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Abstract—Spectrum sensing enables detecting opportunities in
licensed bands in order to access unused portions of the licensed
spectrum. In this paper we propose two low complexity detectors
based on a combination of two well-known and complementary
signal detection mechanisms: energy detection and mono-cycle
detection, which exploits cyclostationarity property of the signals.
In the first algorithm the mono-cycle detector iteratively corrects
the thresholds of a double threshold energy detector, that will
finally converge to the performance of the mono-cycle detector.
The second algorithm uses the mono-cycle detector to directly
estimate the noise level N0, which is used to fix the threshold
of the radiometer. Simulation results conducted on different
environments show promising performances of the proposed
detectors especially in low SNR.

Index Terms—Cognitive Radio, Spectrum sensing, Energy
detector, Detection features.

I. INTRODUCTION

The term “Cognitive Radio”, defined by J.Mitola [2] was
reused by the FCC [3] to define a class of radio systems that
continuously perform spectrum sensing, dynamically identify
vacant (unused) spectrum and then operate in this spectrum at
a time when it is not used by incumbent radio systems.

The increasing in telecommunication services number and
rates has led to a growing demand of spectrum resources. The
objective of cognitive terminals is to obtain independently and
dynamically radio frequencies to access the network. Large
parts of the spectrum allocated to licensed radio services
(referred to as primary users, PUs) have exclusive access
rights. However, secondary users (SUs) can still access op-
portunistically to the spectrum held by the PUs when they are
not using it.

As they do not have full access rights, SUs must guarantee
to not cause harmful interference to PUs. Hence they need to
monitor the spectrum continuously to detect if PUs resumed
their communications. For that purpose, it has been suggested
by the FCC to use Cognitive Radio based technology to help
SUs filling these requirements. In that case Cognitive Radios
(CRs) must stop and transfer their activities to another vacant
band. CRs need to be more sensitive than PUs and efficient at
lower SNR to detect PUs signals.

Various spectrum sensing techniques have been presented as
noticed in [4] including the classical likelihood ratio test (LRT)
[5], energy detection (ED) [5]–[7], matched filtering (MF)
detection [5], [8], cyclostationary detection (CSD) [9]–[13],
and some newly emerging methods such as eigenvalue-based
sensing [14]–[16], wavelet-based sensing [17], covariance-
based sensing [18], and blindly combined energy detection
[19]. In this paper, our focus is on energy and cyclostationary
detection. However, for other different methods of spectrum
sensing in cognitive radio, we advise the readers to refer to
[4], [20]. Energy detection is the simplest detection method but
needs the exact knowledge of the noise level N0; furthermore,
a wrong estimation is known to seriously impact the detection
performance [6]. Cyclostationary detection was proposed as an
alternative since noise is stationary whilst telecommunication
signals are rather cyclostationary. The advantage of cyclosta-
tionary methods is that it does not need any knowledge about
the noise level N0 and allows the detection at low SNR.
However, one major drawback of cyclostationary detection
is that it requires high computation time and needs a high
sampling rate. In this paper, we propose a modified version
(M-HSD) of the HSD proposed in [1], and an Enhanced HSD
(EHSD) algorithms that combine cyclostationary and energy
detection, to detect the free spectrum. Taking into consider-
ation the limitations of the energy detector performance due
to presence of noise uncertainty and background interference,
the idea of this paper is to reduce the uncertainty over the
noise level N0 using the help of cyclostationary detection.
Two kind of strategies can be applied, the first one (M-HSD)
uses an iterative approach: at the beginning of the sensing,
we can usually fix two thresholds ξ1 and ξ2 for the energy
detector. Then, the detection is given by the following process:
if the energy detector criteria is greater (resp. smaller) than ξ2
(resp. ξ1) then this indicates the presence (resp. absence) of
the primary user signal. Else if the energy detector criteria is
inside the interval [ξ1, ξ2], then cyclostationary detection can
be applied and based on its decision, the hybrid architecture
can iteratively adjust the thresholds of the energy detector,
to finally converge to the performance of the cyclostationary
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detector. The second approach (EHSD) consists in directly es-
timating the noise level N0 using the cyclostationary detector
and uses this estimation to obtain the appropriate threshold of
the radiometer.

The remaining part of the paper is organized as follows. In
Section II, we present the system model adopted throughout
this work. We briefly describe energy and cyclostationary
detectors in Section III. The proposed HSD architecture will
be recalled in Section IV. The M-HSD architecture will be
presented in Section V. In section VI, EHSD algorithm is pro-
posed. Section VII presents simulation results and discussions.
Finally, Section VIII presents the conclusions of this study and
makes some suggestions for future work.

II. SYSTEM MODEL

The spectrum sensing detection problem consists of collect-
ing a set of N samples y1, y2, ..., yN from a given frequency
band B, processing the data by a Neyman-Pearson receiver,
which takes the form of a Likelihood Ratio Test (LRT) and
deciding for that frequency band whether or not a primary user
is present. Let y denotes the vector formed by N samples,
y = [y(1), .., y(N)]t, where the samples are realizations of
the random variables Y1, Y2, ..., YN , respectively. The LRT
compares a statistic λ to a fixed threshold ν. The statistic
λ is the ratio between the joint Probability Density Function
(PDF), pY (y|H1), of the N samples given that a primary
user is present and the joint PDF, pY (y|H0), of N samples
given that no primary user is present. H1 and H0 denote the
binary hypotheses that a primary user is present and absent,
respectively. This ratio is called Likelihood Ratio (LR). The
threshold ν is determinated by constraining the probability of
false alarm to a specified value.

