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Abstract — A stochastic model of binary classification in the 

presence of noise is considered where classification outcomes are 

non-deterministic. To ensure the correctness of a particular 

classification decision, repeated reinforcements need to be 

acquired. By accumulating sufficient reinforcements, one would 

learn to predict the class label. In this study, we develop a 

probabilistic learning reinforcement classification model and 

apply it to multimedia information indexing and to noisy 

network transmission. Three learning strategies are analyzed. 

The first one requires the accumulation of a total of a given 

number of pre-specified positive labels, while the second one 

builds from the first and requires additionally that such 

reinforcements occur consecutively in the observation sequence. 

The third strategy views the classification process from a multi-

agent stochastic game perspective, with the labelling decision 

determined by which class label attaining a given threshold first. 

The model characteristics are studied for the three different 

strategies and key measures of performance are obtained.  The 

model is applied to fault-tolerant network communications over 

a noisy channel, with learning success corresponding to error-

free transmission of data packets, and to multimedia indexing 

where learning success correspond to the successful automatic 

installation of an index term to a particular data object. The 

present learning paradigm will be useful in allowing the 

effectiveness and performance of these systems and similar ones 

to be meaningfully quantified and evaluated. 

Keywords – computer networks; packet switching; multimedia 

information indexing; reinforcement learning; multi-agent; naïve 
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I.  INTRODUCTION AND RELATIONSHIP WITH OTHER 

WORK 

 
Sequential classification problems are ubiquitous and 

many important decision problems can often be reduced to a 
classification problem. Among the variety of classification 
problems, binary classification problems consisting of two 
class labels are particularly common. However, classification 
verdicts returned by different classifiers over time are often 
non-deterministic, causing uncertainty in the classification 
decision. In such a situation, repeated reinforcements are 
necessary to ensure the reliability of the decision. 

To be concrete, we shall use the multimedia indexing 
scenario [1] to explain the key concepts. Later we shall 
establish a correspondence between multimedia search and 
fault-tolerant network communications. In effective 

information and document retrieval, it is often necessary to 
involve the users in the search process so as to improve the 
overall return results [18][19][22] [29].   In addition, affective 
indexing of multimedia content combines emotional 
responses generated by the users is sometimes employed, e.g., 
the psycho-physiological signals, galvanic skin response, face 
tracking [19][27]. 

In [20], it is proposed that a reinforcement learning 
approach is suitable for users exposing to raw and high-
dimensional information, whereas instant rewards of the 
agents is generally able to impart significant improvements in 
the searching process [21]. In [23], it is shown that using 
Markov decision process improves the efficiency of locating 
video frames in a video, and in [24], the distribution of visual 
words of multimedia data is found to be probabilistic in 
relation to the concept relationship formed [24].  Users often 
allocate the results based on some form of scoring metrics; for 
example, a linear combination of posterior probability is 
employed to refine the search results [25]. In reinforcement 
learning, an agent learns through the interaction with the 
dynamic environment to maximize its long-term rewards, in 
order to act optimally. Most of the time, when modeling real-
world problems, the environment involved is non-stationary 
and noisy [3][4][6]. More precisely, the next state results from 
taking the same action in a specific state may not necessarily 
be the same but appears to be stochastic 
[2][7][31][32][33][34][35]. And the exploration strategies 
adopted in different categories of reinforcement learning 
algorithms provide different levels of control to the 
exploration of unknown factors, which in turn give various 
possibilities to the learning outcomes. Hence, the observed 
rewards and punishments are often non-deterministic. For 
example, when one is trying to find a video for performing a 
particular task, a shortening of the searching time with respect 
to some anticipated norm may be regarded as a reward, while 
a lengthening of the same may be viewed as punishment. 
Likewise, when one is exploring a new advertising channel, a 
resultant significant increase in sales may be viewed as a 
reward, while failure to do so may be regarded as punishment. 
In situations like these, there are stochastic elements 
governing the underlying environment. In the new route to 
work example, whether one receives rewards or punishments 
depends on a variety of chance factors, such as weather 
condition, day of the week, and whether there happens to be 
traffic delays or road works. 

