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Abstract—Cataclysmic damage to telecommunication infrastruc-
tures, from power grids to satellites, is a global concern. Nat-
ural disasters, such as hurricanes, tsunamis, floods, mud slides,
and tornadoes have impacted telecommunication services while
costing millions of dollars in damages and loss of business.
Geomagnetic storms, specifically coronal mass ejections, have the
same risk of imposing catastrophic devastation as other natural
disasters. With increases in data availability, accurate predictions
can be made using sophisticated ensemble modeling schemes. In
this work, one such scheme, referred to as stacked generalization,
is used to predict a geomagnetic storm index value associated
with 2,811 coronal mass ejection events that occurred between
1996 and 2014. To increase lead time, two rounds (stages) of
stacked generalization using data relevant to a coronal mass
ejection’s life span are executed. Results show that for this dataset,
stacked generalization performs significantly better than using
a single model in both stages for the most important error
metrics. In addition, overall variable importance scores for each
predictor variable can be calculated from this ensemble strategy.
Utilizing these importance scores can help aid telecommunication
researchers in studying the significant drivers of geomagnetic
storms while also maintaining predictive accuracy.

Keywords–ensemble modeling; space weather; quantile regres-
sion; stacked generalization; telecommunications.

I. INTRODUCTION

Predicting geomagnetic storms is an ever-present problem
in today’s society, given the increased emphasis on advanced
technologies [1]. These storms are fueled by coronal mass
ejections (CMEs), which are colossal bursts of magnetic field
and plasma from the Sun as displayed in Figure 1. Typically,
a CME travels at speeds between 400 and 1,000 kilometers
per second [2] resulting in an arrival time of approximately
one to four days [3]; however, they can move as slowly as
100 kilometers per second or as quickly as 3,000 kilometers
per second (or around 6.7 million miles per hour) [4]. These
phenomena can contain a mass of solar material exceeding
1013 kilograms (or approximately 22 trillion pounds) [5] and
can explode with the force of a billion hydrogen bombs [6].
Naturally, CME events are often associated with solar activity
such as sunspots [4]. During the solar minimum of the 11
year solar cycle (the period of time where the Sun has fewer
sunspots and, hence, weaker magnetic fields), CME events
occur about once a day. During a solar maximum, this daily
estimate increases to four or five. One plausible theory for
these incidents taking place involves the Sun needing to release
energy. As more sunspots develop, more coronal magnetic
field structures become entangled; therefore, more energy is

required to control the volatility and convolution. Once the
energy surpasses a certain level, it becomes beneficial for the
Sun to release these complex magnetic structures [2].

When this force approaches Earth, it collides with the
magnetosphere. The magnetosphere is the area encompassing
Earth’s magnetic field and serves as the line of defense against
solar winds. The National Oceanic and Atmospheric Admin-
istration (NOAA) describes this event as “the appearance of
water flowing around a rock in a stream” [7] as shown in
Figure 2.

Figure 1. LASCO coronagraph images [4], courtesy of the NASA/ESA
SOHO mission.

Figure 2. Rendering of Earth’s magnetosphere interacting with the solar
wind from the Sun [8], courtesy of the NASA.

After the solar winds compress Earth’s magnetic field on
the day side (the side facing the Sun), they travel along
the elongated magnetosphere into Earth’s dark side (the side
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opposite of the Sun). The electrons are accelerated and ener-
gized in the tails of the magnetosphere, filtering down to the
Polar Regions and clashing with atmospheric gases causing
geomagnetic storms. This energy transfer emits the brilliance
known as the Aurora Borealis, or Northern Lights, and the
Aurora Australis, or Southern Lights, which can be seen near
the respective poles.

While mainly responsible for the illustrious Northern
Lights, geomagnetic storms have the potential to cause cata-
clysmic damage to Earth. Normally, the magnetic field is able
to deflect most of the incoming plasma particles from the Sun.
However, when a CME contains a strong southward-directed
magnetic field component (Bz), energy is transferred from
the CME’s magnetic field to Earth’s through a process called
magnetic reconnection [9][10][11] (as cited in [12]). Magnetic
reconnection leads to an injection of plasma particles in Earth’s
geomagnetic field and a reduction of the magnetosphere to-
wards the equator [2]. Consequently, more energy is amassed
in the upper atmosphere, particularly at the poles. Moreover,
this energy is impressed upon power transformers causing
an acute over-saturation and inducing black-outs via geomag-
netically induced currents (GICs) [13]. Some other residuals
of this over-accumulation of energy include the corrosion of
pipelines, deteriorations of radio and GPS communications,
radiation hazards in higher latitudes, damages to spacecrafts,
and deficiencies in solar arrays [14]. These ramifications pose
a significant threat to global telecommunications and electri-
cal power infrastructures as CMEs continue to be launched
towards Earth [15] and remain the primary source of major
geomagnetic disturbances [16][17][18] (as cited in [19]). From
a business perspective, risk factor mitigation is an absolute
necessity within the global business environment [20]. This
can be accomplished using advanced analytical techniques on
data collected about these phenomena.