The binary hypotheses (H0, H1) are defined in a way such
that, under hypothesis H1 and k ∈ [1, .., N ], the kth collected
sample, y(k), is composed of a primary user signal sample,
x(k) ∼ N (0, σ2

x), affected in different ways by the channel,
h(k) ∼ N (0, 1), plus an additive Gaussian noise sample,
n(k) ∼ N (0, σ2

n), where N (m,σ2) denotes the normal
distribution with mean m and variance σ2. Under hypothesis
H0, the kth sample, y(k), consists of the additive Gaussian
noise sample n(k). Hence,{

H0 : y(k) = n(k)
H1 : y(k) = h(k)x(k) + n(k)

The LRT then takes the form

λ =
pY (y|H1)

pY (y|H1)
≶H0

H1
ν

For λ > ν, H1 is decided, otherwise H0 is decided.
Assuming that the samples are statistically independent, the
joint PDF pY (y|Hi); i ∈ {0, 1}, is nothing but the product of
the N marginal PDFs of the samples. Specifically,

pY (y|Hi) =

N∏
k=1

pYk(yk|Hi); i ∈ {0, 1}

The performance of any spectrum sensing methods is in-
dicated by two probabilities: the detection probability, Pd,
which defines the probability of the sensing algorithm having
detected the presence of the primary signal under the hypoth-
esis H1; probability of false alarm, Pfa, which defines the
probability of the sensing algorithm claiming the presence of
the primary signal under the hypothesis H0. In the hypothesis
testing problem, where we have to decide whether the primary
signal is present or absent, two kinds of errors can occur:
• A false alarm occurs when it is decided that the primary

signal is present even though it is not.
• A miss detection occurs when it is decided that the

primary signal is not present even though it is.
The performance, of sensing algorithm, is usually presented

using a family of curves showing the detection probability
Pd as function of the false alarm probability Pfa (Cf. Figure
1). The test is good when these curves are located above
the chance line that characterizes pure hazard. In literature,
this representation is called ROC curve (Receiver Operational
Characteristic) [21].

Fig. 1. Example of ROC curve showing the probability of detection Pd

according to the probability of false alarm Pfa

III. SENSING METHODS

A. Generalities

The optimal sensing detector needs to know the values of
channels gain, noise and primary user’s variance. In practice,
we may have no knowledge about the values of some or all
of these parameters. In these cases, an approximation of the
optimal test is done in the case of Gaussian signals with low
level compared to noise (assumed white and Gaussian). It is
given by the locally optimal test [21], which uses only second
order statistics of the signal. Application of Taylor’s theorem
yields the following statistical test:

Z =
1

N2
0T

∫ T/2

−T/2

∫ T/2

−T/2
Rxx(u, v)y(u)y(v)dudv ≶H0

H1
ξ (1)

With Rxx(u, v) is the autocorrelation function and T is the
listening duration before the detector takes any decision. Thus,
the new detector calculates a quadratic transformation of
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the received signal and compares the result to a detection
threshold. However, in the case of low SNR, it is shown
in [22] that this locally optimal detector remains valid even
in the case where the signals of interest are not Gaussian.
Depending on the chosen statistical model of the observation
x(t), two types of detectors can be derived. For a stationary
model, the detector is the energy detector or radiometer. It is
a simple detector with low complexity and reduced time of
computation, but has the disadvantage of being sensitive to a
bad estimate of the noise level N0. For a cyclostationary model
of x(t), the detector is the mono or multi-cycles detector. This
detector is able to detect in low SNR, and is insensitive to
the poor estimate of noise level, but has the disadvantage of
an important computing time.

B. Energy Detection

When the statistical model of the signal of interest x(t) is
chosen to be stationary, the autocorrelation function Rxx(u, v)
becomes dependent only of the difference u− v and it can be
written under this form: Rxx(u, v) = Rxx(u− v).

By performing variable changes according to:

u = t+
τ

2

v = t− τ

2
(2)

we obtain the following local optimal detector form [23]:

Zro =
1

N2
0

∫ ∞
−∞

Rxx(τ)Ryy(τ)T dτ (3)

where Ryy(τ)T is the correlogram of y(t) defined by :

Ryy(τ)T ,

{
1
T

∫ (T−|τ |)/2
−(T−|τ |)/2 y(t−

τ
2 )y(t+

τ
2 )dt, |τ | ≤ T

0 elsewhere

Using the Parseval theorem [5] applied to (3), the statistical
test becomes:

Z =
1

N2
0

∫ ∞
−∞

Sxx(f)PT (f)df (4)

With PT (f) the peridogram of y(t) given by:

PT (f) =
1

T
| YT (f) |2

and

YT (f) =

∫ T/2

−T/2
y(t) exp−i2πft dt

Hence the local optimal detector computes the periodogram of
the observed signal y(t). The obtained result is then correlated
with the ideal. Since the power spectral density Sxx(f) cannot
be known a priori, we replace it in (4) by a non zero constant
S0 over all the band [−B/2, B/2] of the received signal to
obtain the new statistical test:

Zr =
S0

N2
0

∫ B/2

−B/2
PT (f)df (5)

The obtained detector is called radiometer or energy detector
whose statistical test is proportional to the energy of the

received signal. The application of the Parseval theorem to
(5) results in the following statistical test in the time domain:

Zr ∝
1

T

∫ T

0

y(t)2dt (6)

Where the symbol ∝ indicates proportionality. Urkowitz [7]
studied the energy detector with the statistic test X , which
is equal to second term of equation (6). The block diagram
of a radiometer is given in Figure 2. Urkowitz studied also
the expression of the probability density function of the
statistic X and showed that for a large time-bandwidth product
(BT > 250) the statistic X follows a Gaussian law under both
conditions: noise alone, or signal plus noise, with mean µj+1

and variance σ2
j+1 (j ∈{0,1}) given by:

