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Abstract—In this paper1, we investigate an efficient signal
detection algorithm, which combines lattice reduction (LR) and
list decoding (LD) techniques for the 3rd generation long term
evolution (LTE) downlink systems. The resulting detector, called
LRLD based detector, is carried out within the framework of
successive interference cancellation (SIC), which takes full advan-
tages of the reliable LR detection. We then extend our studies to
the implementation possibility of the LRLD based detector and
provide reference for the possible real silicon implementation.
Simulation results show that the proposed detector provides a
near maximum likelihood (ML) performance with a significantly
reduced complexity.

Index Terms—3GPP LTE downlink, signal detection, lattice
reduction, successive interference cancellation, implementation
study.

I. INTRODUCTION

The 3rd generation partnership project (3GPP) [2] is in
the process of defining the long-term evolution (LTE) and
Advanced-LTE for 3G radio access, in order to maintain the
future competitiveness of 3G technology. The main targets for
this evolution concern increased data rates, improved spectrum
efficiency, improved coverage, and reduced latency. The LTE
downlink is based on orthogonal frequency division multiple
access (OFDMA) that allows multiple access on the same
channel [3]. This allows simple receivers in case of large
bandwidth, frequency selective scheduling and adaptive mod-
ulation and coding. The LTE uplink is based on single carrier
frequency division multiple access (SC-FDMA) technique [4].

In order to fulfill the requirements on coverage, capacity,
and high data rates, novel multiple input multiple output

1This work was partly presented at the 2010 International Conference on
Digital Communications (see reference [1].)

(MIMO) schemes need to be supported as part of the long-term
3G evolution. Signal detection in MIMO systems have recently
drawn significant attention. If the maximum likelihood (ML)
detection is used, the complexity grows exponentially with the
number of transmit antennas. Thus, various approaches are
devised to reduce the complexity. The successive interference
cancellation (SIC) approach is employed in [5]. The relation
between the SIC based MIMO detection and the decision
feedback equalizer (DFE) is exploited in [6]. A probabilistic
data association (PDA) algorithm, which was devised for the
multiuser detection in [7], is applied to the MIMO detection
in [8]. In [9], the partial maximum a posteriori probability
(MAP) principle is derived to discuss the optimality of the
SIC based detection. List decoding (LD) based detectors are
also considered for the MIMO detection to obtain soft-decision
in [10] and [11]. In [12], a lattice reduction (LR) based
MIMO detector used as a low complexity MIMO detector
is first discussed. In [13], more LR based MIMO detectors
are proposed. Following this trend, this paper considers the
signal detection in the LTE downlink, where an efficient signal
detection algorithm based on the LR and LD techniques is
investigated. The resulting detector (called LRLD detector)
produces a list in the LR domain, which results in a much more
reliable list and thus is efficient in mitigating error propagation
when the SIC based detection is employed. Simulation results
show that the LRLD detector provides a near ML performance
with a significantly reduced complexity.

However, the potential capacity of the MIMO channel can
only be exploited if implementable hardware architecture is
available. The main issue in implementing the MIMO detector
is the latency incurred by preprocessing the channel matrices
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Fig. 1. Block diagram of a MIMO-OFDMA LTE downlink.

[14]. There have been extensive work on the implementation
of the MIMO detection either with minimum mean square
error-successive interference cancellation (MMSE-SIC) [15],
vertical-Bell Laboratories layered space-time (V-BLAST) [16]
or Maximum Likelihood (ML) receivers [17]-[22]. However,
while the formers usually provide an inferior performance,
the latter demandingly requires a large silicon complexity.
Thus, finding a reasonable trade-off between an implementable
architecture of the MIMO detector and a near ML performance
is always a motivation. We therefore extend our studies to the
implementation possibility of the proposed detector and then
provide references for the possible real silicon implementation.

The rest of the paper is structured as follows. Section II
describes the system and channel models. The signal detection
algorithm is designed and discussed in Section III. Section IV
studies the implementation possibility of the proposed detector.
Section V provides simulation results and some concluding
remarks are provided in Section VI.

Notation: Bold-face upper (lower) letters denote matrices
(column vectors); (·)∗, (·)T and (·)H denote complex conjuga-
tion, transpose and Hermitian transpose, respectively; I is the
identity matrix; E[·] denotes statistical expectation; Diag(x)
denotes a matrix with vector x being its diagonal; N (µ, σ2)

denotes Gaussian distribution with mean µ and variance σ2;
δn,n� denotes Kronecker delta; J0(·) denotes zero-order Bessel
function of the first kind; | · | denotes absolute value; and � · �
denotes Frobenius norm.

II. SYSTEM AND CHANNEL MODELS

The MIMO-OFDMA LTE system is a parallel of single-
input single-output OFDMA (SISO-OFDMA) where blocks
of K data symbols are mapped onto the spatial multiplexing
(SM) module followed by the data mapping and inverse fast
Fourier transform (IFFT) operations, as shown in Figure 1.
Note that we do not consider MIMO encoding (e.g., space-
time coding) in this work. The data mapping operation is
used for subcarrier mapping (e.g., distributed or localized
mapping in multiple access [4]). Reversed operations are
carried out at the receiver, which are then followed by the
signal detection and MIMO processing. Assume that there
are K transmit antennas and N receive antennas. Let P and
Q denote the number of subcarriers used in one orthogonal
frequency division multiplexing (OFDM) symbol for the user
of interest and the size of the IFFT, respectively. We denote

sP,k = [s1,k, s2,k, · · · , sP,k]
T (1)

as the transmitted signal vector from the kth transmit antenna.
For convenience, it is assumed that E[sp,ks∗p,k] = 1 for 1 ≤
p ≤ P, 1 ≤ k ≤ K.