The subsequent sections of this work read as follows. Sec-
tion II introduces previous studies on predicting geomagnetic
storms. Section III provides detail about the basics of the
methodology used, the dataset studied, and the experimental
strategy. Section IV displays and discusses the results as well
as postulates areas for future work. Section V concludes with
a summary.

II. LITERATURE REVIEW

A. Predicting Dangerous CMEs
CMEs present an ever-increasing threat to Earth as society

becomes more dependent on technology, such as satellites and
telecommunication operations. Nevertheless, because of this
increase in technology, more data has been collected about
these acts and the solar wind condition in general. This, in turn,
has allowed for empirical models to be developed. Burton,
McPherron, and Russell [21] presented an algorithm to predict
the disturbance storm time index (DST) value [22] based on
solar wind and interplanetary magnetic field parameters. The
DST value is a popular metric to assess geomagnetic activity.
Expressed in nanoteslas (nT) and recorded every hour from
observatories around the world, it measures the depression of
the equatorial geomagnetic field, or horizontal component of
the magnetic field; thus, the smaller the value of the DST,
the more significant the disturbance of the magnetic field
[2]. Many researchers have used this information for building
forecasting models to predict geomagnetic storms [23][24].

However, many of these systems only use in-situ data, or
data that can only be measured close to Earth. To improve
prediction, studies have included data gathered at the onset
of a CME and the near-Earth interplanetary information (IPI)
regarding the solar wind condition as the CME approaches
Earth [25][26][27]. These have ranged from using logistic
regression [26] to neural networks [28] to make predictions
based on this combination of data. Further improvements have
been made by using multi-step frameworks. To narrow the
scope, this work will focus on reviewing two recent two-step
procedures that predict geomagnetic storms using both near-
Earth IPI and CME properties taken near the Sun.

Valach, Bochnı́ček, Hejda, and Revallo [29] reinforced one
of the primary issues facing geomagnetic storm prediction:
the inability to estimate the orientation of the interplanetary
magnetic field from an incoming CME more than a few
hours out. It is well-known that one of the largest predictor
variables is the magnitude of the aforementioned magnetic
field component Bz [21][26][2]; however, this is difficult
to predict prior to reaching the L1 Lagrangian point (the
position close to Earth where much of the IPI is collected)
due to complexities in a CME’s magnetic topology [30].
Hence, under the assumption that the direction of the magnetic
field component is unpredictable, the authors first study the
behavior of Bz for 2,882 days between 1997 to 2007 before
implementing any predictive construct. Based on their analysis,
they determined that for the majority of the days with a high-
level of geomagnetic activity, Bz was negative for at least
16 hours during the course of the day (behavior exhibited
by roughly 31% of the days studied). Then, after building a
neural network using these observations, they forecasted the
daily level of geomagnetic activity with initial CME and solar
X-ray information. The benefits to their approach are that the
predictions are timely (absence of IPI in the second step enable
forecasts at least a day out) and are well-suited for the strongest
of storms (since the training observations are composed of
days where Bz is negative for more than 16 hours). However,
as noted by the authors, it does not do as well differentiating
moderate and weak geomagnetic storms. In addition, the time
scale of the prediction is in days, which is not as granular as
hours.

Kim, Moon, Gopalswamy, Park, and Kim [27] argued that
only using information based on urgent warning IPI for pre-
diction does not provide a practical lead time for preparations
to be made on Earth, even though the forecasts are more
accurate. At the same time, strictly employing initial CME
data becomes frivolous as each CME experiences changes
in composition as they propagate through the interplanetary
medium, thereby, making prediction difficult. Therefore, the
authors constructed a two-step forecasting system using both
urgent warning IPI and initial CME data. At the first stage,
they applied multiple linear regression models to predict the
strength of geomagnetic activity for northward and southward
events at the onset of a CME using its location, speed, and
direction parameter (estimated from the magnetic orientation
angle of the related active region on the Sun). The estimation
of the direction (north or south) is based on the assumption that
these rarely deviate from that of the associated active region
[31]. Next, they administered a set of rules based on the IPI
to update the forecast and classify the impending CME as
causing a moderate or intense storm. This method contributes
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a medium-term to short-term forecast from the first observance
of a CME to its approach to Earth. While this method yields
accurate and interpretable results, only 55 CMEs from 1997-
2003 were studied. Moreover, the absence of using a validation
scheme when creating the rules can lead to over-fitting when
predicting on future data [32].