The effect of noise in multimedia data is generally 
numerous and cannot be known or enumerated in a practical 
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sense, and these tend to mask the underlying pattern. Indeed, 
if stochastic elements are absent, the learning problems 
involved could be greatly simplified and their presence has 
motivated early research in the area. As early as 1990s, 
mainstream research in reinforcement learning, such as the 
survey assessing existing methods carried out by Kaelbling et 
al. [2], adopts the common assumption of a stationary 
environment within a reinforcement learning framework. 
Later on, with further advances in reinforcement learning, 
theoretical analyses addressing the concern of non-stationary 
environment attracted great interests. One of the works by 
Brafman and Tennenholtz introduces a model-based RL 
algorithm R-Max to deal with stochastic games [5]. Such 
stochastic elements can notably increase the complexity in 
multi-agent systems and multi-agent tasks, where agents learn 
to cooperate and compete simultaneously [6][10]. 
Autonomous agents are required to learn new behaviors 
online and predict the behaviors of other agents in multi-agent 
systems. As other agents adapt and actively adjust their 
policies, the best strategy for each agent would evolve 
dynamically, giving rise to non-stationarity [8][9]. 

For most of the aforementioned scenarios, the cost of a 
trial or observation to receive either a reward or punishment 
can be significant, and preferably, one would like to arrive at 
the correct conclusion by incurring minimum cost. In the case 
of the advertising example, the cost of advertising can be 
considerable and one would therefore like to minimize it while 
acquiring the knowledge whether such advertising channel is 
effective. Similarly, in reinforcement learning algorithms, we 
are always in the hope to rapidly converge to an optimal 
strategy with least volumes of data, calculations, learning 
iterations, and minimal degree of complexity [11][12]. To do 
so, one should explicitly define the stopping rules for 
specifying the conditions under which learning should 
terminate and a conclusion drawn as to whether the learning 
has been successful or not based on the observations so far. 

The issue of finding termination conditions, or stopping 
rules, is an intensive research topic in reinforcement learning, 
which is closely linked to the problems of optimal policies and 
policy convergence [13]. Traditional reinforcement learning 
algorithms mainly aim for relatively small-scale problems 
with finite states and actions. The stopping rules involved are 
well-defined for each category of algorithms, such as utilizing 
Bellman Equation in Q-learning [14]. To deal with continuous 
action spaces or state spaces, new algorithms, such as the 
Cacla algorithm [15] and CMA-ES algorithm [16], are 
developed with specific stopping criteria. Still, most studies 
on stopping criteria are algorithm-oriented and do not have a 
unified measurement for comparison purposes. 

In this study, we present an approach to reinforcement 
learning by using a naïve Bayes classification framework, 
which explicitly incorporates the stochastic aspects of the 
environment in multimedia information search and retrieval. 
Applying naïve Bayes methods for classification problems are 
often employed in a variety of contexts [26][36], such as 
crowdsourcing and police surveillance. Here, we shall also 
learn and estimate the underlying stochastic structure of the 
environment by making use of the random classification 
labels gathered in the course of the learning process.   

The structure of this paper is organized a s follows. Section 
II presents a unified framework in the probabilistic 
classification of binary outcomes, and key measures of 
performance are derived, while the estimation of parameters 
is described in Section III. Section IV views competing 
classification outcomes as a stochastic game involving multi-
agents. Sections V and VI respectively apply the results to the 
performance analysis of network communications and 
multimedia search. 

 
 

II. A PROBABILISTIC FRAMEWORK AND FUNDAMENTAL 

STRATEGIES 

 
We consider a binary classification problem with two class 

labels, 1 or 0, where for convenience the former is referred to 
as a success, and the latter, a failure. A success yields a 
positive outcome and may be referred to as a positive 
classification, while a failure may be referred to as a negative 
classification. We are interested in determining whether the 
sequential classifications indicate overall success or failure in 
the classification process. Evidently, if the number of 1-labels 
gathered is much greater than the number of 0-labels, then the 
conclusion drawn should be success, while if the opposite is 
true, then the corresponding conclusion should be failure. In 
order to proceed with the analysis, we first let p and q (with p 
+ q = 1) denote the probabilities of receiving a 1-label or 0-
label respectively for a given classification. Furthermore, we 
shall make use of the naïve Bayes property that different 
classifications are independent of each other. Later on, we 
shall derive estimates for p and q, which capture the stochastic 
structure of the environment.  For example, if p > q, then 
clearly the final conclusion should be success. An error often 
committed is that when the first few observations are all 0, one 
would terminate prematurely and return a verdict of failure. 
Let us consider the following termination strategy; such a 
strategy is also studied in [26][36] and is called majority 
voting. 