Assuming that the guard interval (i.e., cyclic prefix (CP))
is longer than the maximum channel span, the received signal
vector after removing CP and taking fast Fourier transform
(FFT) at the nth receive antenna can be written as

rP,n � [r1,n, r2,n, · · · , rP,n]
T (2)

=
K�

k=1

Diag(hn,k)sP,k +wn (3)
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where hn,k = [hn,k(i1), hn,k(i2), · · · , hn,k(iP )]T is the
frequency-domain channel vector from the kth transmit an-
tenna to the nth receive antenna and wn is a zero-mean
complex Gaussian vector with variance σ2

w
. Here, ip = P(p)

where P(·) is the subcarrier mapping function that maps a
data symbol onto one of the Q subcarriers. Obviously, ip

is obtained depending on the subcarrier mapping pattern and
ip ∈ {1, 2, · · · , Q}. Note that

hn,k(ip) =
L�

l=1

gn,k(l)e
− 2πj

Q (l−1)(ip−1)

where gn,k(l) is the lth tap of the fading channel from kth
transmit antenna to the nth receive antenna and L is the
number of paths. We can rewrite the received signal for each
subcarrier as follow

rp,N = H(ip)sp,K +wp (4)

where rp,N = [rp,1, rp,2, ..., rp,N ]T , p = 0, 1, ..., P − 1, is
the signal vector at the ipth subcarrier received through the
N receive antennas. sp,K= [sp,1, sp,2, ..., sp,K ]T is the data
symbol vector at the ipth subcarrier transmitted through K

transmit antennas. wp is also the complex Gaussian noise
vector. H(ip) is the frequency-domain channel matrix at the
ipth subcarrier given as

H(ip) =





h1,1(ip) h1,2(ip) · · · h1,K(ip)

h2,1(ip) h2,2(ip) · · · h2,K(ip)
...

...
. . .

...
hN,1(ip) hN,2(ip) · · · hN,K(ip)




. (5)

We assume that the channel is unchanged during one OFDM
symbol interval and gn,k(l) is independent and has identical
Gaussian distribution gn,k(l) ∼ N (0, σ2

l
). Here, σ2

l
is the

normalized average power of each propagation path with
L−1�

l=0

σ2

l
= 1. (6)

Typical urban (TU) [23] and spatial channel model (SCM)
[24] power delay profiles are used in this paper.

1) Typical Urban: We consider the time varying channel
whose channel impulse response (CIR) is modeled by L

propagation paths,

g(τ, t) =
L−1�

l=0

γl(t)δ(τ − τl). (7)

Assume that the channel is a wide-sense stationary uncor-
related scattering (WSSUS) Rayleigh fading and unchanged

during one OFDM symbol interval. The maximum chan-
nel impulse span is also assumed to be within the guard
interval. For convenience, let τl = lTs, Tb = T + Tg

where Ts = T/Q. Here, T , Tb and Tg denote the useful
OFDM symbol interval, the whole OFDM symbol interval
and the guard interval, respectively. Then, the channel impulse
vector at each (OFDM symbol) time index n, denoted by
g(t) = [g0(t), g1(t), ..., gL−1(t)]T , can represent the discrete
CIR. The autocorrelation function of gl(t) = g(lTs, tTb) is
expressed as

E{gl(t)g∗l�(t�)} = σ2

l
J0(2πfD(t− t�)Tb)δl,l� , (8)

where fD is the maximum Doppler frequency and σ2

l
is the

normalized average power of each propagation tap with

L−1�

l=0

σ2

l
= 1. (9)

An typical urban (TU) power delay profile [23] is used to
model {σ2

l
}.

2) Spatial Channel Model: SCM was proposed by the
3GPP for both link- and system-level simulations. The 3GPP
SCM emulates the double-directional and clustering effects of
small scale fading mechanisms in a variety of environments,
such as suburban macrocell, urban macrocell, and urban
microcell. It considers N clusters of scatterers. A cluster
can be considered as a resolvable path. Within a resolvable
path (cluster), there are M subpaths which are regarded
as the unresolvable rays. A simplified plot of the SCM is
given in Figure 2, where only one cluster of scatterers is
shown as an example. Here, θv is the angle of the mobile
station (MS) velocity vector with respect to the MS broadside,
θn,m,AoD is the absolute angle of departure (AoD) for the
mth (m = 1, ...,M ) subpath of the nth (n = 1, ..., N ) path
at the base station (BS) with respect to the BS broadside,
and θn,m,AoA is the absolute angle of arrival (AoA) for the
mth subpath of the nth path at the MS with respect to the
MS broadside. Details of the generation of SCM simulation
parameters can be found in [24].