H0 µ1 = N0BT, σ2
1 = N2

0BT
H1 µ2 = N0BT (SNR+ 1), σ2

2 = N2
0BT (2SNR+ 1)

(7)
where SNR refers to the signal to noise ratio defined as:

SNR =
Ex
N0B

with Ex the power of the signal x(t) over the duration T . The
probability of detection Pd and of false alarm Pfa becomes:

Pfa = Q

{
ξ − µ1

σ1

}
and

Pd = Q

{
ξ − µ2

σ2

}
with

Q(u) =
1√
2π

∫ ∞
u

exp−v
2/2 dv

Then, for a desired false alarm probability Pfa,des, we can
compute the adequate detection threshold ξ0 using the follow-
ing equation:

ξ0 = µ1 + σ1Q
−1(Pfa,des) = G(Pfa,des)N0 (8)

with:
G(Pfa,des) = BT +

√
BTQ−1(Pfa,des)

Fig. 2. Block scheme of the energy detector.
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1) Energy detection limits: The good performance of the
radiometer is accurate if the noise spectral density N0 is
perfectly known at the receiver. In a classical communica-
tion between transmitter and receiver, there is a preliminary
exchange of data, which are known by the receiver, who is
able to determine a good estimation of the noise level N0.
This cooperative aspect between transmitter and receiver is
unfortunately absent in the case of detection of free bands
because no data exchange is driven between terminals in
opportunistic radio access. Subsequently, the estimated noise
level N̂0 is not exempt from error especially when the tested
band is occupied. As the detection threshold is proportional to
N0 (Cf. (8)), it can not be determined with accuracy, leading
to more degradation of the radiometer performance.

2) Ideal Radiometer Performance: Let Pd,des designate,
the desired detection probability, u′ = Q−1(Pd,des) and v′ =
Q−1(Pfa,des). It is shown in [6] that for large time-bandwidth
product BT , the minimum signal to noise ratio snrm that
guarantees a desired probability of false alarm Pfa,des and a
desired probability of detection Pd,des is given by:

snrm =
v′√
BT

+
u′

BT

[
u′ −

√
u′2 +BT + 2v′

√
BT

]
The variation of this ratio depends on the time-bandwidth

product BT as shown in Figure 3.

Fig. 3. the variation of the minimum signal to noise ratio snrm that
guarantees the desired probability of false alarm Pfa and a desired probability
of miss detection Pm, versus the time-bandwidth product BT. When the noise
level N0 is perfectly known, snrm decreases as the product BT increases.

For different values of probability Pfa,des and probability of
detection Pd,des, the required snrm for detection decreases as
the time-bandwidth product BT increases. It should be noted
that BT is proportional to the number of observations available
when the received signal is sampled.

3) Non Ideal Radiometer: Let N̂0 be an estimated value
of the noise level N0 and ξ̂0 the corresponding threshold of
detection. In the case of an under-estimation of N0 i.e., N̂0 <
N0, Figure 4 shows that a bad decision is performed when

the energy X of the signal is located in the interval [ξ̂0, ξ0].
In the case of free bands detection, this bad decision results
in the declaration of an occupied strip while it is free, causing
an increase of the probability of false alarm.

Fig. 4. Decision error in the case of an under-estimation of noise level N0.
This bad decision results in the declaration of an occupied strip while it is
free, causing an increase of the probability of false alarm.

However, in the case of an over-estimation of noise level
N0 i.e., N̂0 > N0, Figure 5 shows that a wrong decision is
made when the energy of the received signal X is located
in the interval[ξ0, ξ̂0]. In terms of free bands detection, this
error results in declaring that the tested band is free, while
it is occupied, which provides a more important missing
probability. Consequently, the uncertainty on the noise level

Fig. 5. Decision error in the case of an over-estimation of noise level N0.
This error results in declaring that the tested band is free, while it is occupied,
which provides a more important missing probability, and causes interference
to the PU.

leads in one case to an under-exploitation of free bands by
secondary users and in another case to more interferences
generated to the primary users. To overcome undesirable
effects of uncertainty on the value of N0, it has been proposed
in [6] to use a different detection threshold given by:

ξ̂0 = Uξ0

Where U is the peak-to-peak uncertainty on the estimation of
noise level N0 given by:

U =
1 + ε2
1− ε1

≥ 1

Here, ε1 and ε2 give the range of uncertainty on the estimation
of N0:

(1− ε1)N0 ≤ N̂0 ≤ (1 + ε2)N0

Thus, the expression of snrm [6] becomes:

snrm ≈ (U − 1) +O

(
1√
BT

)
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The term (U − 1) determinates the minimum SNR under,
which detection is more regardless of possible parameters
Pfa,des, Pd,des and the observation time T of the detector. In
the particular case where Pfa,des = 1−Pd,des = 0.01, Figure
6 shows the evolution of the snrm as a function of BT for
different values of U . Whatever U nil or not, the value of snrm
decreases as the BT product increases. In contrast, if U 6= 0
(presence of uncertainty), the decay tends asymptotically to
its limit U − 1. For example, for U = 3 dB, the value of
snrm limit is 2 dB. Despite its low complexity and ease of
implementation, the radiometer does not perform a reliable
detection of free bands especially if the uncertainty regarding
the noise level is important or the SNR is low.

Fig. 6. When the value of U is different from zero (presence of uncertainty),
the value of snrm decreases as the BT product increases, and tends
asymptotically to its limit U − 1.

