
293

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Didactic Platform for Practical Study of Real Time Embedded Operating Systems

Adam Kaliszan

Chair of Communication and Computer Networks

Poznan University of Technology

ul. Polanka 3, 60-965 Poznań, Poland

Email: adam.kaliszan@gmail.com

http://www.adam.kaliszan.yum.pl

Mariusz Głąbowski

Chair of Communication and Computer Networks

Poznan University of Technology

ul. Polanka 3, 60-965 Poznań, Poland

Email: mariusz.glabowski@put.poznan.pl

http://glabowski.eu

Abstract—The article proposes a new didactic platform for
practical study of embedded Real Rime Operating Systems
(RTOSs). Three fundamental parts that are included in the
platform are discussed in detail: the hardware part, the
firmware part and the software tools. In the description of the
hardware part the following parts are addressed: main con-
troller, input/output module, executing module and program-
mer module. The project of the hardware part is distributed
according to GPLv2 license. The firmware of the platform
is based on FreeRTOS distributed according to the modified
GPL license, ported by the authors on the microcontrollers
not originally supported, i.e., Atmega128 and Atmega168. The
firmware part of the platform proposed and described in the
article implements: the command line interpreter, file system,
the protocol for communication between main controller and
executing modules, TCP/IP stack and xModem protocol, among
others. All the software tools work on the Linux operating
system and are free of charge; most of them have open
source code. Particular attention is given to a presentation of
laboratory exercises that have been worked out in the process.
These exercises are designed to facilitate the learning process in
the study of embedded operating systems with the application
of the proposed didactic platform. The proposed platform is
not expensive and is easy to assemble. Most students can afford
to build or modify it on their own.

Keywords-Embedded systems; Real Time Operating System;
Multitasking; Interprocess communication; Intelligent home.

I. INTRODUCTION

Practice is an important addendum to any embedded

operating systems theory course [1]. The practical part of the

course is often conducted with the help of one of the existing

operating systems, usually Linux or Windows. Linux has

certain advantages, such as its versatility, ranging from small

embedded devices to powerful supercomputers. Thanks to

Linux open source code, there are many written kernel

modules [2] supporting new devices, which ensures such

a great versatility of the system and makes it applicable in

many embedded systems. Microsoft, in turn, offers different

versions of its own operating system, ranging from Windows

CE or Windows Mobile that are working on mobile phones,

PDA devices and car navigation, to Windows Server [3]. On

account of Microsoft .NET framework, it is possible to write

software in a very easy way. However, it should be noted that

the software produced by Microsoft is not free. Additionally,

the fact that its code is closed complicates porting the

operating system to new, not particularly common, hardware

devices. Hence, its application is limited to a few basic CPU

architectures.

Irrespective of a chosen operating system, the practical

part of an operating systems course is often limited to

learning the basis of operating systems, i.e., learning Linux

fundamental commands such as creating and removing files

or directories, changing file attributes and launching appli-

cations. Such laboratory classes do not introduce the subject

of embedded systems, nor do they have any connection to

the operating system theory, since most laboratories do not

cover topics such as multitasking, interprocess communica-

tion and its synchronization or operations on file systems.

Furthermore, as it is often the case, proposed laboratory ex-

ercises in operating systems have little relevance to practical

implementations.

The mentioned difficulties are caused by the absence of

a proper platform with a simplified programming interface

that is capable of building (compiling) in a short amount of

time. In the Linux case, the complication results mostly from

a required compatibility with various standards, e.g., Linux

is compatible with posix and sysV standards [4]. In order

to provide the compatibility with each of these standards,

separate interfaces have been introduced. Consequently, it

takes a lot of time to get familiar with the whole pro-

gramming interface and, finally, students getting prepared

to their laboratories are generally focused on studying the

documentation instead of understanding the essence of pre-

sented mechanisms of the operating systems. Additionally,

the build time of the embedded Linux requires about one

hour, while laboratory classes usually last 90 minutes (at

Polish technical universities).

In view of the above-mentioned difficulties the authors felt

encouraged to develop a new didactic platform, including

hardware, firmware and software tools. In the proposed

platform, the handling of mechanisms such as files, multi-

tasking, interprocess communication and process synchro-

nization, have been simplified. The platform was initially

presented at AICT 2011 [1]. Due to page limitations, the

conference paper includes only the most important assump-

294

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions and a general description of the operation of the

proposed platform. This article extends [1], presenting below

a detailed description of all component elements of the

platform. We also propose an extensive set of new laboratory

exercises that make it possible for students to carry on

with practical exercises in embedded real time operating

systems unaided and on their own. In particular, we draw

the reader’s attention to the fact that the proposed platform

can be used in controlling the intelligent home (smart

home, eHouse) [5][6]. The firmware for the platform can be

modified while being implemented in laboratory exercises

according to one’s needs and wishes, which secures easy

and fast expansion of its functionality.

The remainder of the article is organized as follows.

Section II presents state of the art. Section III presents the

hardware of the proposed platform. In Section IV, the soft-

ware architecture is described, including the programming

software (software development kit) used in the process.

In Section V, exemplary exercises conducted with the help

of the proposed platform are presented. Section VI concludes

the article.

II. RELATED WORK

One of the first operating systems developed for educa-

tional purposes was Mach system [7][8]. A group of systems

represented by the Mach system was developed in academic

circles in the years 1985–1994. The solutions delivered have

been further adopted to numerous commercial operating

systems, such as NeXTSTEP or Mac OS X [9].

The rapid development of software, especially of op-

erating systems, started actually when the idea of GNU

open source appeared in 1985 [10][11]. The operating sys-

tems, developed in accordance with the GNU idea, such

as Linux [12] or FreeBSD [13], came into general use

and became so attractive that they have been competing

with the commercial solutions since then. The open source

(GNU) systems combine the advantages of both the systems

developed for educational needs and the systems used com-

mercially.

Unfortunately, from the standpoint of teaching, these sys-

tems have become more and more advanced, thus preventing

their use in the classes and teaching materials on the basics

of operating systems. Simultaneously, students interested in

practical issues and applications were not motivated enough

to learn typical, education-oriented systems. The operating

systems (with an open source) of real-time, dedicated to

support the embedded systems [1], were indicated as much

easier and optimal type of operating systems, possible to

apply into the teaching process. The chapter presents further

an analysis on potential use of existing real-time operating

systems, programming environments and libraries in the

teaching process. The analysis is limited to the systems

comprising a support for the embedded systems. The fol-

lowing criteria were taken into account during the overview

of existing solutions: an open source written in C, a support

for the AVR architecture (because of rich microcontroller

equipment, a simple and functional set of instructions, a free

set of tools including C language compiler and a common

presence in the projects for beginner constructors), a liberal

license granting system, a support for the controller handling

the Ethernet interface, an ability to be embedded on any

microcontroller. Particular attention was paid to the latter

criterion. Once met, it helps to replace a program written in a

single thread, where a complicated loop implementing many

tasks is made, with a multi-threaded program, where each

step is implemented with a separate thread. Such approach

increases the readability of the program (in each loop only

one step is performed) and facilitates the division of work.

The first operating system to be considered in the article

is Ethernat Nut/OS. The project of Nut/OS operating system

is free of charge, open, BSD-licensed. It is a real-time

operating system with a stack of TCP/IP network protocols,

which supports the AVR, ARM7, ARM9 microcontrollers

[14]. There are many projects of evaluation boards for

this system. It should be noted, however, that these are

complex devices that support, e.g., the embedding of Linux

system. There is no option to embed the Nut/OS system

on the simplest microcontrollers. The system features are:

sustainable use of resources, support for multi-threading,

dynamic memory management, but above all an implemen-

tation of TCP/IPv4 stack. The code is written in C. The

software tools are prepared for Linux, Windows and MacOS.

The system requires 32 kB memory – in case of the AVR

microcontroller, an external bus is then required in order to

add an external memory. The memory bus is used also to

work with different types of peripherals, such as Ethernet

controller. Particular emphasis in the project was placed on

the optimization of supporting the peripherals, with the use

of memory bus. This approach caused the appearance of

difficulties with the servicing of devices applying the serial

bus.

Arduino [15] can also be considered as an interesting

didactic platform. It was designed to build, develop soft-

ware for and be applied in simple devices. It includes

both hardware elements and software tools. The hardware

elements were made using the AVR microcontroller (without

an external memory bus), and the processors of AtMega88

family (AtMega168, AtMega328), which differ in program

memory capacity. There were numerous modules contain-

ing peripheral devices, i.a., Ethernet ENC28J60 controller

and SD card reader, developed for the Arduino platform.

The programming language is Arduino Programming Lan-

guage [16] based on Wiring [17]. This language has the same

syntax as C and contains a series of macros and functions

for hardware abstraction. The applied abstraction helps with

hiding some configuration details, e.g., the registers control-

ling entry/exit ports. Unfortunately, this platform is not a

good element facilitating the teaching of operational systems

295

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

basics, because a major part of its functionality, typical for

operating systems, is omitted therein, such as multitasking

and mechanisms of inter-process communication.

One of the most interesting current real-time operating

systems, from the standpoint of the teaching of the basics

of operating systems and embedded systems, is FreeR-

TOS [18] system. It was written in C and is licensed

in accordance with a modified GNU GPL [19] license.

It supports many microprocessor families (27 processors

architectures). This system has been designed for minimal

requirements. Its kernel takes 4 kB of program memory and

it needs 0.5 kB of data memory to be embedded. With such

small requirements the system may be applied to almost

any microcontroller. FreeRTOS system supports pre-emption

and multi-threading; additionally, the co-routines have been

implemented therein. One of the advantages, deciding its

selection for the purposes of the teaching platform discussed

in the article, are good documentation and a large group of

users and developers, which provides a good, long-term sup-

port for the platform. The free version is devoid of libraries

designed to handle FAT 32 file system. Universal libraries

working on all platforms to support network interfaces

are not added either. Simultaneously, getting familiar with

the FreeRTOS system enables the learners to use also the

commercial versions of this system. An interesting extension

of the FreeRTOS system is, e.g., OpenRTOS. OpenRTOS is

FreeRTOS, provided under a commercial license that makes

no reference to the GPL and includes fully featured profes-

sional grade USB, file system and TCP/IP components [18].