III. SIGNAL DETECTION

For convenience, the indices in (4) are omitted. The N × 1

received signal vector rp,N , now denoted by r, is given by

r = Hs+w, (10)
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Fig. 2. BS and MS angle parameters in the 3GPP SCM with one cluster of scatterers [24].

where H, s, and w are the N × K channel matrix, the
K × 1 transmitted signal vector, and the N × 1 noise vector,
respectively. Let S denote the signal alphabet for symbols, i.e.,
sk ∈ S , where sk denotes the kth element of s, and its size
is denoted by M , i.e., M = |S|.

A. Conventional Detectors

We consider two conventional detection approaches: ML
and MMSE.

1) ML Detection: The ML detection finds the data symbol
vector that maximizes the likelihood function as follows:

sml = arg max
s∈SK

f(r|s)

= arg min
s∈SK

||r−Hs||2. (11)

To identify the ML vector, an exhaustive search is required.
Because the number of candidate vectors for s is MK , the
complexity grows exponentially with K.

If the a priori probability of s is available, the maximum
a posteriori (MAP) sequence detection can be formulated.
Suppose that b is a bit-level symbol vector representation
of s. The elements of b are binary and the size of b is
(K log

2
M)× 1. With the a priori probability of b, the MAP

vector (at the bit-level) becomes

bmap = argmax
b

Pr(b|r)
= argmax

b
f(r|b) Pr(b), (12)

where Pr(b) denotes the a priori probability of b. In addition,
the a posteriori probability of each bit can be found by
marginalization as

Pr(bi = +1|r) =
�

b∈B+

i

Pr(b|r)

Pr(bi = −1|r) =
�

b∈B−
i

Pr(b|r), (13)

where B±
i

= {[b1 b2 . . . bK̄ ]T | bi = ±1, bm ∈
{+1,−1}, ∀m �= i} and K̄ = K log

2
M .

2) MMSE Detection: It is easy to perform the (linear)
MMSE detection if the constraint on the symbol vector,
sk ∈ S , ∀k, is not imposed. Using the orthogonality principle,
the MMSE estimator for s can be found as

Wmmse = argmin
W

E[||s−W
H
r||2]

=
�
E[rrH]

�−1

E[rsH]. (14)

We can show that

E[rrH] = HH
H + σ2

w
I

E[rsH] = H.

It follows that

Wmmse = (HH
H + σ2

w
I)−1

H

and

ŝmmse = W
H

mmse
r

= H
H(HH

H + σ2

w
I)−1

r. (15)

B. Proposed Detector

We assume that N ≥ K and consider the QR factorization
of the channel matrix as H = QR, where Q is unitary and
R is upper triangle. We have

x = Q
H
r = Rs+Q

H
w. (16)

Since the statistical properties of Q
H
w are identical to that

of w, QH
w will be denoted by w. If N = K, there is no

zero rows in R, otherwise the last N − K rows would be
zero. Thus, the last N −K elements of x would be ignored
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for the detection if N > K. Accordingly, the first K rows
of R would be considered. If there is no risk of confusion,
hereafter, we assume that the sizes of x, R, and w are K×1,
K ×K, and K × 1, respectively.

The complexity of the conventional LR based detector can
grows significantly with the number of basis vectors. To
avoid this problem, we propose an LRLD based detection
algorithm, which breaks a high dimensional MIMO detection
problem into multiple lower dimensional MIMO sub-detection
problems.

To perform the proposed LRLD based detection, we con-
sider the partition of x as follows:

�
x1

x2

�
=

�
R1 R3

0 R2

��
s1

s2

�
+

�
w1

w2

�
, (17)

where xi, si, and wi denote the Ki × 1 ith subvectors of x,
s, and w, i = 1, 2, respectively. Note that K1 + K2 = K.
From (17), we can have two lower dimensional MIMO sub-
detection problems to detect s1 and s2. It is straightforward
to extend the partition into more than two groups. However,
for the sake of simplicity, we only consider the partition into
two groups as in (17).

In the proposed LRLD based detection, the sub-detection
of s2 is carried out first using the LR based detector. Then,
a list of candidate vectors of s2 is generated. With the list
of s2, the sub-detection of s1 is performed with the LR based
detector. The candidate vector in the list is used for the SIC to
mitigate the interference from s2. The algorithm steps (AS) of
the proposed LRLD based detector is summarized as follows.

AS1) The LR based detection of s2 is performed with the
received signal x2, i.e.,

c̃2 = LRDet(x2),

where LRDet(·) is the function of the LR detection op-
eration (see Appendix A for details of the LR detection),
and c̃2 is the estimated vector of s2 in the corresponding
LR domain. Note that there is no interference from s1 in
detecting s2.

AS2) A list of candidate vectors in the lattice-reduced domain
is generated by

C2 = List(c̃2),

where List is a function that chooses the Q closest vectors
to c̃2(1 ≤ Q ≤ MK2) in the LR domain. The details of
the list generation is discussed in Appendix B.

AS3) The list of candidates of s2, denoted by S2, can be
converted from C2. For convenience, denote S2 =

{s̃(1)
2

, s̃(2)
2

, · · · , s̃(Q)

2
}.

AS4) Once S2 is available, the LR-based detection of s1 can
be carried out with SIC, i.e.,

c̃
(q)

1
= LRDet(x1 −R3s̃

(q)

2
),

where s̃
(q)

2
is the qth decision vector of s2 from list S2.