C. Cyclostationary Detection

When the cyclostationary model is adopted for the signal
of interest x(t), the autocorrelation function Rxx(u, v) is
expressed as a function of the cyclic autocorrelation

Rxx =
∑
α

Rxx(α, u− v) expiπα(u+v) (9)

By replacing Rxx(u, v) in (1) by its expression in (9), and by
performing variables changes according to (2), we obtain the
statistical test of the multi-cycle’s coherent detector:

Zmc =
∑
α

1

N2
0

∫ B

−B
Rxx(α, τ)

∗Ryy(α, τ)Bdτ

With Ryy(α, τ)B is the cyclic periodogram of the observation
y(t) whose expression is presented in [24]. The local optimal
detector computes the correlogram of the observation over
all cyclic frequencies contained in the detected signal and
the obtained result is then correlated with the ideal cyclic
autocorrelation of the expected signal.

In the frequency domain after applying Parseval’s theorem,
this statistic test is written as follows:

Zmc =
∑
α

1

N2
0

∫ ∞
−∞

Sxx(α, f)
∗Syy(α, f)Bdf

With Syy(α, f)B is the cyclic periodogram of the observa-
tion y(t). In practice, the implementation of the multi-cycles
detector is impossible due to the non-knowledge of the ideal
functions Rxx(α, τ) or Sxx(α, τ) of the signals to detect. In
fact, their phases can not be known in advance because the
expected signals are random. To overcome this indeterminacy
on the phase, two alternatives are possible [24]. In the first
alternative, the implementation of the statistic Zmc occurs in
an adaptive manner. This means that for each calculation of
Zmc, a phase search is made according to the maximization
of the statistic Zmc. If this is not enough, a second alternative
is to detect a single frequency at a time:

Zα =
∣∣ ∫ ∞
−∞

Sxx(α, f)
∗Syy(α, f)Bdf

∣∣ H0

≶
H1

ξ

For α = 0, the obtained detector is the optimal radiometer. For
α 6= 0, the detector is called coherent mono-cycle detector.
In a noisy environment of a known spectral density N0,
Gardner [10] and Izzo [25] show that, the optimal radiometer
detector (with perfect knowledge of N0) is better than the
coherent mono-cycle detector. In [26], different noise models
was considered: Gaussian, non-Gaussian, white and non-white.
The author concluded that in a realistic situation characterized
by a variable noise level, the optimal performance of the
radiometer is becoming significantly degraded and signifi-
cantly lower than those of mono-cycle detector. Furthermore,
the author shows the superiority of mono-cycle detector in a
noisy environment characterized by additive interference. In
literature, many other cyclic methods of detection / estimation
exist. For example, Zivanovic and Gardner [11] define the
degree of cyclostationarity of a random process by:

DCS =

∑
α6=0

∫∞
−∞ |Rxx(α, τ)|

2dτ∫∞
−∞ |Rxx(0, τ)|2dτ

It involves measuring the distance between the correlation
of the process of interest and the correlation of the most
close stationary process. We can also define the degree of
cyclostationarity to a process on a specific frequency α by:

DCSα =

∫∞
−∞ |Rxx(α, τ)|

2dτ∫∞
−∞ |Rxx(0, τ)|2dτ

Although the authors of [11] did not mention the problem
of detection, this notion of degree of cyclostationarity can
be useful for detection by comparing DCS (or DCSα) to
a threshold value given by a criterion such as Pfa is constant.
Hurd and Gerr [27] proposed a test for the presence of
cyclostationarity based on the calculation of the normalized
spectral correlation:

γ(αp, αq,M) =
|
∑M−1
m=0 IN (αp+m)I∗N (αq+m)|2∑M−1

m=0 |IN (αp+m)|2
∑M−1
m=0 |IN (αq+m)|2
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with IN (α) =
∑N−1
n=0 x(n)exp

(−iπα), αk = 2πk/N and
M a smoothing parameter. The presence on the plot of
γ(αp, αq,M) varying with αp of dark lines parallel to the
diagonal indicate the cyclostationarity of the signal x(t).
Hence the detection is performed in a visual manner.
Dandawate and Giannakis [13] proposed tests for the pres-
ence of cyclostationarity at a given frenquency based on the
following decision rule:

Z ∝ Ĉ
(T )

kx Σ−1kx Ĉ
(T )′
kx

H0

≶
H1

ξG

where Ĉ
(T )

kx is an estimation vector of the kth order cumulants
of the process x(t), Ĉ

(T )′
kx the transpose of the vector Ĉ

(T )

kx ,
Σkx the covariance matrix of Ĉ

(T )

kx and ξG the detection
threshold. Unlike the two previous methods, the authors find
the distribution of the statistic Z under the two hypotheses
H0 and H1. This allows, thereafter, to calculate for a given
probability of false alarm the appropriate threshold ξG. Very
present in the literature, this test is used in the recognition
of standards accessible to software radio terminals [28] or
in the detection of free channels on the GSM frequency
band [29]. In these examples, systems to be detected are a
priori known permitting a cyclostationarity test over a reduced
number of frequencies. In this paper, we choose to retain this
test of cyclostationarity to be the cyclic detector used in our
different proposed solutions, which will be discussed in the
next sections.

D. Limits of the sensing methods

The last two methods (Energy and cyclostationary detection)
present many advantages but have some limits; in fact when
a band is tested, the detection system delivers a decision such
as free or occupied band, without giving more details on the
contents of this band in particular in the case of occupation of
this band. However, a band may not be completely occupied
i.e., sub-intervals of this band are free as we can see from
the example of Figure 7. Subsequently, a limitation of this
solution is that existing communication opportunities may be
missed when the tested bandwidth is much larger than the size
of these opportunities.