III. HARDWARE

Figure 1 shows a schematic diagram of the didactic

platform described in the article, whereas Figure 2 shows a

photo of the platform. The system is distributed and consists

Figure 1. Modular schematic of the platform’s hardware

of the main controller, optional input/output (I/O) module

and executing modules. The main controller and the execut-

ing module are programmed using a universal programmer

designed and custom-developed for the platform’s purposes.

The solid line rectangles belong to the platform’s hardware.

The solid lines indicate communication interfaces or buses

and the dotted lines indicate the programmer interfaces. The

main controller is connected with the executing modules by

an RS 485 bus. Additionally, the input/output module (I/O

module) is connected to the main module by the SPI bus.

The programmer module also has RS 485 interface in order

to facilitate debugging or controlling the executing module

if the main controller is disabled.

The hardware part was designed with the help of a free-

ware version of Eagle [20] CAD software. The dimensions

of the PCB board were limited to 10 by 8 centimeters (i.e.,

the maximum dimensions of PCB board allowed by freeware

version of Eagle CAD software). The complete project of

the hardware is available at svn repository http://rtosOnAvr.

yum.pl/hardware/ssw [21], where the login and the password

is "student". In order to download the project, the follow-

ing command must be executed in the shell prompt: svn

co http://akme.yum.pl/eagle/ssw. The limited

dimensions of the board allow students to modify the project

using freeware version of Eagle CAD.

The hardware was designed in a user friendly manner:

it uses a common interface and does not need any ex-

ternal power supply. The platform is connected to a PC

via USB, since RS 232 is not very common in modern

personal computers. There is a place on the main controller

for a power converter. It allows the platform to work as

a stand-alone device that does not require power supply

from the USB port. The hardware project is based on

AVR microcontrollers [22][23]. This reduced instruction set

computing CPU architecture is preferred by students because

of its simplicity, freeware C compiler (avrgcc) and high

performance in comparison with other 8-bit microcontroller

architectures.

A. Main controller

The main controller is responsible for controlling the

executing modules connected to the RS 485 bus and the

I/O module, storing logs in its memory, and communicating

with users via a USB or Ethernet interface. The modular

schematic of the main controller is presented in Figure 3.

The functional modules are presented as solid line rectan-

gles and connectors or jacks are presented as dotted line

rectangles. The main controller consists of: microcontroller

Atmega128, 64 kB of data external memory, USB interface

(Ft232Rl chip [24]), RS 485 interface (Max481 chip [25]),

Ethernet interface (Enc28j60 chip [26]) and Secure Digital

card reader. In order to communicate with external devices,

sensors and modules, the controller uses the following buses:

SPI, I2C and RS 485. All buses have their own connectors.

A diagram of PCB board of the main controller that includes

its most important elements and connectors is shown in

Figure 4.

296

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Didactic embedded platform: I/O module, main controller, programmer execution module.

Figure 3. Ideological schematic of the main controller

Figure 4. Main controller PCB with connectors

The microcontroller uses the SPI bus to communicate with

the Ethernet controller and the SD card reader. It is also

possible to connect 8 additional devices to this bus through

an SPI connector placed on the main controller. The SPI

connector can also be used in hooking up the input/output

(I/O) module, as it is presented in Figure 1. Only memory

is connected to the memory bus. The bus has no connector

led out of its housing, i.e., no additional system can be

connected to it.

The controller also has the optional 5 V pulse step down

converter and a rectifying bridge. These elements of the

controller can be useful if we want to use an external power

supply because both the processor and other systems of the

platform are powered by a 5 V voltage source. This power

supply can be supplied either by a pulse converter or an USB

port. In Figure 4, the external 12 V power supply line that

leads from the rectifying bridge is denoted with the colour

red and the 5 V power supply with the colour blue. The

main controller provides power supply to all modules that

are attached to it and, hence, each connector (or jack), to

which any module can be hooked up, has its connection for

power supply of its own.

As it was mentioned earlier, when a 5 V pulse converter

is not available, the system can be powered from an USB

port. With the application of this type of power supply,

however, the A/D converter in the input/output module does

not operate properly. Its analogue part is powered by a

5 V voltage source from it own linear converter that, at

its output, requires at least 8 V. When it is powered by

5 V voltage (from an USB port), it will give output voltage

lower than 5 V, and thus the A/D converter will be operating

improperly. For didactic needs, it is possible to change the

characteristics of the Input/Output module and make the

analogue part of the converter powered by the 5 V voltage

from the USB port. The execution module requires the

power supply of 12 V to switch its own relays. Instead

of 12 V, it is possible to supply 5 V (from the USB port)

and introduce relays that operate under 5 V. Despite certain

297

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

inconveniences, the system powered from the USB port is

fully operational and functional in didactic situations. Lack

of external power supply makes it easier to hook up and

work with the set during lab classes (it is sufficient to supply

power to the device from an USB port of the computer).

In order to reduce costs, the user communicates with the

controller via console (VTY100 protocol). Access to the

console is available both via the USB interface and the

Ethernet interface. The main controller has neither display

nor keyboard. The CPU is programmed using the JTAG

interface that allows the user to debug the software. Addi-

tionally, there is a connector (AD Con) with analogue inputs

and a connector (Int Con) with inputs generating interrupts.

The connector RS 485 provides proper access to earth

ground, and the voltage 5 V and 12 V that provides power

supply to the executing modules. Additionally, an input to

the microcontroller has been introduced that can generate

interrupts. This allows for a modification of the protocol

operating on the RS485 bus so that the devices connected

to the bus could impose service demands. This, in turn,

makes it possible to eliminate the necessity for continuous

checking of executing modules. The main module has a

limited number of lines that can operate as input/output. The

number of inputs/outputs can be, alternatively, made higher

as a result of the application of an I/O (input/output) module

that is connected to the SPI connector.

B. I/O module

The schematic diagram for the I/O module proposed in

the article is presented in Figure 5, while its printed circuit

board (PCB), along with a description of its most important

components and connectors, is shown in Figure 6. The

input/output module is composed of a port expander, an 8-

input A/D converter and a real-time clock (RTC). Individual

elements of the I/O module are presented in Figure 5 as

solid line rectangles. Connectors are presented as dotted line

rectangles.

The inputs of the I/O module are led out in such a way

as to make them capable of being used during laboratory

classes, those considered in the article, and for solutions of

the type "smart home" (intelligent house). The module is

connected to the main controller by the connectors SPI Con

and Int Con. Connector SPI Con addresses and communi-

cates with individual elements of the I/O module, whereas

connector Int Con provides 12 V power supply and receives

interrupts from the I/O module.

In the I/O module, the port expander is implemented with

a MPC23S17 chip [27], which is connected to the SPI bus

and the address line 7. The address line determines whether

the system can use the SPI bus. This system has two 8-

bit ports. Each line of the port can operate as input or

output. In the I/O module seven lines from each of the

ports operate as output, while the last one is not used.

Each port of the expander is connected to a separate line

Figure 5. Ideological schematic (schematic diagram) of the I/O module

Figure 6. I/O module’s PCB with connectors

of the (high-voltage) high-current controller implemented

with the use of the high-voltage high-current Darlington

transistor array (ULN2003A chip [28]). This system enables

controlling devices whose consumed power exceeds 10 mA

(current running though a single output of the expander

cannot exceed 10 mA). The ports of the expander control

different voltage. Port A controls devices that are powered

by 5 V voltage, whereas port B controls devices that are

powered by 12 V voltage. Despite the high current that the

expander can control – after the application of transistors –

one should not forget about the limited power of the power-

supply unit and the limited current voltage that can run

through the rectifying bridge in the main controller. In the

case of an excessive load, the voltage on the power-supply

line 12 V may drop.

For the convenience of the the didactic platform con-

298

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sidered in the article, in the I/O module, some outputs

are assigned to dedicated applications. Four outputs that

control 5 V devices are designed to operate (flash) the diodes

in lock bolt (valve) sensors and each of them is led out

with a separate connector Lock sensor. The remaining three

lines are led out with the application of the connector 3

debug LEDs. Three outputs from port B, that control devices

powered by 12 V voltage, are dedicated to control electro-

valves and are led out through the connector Electrics Valves.

The remaining four lines are led out with the application

of two connectors: AUX1 and AUX2. They can be used to

control additional devices.

The A/D converter (MCP3008 chip [29]) located in the

I/O module is connected to the SPI bus and to the address

line 6 that allows it to occupy the SPI bus. The analogue

part of the converter is powered from the output of the

linear converter. In order to work properly, this converter

requires an external 12 V power supply. In the case of a

construction of a system that is to be powered from/by a

USB port (without external power supply), the analogue

part of the converter has to be connected directly to 5 V

voltage (from the USB port). In the present didactic platform

the converter is designed to check the state of valves (lock

bolts) and makes it possible to verify whether the flat/house

has been flooded. Checking the state of the valves (lock

bolts) is based on measurement taking of the decrease in

voltage (voltage drop) on the photo-transistor, after its LED

diode is illuminated. If the doors are locked, then between

the transistor and the diode there is a valve (lock bolt)

that blocks admission of light to the transistor. Following

this, the transistor does not transmit current and a voltage

drop ensues. The flooding control is based, in turn, on a

measurement of the voltage drop on the "flooding" sensor.

If the sensor is dry, then it does not transmit current and a

drop in voltage follows. In the case of flooding, the sensor

transmits current and the voltage drop in it decreases. The

A/D converter is supplemented with an analogue temperature

sensor LM35 [30] and an output from the voltage divider

(potential divider) of 12 V power supply. Thanks to the mea-

surement takings in the voltage obtained from the divider,

it is possible to determine whether the 12 V power supply

line is overloaded or not.

The last system used in the I/O module is a real-time

clock. This system is addressed through the address line 5.