AS5) Let s̃(q)
1

denote the signal vector corresponding to c̃
(q)

1
in

the LR domain and s̃
(q) = [(s̃(q)

1
)T (s̃(q)

2
)T]T, the final

decision of s is found as

s̃ = arg min
q=1,2,··· ,Q

���x−Rs̃
(q)

���
2

.

Softbit Generation: As we are using turbo code for channel
coding, its inputs should be soft bits. The probability of the
qth candidate ŝ

(q) in the list can be found as

P (ŝ(q)) = CQ exp

�
− 1

σ2
w

||x−Rŝ
(q)||2

�
, (18)

where CQ is the normalization constant, which is given by

CQ =
1

�
q=1,··· ,Q exp

�
− 1

σ2
w
||x−Rŝ(q)||2

� .

Note that �

q=1,··· ,Q
P (ŝ(q)) = 1. (19)

Suppose that b̂(q) is a bit-level symbol vector representation
of ŝ(q), i.e., ŝ(q) = M(b̂(q)) where M(·) denotes the mapping
rule. The elements of b̂

(q) are binary and the size of b̂
(q) is

K̄×1 where K̄ = K log
2
M . Correspondingly, the probability

of b̂(q) can be written as

P (b̂(q)) = CQ exp

�
− 1

σ2
w

||x−RM(b̂(q))||2
�
, (20)

The soft log-likelihood ratio (LLR) value of the ith bit bi

(i = 1, 2, · · · , K̄) can then be obtained as

Λ(bi) = log

�
b̂(q)∈B+

i
P (b̂(q))

�
b̂(q)∈B−

i
P (b̂(q))

, (21)

where B±
i

= {[b1 b2 . . . bK̄ ]T | bi = ±1, bm ∈
{+1,−1}, ∀m �= i}.

IV. IMPLEMENTATION STUDY OF THE PROPOSED

DETECTOR

In this section, we study the implementation possibility of
the proposed LRLD detector. Note that some details of the
proposed detector and definition of certain parameters, e.g.,
α, β, are presented in Appendix A and B.
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A. Detector Structure

For convenience, we outline the implementation steps (IS)
required for the proposed detector as follows.

IS1) QR decomposition:

H = QR,

where

R =

�
R1 R3

0 R2

�
.

IS2) Gaussian lattice reduction:

R̄1 = R1U1,

R̄2 = R2U2.

IS3) MMSE filtering weight matrices:

W1 = (R1R
H

1
α2Es + |α|2σ2

w
I)−1

R1U
−H

1
α2Es,

W2 = (R2R
H

2
α2Es + |α|2σ2

w
I)−1

R2U
−H

2
α2Es.

IS4) Unitary transformation:

x = Q
H
r

= Rs+w,

or
�

x1

x2

�
=

�
R1 R3

0 R2

��
s1

s2

�
+

�
w1

w2

�
.

IS5) Scaling/shifting:

d2 = αx2 + βR21,

b2 = αs2 + β1,

d
(q)

1
= α(x1 −R3ŝ

(q)

2
) + βR11,

b1 = αs1 + β1.

IS6) LR based list detection: This step includes three stages:

– one MMSE filtering operation to estimate c2 (i.e.,
signal vector s2 in the LR domain):

c̃2 = W
H

2
(d2 − βR21) +U

−1

2
β1

= αWH

2
x2 +U

−1

2
β1.

– sorting and storing the list of c2 (of length Q):

C2 = {c2
�� ||c̃2 − c2|| < r(Q)}.

– Q parallel MMSE filtering operations to estimate c1

with respect to each candidate of the list of c2:

c̃
(q)

1
= αWH

1
(x1 −R3ŝ

(q)

2
) +U

−1

1
β1,

where s
(q)

2
= (U2c

(q)

2
− β1)/α and c

(q)

2
∈ C2.

The implementation operations can be classified into two
types: Pre-processing and detection processing.

Pre-processing: This is often referred to as channel-rate
processing, in which all operations need to be carried out only
when there is a new channel update. All steps from IS1) to
IS3) belong to this type.

Detection Processing: This can be referred to as symbol-rate
processing. This type of processing includes all operations that
are carried out after each received signal vector arrives. In our
proposed detector, the received data will be processed in a
first in first out (FIFO) manner. The FIFO buffer is used to
bridge the latency incurred among the received signals. All
steps from IS4) to IS6) belong to this type.

Figure 3 shows a high-level structure of the proposed
detector with respect to hardware implementation. We will
describe each major operation next. Some operations such as
unitary transformation, shifting/scaling and final decision are
straightforward and thus ignored. Since memory is nowadays
not a big issue in the hardware implementation, we assume that
a certain amount of memory is available wherever needed.

B. Pre-Processing

In our proposed detector, there are three dominant com-
ponents in the pre-processing stage – QR decomposition,
Gaussian lattice reduction and matrix inversion operations. It
is always desirable to have a low latency in preprocessing
the channel matrices. Thus, selection of algorithm to be
implemented for each of the three above operations may well
decide the real silicon complexity. We will consider each
operation in details next.