Fig. 7. Example of missed opportunity for communication in the case of a
large tested range of frequencies

IV. HYBRID DETECTOR

A. Generalities

As we have seen in Section I, the secondary user undertakes
to not create interference to primary users by unwanted access
to their frequency bands. For that purpose, secondary users
have to perform periodic verifications of these bands. The
more often these verifications are done, the lower becomes
the risk of interference. Subsequently, periodic scanning of
the spectrum is subjected to time constraint especially that
the number of bands shared with the primary user can be
important.

Computational
complexity

insensitivity
of noise

a priori
knowledge

Detection
in low
SNR

radiometer + - noise level
N0

-

cyclostationary
Detector.

- + cyclic fre-
quencies

+

TABLE I
COMPARISON OF PROPERTIES OF ENERGY (RADIOMETER) AND

CYCLOSTATIONARY DETECTOR. THE (+) INDICATES A ADVANTAGE AND
(-) INDICATES AN INCONVENIENT

B. detector architecture

Table I gives features comparison between energy and
cyclostationnarity detectors. Except its noise sensitivity, which
degrades its detection in low SNR, energy detector is the best
solution to detect free bands because no a priori information is
needed. Furthermore, it is a very simple method to implement.
On the contrary, cyclostationnarity detection is very robust
but computationnaly extensive and needs the prior knowledge
of cyclic frequencies in order to take a quick decision. If
this information is unknown, the process becomes too much
complicated and it will not be possible to implement it (today)
in a real time manner. However, reading carefully table I, it
appears that these two methods are complementary. Therefore
it is the reason why we propose our hybrid architecture in
[1], which permits to detect quickly with minimum a priori
information free bands, by taking advantage of both methods.
This hybrid architecture, which is presented in Figure 8 is an
iteratively adaptative architecture as it is explained in [1]. In
the next section we introduce the M-HSD algorithm, which is
the same as the HSD proposed in [1] but this time we added
buffer1 and buffer2 in order to take soft decisions over
the modifications of the thresholds ξ1 and ξ2. The benefit of
using buffers gives stability for operating at low SNRs as it
is explained in the next section.

V. DECISION RULE OF THE M-HSD ALGORITHM

We first assume that N0 is constant with respect to time.
Let Xi be the energy of the received signal x(t) during an
observation time T after the iteration i, B the bandwidth of the
tested band, ξ1 and ξ2 two thresholds that are first initialized
at 0 and +∞ respectively. ξG, which is the threshold of the
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Fig. 8. Hybrid Spectrum sensing Detector (HSD) architecture as it was
proposed in [1].

cyclostationary block that is defined in order to respect the
desired Pfa,des, is fixed using the central χ2 table as described
in [13].

At the beginning of the sensing, the energy detector calcu-
lates the energy X of the received signal after an observation
time T . Then if X falls inside the interval [ξ1, ξ2], the energy
detector can not make a direct decision of type signal present
or signal absent. In that case, the adaptation stage presented
in Figure 8 will call the cyclostationary block (which a priori
knows the cyclic frequency α of the signal of interest) to make
the decision. After the decision of the cyclic test is taken, if it is
of the type signal present (resp. signal absent), the calculated
value X is then saved in a buffer called buffer2 of size N2,
(resp. buffer1 of size N1).

The algorithm continues in the same way except when
buffer2 (resp. buffer1) is full. In this case, the adaptation
stage starts to modify the value of the threshold ξ2 (resp. ξ1)
according to the average of buffer2, (resp. buffer1) and
then the oldest value in the buffer will be replaced by the new
calculated one (Xi after the iteration i).

At any time, if the calculated value X is outside the interval
[ξ1, ξ2], the adaptation stage will take automatic decision of
type signal absent (resp. signal present) depending on whether
X is less than ξ1 (resp. greater than ξ2) avoiding the use of
the cyclic test.

The process is repeated making the interval [ξ1, ξ2] smaller
and smaller. Two cases, high and low SNR, need to be studied
in order to analyze the M-HSD architecture limits, which
will be explained in the next paragraph. Figure 9 shows the
algorithm of the M-HSD method.

It should be noted that at low SNR, the test of “Dandawate
and Giannakis” can easily make errors (the two types of errors
described in part II), so the values that should be saved in
buffer1 might be saved in buffer2 and inversely. But the

Fig. 9. The M-HSD algorithm (a Modified version of the HSD algorithm
[1]). The major modification is the addition of buffer1 and buffer2 in
order to make soft modifications over ξ1 and ξ2.

use of buffers can make a “dilution” of these errors over the
values of ξ1 and ξ2.

Using the M-HSD algorithm, will practically reduce the
complexity from that of a cyclostationary detector: O(N2 +
0, 5Nlog2N), before the buffers are full, to the one of a ra-
diometer: O(Nlog2N) at the convergence phase. At this point,
the M-HSD detector will present a detection performance close
to that of the cyclostationary detector.

A. Analytical Study of the M-HSD algorithm Using Order
Statistics

In this section, for simplicity reasons, we assume that the
buffers’ size is one. In order to study the M-HSD architecture
in a statistical point of view, we will use the order statistics
tool. The Kth order statistic of a statistical sample denoted
X(k) is equal to its Kth smallest value. The first order statistic
(or smallest order statistic) is always the minimum of the
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sample, that is:

X(1) = min{X1, ..., Xn}

Similarly, for a sample of size n, the nth order statistic (or
largest order statistic) is the maximum, that is:

X(n) = max{X1, ..., Xn}

if f(x) is the probability density function of the random
variable X and F (x) its cumulative distribution function, then
it is shown in [30] that the density probability of the kth order
statistic is given by:

fX(k)
(x) =

n!