 
Strategy A: On accumulating a total of r labels all 

belonging to either 1 or 0, the process terminates and a 
decision is made in accordance with the accepted margin of 
the majority of voting of the classifiers.  

 
Here, we let the random variable X represent the number 

of classification labeling preceding the first positive 
classification; i.e., X may be viewed as the waiting time to the 
first positive classification,  

Pr[𝑿 = 𝑘] =  𝑝𝑞𝑘,    𝑘 = 0, 1, 2, 3, …              (1) 

The probability generating function G (z) of X is given by 

𝐺(𝑧) = ∑ Pr[𝑿 = 𝑘] 𝑧𝑘

∞

𝑘=0
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                                               = 𝑝 ∑ 𝑞𝑘𝑧𝑘

∞

𝑘=0

=  
𝑝

(1 − 𝑞𝑧)
.       (2) 

 
 
Note this is a regenerative process in that after the occurrence 
of the first positive classification, the process probabilistically 
repeats itself again, so that we have for the waiting time Wr of 
the rth positive classification 

𝑾𝑟 =  ∑ 𝑿𝑘

𝑟

𝑘=1

,                                      (3) 

where each Xk has the same distributional characteristics as X. 
From [17], the probability generating function of Gr (z) 
corresponding to Wr may be obtained 

             𝐺𝑟(𝑧) =  𝐺1(𝑧)𝑟  

                             = [
𝑝

(1 − 𝑞𝑧)
]𝑟 .                                              (4) 

To gain a better understanding of behavior specified above, it 
is useful to obtain the average waiting time Wr and its variance 
when r positive labels are attained. From (4), the mean and 
variance of Wr can be derived  

E[𝑾𝒓] =  𝐺𝑟
′(1) =  

𝑟𝑞

𝑝
  ,                           (5) 

Var[𝑾𝒓] =  𝐺𝑟
"(1) + 𝐺𝑟

′(1)  −   𝐺𝑟
′(1)2 =  

𝑟𝑞

𝑝2
  .       (6) 

Moreover, the probabilities Pr[Wr = k] may be readily 
obtained from the expansion of (4) so as to study the 
probabilities for various waiting time, 

Pr[𝑾𝒓 = 𝑘] = (
−𝑟

𝑘
) 𝑝𝑟(−𝑞)𝑘,    𝑘 = 0, 1, 2, 3, …     (7) 

We note that, while −r appears as a negative integer in the 
binomial coefficient, the entire expression is actually non-
negative [18]. Since Wr is the sum of independent identically 
distributed random variables, when r is appreciable, it may be 
approximated by the normal distribution [17] 

𝑾𝒓 ~𝑁 (
𝑟𝑞

𝑝
,
𝑟𝑞

𝑝2
 ) ,                                (8) 

whence we have, denoting by Φ the standard normal 
distribution, 
 

Pr[𝑾𝒓  >  𝑏 ] = ∫
1

√2𝜋

∞

𝑏𝑝−𝑟𝑞

√𝑟𝑞

𝑒−
𝑡2

2
                           

= 1 − Φ (
𝑏𝑝 − 𝑟𝑞

√𝑟𝑞
).                              (9) 

We next consider a more stringent strategy whereby 
consecutive occurrence of labels is required. As we shall see, 
it would take much longer to complete the process in Strategy 
B than in Strategy A. 

 
Strategy B: On the occurrence of m consecutive labels all 

belonging to either 1 or 0, the process terminates and a 
decision is made in accordance with the accepted margin of 
the majority of voting of the classifiers.  