1) QR Decomposition: As shown in [25], QR decompo-
sition is preferred to Cholesky decomposition due to the
numerical stability. In our detection algorithm, although the
QR operation is required only once for each channel update,
it still provides a significant load of computations as the
operation is carried out to the channel matrix of full size.
We therefore study different algorithms in the literature for
the QR decomposition.

Gram-Schmidt:

The Gram-Schmidt (GS) procedure finds the QR decom-
position of a matrix H such that H = QR, where Q is
unitary and R is upper triangular. An obvious drawback of
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Fig. 3. High-level structure diagram of the implementation of the proposed LR based list detector.

the GS algorithm is the fact that it requires costly square-
root and division operations and that the overall computational
complexity is high. Thus, a modified version of the GS is
presented (see [26]). The details of the modified GS are
discussed in [27], [28]. The corresponding algorithm proceeds
as follows.

Gram-Schmidt algorithm:

1) initialize: Q = H,R = 0

2) for k = 1 to K

3) [R]k,k =
�
q
H

k
qk

4) qk = qk/[R]k,k

5) for i = k + 1 to K

6) [R]k,i = q
H

k
qi

7) qi = qi − [R]k,iqk

8) end for

9) end for

Generally, the GS is accurate to the floating-point precision.
For fixed-point arithmetic, the problem of quantization and
round-off errors is not ignorable and therefore there is loss
in accuracy (e.g., loss in the orthogonality of Q) [27]. It was
shown in [29] that the orthogonalization error (�o) in fixed-

point version of the GS algorithm is bounded by the product
of condition number κ(H) of matrix H and machine precision
ε, as follows

�o =� I−Q
H
Q �

≤ ζ(K)× ε× κ(H),

where ζ(K) is a low degree polynomial in K depending only
on details of computer arithmetic. This implies that for a well-
conditioned matrix, fixed-point architecture for the GS is still
accurate to the integer multiples of the machine precision ε.
However, for ill-conditioned matrices, the computed Q can be
very far from orthogonal. Thus, we can consider the numer-
ically more favorable scheme, Householder Transformation,
which is based on unitary transformation.

Householder Transformation:

The use of unitary transformations instead of the conven-
tional methods is to alleviate the numerical problem such as
requirement of high number precision, i.e., large silicon area in
fixed-point very-large-scale integration (VLSI) implementation
is required. The reason for this more favorable behavior is
that unitary transformations do not alter the length of a vector
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and thus cannot lead to an excessive increase in dynamic
range or to an enhancement of quantization noise. Two typi-
cal algorithms using unitary transformations are Householder
Transformation and Givens Rotation. For illustrative purpose,
we overview the Householder Reflection algorithm only.

The Householder Transformation algorithm recursively ap-
plies a sequence of unitary transformations Q

H

i
to matrix H

as follows:
R

(k+1) = Q
H

k
R

(k),

where R
(1) = H. Each transformation will eliminate

more subdiagonal entries until finally R = R
(K−1) =

Q
H

K−1
· · ·QH

1
H. The unitary matrix Q

H is readily obtained
from

Q
H = Q

H

K−1
· · ·QH

1
.

The algorithm can be described in details as follows.
Householder Transformation algorithm:

1) initialize: Q
(0) = I,R(1) = H

2) for k = 1 to K − 1

3) q̄k = rk+ � rk � 1

4) Q̄k = I− 2 q̄kq̄
H

k
�q̄k�2

5) Pk =

�
Ik−1 0

0 Q̄k

�

6) [R]H
k+1

= PkR
(k)

7) Q
(k) = PkQ

(k−1)

8) end for

9) Q
H = Q

(K−1)

We compare the complexity of the two methods in Table
I. The Householder Reflection algorithm provides a slightly
lower number of complex multiplications (CMs), divisions
and square root operations compared to the Gram-Schmidt
algorithm. In addition, for fixed-point implementation, the
Householder Reflection algorithm is supposed to be more
stable.

Note that (K2 + K(K + 1)/2) words of memory2 are
required to store matrices Q and R at the output of the QR
decomposition operation.

2) Lattice Reduction Using Gaussian Method: In the pro-
posed LR based list detector, the LR is applied to the sub-
channel matrix R1 and R2. For convenience, we consider

2The term ‘word of memory’ is referred to the amount of memory required
to store one complex number. The number of bits in one word may vary
depending on the dynamic range of the observing data. Thus, throughout the
section, we use ‘word’ as a unit of memory.

these matrices of size 2 × 2 only. Thus, this basis-2 LR
can be carried out using the simple Gaussian method. We
can limit the maximum number of iterations in this Gaussian
lattice reduction algorithm to a small number (e.g., 2 iterations
is reasonable) while keeping the overall performance almost
the same. For the implementation purpose, we can fix the
maximum number of iterations to T , and the Gaussian LR
algorithm is summarized as follows.

1) Input (b1,b2, T )

2) Set J =

�
0 1

1 0

�
and U =

�
1 0

0 1

�

3) i = 0
4) do

5) if ||b1|| > ||b2||
6) swap b1 and b2, and U = UJ

7) end if

8) if |< b2,b1 > | > 1/2

9) t̂ = �<b2,b1>

||b1||2 �

10) b2 = b2 − t̂b1 and U = U

�
1 −t

0 1

�

11) end if

12) i = i+ 1

13) while (||b1|| < ||b2||)&&(i ≤ T )

14) return (b1,b2,U)

In the worst case where the Gaussian LR algorithm runs until
the maximum iteration i = T , the number of CMs required
for the Gaussian LR is 4T . Six words of memory are required
to store data of the unimodular matrix at the output.