(k − 1)!(n− k)!
F (x)k−1 (1− F (x))n−k f(x)

(10)
for the special case k = 1, (10) becomes:

fX(1)
(x) = n[1− F (x)]n−1f(x) (11)

and for k = n, (10) becomes:

fX(n)
(x) = nF (x)n−1f(x) (12)

Now, using the distributions of X under H0 (resp. X under
H1) from (7) in (11) (resp. (12)), we can obtain the distri-
butions of ξ1 and ξ2 (in (13) and (14) respectively) after n
iterations of the algorithm M-HSD under the hypotheses H0

and H1 respectively:

fξ1(k=1)(x) =
n

2σ1
√
2π

[
1 + erf

(
x− µ1

σ1
√
2

)]n−1
e
− 1

2

(
x−µ1
σ1

)2

(13)
and :

fξ2(k=n)(x) =
n

2σ2
√
2π

[
1− erf

(
x− µ2

σ2
√
2

)]n−1
e
− 1

2

(
x−µ2
σ2

)2

(14)

B. M-HSD algorithm limits

• High SNR case: if the signal is received at a good SNR,
the performance of the cyclic test will be ideal (Pfag
close to zero and Pdg close to one where Pfag and Pdg
are respectively the observed false alarm and detection
probability of the cyclostationary block). So the saved
values in each buffer will be from the same population
(signal in buffer2 and noise in buffer1). The variables
ξ1 and ξ2 will never meet and ξ1 will always be smaller
than ξ2. This is due to the fact that the signal is well
separated from the noise as shown in Figure 10, which
represents the variation of the probability density function
of ξ1 and ξ2 for different number of iterations at 0 dB.
Figure 11 represents the expected values of the distribu-
tion of ξ1 under H0 and ξ2 under H1 over the number
of iterations (obtained using (14) and (13)). It is clear
that ξ1 and ξ2 are not going to meet even after a huge
number of iterations (109 iterations, Cf. Figure 10). Then
after the convergence of the M-HSD algorithm, the cyclic
block will be very rarely used because it is very rare
that the statistic Xi falls between ξ1 and ξ2 leading to a
radiometer complexity and to perfect decisions.

Fig. 10. The variation of the probability density function of ξ1 (resp. ξ2)
under H0 (resp. H1) for different number of iterations at 0 dB, plotted using
(13) (resp. (14)).

Fig. 11. The expected values of ξ1 (resp. ξ2) under H0 (resp. H1) as function
of the iterations number n at 0 dB, plotted using a numerical calculus using
(13) (resp. (14)) and the Matlab tool.

• Low SNR case: If the signal is received at a low SNR,
the received signal will be very close to the noise level,
then ξ2 will soon be less than ξ1 after a small number of
iterations as we can see in Figure 12. Moreover, with low
SNR, the cyclic test can easily misdetect in it decisions
(for example the values saved in the buffers may not be
from the same population). In this case, it would be better
to change ξ2 instead of changing ξ1. This fact induces a
strong degradation of the detection performance. Once
ξ1 becomes greater than ξ2, the M-HSD algorithm will
fix ξ1 = ξ2 and will stop its evolution. In this case the
M-HSD algorithm has reached its detection limit.

VI. THE ENHANCED HSD ALGORITHM (EHSD)

An Enhanced architecture of this last one can be studied as
well to improve the detection at lower SNR. It consists in
directly estimating the noise level N̂0. We will keep the same
algorithm of the M-HSD architecture but with just making few
modifications: N1 will be chosen to be big enough to make
a good estimation of the noise level N0. Moreover, we will
keep ξ2 in the architecture to reduce the detection complexity
as much as possible. Directly when buffer1 is full, we will
calculate its mean µ̂1. Then, the EHSD algorithm will use the
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Fig. 12. The expected values of ξ1 (resp.ξ2) under H0 (resp. H1) as function
of the iterations number n at −10 dB, plotted using a numerical calculus using
(39) (resp. (40)) and the Matlab tool. We can observe that ξ2 will soon be
less than ξ1 after a small number of iterations at low SNR.

following equation to estimate N0:

N̂0 =
µ̂1

BT

Using this estimation of N̂0, we can estimate ξ̂0 that
guarantees the Pfa,des from the equation bellow:

ξ̂0 = G(Pfa,des)N̂0

EHSD is a little more complex than M-HSD, because we will
need to repeat the cyclostationary test at least N1 times to
be able to estimate ξ̂0, (the size of buffer1 in the EHSD
algorithm is usually bigger than the size of buffer1 in the M-
HSD algorithm). Figure 13 shows the algorithm of the EHSD
method.

A. EHSD Performance

Let D0 (resp. D1) designate the event that the cyclic
detector has chosen H0 (resp. H1). If we assume that for a
given SNR the cyclic detector can make false alarms under
H0 and good detections under H1 independently of the value
of the calculated variable X , then we can write:

E(X|H1, D0) = µ2 (15)

and

E(X|H0, D0) = µ1 (16)

where E(.) denotes the expectation operator.
Recall the partition probability theorem stated below:

E(X|D0) =P (H1|D0)E(X|H1, D0)

+ P (H0|D0)E(X|H0, D0)

Using the assumptions of (15) and (16), we can write:

E(X|D0) = P (H1|D0)µ2 + P (H0|D0)µ1 (17)

by applying Bayes equality we can write:

P (H1|D0) =
P (D0|H1)P (H1)

P (D0)
(18)

Fig. 13. Algorithm of the EHSD architecture. Only few modifications over
the M-HSD algorithm are done.