 

To establish the results for this second case, we shall first 

derive the probability of occurrence of the event 

corresponding to Learning Strategy B for the first time. Let 

bn be the probability that m consecutive positive rewards 

occurs at trial n, with n ≥ m, not necessarily for the first time, 

and we denote by B(z) be the corresponding probability 

generating function. From [17], this probability generating 

function can be obtained as 

           𝐵(𝑧) =  
1 − 𝑧 + 𝑞𝑝𝑚𝑧𝑚+1

(1 − 𝑧)(1 − 𝑝𝑚𝑧𝑚)
 .                                  (10) 

Since we need to obtain the corresponding generating 

function for the probability that the associated event occurs 

for the first time, we need to consider the relationship 

between the two events. We shall use the random variable Vm 

to denote the number of plays preceding and including the 

receiving of the first set of m consecutive positive rewards, 

and we let an be the probability 

 

            𝑎𝑛 = Pr[𝑽𝒎 = 𝑛] , 𝑛 = 𝑚, 𝑚 + 1, … .           (11) 

 

We denote by A(z) the probability generating function for the 

event that the accumulation of m positive rewards occurs for 

the first time. It can be shown in [17] that the generating 

function A(z) is related to B(z) by  

                          𝐴(𝑧) =  
𝐵(𝑧) − 1

𝐵(𝑧)
 .                                       (12) 

From this, we obtain, after simplification, 

               𝐴(𝑧) =  
𝑝𝑚𝑧𝑚

1 − 𝑞𝑚 ∑ 𝑝𝑘𝑧𝑘𝑚−1
𝑘=0

 .                              (13) 

From this, the mean and variance of Vm can be readily 

obtained after simplification, 

      E[𝑽𝒎] =  𝐴′(1) =  
1 − 𝑝𝑚

𝑞𝑝𝑚
 ,                                          (14) 

Var[𝑽𝒎] =  𝐴′′(1) +  𝐴′(1) −  𝐴′(1)2  
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                                =  
1

𝑞2𝑝2𝑚
−

2𝑚 + 1

𝑞𝑝𝑚
−

𝑝

𝑞2
  ,                 (15) 

It is interesting to compare Strategies A and B. It is evident 
that Strategy B is more stringent than Strategy A, since for 
m=r, obtaining m consecutive labels necessarily implies 
obtaining m total labels. Acquiring consecutive labels implies 
for example that, once a 1-label is acquired, no 0-label from 
that point is tolerated until all m 1-labels are accumulated. 
Thus, when a 0-label arises, it may be interpreted as having 
the effect of cancelling out any previous 1-label, and the same 
applies to the commencement of the 0-label. 
 
 

No. of Labels Required 

 

 

                                             No. of Trials 

Fig. 1.  Cost Comparison of Strategy A and Strategy B (p = 0.6). 

Figure 1 compares the average cost of play of Strategy A 

and Strategy B.  Here, the left vertical axis is used for E(Vm) 

with an appropriate scale, while, the right vertical axis is used 

for E(Wr). We see that the stringency of Strategy B is 

manifested in a steep climb in the number of trials as m 

increases, as opposed to a relatively moderate increase in 

Strategy A.  

Depending on the outcomes of labelling, since Strategies 

A and B govern the time when the observation process 

terminates and accompanied by a decision being made, the 

underlying process may be regarded as a learning episode 

whereby a labelling is learned from the observations. 

Therefore, Strategies A and B may also be understood as 

learning strategies, and a resultant label of 1 would be 

referred to as learning success, whereas a resultant label of 0 

would be referred to as learning failure. 
 

III. THE RATIO OF CLASS LABELS AND LEARNING 

SUCCESS  

We denote by ρ the ratio of the average number of negative 
labels to the number of positive labels; thus 

𝜌(𝑝) =  
𝐸[𝑾𝒓]

𝑟
=  

𝑞

𝑝
 .                         (16) 

From the above relationship, we can determine the 
inherent stochastic structure of the environment by estimating 
p from actual observed labels ratio W/r, where W is the sample 
mean of Wr. We can then form our estimator from the above 
just by solving for p. We shall estimate the probability Pb that 
the learning cost for this component exceeding this bound. 
From (7) above, this is given by 

                       𝑃𝑏 =  1 −  ∑ Pr[𝑾𝒓 = 𝑘]

𝑏

𝑘=0

 

                                           = 1 − ∑ (
−𝑟

𝑘
) 𝑝𝑟(−𝑞)𝑘

𝑏

𝑘=0

.       (17) 

Here, the normal approximation can be invoked. In many 
reinforcement learning episodes, r tends to be under 100, as a 
lengthy iteration time is not feasible and most learning 
algorithms aim to converge in minimum time. 