3) Matrix Inversion: In our proposed detector, the dominant
complexity component in obtaining the MMSE filtering weight
matrices is the matrix inversion operations, (R1R

H

1
α2Es +

|α|2σ2

w
I)−1 and (R2R

H

2
α2Es + |α|2σ2

w
I)−1. Fortunately, the

fact that the size of these submatrices to be inverted is reason-
ably small leads to a reasonably low load of computations. For

example, a 2 × 2 matrix R =

�
r1,1 r1,2

r2,1 r2,2

�
can be simply

inverted using adjoint method

R
−1 =

1

r1,2r2,1 − r1,1r1,1

�
r2,2 −r2,1

−r1,2 r1,1

�
,

which requires 1 division and 6 CMs.

In a general case of matrix H of size K×K, the complexity
of inversion operation may vary depending on implementation
method. We overview some typical methods:
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TABLE I
COMPLEXITY COMPARISON OF THE TWO METHODS: GRAM-SCHMIDT (GS) AND HOUSEHOLDER REFLECTION (HR)

Algorithm Division Square root Complex multiplications (CMs) CMs with K = 4

GS K K 2K2 + 2
�K

k=1 K(K − k) 80

HR K − 1 K − 1 2
�K−1

k=1 (K − k + 1)2 78

a) Adjoint Method:

H
−1 =

adj(H)

det(H)
.

Unfortunately, for the matrix inversion using adjoint method,
there is no generic expression for the number of CMs as it
depends heavily on the dimension K. However, the approxi-
mated number of CMs can be of up to scale in 2K as [30]

Cm ≈ a2K +K2 +K.

b) LR Decomposition: Matrix H is decomposed into a
lower-triangular matrix L and a upper-triangular matrix R,
i.e., H−1 = R

−1
L
−1. The algorithm is as follows

1) Initiate L = H,R = I

2) For i = 1 to K

3) For j = 1 to K

4) [R]j,i = [L]j,i −
�

j−1

k=1
[L]j,k[R]k,j

5) [L]j,i =
[R]j,i

[R]i,i

6) end for

7) end for

The number of CMs for matrix inversion using LR decompo-
sition is 4(K3 −K)/3.

c) QR Decomposition: Matrix H can be inverted using
QR decomposition as H

−1 = R
−1

Q
H . If Gram-Schmidt

algorithm is used for QR decomposition, the total number of
CMs required for matrix inversion is (9K3 + 10K2 −K)/6.

In general, a major concern with matrix inversion algorithms
is the need for a high number precision which gives rise to a
large silicon area in fixed-point VLSI implementations. The
two main reasons for these numerical requirements are: i)
the use of costly operation such as square root and divisions,
which leads to a significant increase of the dynamic range
for some intermediate variables; and ii) the desire to replace
repeated divisions by multiplications with the corresponding
inverse in order to reduce the number of costly operations.
Unfortunately, multiplications often results in an enhancement

of the quantization noise and thus requires a high fixed point
precision.

A VLSI architecture has therefore been proposed in [28] to
deal with numerical problems for fixed-point implementation.
It was based on the QR decomposition with modified Gram-
Schmidt algorithm. The results showed that for typical 4× 4

MIMO channel matrices, the architecture was able to achieve
a clock rate of 277 MHz with a latency of 18 time units and
area of 72K gates using 0.18−µm CMOS technology, which
is impressive compared to previously known architectures. In
other direction, the architecture can be designed focusing on
reducing number of matrix inversions, which is well-suited to
the systems with multiple channels to be processed such as
MIMO-OFDM systems [31], [30].

C. Detection Processing

This is where all operations are carried out when a new
set of received signal symbols arrives. The resources required
for the detection processing is in fact much less compared
to the preprocessing stage. In addition, the hardware for
preprocessing can be conveniently reused for the detection
processing. As a result, the latency in the detection processing
is reasonably low. Two operations will be discussed in this
section: List sorting in the lattice domain and MMSE filtering
to find the estimates of s1 and s2.

1) List Sorting in LR Domain: The list of candidate vectors
in the LR domain is formed by

C2 = {c2
�� ||c̃2 − c2|| < r(Q)}.

The problem is that the alphabet of signal in LR domain (c2)
varies depending on channel. For example, while the alphabet
of s2 is known, that of c2 = U

−1

2
(αs2+β1) depends on U2.

However, with Gaussian reduction method, U2 has always a
form of

U2 =

�
1 t

0 1

�
,
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Fig. 4. Block diagram of the linear filtering operation: Inputs are x2, α,
W2 and u2 while output is c̃2.

where t is an integer. As the maximum number of iterations
in the Gaussian LR algorithm is limited to T = 2 or 3
only, we can easily obtain a known set of t (and accordingly
U2). Thus, a look-up table can be formed for the alphabet of
c2. This look-up table is formed in the pre-processing stage
after the Gaussian LR algorithm is carried out to subchannel
matrix R2. Memory is required to store this pre-calculated
data. For example, it requires TM words of memory to store
the alphabet of c2, where M is the size of alphabet of s2. In
addition, 2Q words are required for storing C2.