P (H0|D0) =
P (D0|H0)P (H0)

P (D0)
(19)

We can express the probability that the cyclic detector
chooses H0 in terms of P (H1), P (H0), Pfag , and Pdg:

P (D0) = (1− Pfag)P (H0) + (1− Pdg)P (H1) (20)

now considering the following definition:

γ =
P (H0)

P (H1)

where γ represents the characteristic of the environment (free
or occupied). Using (18), (19) and (20), equation (17) be-
comes:

E(X|D0) = (1− δ)µ2 + δµ1 (21)

where

δ =
1− Pfag

1− Pfag + 1−Pdg
γ
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Or for all δ we have:

(1− δ)µ2 + δµ1 ≥ µ1

Therefore we conclude that:

E(X|D0) ≥ µ1

This means that we always have an over estimation of the
noise level N0 (ξ̂0 ≥ ξ0), wish implies that the false alarm
constraint will always be respected in the EHSD method (the
observed false alarm is then less or equal to the desired false
alarm). Using (21) we can find a theoretical approximation for
the expression of the relative error over the estimated threshold
ξ̂0 defined by Errorrel = ξ̂0−ξ0

ξ0
, as function of the SNR.

For large N1, we can write:

µ̂1 ≈ E(X|D0)

then:
N̂0 ≈

E(X|D0)

TW

Using the result given by (21) we can write:

N̂0 ≈
(1− δ)µ2 + δµ1

TW

so Errorrel can be approximated by:

Errorrel ≈
G
TW ((1− δ)µ2 + δµ1)− G

TW µ1

G
TW µ1

after simplifying it, we will obtain:

Errorrel ≈
SNR

γ
1−Pfag
1−Pdg + 1

(22)

Fig. 14. The theoretical approximation of the relative error over the threshold
ξ0, simulated using the approximation (22).

Observing the curve in Figure 14, we can check that for
high SNRs (when the cyclic test is perfect), the term 1 −
Pdg goes to zero as well as global expression of Errorrel.
In that case, an excellent estimation of ξ0 can be done. For
lower SRN , the term 1 − Pdg is not zero anymore because
the cyclostationary test is no more an ideal test inducing an
error over the estimation of ξ0. This error reaches its maximum
before it starts to decrease because the SNR term becomes
very small. Physically this error reduction is due to the fact
that the signal is too weak and thus close to the noise level.

VII. SIMULATION RESULTS AND DISCUSSION

In the simulations, we used a 4-PSK modulation at 20
Khz where α = 1

Ts
is the cyclic frequency used in the

cyclostationary detector a priori known, and Ts refers to the
symbol period of the 4-PSK. We set N1 and N2 equal to
30 in the simulation of the M-HSD algorithm, while for the
EHSD algorithm, we used N1 = 100 and N2 = 30. The time-
bandwidth product BT is equal to 4500 and an equiprobabilist
environment (γ = 1) was used, unless otherwise stated while
simulating the different architectures.

Fig. 15. The variation of ξ1 and ξ2 at -5 dB using M-HSD algorithm,
with γ = 1, N1 = 30, and N2 = 30. Each mark on the curves indicates
a modification of ξ1 and ξ2. One can notice that the cyclostationary test is
less and less used, as the number of iterations increases, inducing a lower
complexity.

Figure 15 presents the evolution of ξ1 and ξ2 over the
iterations of the M-HSD algorithm at −5 dB. We have fixed
ξG to guarantee a Pfa less than 1%. Each mark on the curves
in Figure 15 indicates a modification of ξ1 or ξ2. We can
observe that there are lots of marks at the beginning, which
means that the cyclostationary test is frequently used at this
stage, but after a while, the cyclostationary test is much less
utilised inducing a lower complexity.

Fig. 16. Simulated detection probability as function of SNR of the M-HSD
(using N1=N2=30), and EHSD (using N1=100, and N2=30) architectures
with a Pfa,des fixed at 1%, also compared to the cyclic test and to the ideal
radiometer under the same conditions.

In order to compare detection performances of the different
above mentioned techniques, we simulate the variation of the
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Fig. 17. Simulation result of the relative error of the estimated threshold
ξ̂0 as function of the SNR using the EHSD algorithm, compared to the
theoretical approximation given in (22).

probability of detection as function of SNR, for the M-
HSD and EHSD, using the same Pfa,des = 1%. We also
compare the obtained results with the curves representing
the performance of the cyclic test and the ideal radiometer.
The simulated results are shown in Figure 16, where we can
observe that the performance of the M-HSD algorithm are near
the cyclostationary detector, which means that M-HSD has
reached the performance of the cyclic test with a radiometer
complexity. Now if we take a look at the EHSD algorithm
performance, which also has a radiometer complexity at steady
state, we can see that it is able to detect at 100%, with an
observed Pfa smaller 1% starting at −8 dB, versus −3 dB
for the cyclic test, and so achieving a gain of 5 dB in terms of
SNR. It should be noted that the EHSD algorithm is a little
more complex than M-HSD algorithm at the beginning of the
sensing process since it needs a larger buffer1 to achieve a
good estimation of N0.