Clearly, the selection of the maximum cost weight b will 
have a significant impact on Pb. Very often, it is more 
meaningful to relate b to E[Wr] either additively or 
multiplicatively. Table I tabulates the values of Pb for different 
values of b.  The first part of Table I considers b by adding a 
fixed value d, with d = 5 and d = 10, while the second part 
considers b by multiplying by a fixed multiple α, with α = 1.2 
and α = 1.5; here, b is rounded to the nearest integer.  In the 
first part of Table I, we see that for either value of r, when p 
is appreciably greater than q, the probability of exceeding cost 
bounds tends to be acceptably small, and this is especially so 
for r = 20. The reason is that, since d is a fixed value, its 
relative contribution to b increases as p increases, produces a 
relatively large cost bound weight compared to the average 
one, and accordingly lowers the probability of exceeding the 
bound. However, in the second part of Table I, the difference 
between E[Wr] and b decreases as E[Wr] decreases, so that Pb 
tends to be large for higher values of p. 

 

TABLE I.  ANALYSIS OF PROBABILITIES OF EXCEEDING COST 

BOUNDS 

b Formula r p q E[Wr] b Pb Pb Err 

b =  

E[Wr] + d  

(d = 5) 

20 

0.5 0.5 20.00 25 0.215 0.186 0.029 

0.8 0.2 5.00 10 0.023 0.026 0.003 

0.9 0.1 2.22 7 0.001 0.004 0.003 

50 

0.5 0.5 50.00 55 0.309 0.279 0.030 

0.8 0.2 12.50 17 0.127 0.108 0.019 

0.9 0.1 05.56 11 0.014 0.017 0.003 

b =  20 0.5 0.5 20.00 30 0.057 0.059 0.002 
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b Formula r p q E[Wr] b Pb Pb Err 

E[Wr] + d  

(d = 10) 
0.8 0.2 5.00 15 0.000 0.001 0.001 

0.9 0.1 2.22 12 0.000 0.000 0.000 

50 

0.5 0.5 50.00 60 0.159 0.147 0.012 

0.8 0.2 12.50 22 0.008 0.011 0.003 

0.9 0.1 05.56 16 0.000 0.000 0.000 

b =  

αE[Wr] 

 (α = 1.2) 

20 

0.5 0.5 20.00 24 0.264 0.226 0.038 

0.8 0.2 5.00 6 0.345 0.253 0.092 

0.9 0.1 2.22 2 0.556 0.380 0.176 

50 

0.5 0.5 50.00 50 0.159 0.147 0.012 

0.8 0.2 12.50 15 0.264 0.215 0.049 

0.9 0.1 05.56 7 0.280 0.207 0.073 

b =  

αE[Wr] 

 (α = 1.5) 

20 

0.5 0.5 20.00 30 0.057 0.059 0.002 

0.8 0.2 5.00 7 0.212 0.156 0.056 

0.9 0.1 2.22 3 0.310 0.193 0.117 

50 

0.5 0.5 50.00 75 0.006 0.010 0.004 

0.8 0.2 12.50 19 0.050 0.048 0.002 

0.9 0.1 05.56 8 0.163 0.121 0.042 

 
 

In Table I, column Pb gives the exact calculation using 
(17), while column Pb employs the normal approximation 
using (9). The absolute error between the exact calculation and 
the normal approximation is given by column Err. We see that 
the normal approximation is quite acceptable in most cases 
with absolute error less than 0.1. Note that no matter whether 
having b additively or multiplicatively related to E[Wr], a 
higher value of d or α always gives smaller absolute error. We 
therefore suggest that the approximation should only be used 
when r, d and α are sufficiently large.  
 

IV. A LEARNING FRAMEWORK BASED ON COMPETING 

MULTI-AGENTS  

 
In Learning Strategies A and B above, the termination of 

a learning episode is triggered whenever a fixed number of 
positive labels r is obtained, irrespective of the number of 
negative labels accumulated in the process of doing so. 
Sometimes, however, this may not be desirable, especially 
when an inordinate number of negative labels have been 
accumulated, in which case, termination should take place 
earlier along with the conclusion of learning failure. 
Therefore, one is comparing the number of positive labels 
gathered against the number of negative labels, and the 
learning is concluded as success or failure according to which 
of these achieve the majority.  