Interestingly enough, the former work assumes the direc-
tion of the magnetic field component in a CME is unpredictable
while the latter estimates this in their step one models. In
this work, the direction is not considered in any of the steps.
Instead, the dataset captures values of Bz prior to the climax
of a given geomagnetic storm [33]. Thus, if this value is high
in magnitude, then this reflects the southward behavior.

Aside from the work by Dryer et al. [25], which used
an ensemble of four physics-based models to predict shock
arrival times, the idea of using ensembles of models has not
been very prevalent in the literature. Stacked generalization
[34] is a type of ensemble that uses the individual predictions
from a set of base models as inputs for another model to
make a final prediction. This strategy has been the backbone
of successful schemes in areas such as predicting financial
fraud [35], bankruptcy [36], and user ratings in the famous
Netflix Prize competition [37]. Therefore, leveraging more
advanced ensemble frameworks for predictive modeling has
the opportunity to increase accuracy in this field.

B. Stacked Generalization
The idea of stacked generalization can be simplified in the

following way:

• Construct a dataset consisting of predictions from a
set of level 0 (or base) learners using a training and a
test set. Refer to this as the metadata.

• Generate a level 1 (or meta) learner that utilizes the
predictions made at the previous level as inputs. That
is, train the meta-learner on the metadata as opposed
to the original training data.

Often times, the predictions from the base-learners are de-
termined via k-fold cross-validation [38]. Define the dataset
S = {(yi,xi), i = 1, ..., n} where xi is a vector of predictor
variables and yi is the corresponding response value for the ith
observation. Specifically, split the dataset S into k near equal
and disjoint sets such that S1, S2, ..., Sk. Let S−k = S−Sk and
Sk be the training and test sets, respectively. Execute the base-
learner on the first S−k parts and produce a prediction for the
held-out part Sk. Repeat this procedure until each subset of S
has been used as a test set exactly once. Extract all the hold-
out predictions to create the metadata. Because generating the
metadata is an independent process across each base-learner, it
can be parallelized for faster computation. That is, each base-
learner can be trained at the same time. This is key as time
plays a pivotal role in geomagnetic storm prediction [27].

The meta-learner’s purpose is to gain information about
the generalization behavior of each learner trained at the base-
level. Popular choices for meta-learners have been linear mod-
els [39]. While this ensemble strategy leverages the strengths
and weaknesses of the base-learners, it can be prone to over-
fitting [40]. Therefore, in order to combat this issue, employing
regularized linear methods can perform better than their non-
regularized counterparts [41][38][42]. Reid and Grudic [42]
experimented with three regularization penalties: ridge [43],

lasso [44], and the elastic net [45]. The authors showed that
imposing these penalties perform well on multi-class datasets.
They commented that using the lasso and elastic net penalties
can promote sparse solutions that can reduce the size of the
ensemble at the meta-level. Pruning the size of an ensemble
model has been explored in other works [46][47][48]. It
can lead to better generalization and promote the necessary
diversity in the base-learner predictions [34].

Based upon the results in previous studies, it seems ad-
vantageous to implement a regularized meta-learner to have
the best potential for success in stacked generalization. By
using various types of penalty functions, a learning system can
effectively make predictions and provide sparse solutions, even
in situations with severe multicollinearity since all of the base-
learners are trying to predict the same outcome [38]. However,
none of the studies mentioned above discuss how to choose
a meta-learner when the outlier values are important for re-
gression tasks. Specifically for predicting geomagnetic storms,
outliers are important because strong CMEs do not occur often;
hence, a meta-learner cannot downplay the effect of these
for prediction. If anything, the meta-learner should treat these
values with more emphasis. In addition, subsetting the data
to only include these outliers for model construction inhibits
meta-knowledge to be gained for all CME events. Therefore,
for this study, a regularized quantile regression model is chosen
for the meta-learner in order to more adequately deal with
outliers, improve accuracy, and promote sparse solutions.