The real-time clock is placed in the I/O module instead

of within the main controller due to the lack of space on

the board of the main controller (no available place results

from the limitations imposed by the free version of the

eagle program). The applied DS1305 chip [31] is capable

of generating interrupts. These interrupts are activated along

with the alarm activation. Hour and date can be set in the

RTC system. The system should remain operational even

if power supply is not available, thus it is necessary to

connect it to an additional battery cell that keeps its memory

Figure 7. Ideological schematic of the executive module

Figure 8. Execution module’s PCB with connectors

running and provide power to the clock system. In order to

make use of alarms generated by the system, it has to be

connected with the connector INT Con to the inputs of the

microcontroller that generates IRQ 4 and IRQ 5 interrupts.

C. Executing module

The executing module is responsible for switching on/off

various devices, e.g., lights or roller shutters in an intelligent

home. Figure 7 shows a schematic diagram of the executing

module, whereas Figure 8 presents the arrangement (deploy-

ment) of its most important elements and connectors on the

PCB board.

The executing module consists of: microcontroller At-

mega168, RS 485 interface MAX481 [25], Darlington array

ULN2003A and four relays. The module is equipped with a

number of connectors that are shown in Figure 7 as dotted

299

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

line rectangles. Connector Main Module Con is designed

to connect the executing module to a common bus that

serves the remaining modules and the main controller. The

connector provides power supply and the connection to the

RS 485 bus. Additionally, it has an additional line led out

that can be used for different purposes in the future, e.g.,

to reset executing modules or to send interrupts to the main

module. The module has two connectors (Con 1 and Con

2) with relay joints. Two receivers (e.g., sources of light

and their power supply) can be connected to each of these

connectors. Additionally, the module is supplemented with

the connector Ext Con, to which additional diodes or other

low-power receivers can be connected.

The Atmega 168 microcontroller is programmed via SPI

(connector Spi Prog). This means that there is no possibility

to withhold from an execution of the program and to view

the state of registers of the microcontroller. What may be

useful then is to connect additional diodes to connector Ext

Con. These will be instrumental in determining the current

state of the device.

The executing module operates four buttons that control

the devices. The outputs envisaged to accommodate the

buttons are led out on the connectors Key Con1 and Key

Con 2. The executing module works as a slave device on

the RS 485 bus. Its address can be set up with the help

of five jumpers. Two of them are arranged at the stage of

the preparation of the PCB board (by welding in resistors

0 Ω), whereas the remaining three jumpers are led out on

the connector of the STK500 programmer.

The relays have independent power supply in order to

avoid brownouts. Its voltage depends on the relays used (in

the case of external 5 V power supply it is recommended to

use special relays). Voltage is also supplied to connector Ext

Con that can control low-power receivers. These receivers

are powered with the same voltage as the relays. The

executing module is realized with relays purposely, since

this arrangement simplifies the preparation of the driver

for didactic purposes. Working of the relay is audible and

any device, including those that operate in low voltage,

can be connected to it. In place of a relay, a LED diode

can be appropriately connected. The LED diode provides

information about the state of the output. The set presented

in Figure 2 has been prepared in this way. In place of

supplying power to the relay coil, a LED diode has been

welded in and connected serially with a 330 Ω resistor.

Additionally, the repository [21] includes projects of other

executing modules that have been realized using triacs with

zero crossing circuit. An application of such a module

exclusively for didactic purposes, however, would be im-

practical as this solution would require connecting devices

that are powered by 230 V voltage and any work with the

module would require special safety precautions to avoid

electric shocks. The application of the executing module

with triacs enables students to apply learned skills in practice

Figure 9. Ideological schematic of the programmer

because they are in a position to apply the presented set to

control devices in an e-House. For this particular purpose,

the module has been designed in such a way as to be easily

accommodated in a standard recessed box (flush-mounted

box). Its inputs have been additionally secured by adding

zener diodes, while triacs have been secured by adding an

appropriate RC circuit. Power supply to the external devices

is secured with a varistor in such a way as to avoid any

damage to triacs in case of power (voltage) surge in the

mains. One should not forget, however, that there are certain

differences in a module that is supported by relays and

the one supported by triacs (the latter lacks appropriate

place for the connector Ext Con), which necessitates a slight

modification to the software.

The executing module can be programmed using the SPI

bus (STK 500v2 programmer) or RS 485 bus (bootloader

with xModem protocol). In the case of improper operation

of the device (deadlock), unlocking the bootloader mode can

be impractical. To make programming with the help of a

bootloader possible in such a situation, it is sufficient to

connect an additional line on the connector Main Module

Con to the input reset of the microcontroller.

D. Programmer module

The programmer module has been designed to provide

extensive functionality with a simultaneous reduction of

costs. The programmer module uses the USB interface and,

therefore, it does not require additional power supply. Its

main function is flashing firmware to the main controller

or executing modules. Both devices (main controller and

executing module) have different programming interfaces

(JTAG and SPI). The constructed programmer provides

additional RS 485 and RS 232 TTL interfaces. The JTAG

programmer bases on Atmega16 microcontroller and Atmel

JTAG ICE firmware, therefore it is compatible with AVR

300

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Studio. The archetype of the SPI programmer is an open

source project [32] and it bases on Atmega8 microcontroller.

The hardware has been slightly modified but the firmware

has remained unchanged. The SPI programmer uses STK

500v2 protocol and is compatible with AVR Studio.

Figure 9 shows a schematic diagram of the programmer.

Individual modules of the programmer are presented as

solid line rectangles, whereas the connectors as dotted line

rectangles. Additionally, the control switches are shown as

rectangles marked with solid red line, while astable switches

as rectangles marked with dotted red line.

The mode of operation of the programmer is selected

(set) by two control switches. Each of them has to be

set (positioned) in the same position for a given mode of

operation. These control switches perform the function of

a multiplexer. Connector STK500 Con is a connector of

the STK 500v2 programmer. In addition, it can be used

to embed (install) the firmware into the target Atmega8

processor so that the latter could operate as a programmer.

For this purpose, the control switch PE Sw should be set

into (Program Enable SW).

Additionally, the programmer system employs a control

switch that allows the voltage of the transmitter of the

RS232 port to be reduced to 3.3 V on the output of the

connector RS232 TTL Con. This option is very useful when

the programmer module is used to connect itself to the router

console, e.g., Edimax 6104KP. The work on the console

and the modifications to the firmware for this device is not,

however, the subject for the present article and thus will be

omitted.

Leads of the serial port can be used to establish connection

with other devices that have a serial port led out with

the TTL voltage level or 3.3 V voltage level. The RS485

communication bus is led out on four connectors. This

allows for a number of sets to be connected serially so that,

ultimately, a network of distributed devices can be built up.

While implementing such a solution one has to remember,

however, that the system thus executed has only one main

controller working or, alternatively, a change of the protocol

has to be implemented (e.g., apply a protocol of the type

Token Ring, in which main controllers will be passing on

tokens to one another that allow them to work on the bus

in the master mode and checking the availability of the

remaining modules or main controllers operating at the time

in the slave mode). Two connectors (RS 485 Con 1 and RS

485 Con 2) have only the RS 485 bus led out. The remaining

connectors (Main controller 1 and Main controller 2) have

additionally 5 V voltage led out. By selecting the RS485

operating mode, we can monitor and communicate with the

executing modules through the RS 485 bus. The solution that

has been applied to the didactic platform makes it possible

to control the executing modules directly from the computer.

The only conditioning element is then to switch off the

option of transmission on the bus by the main controller,

Figure 10. Programmer’s PCB with connectors

or an application of some other protocol (e.g., a protocol of

the type Token Ring).

The main module can be programmed by a JTAG pro-

grammer. It is connected to the connector JTAG Con. The

JTAG programmer is activated by the connector Temp.

STK500. The bootloader is installed through the connector.

The control switch Bootloader SW [33] is used for the

activation of the bootloader. With the bootloader, it is

possible to download the newest version of the firmware of

the JTAG programmer from the Internet. When this is the

case, installation of the AvrStudio studio is then required.

The executing module and the main controller can be

restarted with the buttons executing module reset and main

controller reset that are placed in the programmer.

IV. FIRMWARE

The firmware was written in C language. The complete

source code is available at svn repository http://rtosOnAvr.

yum.pl/software/FreeRtos [34], where the login and the

password is "student". The firmware part of the presented

didactic platform consists of two basic parts: the firmware

for the main controller and the firmware for the executing

modules. Each device has a different microcontroller and has

different functions, therefore it needs specialized firmware.

There is an embedded RTOS on both modules. The authors

have chosen FreeRTOS as the RTOS because it is distributed

under a modified GPLv2 license [19]. FreeRTOS uses two

methods of providing multitasking: tasks and coroutines.

Its kernel needs 4 kB of program memory, hence it is

possible to use FreeRTOS on microcontrollers with 8 kB of

program memory. Originally, FreeRTOS was ported to the

Atmega32. In the case of the proposed platform, it has been

necessary to make a port for Atmega168 and Atmega128

microcontrollers.

301

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Architecture of main controller firmware

A. Main controller

The main controller is responsible for controlling the I/O

module, executing modules and communication with users.

It stores logs and allows the scheduling of some operation,

e.g., moving up the roller shutters. The main modules of the

main controller firmware are the following: kernel, command

line interpreter, file system, communication protocol, TCP/IP

stack and xModem protocol.

1) Kernel: Multitasking in the main controller is provided

with the help of tasks without preemption. Such an approach

has numerous and significant advantages. Tasks are simple,

have no restrictions on use and support full preemption

(not used in case of labs excercises). Moreover, they are

fully prioritized [35]. The firmware has been written without

preemption, so re-entry to the task does not need to be

carefully considered. The main disadvantage is that each task

has its own stack. The Atmega128 has 128 kB of program

memory and 4 kB of internal data memory, extended by

external chip to 64 kB, and allows us to use FreeRTOS

with tasks. It is recommended to place stacks of the tasks in

internal memory, hence there are 4 kB available for stacks.

There are four tasks: two Command Line Interpreter tasks, a

device monitor task and a TCP/IP stack task. 4 kB is enough

for four stacks. In order to save internal memory, buffers

and other structures have been moved to two times slower

external memory. Constant strings and constant structs are

stored in flash (program) memory. In Figure 11 the firmware

architecture of the main controller is presented. It bases on

the mentioned four tasks.