2) MMSE filtering: This is a matrix-multiplication based
operation. One MMSE filtering operation to estimate c2 is
applied to received signal vector x2:

c̃2 = αWH

2
x2 + u2,

where u2 = U
−1

2
β1. Q times of same operation are applied

to received signal vector x1:

c̃
(q)

1
= αWH

1
x̄
(q)

1
+ u1, (22)

where u1 = U
−1

1
β1 and x̄

(q)

1
= x1 − R3ŝ

(q)

2
. Note that Q

operations in (22) can be carried out in parallel (see Figure
3). The parallel structure often allows low latency and high
throughput. The most complex steps can then be processed
in a single cycle, however, at the expense of large silicon
area. In addition, with parallel structure, memories need to
be implemented based on register files for sufficient access
bandwidth. Thus, trade-off between latency/throughput and
silicon area needs to be considered.

The weight matrices W1 and W2 are pre-calculated and
stored in the pre-processing stage. Note that only 8 words
of memory are needed for this storage requirement. A simple
VLSI architecture for MMSE filtering of x2 is shown in Figure

4. Filtering operation for x
(q)

1
can be carried out similarly.

Due to different dynamic ranges, variables can be represented
by different numbers of bits (e.g., n bits for x2 whereas m

bits for W2). It is expected that m > n as entries of W2

has a larger dynamic range, thus they should be presented
with considerable number of bits for the accurate fixed-point
implementation.

Memory-wise, there are 2Q words required to store the
outputs {c̃1, c̃2, · · · , c̃Q}.

D. Fixed-Point Considerations

A critical issue in fixed-point arithmetic is the difference in
dynamic ranges of variables. Number of integer and fractional
bits for each variable should be carefully determined to avoid
overflows and, at the same time, not to waste hardware
resources.

For example, entries of channel matrix H is usually assumed
to be Gaussian distributed, thus has a infinite dynamic range.
To deal with this problem, two common approaches can be
employed:

• A sufficiently large number of integer bits is used for rep-
resenting H to ensure that overflows occur only rarely. At
the same time, the round-off error (i.e., accumulation of
rounding errors during fixed point arithmetic operations)
should be purely due to loss in fractional precision. In this
case, it is shown in [27] that the error variance varies only
with the number of fractional bits, η, in the form:

σ2

e
= 2−2η/3.

• Automatic gain control adjusts the data of H to the
available number of integer bits with an appropriate
scaling factor γ in which the new channel matrix become
H̄ = γH. γ can be chosen as

γ =
1

max |[H]i,j |
.

Depending on hardware resources, each approach can be ap-
plied. However, practical systems tend to compromise between
the two approaches.

V. SIMULATION RESULTS

We run simulations for MIMO-OFDMA LTE downlink
system with parameters being given in Table II.

Figures 5 and 6 show bit error rate (BER) performance
of different detectors for TU and SCM channels. 4-QAM is
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TABLE II
SIMULATION PARAMETERS

Parameter Value
Center Frequency 3.5GHz

Bandwidth 10MHz
Subcarrier Spacing 15kHz

FFT size 1024
Number of usable subcarriers 601

Cyclic Prefix (CP) FFT size / 8
Channel Model & Velocity TU-30km/h and SCM-3km/h

Modulation 16-QAM, Gray Mapping
Channel Coding Turbo Coding, Code Rate 1/2

Channel Estimation Ideal
Data Mapping Localized Subcarrier Pattern
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used for modulation. We compare the proposed LRLD based
detector with the conventional LR based Minimum Mean
Square Error (MMSE) detector that uses LenstraLenstraLovsz
(LLL) algorithm [32] and the optimal sphere ML detector.
It can be seen that the proposed detector provides a near
ML performance and outperform the conventional LR based
MMSE detector. The same behaviour is observed with 16-
QAM modulation in Figures 7 and 8.

Complexity comparison: To fully examine the complexity
of different detection methods, simulation is considered and
results are shown in Figure 9 where the estimated flops using
MATLAB execution time were obtained over all operations for
each detector under the same environment. The execution time
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Fig. 9. Complexity comparison.

is averaged over hundreds of thousands of channel realizations.
Note that Schnorr-Euchner algorithm [33] is used for sphere
ML detector. The LLL-reduced algorithm with reduction factor
δ = 3/4 [32] is chosen for the LR based MMSE-SIC detector.
No limitation on the number of iterations is imposed for any
LR algorithm. The proposed LRLD based detector clearly
requires the lowest number of flops. We can also see that the
number of flops of the proposed detector is slightly higher
than half of that of the LR based MMSE-SIC detector where
the LLL-reduced algorithm is used.

VI. CONCLUSION

An efficient signal detector based on two techniques, namely
LR and LD, has been investigated in this paper for the
MIMO-OFDMA LTE downlink systems. By generating the
list in LR domain, a more reliable list detection is obtained
to facilitate SIC detection. As a result, the proposed detector
outperforms conventional LR based detectors and provides a
near ML performance with significantly reduced complexity.
The implementation possibility was then studied to provide
references for the real silicon implementation.