More precisely, this may be viewed as a multi-agent 
tournament with two competing agents A1 and A2, in which A1 
is responsible for giving out the positive labels, while A2, the 
negative labels (respectively the 1 and 0 labels). This 
framework is not unlike the game theoretic approach in 
statistical decision theory, where both the statistician and 

nature are regarded as players in the game of estimation, and 
also this may be regarded as a kind of stochastic game 
involving agents [5][28][30]. While we shall focus on the 
agents A1 and A2, we note that there is a further agent, the 
learner, so that three agents exist in this situation. Here, when 
a classification results in a positive labels, then A1 would gain 
a score of one, while when an observation results in a negative 
labels, then A2 would gain a score of one. When either 1 or 0 
label first reaches a given threshold h, then this will trigger a 
termination and the learning episode is concluded as success 
or failure according to which agent attains the threshold score 
first. Therefore, we have the following Learning Strategy.   

 
Strategy C: The learning process terminates when either 

agent, A1 or A2, first reach the threshold of either 
accumulating h labels of 1, or accumulating h labels of 0, 
which can then be concluded as a success or a failure 
according to which agent attains the threshold first. 

 
Here, without loss of generality, we shall let h = 2m+1 be 

odd, where m is an integer, and similar to Section II, we let p 
and q, with p + q = 1, signify the probabilities of receiving a 
positive labels, and negative labels, respectively for a 
particular classification. In other words, for a given 
classification, agent A1 wins with probability p, while agent A2 
wins with probability q. In order to attain h for either agent, 
the number of classifications Ω will fall within the range 

2𝑚 + 1 ≤  Ω ≤ 4𝑚 + 1 . 

If fk represents the probability that A1 wins at 
classifications number 4m+1−k, which occurs if and only if A1 
scored 2m successes in the first 4m−k observations, and 
subsequently score a final success, then fk is given by 

𝑓𝑘 = (
4𝑚 − 𝑘

2𝑚
) 𝑝2𝑚+1𝑞2𝑚−𝑘  . 

The probability that A1 reaches the threshold first, irrespective 
of the classification number, is therefore given by 

𝑃𝑚 =   ∑ 𝑓𝑘  = ∑ (
4𝑚 − 𝑘

2𝑚
) 𝑝2𝑚+1𝑞2𝑚−𝑘  .

2𝑚

𝑘=0

2𝑚

𝑘=0

 

That is, Pm gives the probability that the learning is successful 
(i.e., agent A1 wins) according to Learning Strategy C.  

     Table II computes Pm for different values of p, q, and m for 
this tournament scenario. We see that, as expected, when p = 
q = 1/2, Pm =1/2, since neither A1 nor A2 has any advantage 
over its opponent. As p increases, however, Pm will increase, 
reaching almost certainty as p increases beyond 0.8. If we 
regard p as a measure of A1’s winning ability per trial, then 
when p >> q, most trials will be scored by A1, so that winning 
the entire game (i.e., reaching h first) is almost a certainty, and 
this is especially so for higher values of h. It is interesting to 
see that when h or m is sufficiently high (e.g., m=10), a 
moderate advantage for A1 (e.g.,  p = 0.6) is enough to almost 
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guarantee success. On the other hand, 1−Pm gives the 
probability that agent A2 wins, where the measure of A2’s 
winning probability per trial is given by q. For instance, when 
q=0.4, then A2 stands a chance of around 27% of winning the 
game when m=2, and a chance of winning of around 10% 
when m=10. 

TABLE II.  PROBABILITIES OF LEARNING SUCCESS FOR THE 

TOURNAMENT SCENARIO 

m p q Pm m p q Pm 

1 

0.5 0.5 0.5000 

5 

0.5 0.5 0.5000 

0.6 0.4 0.6826 0.6 0.4 0.8256 

0.7 0.3 0.8369 0.7 0.3 0.9736 

0.8 0.2 0.9421 0.8 0.2 0.9990 

0.9 0.1 0.9914 0.9 0.1 1.0000 

2 

0.5 0.5 0.5000 

10 

0.5 0.5 0.5000 

0.6 0.4 0.7334 0.6 0.4 0.9035 

0.7 0.3 0.9012 0.7 0.3 0.9964 

0.8 0.2 0.9804 0.8 0.2 1.0000 

0.9 0.1 0.9991 0.9 0.1 1.0000 

 
Returning to the estimation problem, by observing Pm, i.e., 

by computing the observed proportion of time that agent A 
wins, it is possible to infer the underlying probability p. While 
unlike in Section II, where an explicit formula exists linking 
directly the observations to the estimate, such explicit 
relationship is not available here. Nevertheless, as can be 
observed from Table II, useful estimation bounds can be 
drawn to determine whether p > ½ or p < ½. We see that it is 
quite reasonable to estimate 𝑝̂ > ½ whenever Pm > ½, and for 
most practical purposes, this would seem to be adequate. 