Figure 17 validates the approximation given in (22) of the
relative error of the threshold ξ̂0 as function of the SNR. This
approximation is very close to the simulation results especially
at low and high SNR. It can be concluded that when the
cyclostationary test starts detecting at 100% (at −3 dB), we
can have then a perfect estimation of ξ0. An important remark
is that for example, at −8 dB, we have a maximum error over
the threshold estimation and we can still detect at 99% (Cf.
Figure 16). This fact is explained by Figure 18, that shows
the PDF of X under both, H0 and H1 at −8 dB using (7).
We can observe that these densities are still well separated at
−8 dB. In consequence this error of estimation does not have
a significant impact over the detection performances. At the
matter of fact we can observe that ξ̂0 is located on the tail of
the PDF of X under H1.

A. The Influence of the Environment γ over the Performance
of the M-HSD and EHSD Algorithms

As we have already seen, the state of the channel (free
or occupied) can be characterized by the variable γ as the
ratio between P (H0) and P (H1). If we look closely at Figure
12, we note that the point of intersection of the two curves

Fig. 18. The distribution of the statistic X under the two hypothesis H0

and H1 obtained using (7) of Urkowitz at −8 dB. We have found that in this
situation ξ̂0 is located on the tail of the PDF of X under H1, that is why
we can still obtain good detection performance although the estimation error
over ξ0 is maximal.

that presents the expectation of ξ1 and ξ2, under respectively
H0 and H1, does not depend solely on the SNR of the
received signal but also on how the sequence of the events
free channel or occupied channel is occurring while using the
M-HSD algorithm. Also if we look at (22), which gives the
relative error in estimating the optimal threshold when using
the EHSD algorithm, we can check that it depends also on
the environment characteristic γ. This is the reason why it is
interesting to observe the influence of the environment over
the performance of our different proposed architectures.

We have used two extreme simulation environments to
observe the variation of the performance of the M-HSD
detector. The first is γ = 99 (P (H0) = 99%) and the
second is γ = 0.01. We observe in Figure 19 that the
performance effectively varies depending on the environment
γ. For γ = 99, which signifies that 99% of the time the
band is free, ξ1 keeps increasing, causing a reduction of the
detection performance. This environment (γ >> 1) is not that
one favorable for the M-HSD algorithm because it will have
its detection performance close to the cyclostationary detector
( at−4 dB M-HSD detects up to 100% versus −3 dB for the
cyclic detector), so the major advantage in this case is the
lower complexity of the M-HSD algorithm.

However, when γ = 0.01 (P (H1) = 99%) ξ2 keeps decreas-
ing, which allows better detection results. In this case a gain
of 2 dB is observed compared to the cyclic detector. Moreover
M-HSD is still less complex, and detects significantly better
than the cyclostationary detector. Then, we conclude that the
M-HSD algorithm ensures a gain between one and two dB
over the detection performance of the cyclic detector with a
decreasing complexity.

Now we simulate the EHSD architecture in both environ-
ments, γ = 99 and γ = 0.01. For γ = 99, the observed
performance in Figure 20 is close to the ideal radiometer
performance. This result is explained in (22), which shows
that the relative error is inversely proportional to γ. So for
γ = 99 this error is almost zero for all the SNR. Therefore the
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Fig. 19. Simulated detection probability under different SNRs, of the M-HSD
(using N1=N2=30), with Pfa,des fixed at 1% using γ = 99 and γ = 0.01,
also compared to Giannakis test under the same conditions.

estimated threshold ξ̂0 is very close to the optimal threshold
ξ0, which explains the obtained result. As for γ = 0.01, the
same formula (22) shows that for low SNR the relative error
over the estimation of the optimal threshold is high because γ
is less than 1. But for high SNR, we have Pdg close to one,
which makes the relative error decreases to zero. Then we can
observe that the performance of the EHSD is always better
than that of the M-HSD algorithm. In fact there is always a
minimum gain of 2 dB over the cyclic detector, and if the
environment is favorable (γ >> 1) to the EHSD algorithm,
we may even reach the performance of the ideal radiometer.

Fig. 20. Simulated detection probability under different SNRs, of the EHSD
(using N1=100, and N2=30), with Pfa,des fixed at 1% using γ = 99,
γ = 1 and γ = 0.01, also compared to the ideal radiometer under the same
conditions.

Another way of comparing performance is to plot the ROC
curves already defined in part II. For γ = 1, we simulate for
different SNRs the ROC curve of both M-HSD and EHSD.
For a relatively good SNR (−5 dB), we can check in Figure
21 that both architectures present the same performance. But
for lower SNR (−10 dB), we can observe in Figure 22 the
superiority of the EHSD over the M-HSD algorithm in terms
of detection. Although both EHSD and M-HSD converge to a
radiometer complexity at steady state, EHSD has always better
performance than M-HSD. Therefore it is better to use EHSD
instead of M-HSD.

Fig. 21. ROC curves of the M-HSD and the EHSD at -5 dB, for γ = 1.
We observe that in these conditions M-HSD and EHSD present the same
performance.

Fig. 22. ROC curves of the M-HSD and the EHSD at -10 dB, for γ = 1. We
observe that in these conditions EHSD presents better detection performance
compared to M-HSD.

VIII. CONCLUSION

Spectrum sensing is subject to time constraints. For this rea-
son, we have proposed adaptive architectures, which combine
two systems. The first system is a low complexity detector,
but it is very sensitive to a bad estimation of the noise level
N0. As for the second, it is a more complex system based
on cyclostationary detection, but it is insensitive to a poor
estimation of N0. These new adaptive architectures allow the
sensing at lower SNR and with a decreasing algorithmic
complexity. In a Gaussian noise environment the obtained
results are promising as it was shown by the performed
simulations. Future work will include the study of different
channel types with a variable N0. A study of the convergence
time and power consumption of the proposed architectures are
under investigation.
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