The system supports two simultaneous console sessions.

Each session is serviced by separate Command Line In-

terpreter task. The first task (at the top of Figure 11) is

responsible for the communication with the user according

to the TCP/IP protocol stack. It reads out the sequence of

characters (signs) given by the user from the UDP RX buffer

and transmits the reply to the UDP TX buffer. The second

task that services the command interpreter operates in a

similar way. This task receives data from the UART1 serial

port through the CLI RX buffer and transmits data using

the CLI TX buffer. This task uses serial port UART 1 for its

exclusive use. This simplifies the implementation since the

introduction of synchronization is not necessary. In addition,

the CLI tasks make use of co-shared resources such as the

SPI bus and the UART0 serial port. Since only one task

can use the co-shared resources at a given time, it is thus

necessary to introduce certain synchronization that enables

exclusive access to be implemented. Synchronization can be

effected with the help of the mechanisms made available by

the FreeRTOS system, such as, e.g., semaphores.

The semaphore blocks simultaneous access to one of

the resources by more than one task. In Figure 11 the

semaphores are marked by a racing checkered flag symbol.

When the task is attempting to enter the critical section

(e.g., read or write to serial port UART 0), it has to pass

through the semaphore. If the semaphore is locked, the task

is suspended as long as the semaphore is locked. Once the

semaphore is unlocked, the task is released automatically

and the semaphore is locked again by this task. The task un-

locks the semaphore again after leaving the critical section.

FreeRTOS provides a special API for handling semaphores.

The task is suspended as long as the semaphore is locked,

or until its optionally specified timeout.

FreeRTOS supports an API for buffer handling in order to

simplify the implementation of the main controller firmware.

There is a special function for writing to the buffer. If the

buffer is full, the task is suspended as long as the buffer

is full and optional specified timeout is not exceeded. The

function informs (returns the result) if the operation was

successful or not. Similarly there is a function for reading the

buffer. If the buffer is empty, the task is suspended. The task

is released when data is available in the buffer or timeout

is exceeded. All the mentioned FreeRTOS API functions

are non-blocking functions. If the task is suspended, the

microcontroller is executing other, not suspended, tasks. The

developer has to care about avoiding deadlocks. Program-

ming tasks is thus complementary to the operating systems

theory within the range of topics related to deadlocks.

The task of the device monitor is to check the state of

modules connected to the RS 485 bus or the SPI bus. This

includes polling all devices connected to the RS 485 bus,

reading analogue inputs values and communicating with

devices connected to the SPI bus (e.g., RTC clock). The task

uses the resources such as SPI BUS or serial port UART 0.

The task is synchronized with other tasks by semaphores.

The TCP/IP stack task is responsible for listening and

establishing new connections and handling them. Currently

work is being carried out on a full implementation of the

TCP protocol. Remote access to the console is effected

through the UDP protocol. The task uses the SPI bus and is

also synchronized. This tasks has a lower priority than the

302

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

two other tasks.

The proposed didactic platform does not provide support

for preemption. Excluding the preemption allows to error

notification – the errors would stay unperceived if the

preemption was used. The students deal with the preemption

and race condition at high-level programming language

courses.

2) Command Line Interpreter: The main controller pro-

vides interactive communication with a user via a Command

Line Interpreter. Initially, the CLI was taken from the

AVRlib project [36]. The original CLI was not designed

for a multitask environment: only one instance of the CLI

was available and, furthermore, it was working on global

variables. The original CLI was not ready to cooperate

with stdio C library. As a result, for the purpose of the

proposed platform, most of the code of the original CLI has

been rewritten. Now, it is possible to use many independent

instances of CLI. Each CLI has the history of its last four

commands and works on a new engine. The proposed CLI

is compatible with the stdio library and it is possible to

use fprintf functions in order to make a print.

The new CLI API is user-friendly (it allows users to

add new commands easily) and communication with the

main controller is simple. The command help displays all

available commands and its description. In the next section,

the method for adding new commands to the interpreter will

be discussed.

3) File system: An important part of operating system

theory is devoted to file systems. For the purpose of the

didactic platform, a simple file system, the so-called FAT 8,

has been written. It can address up to 256 clusters. Each

cluster, contrary to the CP/M operating system, has 256

bytes instead of 128, which has simplified the file system

implementation. The whole implementation takes about 500

lines of code and is compatible with the avr-libc [37] API.

The file is visible as a stream. Writing to a file is possible

using the fprintf function.

4) Communication protocol: The main controller and the

executing modules are connected to a common medium –

the RS 485 bus. The communication model looks as follows.

The main controller (master) starts the transmission on the

bus. Each frame sent by the master main controller has

an address of a slave device (an executing module) – the

receiver of the message. The slave device can answer to the

message. The frame format is Type Length Value. The frame

fields are the following: synchronization sequence, address,

type of message, message length and message data. Two

bytes with CRC sum end the frame.

5) TCP/IP stack: The TCP/IP stack implemented in the

presented didactic platform is based on the stack proposed

within HTTP/TCP with the Atmega88 microcontroller (AVR

web server) [38] project. For the purpose of our project,

the TCP/IP working on Atmega88 with 8 kB of program

memory was adopted for multitasking system. The TCP/IP

stack is supported in the presented didactic platform only

partially. At the current stage, only the ICMP protocol and

UDP socket are implemented. The next releases of the

didactic platform will also include an implementation of

IPv6, servicing several TCP connections and WWW server.

6) Xmodem protocol: This protocol allows to send or

receive files. It cooperates with the stdio library and

input/output stream. This protocol is useful for bootloader

handling. It allows to flash the executing module by a new

firmware image. Implementation of the TFTP protocol is

much more complicated.

7) The operation of specific devices that are connected to

the SPI bus: The I/O module does not include systems that

need software downloading to operate. The systems of the

I/O module require, however, appropriate control. Software

the controls them is already built into the main controller as

firmware.

The following libraries have been created for the specific

needs of the platform: A/D converter (MCP3008 system),

port expander (MPC23S17 system) and the real-time sys-

tems (DS1305). All these systems communicate with the

microcontroller through the SPI bus. Each system is con-

nected to a different address line. Addresses of individual

systems can be set up in the configuration file of the project

(design).

In order to simplify the communication process, a li-

brary to handle the SPI bus has also been prepared. This

library introduces the possibility of checking the state of

the semaphore before an attempt is made to occupy this

communication bus by a given process. After entering the

critical section, before communication commences, the op-

erating mode for the SPI bus is configured to adjust its

configurations to, individual to a given device, processing

speed of sending/receiving data. The library responsible for

servicing the SPI communication bus also provides two

commands for concurrent writing and reading to/from the

SPI bus (spiSendSpinBlock and SpiSend). The first is a

blocking operation. The process performs busy waiting until

termination of data sending on the SPI bus, whereas the

other version of the command is a non-blocking operation.

During data sending on the SPI bus the process is sus-

pended (excluding instances of busy waiting), and, within

the time offered, the operation system can perform another

task. After termination of the sending operation, the task

can be resumed. In the case of the work with systems

that can communicate with great speed through the SPI

communication bus, blocking operations should be applied

because switching of a context occupies more time than the

operation of sending one byte. If the device works at a low

speed and the duration of sending data on the SPI bus takes

more than switching of the context twice, then non-blocking

operations should be used. After termination of the use of

the communication bus, the process must release it.

The libraries responsible for the service of particular

303

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Architecture of executing module firmware

systems, e.g., the RTC clock, make use of the API for

the service of the SPI communication bus. This simplifies

the implementation of services rendered to other remaining

devices. More details related to the control of the devices of

the module are included in the following section.

B. Executing module

The executing module controls four relays and reads four

inputs. It is suitable for controlling, e.g., two roller shutters

or four light sources. Some controlling functions can be

fulfilled automatically, e.g., after pressing the button the

relay is switched on. The relay state may be changed after

receiving special command from main controller.

1) Kernel: The executing module has no complex con-

figuration. Its microcontroller has only 16 kB of program

memory and 1 kB of data memory. In order to save data

memory, the FreeRTOS is using coroutines. The coroutines

share a common stack. The coroutines in FreeRTOS are

automatically restored by the scheduler and a developer

does not need to focus on them. Moreover, they are very

portable across other architectures [35]. The disadvantage of

the application of coroutines requires special consideration.

The lack of stack causes data stored in local variables to

be destroyed after the restoration of a coroutine, which

complicates the use of coroutines. The coroutine API func-

tions can be called only inside the main coroutine function.

In FreeRTOS, the cooperative operation is only allowed

among coroutines, not between coroutines and tasks. For

this reason, there are only coroutines and no tasks in the

firmware of the executing module.

Figure 12 shows the architecture of the executing module

that controls two roller shutters. For driving a single roller

shutter two relays are required as one executing module

can coordinate two roller shutters. The firmware consists

of four coroutines, presented in Figure 12 as solid line

rectangles. Two coroutines drive the rollers, additionally

there is a coroutine that scans the keyboard connected to the

executing module and another one responsible for communi-

cation within the RS 485 bus. The coroutines communicate

with each other by two buffers presented in Figure 12 as

circles. The coroutine responsible for communication with

the RS 485 bus can send appropriate commands to the

driving roller shutter coroutine with the help of the buffer.

The same buffer can be used by the scanning keyboard

coroutine to send a message. The messages sent by the buffer

includes information on relays (its number), which should

be switched on or off at a specified time.

2) Communication protocol: Executing modules work as

slave devices. The communication is always started by a

master device by sending a message with a slave device’s

address (destination address). All slave devices check the

destination address of the received messages. If the slave

device’s address matches the message’s destination address,

the slave device answers and executes the command issued

by the main controller. In most cases, messages with not

matching addresses are ignored. There is only one exception

to this rule, which is presented in the next section.

The coroutine that services the communication protocol

communicates with the RS485 bus via the buffers: RS485

RX and TX. These buffers are also used by interrupt handlers

such as “Receive Complete” and “Data Register Empty”. If

a serial port receives a new sign (name), then the Receive

Complete interrupt is initiated. In the implementation of

the software for the executing module, the service for this

interrupt involves placing this sign in the RS485 RX buffer.