In what follows, we shall apply the above analysis to 
network communications and the indexing of multimedia 
objects. While there are many situations that conform to the 
above framework such as those mentioned in the introduction, 
these particular applications are chosen partly because of their 
importance and partly because of their relevance to 
information processing in the present day big data era. 

 

V. APPLICATION TO PACKET SWITCHING 

 
In packet switching, suppose we wish to transmit a number 

of data packets over a noisy channel, where a successful error-
free transmission occurs with probability p, and an erroneous 
transmission occurs with probability q = 1 − p. An erroneous 
transmission may, for example, be detected from the error-
detection mechanisms when a packet is corrupted by random 
noise. Where the error-correction mechanism is able to correct 
the error despite the noise, the packet is regarded as a success, 
and this is incorporated into the probability p. For a message 
D consisting of r packets, we measure communications 
performance by examining the total number of transmissions 
required to achieve successful transmission of the entire 

message D. Let T1 be the time taken to successfully transmit 
a message consisting of r packets. An obvious analogy exists 
between the present situation and the multimedia information 
indexing situation above with respect to Learning Strategy A: 
we need a total of r classification of label 1 in order to achieve 
success. Consequently, we have the following results. Given 
a message consisting of r data packets, the total number of 
(error-free and erroneous) transmissions required in order to 
achieve a successful transmission of the entire message has 
mean and variance  

E[𝑻𝟏] =  
𝑟𝑞

𝑝
  ,                           (18) 

 

                                        Var[𝑻𝟏] =  
𝑟𝑞

𝑝2
  .                               (19) 

Moreover, the probabilities Pr[T1 = k] is given by, 

Pr[𝑻𝟏 = 𝑘] = (
−𝑟

𝑘
) 𝑝𝑟(−𝑞)𝑘,    𝑘 = 0, 1, 2, 3, …     (20) 

This may be determined approximately by the normal 
distribution [17] 

𝑻𝟏 ~𝑁 (
𝑟𝑞

𝑝
,
𝑟𝑞

𝑝2
 ) ,                                (21) 

and, 
 

Pr[𝑻𝟏  >  𝑡 ] = ∫
1

√2𝜋

∞

𝑡𝑝−𝑟𝑞

√𝑟𝑞

𝑒−
𝑡2

2
                           

= 1 − Φ (
𝑡𝑝 − 𝑟𝑞

√𝑟𝑞
).                             (22) 

Next, suppose we have a message D broken up into m 
packets, and perhaps due to the error detection/correction or 
other requirements, it needs m consecutive successful 
transmissions to complete the entire transmission. In this 
situation, we again measure performance by examining the 
total number of transmissions required to achieve successful 
transmission of the entire message D. Let T2 be the time taken 
to successfully transmit the entire message consisting of m 
packets. Again, an analogy exists between the present 
situation and the multimedia information indexing situation 
above with respect to Learning Strategy B. Consequently, we 
have the following results. 

      E[𝑻𝟐] =  
1 − 𝑝𝑚

𝑞𝑝𝑚
 ,                                          (23) 
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               Var[𝑻𝟐]  =  
1

𝑞2𝑝2𝑚
−

2𝑚 + 1

𝑞𝑝𝑚
−

𝑝

𝑞2
  .                 (24) 

 

VI. APPLICATION TO MULTIMEDIA SEARCH AND 

INDEXING 

 
Many large enterprises rely on multimedia document 

repositories for their effective operation. However, unlike 
text-oriented objects, the retrieval of multimedia objects is 
often limited in their search and discovery mechanisms, since 
they do not readily lend themselves to automatic processing 
or indexing. The basic framework of the adaptive search 
mechanism is to capture human judgment in the course of 
normal usage from user queries in order to develop semantic 
indexes which link search terms to media objects semantics. 
This approach is particularly effective for the retrieval of such 
multimedia objects as images, sounds, and videos, where a 
direct analysis of the object features does not allow them to be 
linked to search terms, such as non-textual/icon-based search, 
deep semantic search, or when search terms are unknown at 
the time the media repository is built. The above model is able 
to represent such an adaptive search mechanism by making 
use of naïve Bayes classification approach based on the three 
learning strategies indicated. This approach allows for the 
efficient creation and updating of media indexes, which is able 
to instill and propagate deep knowledge relating to the 
enterprise functions into the media management system 
concerning the advanced search and usage of multimedia 
resources.  