APPENDIX A
LR BASED SIGNAL DETECTION

We describe the LR based detection that is used in Steps
AS1 and AS4. Let C denote the set of complex integers or
Gaussian integers, C = Z + jZ, where Z denotes the set of
integers and j =

√
−1. We assume that {αs + β|s ∈ S} ⊆

C, where α and β are the scaling and shifting coefficients,

TABLE III
SIGNALS AND PARAMETERS FOR THE LR-BASED DETECTION

Steps y A z c̃ Ki

AS1) x2 R2 s2 c̃2 K2

AS4) x1 −R2ŝ
(q)
2 R1 s1 c̃(q)1 K1

respectively. For example, for M -QAM, if M = 22m, we
have

S = {s = a+ jb|a, b ∈ {±A,±3A, . . . ,±(2m− 1)A}},

where A =
�

(3Es/2(M − 1)) and Es = E[|s|2] denotes the
symbol energy. Thus, α = 1/(2A) and β = ((2m−1)/2)(1+

j). Note that the pair of α and β is not uniquely decided.

Consider the MIMO detection with the following signal:

y = Az+ v, (23)

where A is a MIMO channel matrix, z ∈ SKi is the signal
vector, and v is a zero-mean Gaussian noise with E[vvH] =

σ2

w
I. We scale and shift y as

d = αy + βA1 = A(αz+ β1) + αv = Ab+ αv, (24)

where 1 = [1 1 . . . 1]T, and b = αz + β1 ∈ CKi . Let
Ā = AU where U is a unimodular matrix. Using any LR
algorithm including LLL algorithm [32], we can find U that
makes the column vectors of Ā shorter. It follows that

d = AUU
−1

b+ αv = Āc+ αv, (25)

where c = U
−1

b. The MMSE filter to estimate c is given by

Wmmse = min
W

E[||WH(d− d̄)− (c− c̄)||2]

= (AA
Hα2Es + |α|2σ2

w
I)−1

AU
−Hα2Es, (26)

where d̄ = E[d] = βA1, c̄ = E[c] = U
−1β1, and Cov(c) =

|α|2U−1
U

−HEs. The estimate of c is given by:

c̃ = c̄+W
H

mmse
(d− d̄).

In Table III, the signals and parameters for the LR based
MMSE detection for each step are shown.

APPENDIX B
LIST GENERATION IN THE LR DOMAIN

To avoid or mitigate the error propagation, the use of a list
of candidate vectors of s2 in detecting s1 is crucial. Using the
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ML metric, we can find the candidate vectors in the list, S2.
Let

||r−R2ŝ
(1)

2
||2 ≤ ||r−R2ŝ

(2)

2
||2 ≤ . . . ≤ ||r−R2ŝ

(M
K2 )

2
||2,

where ŝ
(q)

2
denotes the symbol vector that corresponds to the

qth largest likelihood. Therefore, an ideal list would be

S2 = {ŝ(1)
2

, ŝ(2)
2

, . . . , ŝ(Q)

2
}. (27)

However, this requires an exhaustive search, which results in
a high computational complexity due to computing of R2s2

for all s2 ∈ SK2 .
To avoid a high computational complexity, we can find

a suboptimal list in the LR domain with low complexity.
Consider (24). According to Table III, let A = R2, d =

αx2 + βA1, and b = αs2 + β1. Then, since Ā = AU, we
can see that the ML metric to construct the list is given by

||d−Ab|| = ||d− Āc||. (28)

It is noteworthy that the metric on the right hand side in (28)
is defined in the LR domain. Let s̃2 be the signal vector in
SK2 corresponding to c̃2 and assume that s̃2 is sufficiently
close to ŝ

(1)

2
. Then, we can have d � Āc̃2. From this, the ML

metric (ignoring a scaling factor) for constructing the list in
the LR domain becomes

||d− Āc|| = ||Āc̃2 − Āc|| = ||c̃2 − c||ĀHĀ, (29)

where ||x||A =
√
xHAx is a weighted norm. The list in the

LR domain becomes

C2 = {c
�� ||c̃2 − c||ĀHĀ < rĀ(Q)}, (30)

where rĀ(Q) > 0 is the radius of an ellipsoid centered at
c̃2, which contains Q elements in the LR domain. If the
column vectors of Ā or the basis vectors in the LR domain
are orthogonal, ĀH

Ā becomes diagonal. Furthermore, if they
have the same norm, ĀH

Ā ∝ I. Thus, for nearly orthogonal
basis vectors of almost equal norm, the list of c2 can be
approximated as

C2 � {c
�� ||c̃2 − c|| < r(Q)}, (31)

where r(Q) > 0 is the radius of a sphere centered at c̃2, which
contains Q elements. Since the LR provides a set of nearly
orthogonal basis vectors for the LR based detection, we can
see that the column vectors in Ā are nearly orthogonal with a a
two-basis system. Let S2 denotes the list in the original domain

converted from C2 as in step AS3. Since no matrix-vector
multiplications are required to generate C2 or S2, we can use
S2 as the list in the proposed detector to reduce computational
complexity. Note that the list generated in the LR domain
is much more reliable than the list generated in the original
domain (this list is different from S2).
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