This is a buffer that is realized in a programmable way with

the capacity of 16 bytes. Apart from program buffers, AVR

microcontrollers are equipped with sending and receiving

buffers for serial ports with the capacity of two bytes. If

a sending buffer is available (at least 1 byte is free), then

“Data Register Empty” interrupt appears. Handling of this

interrupt involves checking the state of the RS 485 TX

buffer. If certain data are in the buffer, then they are retrieved

and stored in the sending buffer of the device. When they

are missing, “Data Register Empty” interrupt handling is

activated. This interrupt must be activated after new data

are stored in the RS 485 TX buffer. The next section will

include a description of the API of the FreeRTOS system

designed to handle the buffer by coroutines and the functions

handling interrupts.

The initial design for the didactic platform envisages a

possibility of an expansion to the communication protocol

for the communication bus has an additional line, with which

devices of the slave type can generate interrupts. In addition,

slave devices can send and read the information on the

state of the bus concurrently. This makes them capable of

detecting conflicts when a number of devices sends data

along a common medium – the RS 485 bus.

3) Bootloader: The bootloader is mainly used when a

STK 500v2 programmer is not available or when it is not

connected. The main controller can flash firmware to the

304

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

executing module. With the help of the xModem protocol

the firmware image is first uploaded to the main controller

and stored in a file. Next, the main controller sends a restart

command to the executing module and if the address is

matched, the device restarts. Otherwise, the device discon-

nects from the RS 485 bus for 60 seconds – this is enough

to write firmware to the executing module. After restart of

the executing module the bootloader code is executed. The

bootloader waits 30 seconds for the flash command. After

receiving it, the executing module is trying to download

firmware using the xModem protocol. The main controller

sends firmware according to the xModem protocol.

4) Keyboard scanner: There is a coroutine described

in Section IV responsible for keyboard scanning. It can

distinguish a key press from stick bouncing on keyboard.

C. Software tools

The prepared toolset for the platform purposes works on

Linux and consists of an editor (Integrated Development

Environment – IDE), compiler, repository and programmer

software.

Software programs worked out for the purpose of the

didactic platform are configured in such a way as to be

handled by a freeware Kdevelop 4 editor. For this purpose,

the file cmake.txt had to have been written separately

and appropriately for each of the projects. It provides an

instruction, based on which the Makefile file (in the case

of the Linux system) will be generated. In addition, the file

cmake.txt informs the editor about the names of files that

are included in the project.

Figure 13 presents a screen shot of the editor. The screen

shows a project called CLI. Files of this project have

been grouped thematically based on the information within

a cmake.txt file. Kdevelop, since its version four, stores

information on the project in the cmake.txt file (earlier

versions used GNU autotools [39], and information about

project files was stored in the makefile.am file). Using the

program cmake [40], the Makefile file is generated that

provides instructions to the program make [41] concerning

the method for a compilation of individual files and the

way they should be compiled to create the image of the

system (hex file) that would be ready to be installed into the

microcontroller.

Some sample Makefile files are attached to the projects

included in the repository [34]. They can be accessed and

used directly without the cmake tool. To do this, it is

sufficient to activate the make program to compile the

project and the make program to transfer the image

to the microcontroller. This solution is, however, rather

inconvenient, especially when errors occur. When this is the

case, it is necessary to access the information on errors and

then open a given file and find the indicated code line to

remedy or eliminate the error.

The addition of the cmake.txt file considerably im-

proves code writing. The project can be compiled by pushing

the button Build Section in in the Kdevelop editor that

is framed in red in Figure 13. In the case of an error

occurrence, the editor displays an appropriate message and

a single click takes us to the erroneous code fragment.

In addition, the Kdevelop environment collects infor-

mation on all data structures defined in the project and

facilitates browsing and managing them. These structures

are made accessible after a special bookmark is activated,

which is shown in Figure 14.

In the Ubuntu distribution, all of the required programs

are available in its repositories and can be installed using the

apt-get install command. Thanks to this advantage

it is very easy to write instructions for students, how to

prepare the system to be up and running.

V. LABORATORY EXERCISES

The presented platform allows users to prepare an ex-

tensive number of exercises, both in operating systems and

in embedded systems. The laboratory exercises prepared

for the platform can successfully replace exercises that are

usually carried out with the help of the Linux system.

The two sample laboratory classes presented further on

in the section include basic issues related to the theory

of operating systems, i.e., multitasking, synchronization of

processes, inter-processor communication and the interpreter

of commands. At the same time, the proposed platform can

also be used as a didactic support to classes in network

embedded systems. Students can both design a protocol of

their own that would be operative on the RS485 bus, and

can modify network protocols and (in the future) a www

server.

For the purpose of the teaching process during classes,

templates, provided in the repository available at http://

rtosOnAvr.yum.pl/software/FreeRTOS [34] in the directory

Lab, have been worked out. The project templates are pro-

vided in the templateProjects directory. The library

functions described in the previous section, have been placed

in the freeRtos/Lib. It is recommended that the contents

of this directory should not be modified during laboratory

classes. Each of the projects included in the platform has

a makefile added. The file allows the user to quickly and

easily construct a project: all that is needed is to simply

type the command: make and make program to upload

the constructed firmware image into the microcontroller.

Additionally, the projects include files cmake.txt that

enable integration of a project with the KDevelop editor.

In the remainder of this section, two sample laboratory

exercises that employ the proposed platform are presented,

i.e., the exercises "CLI Interface" and "Coroutines FreeR-

TOS API".

305

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Kdevelop as IDE

A. CLI Interface

During the first laboratory classes students learn in more

detail about the option of adding new commands. The

approach adopted in the laboratory classes is similar to

the approach adopted in programming teaching: during

the classes a simple command will be created that, after

prompting, will cause the “Hello World !!!” message to

be displayed on the screen. The base project template, to

which a new command is to be added, is in the directory

Labs/cli.

The addition of a new command does not require any

extensive knowledge of the code structure for the whole

of the software for the main controller. In order to achieve

the main goal of the exercise it is sufficient to perform the

following operations: writing a function that will be executed

after the appropriate command and defining the name of the

command and complementing it with its description. Each

command is written in the command structure.

s t r u c t command

{

p r o g _ c h a r ∗commandStr ;

p r o g _ c h a r ∗ commandHelpStr ;

Cmdl ineFuncPtrType commandFun ;

} ;

The structure includes all elements that are necessary in the

process of adding a new command. The expression type

prog_char * defines the index for a string stored in the

flash memory of the program. Such strings are handled in a

different way than strings (char *) stored in data memory.

The type CmdlineFuncPtrType is an index for the func-

tion that executes a command. Each such function accepts

the index for the installation of the command interpreter as

argument and returns the result that provides information

whether the command has been properly executed or not.

The declaration of the index for the function is presented

below.

306

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

t y p e d e f c l i E x R e s _ t

(∗ CmdlineFuncPtrType) (c m d S t a t e _ t ∗ s t a t e) ;

The result of the function is defined in the enumerated

(enum) type cliRes_t.

enum c l i E x e c u t e R e s u l t

{

OK_SILENT =0 ,

OK_INFORM,

SYNTAX_ERROR,

ERROR_SILENT,

ERROR_INFORM,

ERROR_OPERATION_NOT_ALLOWED

} ;

t y p e d e f enum c l i E x e c u t e R e s u l t

c l i E x R e s _ t ;

Type cliExecuteResult includes six feasible re-

sults. When the command is properly formed, the value

OK_SILENT or OK_INFORM is returned. The latter value

is used to inform overtly about the proper execution of

the command. Additional values of the enumerated type

make it possible to, e.g., provide information on the lack of

required parameters or on parameters that have been given

inaccurately, in the case of commands that require additional

parameters to be furnished. When this is the case, the execu-

tion function will return the value SYNTAX_ERROR. With

the instance of an error occurrence during the execution of a

command, the command interpreter can inform overtly with

the message (ERROR_INFORM) or, alternatively, it can leave

out the information on the error (ERROR_SILENT). If the

execution of a given command is not possible, then the last

value of the enum type under consideration will be returned,

i.e., the value ERROR_OPERATION_NOT_ALLOWED. In

the case of the considered command that prompts the "Hello

World" welcome message, information on a properly exe-

cuted command may not necessarily appear on the screen,

therefore the value OK_SILENT will be returned by the

function as shown in Figure 14.

In the case of the proposed didactic platform, messages

are written similar to the way they are written in the C

language, i.e., with the help of the function fprintf_P.

The sequence _P means that the text chain is stored in

program memory and not in data memory. The index for the

output stream is in the structure that stores information on

the instance of the command interpreter cmdState_t. This

structure will be discussed in more detail in the later part of

this section. The command interpreter has been designed

in such a way as to make it capable of handling many

languages. Hence, all commands and their descriptions are

written in separate files, e.g., vty_en.h for the English

language, or vty_pl.h for the Polish language. At the

stage of adding a command, it is recommended to add in

each of these files an appropriate chain so that, after a change

in the language, the project could be immediately compiled.

Variables that define text chains are labelled according to

the following convention: variables that include the name of

the command will start with cmd_, whereas variables that

include the name of the command along with a description

of the command will start with cmd_help_. Thus, for the

sample "hello" command under consideration:

p r o g _ c h a r cm d _ h e l lo [] = " h e l l o " ;

p r o g _ c h a r c m d _ h e l p _ h e l l o []

= " W r i t e s h e l l o " ;

The screen shot from the Kdevelop program that includes

the function executed after the "hello" command has been

enabled is presented in Figure 14. The name of the function,

in line with the adopted convention, ends with a suffix

Function. Note that the text is written onto the screen

with the help of the function fprintf. This function

adopts as the first argument the index for the output stream.

At this point, the application of the PSTR macro as the

second argument needs certain explanation here. This macro

imposes an inclusion of stings in the memory of the program

instead of, as it is adopted conventionally, in data memory.

The last element related to the addition of a command

is to place the structure with the added command in an

appropriate command table. In the example presented in

Figure 14, the command has been placed in the menu at

the privileged level. Therefore, the table cmdListEnable

included in the vty.c file should be completed with yet

another type command_t.

command_t __ATTR_PROGMEM__

cm d Lis tEn ab le [] =

{

{ cmd_help , cmd_help_help , h e l p F u n c t i o n } ,

. . .

