 14 show the ROC plot and Pd vs. SNR in a flat
fading channel with a different set of paramenters: K = 4 and
N = 200, respectively simulated in a numerical computing
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Fig. 13. DVB-T signal through flat-fading channel, K = 4, N = 200.

environment and in GNU Radio through the flow graphs shown
in Figs. 9 and 10. It can be noticed that the results are almost
identical, thus validating the correctness of the “eigenbased”
block.

Finally, in Fig. 15 we plot the detection probability of GLRT
as a function of the observation interval (expressed both in
time units and number of received samples per sensor) and
the number of sensors for a specific SNR value of -10dB and
-15dB, while the false alarm probability remains fixed to 10−2.
The channel is Rayleigh flat-fading. As shown, it is possible to
obtain the same performance achieved in Fig. 3 using K = 10
sensors even with a lower and hence more realistic number of
antennas.

VIII. CONCLUSIONS

Unused channels in licensed RF bands are one of the most
attractive opportunities for secondary cognitive radio systems
as long as they enjoy favorable propagation conditions and
feature fairly large bandwidths.

In order to avoid interference to PUs while simultane-
ously performing high-speed communications, TV white-space
systems must be equipped with efficient spectrum-sensing
procedures.
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Fig. 14. DVB-T signal thorugh flat-fading channel, GNU Radio simulation,
K = 4, N = 200.

For a large selection of sensing algorithms among the
most relevant ones, performance has been assessed applying
real DVB-T under different channel profiles: he flat fading
channel analysis confirms the results previously obtained by
simulation using linear mixture models of Gaussian signals
while, under a more realistic multi-path channel model, the
performance relationships between the same algorithms is
completely different. Simpler algorithms like energy detection
becomes highly competitive in this case.

A SDR implementation of an eigenbased spectrum sensing
detector has been carried out to prove that the complexity of
these algorithms is manageable in real-time systems.

Overall, these results show that spectrum sensing algorithms
applied to OFDM signals can reach a high accuracy in terms
of primary signal detection and false-alarm rate, hence they
are well suited for TV white-space secondary networks.

In our research, further effort will be devoted to investi-
gating broader sets of sensing techniques, both with a single
antenna and with multiple antennas. Distributed sensing algo-
rithms will be considered as well in order to achieve further
improved performance.

0
21.88
200

43.75
400

65.63
600

87.5
800

109.38
1000

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

Observation interval

[
µs

samples

]

Sensors

P
r[
D
et
ec
ti
on

]

(a) SNR = -10dB, Pfa = 0.01.

0
109.38
1000

218.75
2000

328.13
3000

437.5
4000

546.88
5000

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

Observation interval

[
µs

samples

]

Sensors

P
r[
D
et
ec
ti
on

]

(b) SNR = -15dB, Pfa = 0.01.

Fig. 15. GLRT detection probability as a function of time (samples) and
sensors through flat-fading channel.
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