Thus, the above positive and negative classifications may 
be viewed as a learning sequence in multimedia indexing 
acquired from user interaction. Here, we are concerned with 
the status of the association of given search terms to particular 
multimedia objects.  Through the interaction with users, 
positive and negative labels are handed out probabilistically. 
In the case of search terms to multimedia objects association, 
learning success would mean that the association in question 
is sound and should be incorporated as proper index, while 
failure would mean that the search term-object association 
cannot be established.   

Similar to the previous application, the time to install an 
index term based on Strategy A would take a time of I1, with 
mean and variance given by 
 

E[𝑰𝟏] =  
𝑟𝑞

𝑝
  ,                           (25) 

 

                                        Var[𝑰𝟏] =  
𝑟𝑞

𝑝2
  .                               (26) 

In addition, we have, 

Pr[𝑰𝟏 = 𝑘] = (
−𝑟

𝑘
) 𝑝𝑟(−𝑞)𝑘,    𝑘 = 0, 1, 2, 3, …     (27) 

Similarly, the time I2 to install an index term based on 
Strategy B has mean and variance 

  

      E[𝑰𝟐] =  
1 − 𝑝𝑚

𝑞𝑝𝑚
 ,                                          (28) 

 

               Var[𝑰𝟐]  =  
1

𝑞2𝑝2𝑚
−

2𝑚 + 1

𝑞𝑝𝑚
−

𝑝

𝑞2
  .                  (29) 

 
Furthermore, from Section IV, under Learning Strategy C 
with threshold h, the probability of successful installation of 
an index term is given by  
 

∑ (
2ℎ − 𝑗 − 2

ℎ − 1
) 𝑝ℎ𝑞ℎ−𝑗−1 .

ℎ−1

𝑗=0

 

 

VII. CONCLUSION AND FUTURE EXTENSION 

 
We have presented a model of binary classification, 

operating in a stationary stochastic environment in the 
presence of noise. Stochastic methods are essential because 
various operating environments are often noisy and seldom 
static nor deterministic, and the use of probabilistic methods 
is therefore an unavoidable necessity. Indeed, if stochastic 
elements are absent, the same outcome will always occur, and 
repeated observations, and hence repeated reinforcements, are 
unnecessary. A unified probabilistic framework is developed 
for such a classification scenario. We first consider a situation 
where the cumulative number of classifications is pre-
specified and fixed, which constitute the criterion for 
terminating the learning process. Two variations of this 
process are considered, one requires non-consecutive 
reinforcements and the other requires consecutive 
reinforcements. By observing the random positive to negative 
labels ratio, a meaningful estimation of either learning success 
or failure may be arrived at. In most practical situations, the 
cost of securing a classification can be significant, and this has 
been incorporated into our model, and we have obtained the 
probabilities of exceeding the classifications cost bounds.  

A multi-agent framework where the handing out of 
positive and negative labels are viewed as being performed by 
agents have also been considered. Thus, the final learning 
outcome is determined by a kind of stochastic game with the 
agents competing against each other. The termination 
criterion here is determined by when and how the game is 
won. The respective probabilities of learning success and 
failure are also explicitly derived. Closed-form expressions of 
other relevant measures of interest are obtained. A procedure 
for estimating the underlying stochastic structure from the 
observed random agent winning frequencies is also 
developed. 
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The above results and algorithms have been applied to 
study the performance of human-assisted semi-automatic 
multimedia information indexing as well as to quantify 
communications network transmission performance operating 
in a noisy channel. 

In this paper, we have employed the naïve Bayes 
assumption and assumed that positive labels and negative 
labels occur statistically independently. In the future, it may 
be more general to relax this assumption and incorporate 
different forms of dependencies into the model, such as single-
step or multi-step Markov Chain conditional dependency.  
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