{NULL, NULL, NULL}

} ;

The table cmdListEnable is placed in the memory of

the program (attribute __ATTR_PROGMEM__). This mean

that an increase in the number of commands will not lead

to a decrease in the available data memory. A reduction

in the available data memory could eventually lead to a

situation where the system simply hangs. In addition, a

special command status has been added to the system.

The command returns information on available memory. If

the obtained value has a negative number, then it is necessary

to decrease one of the stacks of tasks being serviced.

Otherwise, the stack or the buffer cache will overlap a

section of the memory cache that is occupied by global

variables, which, in consequence, will block the operation

of the system or will render the operation of the system

unstable.

307

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. IDE and Hello world function

Further active participation in the set of the laboratory

classes requires students to know the file system developed

in the project. There are the following files in the

project directory: main.c(h), cli_tasks.c(h),

netstack_task.c(h), sensors_task.c(h),

hardware.c(h), serial.c(h), vty.c(h),

configuration.c(h). A device is initiated in the

file "main", then tasks are created. Functions targeted

by appropriate tasks are in the files: cli_tasks.c(h),

netstack_task.c(h) and sensors_task.c(h).

The functions of these tasks make use of the module

libraries of appropriate modules. The knowledge of their

implementation is not necessary to carry on with the

exercises during the classes. Basic knowledge of the API

is sufficient. The "hardware" file includes appropriate

functions that handle the devices included in the evaluation

set. The configure.c file includes functions that handle

writing and reading of the configuration, e.g., the IP address

and the mask. The serial.c file is responsible for

handling serial ports. These ports send and receive data

through buffers that are also used by tasks operating in the

system. In the vty.c file, functions to be performed after

an appropriate command has been written to the interpreter

are defined.

The next proposed laboratory task related to the usage

of the command interpreter is to add a command that

controls the output of the MCP 23S17 expander connected

to the microcontroller through the SPI bus. The controlling

functions for the expander are in the Lib directory and

students do not have to know its precise implementation.

The implementation itself has been realized in such a way

as to show some interesting aspects of the C language that

are not necessarily discussed during lectures.

The library functions used during the lab classes have

been prepared in such a way as to be employed in an all-

purpose manner, i.e., the address of a device connected

to the SPI bus has not been specified. This device (the

port expander in the discussed case) is prompted with the

help of the functions included in the hardware.c file.

The file includes functions that are appropriately adapted

to a specific set, where each of the devices involved is

always connected to the same address line. These settings

are written in the hardware.h file. This saves time for

students as they do not have to learn the construction of the

main controller in detail. Figure 3 shows that each of the

modules connected to the SPI bus has a different address

and, thus, its address line is connected to a separate output

in a port of the microcontroller. The functions included in

308

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the hardware.c file automatically control the available

ports of the microcontroller and ensure that no more than one

device is addressed at a time. Some devices are addressed by

high state, others by low state. Using appropriate macros, the

user does not have to know all these implementation details,

which allows at the same time to maintain high efficiency

in controlling the modules. A sample way of addressing the

MPC23S17 port expander is presented in the following code.

void enableSpiMPC23S17 (void)

{

i f MCP23S17_SPI_CS_EN_MASK_OR != 0

MCP23S17_SPI_CS_PORT | =

MCP23S17_SPI_CS_EN_MASK_OR ;

e n d i f

i f MCP23S17_SPI_CS_EN_MASK_AND != 0xFF

MPC23S17_SPI_CS_PORT &=

MPC23S17_SPI_CS_EN_MASK_AND;

e n d i f

}

In a similar way, releasing the address for the same device

can be implemented in the following way.

void disab leSpiMPC23S17 (void)

{

i f MCP23S17_SPI_CS_EN_MASK_OR != 0

MCP23S17_SPI_CS_PORT &=

(~MCP23S17_SPI_CS_EN_MASK_OR) ;

e n d i f

i f MCP23S17_SPI_CS_EN_MASK_AND != 0xFF

MPC23S17_SPI_CS_PORT | =

(~MPC23S17_SPI_CS_EN_MASK_AND) ;

e n d i f

}

The following constants have been defined in the

hardware.h file: MCP23S17_SPI_CS_PORT,

MCP23S17_SPI_CS_EN_MASK_OR,

MCP23S17_SPI_CS_EN_MASK_AND. The first constant

defines the port of the microcontroller, to which the address

line that gives the expander access to the bus is connected.

The constant MCP23S17_SPI_CS_EN_MASK_OR

determines, which outputs of the port are to be in logical

1 state to address the device, whereas the negative constant

MCP23S17_SPI_CS_EN_MASK_AND determines, which

bits are to be in logical 0 state to address the device. If a

system operating on the SPI bus is addressed by logical

0 state, then the constant ..._SPI_CS_EN_MASK_OR

has a zero value, therefore the logical sum bit operation

does not change its value. In order to avoid superfluous

operations, the conditional compilation directive has been

applied. Similarly, if a device is addressed in high state,

then the constant ..._SPI_CS_MASK_AND has the value

0xFF and the product bit operation gives no results. To

omit such an operation, conditional compilation has also

been applied. When changing the way of connecting a

given system to the SPI bus, it is sufficient to modify

the hardware.h file. Note that some of the functions

have been implemented twice in the project (e.g., function

enableSpiMPC23S17): in the library files and in the

directory of the project itself. Such an approach is possible

when the WEAK attribute is applied. When the definition

of the function reappears (without WEAK attribute), then

it replaces the earlier function with the WEAK attribute.

The application of the WEAK attribute is a more efficient

alternative as compared to indexes to functions or virtual

functions available in the C++ language.

After getting to know the expander’s API, a new re-

quirement emerges – the reading of the line number

that has to be set to either high or low state. The CLI

mechanism provided allows the user to read additional

arguments furnished along with the command. Using the

attribute argc in type cmdState_t, it is possible to

read the index of the last argument. The argument with

the index 0 is the name of the command, while argu-

ments with the consecutive indexes are the parameters,

with which the command is executed. In SPI, the func-

tions cmdlineGetArgStr, cmdlineGetArgInt and

cmdlineGetArgHex are given for CLI. These functions

return respectively: sign chain, integer number determined

on the basis of the conversion of the sign chain written in

decimal format into a numerical value, and integer number

determined on the basis of the sign chain written in hexadec-

imal format/number. Therefore, in order to write a function

that sets a given line in port A in the port expander into

high state, the number of that line has to be read first. Then,

using the logical sum resulting from the state of port A and

the bit left-shift of the number 1 by the value of the line

number, sets a new state of port A of the expander. The

fragment of the code below shows the function that sets the

state for port A.

s t a t i c c l i E x R e s _ t

s e t P o r t E x t A F u n c t i o n (c m d S t a t e _ t ∗ s t a t e)

{

i f (s t a t e −>a r g c < 2)

re turn SYNTAX_ERROR;

u i n t 8 _ t n ewSta te =

c m d l i n e G e t A r g I n t (1 , s t a t e) ;

MPC23s17SetDirA (0 x00 , 0) ;

MPC23s17SetPortA (newSta te , 0) ;

re turn OK_SILENT ;

}

The static parameter before the type returned by the function

denotes that the function is available only in the file, in

which it has been declared. This facilitates maintaining order

in the code. The aim of the task is to add an additional

function that sets a given output line into high or low state

according to its number within the port. To execute this task,

309

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Flash light algorithm

the code of the function presented above can be used.

B. Coroutines FreeRTOS API

Subsequent laboratory classes introduce the issues of

cooperative multitasking. Cooperative multitasking is ex-

ecuted with the help of coroutines, which, when used,

reduce requirements in system resources. The application of

coroutines is followed, however, by certain limitations. The

understanding of the idea of coroutines and the specificity

of their usage will be facilitated by the laboratory exercise

presented below. The exercise involves the introduction of a

modification to the software for the executing module so that

it will be capable of controlling four light sources. The tem-

plate for the project is in the directory: Lab/Coroutines.

The first task is to control the light in such a way as to make

the light flash. The algorithm for controlling a single light

source is presented in Figure 15.

The algorithm is to execute the following: switching

the light on, waiting for requested time, switching the

light off and waiting for requested time again. Flashing

of three light sources is easy to execute with the help of

timers (Atmega168 microcontroller has three timers). The

situation is more complicated when the number of light

sources to be controlled is greater than the available counters

and when each light flashes with a different frequency,

independent from other light sources. In such a situation,

there are two available options: a suitable program that

executes the task can be written, although is not very

clear or readable; or, in the most preferable solution, to

make use of multitasking offered by operating systems.

The realization of the algorithm that controls four light

sources and uses multitasking is presented in Figure 16.

Each light source is controlled in a separate thread. In

the executing modules multitasking is carried out with the

help of coroutines, hence each coroutine controls a separate

light source, whereas the control algorithm remains the

same for all sources. This means that each coroutine can

perform the same function. The API of the FreeRTOS

system defines for each coroutine the index to the function

that is later to be performed by the coroutine. The index to

the function of a coroutine has the following form: void

vACoRoutine(xCoRoutineHandle xHandle, unsigned

portBASE_TYPE uxIndex).

The first argument of the function is a handle to the

coroutine. It is used by API functions and macros of the

Figure 16. Algorithm for concurrent flashing of four light sources

FreeRTOS system that are executed within a function of the

coroutine, e.g., to make a coroutine dormant during a given

amount of time or to service a queue. The second argument

is the index of the coroutine. With reference to the men-

tioned sample task, each light source has its own coroutine

that performs the same function. Each light source has a

different index for the coroutine, therefore by performing a

common function, on the basis of the argument uxIndex, it is

possible to determine the light source that the function has

to control. For a coroutine to become dormant at a time t,

the macro crDELAY(xCoRoutineHandle xHandle,

portTickType xTicksToDelay) is used. The han-

dle to the coroutine is the first argument, the second being

the number of system (internal) clocks. System frequency

is defined in the configuration file FreeRTOSConfig.h.

One system clock includes many microcontroller’s inter-

nal clocks. Their number is determined automatically by

a special macro on the basis of the system frequency

configTICK_RATE_HZ and the microprocessor clock

frequency configCPU_CLOCK_HZ. FreeRTOS defines its

own types that depend on the processor’s architecture [35].

In the case of the Atmega processor, the type portTickType

is a 16-bit indeterminate integer variable.

The code for the coroutine that implements the flashing

algorithm can be written in the following way:

void vLed (xCoRout ineHandle xHandle ,

unsigned portBASE_TYPE u x In d ex)

{

/ / T h i s macro i s r e q u i r e d

crSTART (xHandle) ;

f o r (; ;)

{

310

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ledOn (u x In d ex) ;

crDELAY (xHandle , tLedOn [u x In d ex]) ;

l e d O f f (u x In d ex) ;

crDELAY (xHandle , tLed Of f [u x In d ex]) ;

}

/ / T h i s macro i s r e q u i r e d

crEND () ;

}

In the presented code, tLedOn and tLedOff are global

tables. Each element of either of the tables denotes the

glow discharge time of the diode and the idle time of the

diode, respectively. The functions ledOn and ledOff are

API functions of the executing module. The function, in

which the coroutine is executed conventionally starts with

the macro crSTART(xHandle) and ends with the macro

crEND. Between the macros there is an infinite loop, in

which the appropriate algorithm is executed.

Note that the low memory demand is a distinct advantage

of coroutines – they operate on a common stack. Such a

solution has a substantial disadvantage as well, which leads

to certain limitations in their usage. After the coroutine

resumes operation, the values for the local variables defined

within the function executing the coroutine may be changed.

Thus, if we want the variable to remain stable, such a

variable has to be declared as a static or global variable. Thus

revealed, this problem makes students stop and think how

the compiler operates and in what way it places variables

in the memory. Another limitation involves the absence of

the possibility of preemption. A coroutine has to decide for

itself when it is to be switched, so the only possible option

here is the so-called collective multitasking. Switching of

coroutines is effected at the time of the execution of blocking

calls such as putting the coroutine into a dormant state

for a specified time cdDELAY or operations on the buffer

(sending or retrieving information from the buffer). All

the mentioned operations can be performed only within

the block of functions that service the coroutine. These

cannot be executed within some other function recalled by

the function that services the coroutine. In addition, the

functions mentioned cannot be performed within the switch

construction.

At the later stage of the envisaged laboratory classes

students are asked to perform a task that involves

creation of a coroutine that would allow each of the light

sources (diode) to falsh with its own frequency. For the

coroutine to be created the function portBASE_TYPE

xCoRoutineCreate(crCOROUTINE_CODE

pxCoRoutineCode, unsigned portBASE_TYPE

uxPriority, unsigned portBASE_TYPE

uxIndex) is used. The first argument is the function that

the coroutine will perform, the second is the priority of

the coroutine and the third argument is the coroutine index

mentioned earlier in the text. The FreeRTOS text executes

tasks or coroutines according to their priority. In the

configuration file the number the levels for priorities is set

configMAX_CO_ROUTINE_PRIORITIES. The higher

the number is, the more operating memory is required by

the system. Coroutines themselves are executed within the

task or in the idle task. We do not create any tasks in the

executing module, thus coroutines are executed in the idle

task. This means that it is necessary to add an appropriate

function that is executed in the idle task.

void v A p p l i c a t i o n I d l e H o o k (void)

{

f o r (; ;)

{

v Co Ro u t in eSch ed u le () ;

}

}

The template for the project of the executing controller

already includes the code presented above. What is neces-

sary, however, is to create coroutines. This should be done

in the main function.

portSHORT main (void)

{

/ / I n i t i a l i z e s hardware ,

/ / s e t s p o r t s d i r e c t i o n s .

h a r d w a r e I n i t () ;

u i n t 8 _ t ledNo ;

f o r (ledNo = 0 ; ledNo <4 ; ledNo ++)

x C o R o u t i n eC re a t e (vLed , 0 , ledNo) ;

v T a s k S t a r t S c h e d u l e r () ;

re turn 0 ;

}

The presented main function ends with the function

vTaskStartScheduler. Within this function, a sched-

uler is activated that performs all the required tasks accord-

ing to their priorities. In the case of the executing module,

there are no tasks, so the scheduler is always set to the idle

task, in which coroutines are serviced.

The next proposed laboratory task is to expand the func-

tionality of the software for the executing module with

handling of keys. For example, pressing one of the keys

will result a diode glowing for some time until the diode

goes off. The state of the keys will be checked by separate

coroutines. The architecture of the firmware of the executing

module is presented in Figure 17.

After pressing of the key is detected, the coroutine sends

a relevant message to the coroutine that services the light

source. Therefore, it is necessary to introduce communica-

tion between the coroutines. This communication can be

carried out using message queues. Each coroutine has its

311

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Architecture of executing module firmware controlling four
light sources with keyboard

Figure 18. Algorithm for coroutine handling a single light source

own message queue, from which it receives messages. The

information in the message includes information on how

long the light has to be switched on. If the value is equal to

zero, the light has to be switched off.

The algorithm of the coroutine that controls a single

light source is shown in Figure 18. Initially – during the

initialization phase – the light is switched off, therefore the

variable time is equal to zero (analogous to message format).

In the next step, the coroutine checks the value of the time

variable. If it is greater than zero, the light is switched on.

Otherwise, the light is switched off. Next, the coroutine is

waiting for a new message in the buffer, not longer than the

time of switching on the light. If the time-out is exceeded

and there is no message, the algorithm goes back to the

initialization phase and the light will be switched off in the

next step. If there is a new message, the light is switched

on for a time specified in the message.

FreeRTOS provides a special API for handling

semaphores. To read messages the macro void

crQUEUE_RECEIVE(xCoRoutineHandle

xHandle, xQueueHandle pxQueue, void

*pvBuffer, portTickType xTicksToWait,

portBASE_TYPE *pxResult) is used. The macro

allows the determination of the maximum time-out for

a message with the help of the fourth argument. After

invoking the macro, the coroutine is suspended for a

specified time (optionally specified time-out) or until the

Figure 19. Algorithm for coroutine handling keyboard

message is received. The macro crQUEUE_RECEIVE is

then capable of replacing the macro crDELAY.

The macro crQUEUE_RECEIVE requires additional ar-

guments such as a handle to the coroutine (the first argu-

ment) and a handle to the queue, from which it will be

reading a new message (the second argument). The third

argument is the index to the memory, to which the received

message will be written. The fourth argument defines the

time dedicated for an operation to be performed, whereas

the fifth argument is the index to the variable of the

type portBASE_TYPE. The variable pointed to by pxResult

will be set to pdPASS if data has been successfully retrieved

from the queue, otherwise it will be set to an error code as

defined within ProjDefs.h. Hence, if the variable has the

value pdPASS, then the light source will be switched off.

The light source can be switched off prior to the completion

of the specified time-out when a successive message with

the time value set to 0 is sent to the queue.

The keyboard coroutine, after detecting pressing of

a key, sends a message to an appropriate coroutine

through a message queue. For this purpose, the

macro void crQUEUE_SEND(xCoRoutineHandle

xHandle, xQueueHandle pxQueue,

void * pvItemToQueue, portTickType

xTicksToWait, portBASE_TYPE * pxResult)

has to be used. The importance of individual arguments is

the same as in the case of the macro crQUEUE_RECEIVE.

The algorithm for handling keyboard events is presented

in Figure 19. The algorithm provides an opportunity to check

successively the state of each of the keys. When pressing of

a key is detected, then a message is sent to an appropriate

312

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

message queue through its handle. Handles to message

queues are stored in the global table ledBuffers. Each

element of the table corresponds to a different coroutine that

handles a separate light source. To check the state of a key

the function uint8_t readKey(uint8_t keyNo) is

used. This function returns zero, when the key is pressed

down, and a non-zero result when the key is depressed. The

argument keyNo defines the number of the key that is being

checked.

To ensure appropriate handling of messages related to

keyboard handling, it is necessary to create buffers in the

function main with the function xQueueHandle

xQueueCreate(unsigned portBASE_TYPE

uxQueueLength, unsigned portBASE_TYPE

uxItemSize) provided by API of the FreeRTOS system.

The first argument determines the length of a single

message, whereas the number of messages that the buffer

can accommodate is defined by the second argument. It

should be noted that in the case of the AVR architecture

the type portBASE_TYPE is a 8-bit variable and, hence,

the length of a queue and the length of a single message

cannot exceed 255 bytes. It is also necessary to create in

the function main a coroutine that will be responsible for

checking the state of the keyboard.

The last task to be performed by students during their

classes devoted to handling of coroutines is to secure com-

munication between the executing module and the rest of the

system using the RS485 bus. To achieve this, another corou-

tine that is responsible for handling of the communication

protocol has to be added. In line with the architecture shown

in Figure 20, the coroutine handling the communication

protocol makes use of the queues RS 485 RX and RS 485

TX that, respectively, send and receive data onto and from

the RS 485 bus. Each byte that is received on the bus is

placed as an individual (separate) message in the RS 485

RX buffer. Similarly, each byte that has to be sent onto the

bus is placed by the coroutine handling the communication

protocol in the RS 485 TX bus. The coroutine that handles

the communication protocol receives successive bytes from

the queue RS 485 RX and consolidates them in a message

frame. Then, the coroutine checks whether the message

address corresponds to the address in the executing module

and, with the help of the control code CRC16, whether

the message is not a malfunction message. If the received

message includes the switch on the light source command

or the switch off command, then the coroutine sends a

message to an appropriate message queue that services the

coroutine handling light source data. The coroutine handling

the communication protocol is more complex. Students get

its ready-made implementation. The task they are expected

to perform is to create queues RS 485 TX and RX, as well

as the coroutine handling the communication protocol.

Messages are sent to the RS 485 RX buffer by the function

handling Receive Complete interrupt that appears after a

Figure 20. Architecture of executing module firmware controlling four
light sources

byte is received by the serial port. Functions handling inter-

rupts have a spacial API provided by the FreeRTOS system.

The macro crQUEUE_SEND_FROM_ISR is designed to

send messages to the program buffer. Similarly, messages

from the RS 485 TX buffer are read by the function handling

the interrupt “Data Register Empty” that determines whether

the sending buffer of the serial port can receive another

sign to be successively sent on. For this purpose, the macro

crQUEUE_RECEIVE_FROM_ISR is used. If the RS 485

TX buffer is empty, then the interrupt “Data register Empty”

is switched off. Switching the interrupt off is activated by the

macro vInterruptOff() and is effected automatically

within this interrupt handling. If the RS 485 TX buffer

included any data to be sent, then, before placing them in

the hardware sending buffer of the serial port, the MAX481

transmitter is switched on. The transmitter enables sending

data onto the RS 485 bus that operates in the half duplex

mode. The transmitter is switched off within “Transmit

Complete” interrupt handling. The interrupt occurs only

when the transmitter has sent all the content of its hardware

buffer.

After adding a new sign to the RS 485 TX sending buffer,

interrupt handling “Data register Empty” should be switched

on with the macro vInterruptOn(). The programmer

must not forget about it. Such an approach has been adopted

purposefully having in mind that the RS 485 bus should be

blocked for as short a time as possible. A message should be

sent only when it formed in full and after being placed in the

buffer. Hence, after placing the whole of the message in the

buffer, it is necessary to switch the interrupt “Data Register

Empty” on. The function handling this interrupt will then

switch on the transmitter and will send the message via the

bus. On termination of the transmission, the transmitter will

be automatically switched off (without the interference of

the programmer).

313

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION AND FUTURE WORK

The presented didactic system is a valuable addition to the

theory of operating and embedded systems. It enables stu-

dents to get familiarized with such aspects as multitasking,

interprocess communication, and process synchronization.

The platform has been designed in such a way as to facilitate

its quick and easy implementation. For this effect, AVR

microcontrollers, which are increasingly popular among

students taking interest in electronics, have been used. The

presented solution is inexpensive and most students can

afford to build the presented platform and use it for didactic

or practical purposes limited only by their imagination.

The article puts special attention to a detailed presentation

of some selected laboratory exercises prepared for laboratory

classes. These exercises familiarize students with practical

aspects of issues related to the theory of operating and em-

bedded systems. The presented exercises facilitate successful

understanding of techniques of implementing multi-thread

applications and the creation of commands and handling of

file systems.

The presented didactic platform is still being developed.

The future work is related to the implementation of SD card,

as well as IPv6 or TCP protocols.

Simultaneously, the achieved platform’s simplicity intro-

duces some limitations, mainly concerning the size of ran-

dom access memory, which cannot be extended. The limited

size of random access memory hinders an implementation

of the SSH protocol that supports the encrypted connections.

ACKNOWLEDGEMENT

The authors would like to thank all the developers taking

part in open source projects cited in the article.

REFERENCES

[1] A. Kaliszan and M. Głąbowski, “Didactic embedded plat-
form and software tools for developing real time operating
system,” in Proceedings of the The Seventh Advanced In-
ternational Conference on Telecommunications (AICT 2011),
M. Głąbowski and D. K. Mynbaev, Eds. St. Maarten, The
Netherlands Antilles: IARIA, Mar. 2011, pp. 77–82.

[2] R. Love, Linux Kernel Development, 3rd ed. Novell Press,
Jul. 2010.

[3] “Microsoft Windows Server.” [Online]. Avail-
able: http://www.microsoft.com/windowsserver2008/en/us/
default.aspx <retrieved: Jan, 2012>

[4] W. R. Stevens and S. A. Rago, Advanced Programming in
the UNIX Environment, 2nd ed. Addison-Wesley, 2005.

[5] J. M. Corchado, J. C. Augusto, and P. Novais, Ambient Intelli-
gence and Future Trends, 1st ed., ser. Advances in Intelligent
and Soft Computing. Springer, 2010, vol. 72. [Online]. Avail-
able: http://www.springer.com/engineering/computational+
intelligence+and+complexity/book/978-3-642-13267-4 <re-
trieved: Jan, 2012>

[6] L. Sydell, “Chasing a habitable ’home of the future’,”
May 2006. [Online]. Available: http://www.npr.org/templates/
story/story.php?storyId=5360871 <retrieved: Jan, 2012>

[7] “Mach homepage.” [Online]. Available: http://www.cs.cmu.
edu/afs/cs.cmu.edu/project/mach/public/www/overview.html
<retrieved: Jan, 2012>

[8] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black,
E. Cooper, and M. W. Young, “Mach threads and the unix
kernel: The battle for control,” in in Proceedings of the
USENIX Summer Conference, USENIX Association, 1987, pp.
185–197.

[9] A. Singh, A Technical History of Apple’s Operating Systems.
osxbook.com, 2001.

[10] R. Stallman, “The GNU manifesto,” Dr. Dobb’s Journal,
vol. 10, no. 3, p. 30, Mar. 1985.

[11] ——, “GNU manifesto.” [Online]. Available: http://www.
gnu.org/gnu/manifesto.html <retrieved: Jan, 2012>

[12] “100 of the most significant events in linux history,”
Linux Journal, Aug. 2001. [Online]. Available: http:
//www.linuxjournal.com/article/6000 <retrieved: Jan, 2012>

[13] “FreeBSD homepage.” [Online]. Available: http://www.
freebsd.org <retrieved: Jan, 2012>

[14] “Ethernut homepage.” [Online]. Available: http://www.
ethernut.de <retrieved: Jan, 2012>

[15] “Arduino homepage.” [Online]. Available: http://arduino.cc
<retrieved: Jan, 2012>

[16] “Arduino programming language.” [Online]. Available: http:
//arduino.cc/en/Reference/HomePage <retrieved: Jan, 2012>

[17] “Wiring homepage.” [Online]. Available: http://wiring.org.co
<retrieved: Jan, 2012>

[18] “The FreeRTOS project homepage.” [Online]. Available:
http://www.freertos.org <retrieved: Jan, 2012>

[19] FreeRTOS, “Copyright notice,” http://www.freertos.org/
copyright.html <retrieved: Jan, 2012>

[20] “Eagle.” [Online]. Available: http://www.cadsoftusa.com/
<retrieved: Jan, 2012>

[21] A. Kaliszan, “AtMega128 RTOS hardware repository.”
[Online]. Available: http://rtosOnAvr.yum.pl/hardware/ssw
<retrieved: Jan, 2012>

[22] Atmel, “Atmega128 data sheet.” [Online]. Avail-
able: http://www.atmel.com/dyn/resources/prod_documents/
doc2467.pdf <retrieved: Jan, 2012>

[23] ——, “Atmega168 data sheet.” [Online]. Avail-
able: http://www.atmel.com/dyn/resources/prod_documents/
doc2545.pdf <retrieved: Jan, 2012>

[24] FTDI, “FT232RL data sheet.” [Online]. Avail-
able: www.ftdichip.com/Support/Documents/DataSheets/ICs/
DS_FT232R.pdf <retrieved: Jan, 2012>

314

International Journal on Advances in Telecommunications, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] Maxim, “MAX481 data sheet.” [On-
line]. Available: http://datasheets.maxim-ic.com/en/ds/
MAX1487-MAX491.pdf <retrieved: Jan, 2012>

[26] Microchip, “Enc28j60 data sheet.” [Online]. Avail-
able: ww1.microchip.com/downloads/en/devicedoc/39662a.
pdf <retrieved: Jan, 2012>

[27] ——, “MPC23S17 data sheet.” [Online]. Avail-
able: http://ww1.microchip.com/downloads/en/DeviceDoc/
21952b.pdf <retrieved: Jan, 2012>

[28] Texas Intruments, “ULN2003A data sheet.” [Online]. Avail-
able: http://focus.ti.com/lit/ds/symlink/uln2003a.pdf <re-
trieved: Jan, 2012>

[29] Microchip, “MCP3008 data sheet.” [Online]. Avail-
able: http://ww1.microchip.com/downloads/en/DeviceDoc/
21295d.pdf <retrieved: Jan, 2012>

[30] National, “LM35 data sheet.” [Online]. Available: http:
//www.national.com/ds/LM/LM35.pdf <retrieved: Jan, 2012>

[31] Maxim, “DS1305 data sheet.” [Online]. Available: http:
//datasheets.maxim-ic.com/en/ds/DS1305.pdf <retrieved: Jan,
2012>

[32] G. Socher, “AvrUsb500v2 – an open source Atmel
AVR programmer, stk500 v2 compatible, with USB
interface.” [Online]. Available: http://tuxgraphics.org/
electronics/200705/article07052.shtml <retrieved: Jan, 2012>

[33] “AVR JTAG ICE clone.” [Online]. Available: http://
www.scienceprog.com/build-your-own-avr-jtagice-clone <re-
trieved: Jan, 2012>

[34] A. Kaliszan, “AtMega128 RTOS firmware repository.” [On-
line]. Available: http://rtosOnAvr.yum.pl/software/FreeRtos
<retrieved: Jan, 2012>

[35] FreeRTOS, “FreeRTOS API reference.” [Online]. Available:
http://www.freertos.org/a00106.html <retrieved: Jan, 2012>

[36] P. Stang, “Procyon AVRlib API,” 2006. [Online].
Available: http://www.procyonengineering.com/embedded/
avr/avrlib/ <retrieved: Jan, 2012>

[37] “AVR-libc API,” 2006. [Online]. Available: http://avr-libc.
nongnu.org <retrieved: Jan, 2012>

[38] G. Socher, “HTTP/TCP with an Atmega88 mi-
crocontroller (AVR web server),” 2006. [Online].
Available: http://www.tuxgraphics.org/electronics/200611/
embedded-webserver.shtml <retrieved: Jan, 2012>

[39] “GNU automake.” [Online]. Available: http://www.gnu.org/
software/automake <retrieved: Jan, 2012>

[40] “Cross platform make.” [Online]. Available: http://www.
cmake.org <retrieved: Jan, 2012>

[41] “GNU make.” [Online]. Available: http://www.gnu.org/
software/make <retrieved: Jan, 2012>