C. Regularized Quantile Regression
Recall the ordinary least squares (OLS) solution for the

coefficients in linear regression:

β̂ols = (X ′X)−1X ′Y (1)

where X is the predictor matrix of dimension n × (p + 1)
and Y is the vector of outcomes of dimension n × 1 for n
observations and p predictor variables. Specifically,

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p

1
...

...
. . .

...
1 xn1 xn2 . . . xnp

 Y =


y1
y2
...
yn


Alternatively, Eq. (1) can be written as the following optimiza-
tion problem:

argmin
β

1

n

n∑
i=1

(yi − x′iβ)2 (2)

To apply regularization to the estimated coefficients, a penalty
term can be added such that [49]

argmin
β

1

n

n∑
i=1

(yi − x′iβ)2 +
p∑
j=1

pλ(|βj |) (3)

where pλ(·) dictates the type of penalty function with a non-
negative constant λ to determine the amount of regulariza-
tion. Utilizing constrained regression approaches enables the
ability to perform variable selection or improve prediction
in particular environments. However, the main goal in these
methods is to estimate the conditional mean of some response
given a set of predictor variables. Situations may arise where
it is more advantageous to investigate a certain part of the
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conditional distribution [50][51]; hence, quantile regression
was developed [52]. The goal of quantile regression is to
offer “a comprehensive strategy for completing the regression
picture” (pg. 20) [53]. In general, this involves minimizing the
sum of asymmetrically weighted absolute residuals [52]

argmin
β

1

n

[ ∑
i∈{i:yi≥x′iβ}

τ |yi − x′iβ|

+
∑

i∈{i:yi<x′iβ}

(1− τ)|yi − x′iβ|
] (4)

for some given quantile level τ . In this way, different weights
are placed on positive (under-prediction) and negative (over-
prediction) errors corresponding to the desired quantile. Note
that when τ = 0.5, this simply reduces to median regression.
As with the linear case, the coefficients in quantile regression
can be penalized the same way. Using lasso has been a
popular choice due to its sparse nature [54][55]. However,
it has been shown that lasso has some limitations in high-
dimensional situations or ones with severe multicollinearity
[45]. In addition, it lacks oracle properties [56][57]. That is,
lasso does not select the correct subset of predictor variables
while also efficiently estimating the non-zero coefficients as if
only the truly influential predictor variables are included in the
model, asymptotically [58]. Thus other penalties, such as the
smoothly clipped absolute deviation (SCAD) [56], have been
developed. This has been shown to retain oracle properties for
penalized quantile regression models [59]. It can be defined
as a quadratic spline function with knots at λ and aλ to make
the following objective function:

argmin
β

1

n

[ ∑
i∈{i:yi≥x′iβ}

τ |yi − x′iβ|

+
∑

i∈{i:yi<x′iβ}

(1− τ)|yi − x′iβ|
]

+

p∑
j=1

pλ(|βj |)

(5)

where

pλ(|β|) =



λ|β| 0 ≤ |β| < λ

aλ|β| − (β2 + λ2)/2

a− 1
λ ≤ |β| ≤ aλ

(a+ 1)λ2

2
|β| > aλ

for some a > 2 and λ > 0. By assigning different weights
depending on |β|, SCAD avoids over-penalizing large co-
efficients, as is a common problem in lasso [56][59][49].
Traditionally, solving Eq. (5) is difficult due to its non-convex
nature. Fortunately, efficient algorithms have been developed
to increase the computational speed for solving these non-
differentiable and non-convex optimization problems [49]. Be-
cause of the advantages of using the SCAD penalty, this work
employs this type of regularization on a quantile regression
model at the meta-level. Note that subsequent uses of SCAD
refer to the quantile regression model in Eq. (5).

D. A Two-stage Approach
Given the success of multi-step approaches, this work

executes two rounds of stacked generalization using two data
sources:

1) Initial CME properties taken at the time of ejection
2) Initial CME properties taken at the time of ejection

plus the IPI

The execution of stacked generalization on the first data source,
noted as stage one, can provide a preliminary estimate as to
how strong a CME will be. Then, after adding the important IPI
in stage two, the forecast can be updated to more accurately
reflect the potential danger from the respective CME. This
two-stage meta-learning approach seeks to emulate Kim et
al.’s [27] medium-term to short-term forecast for predicting
geomagnetic storms. To increase in the interpretation of the
framework, the variable importance strategy for stacked gen-
eralization described by Larkin [33] is instituted. This involves
calculating model-specific variable importance scores for each
base-learner and then weighting these scores based on the
coefficients from SCAD to produce a final aggregated variable
importance score for each predictor variable.

III. METHODOLOGY

A. Data
Four sources are considered to construct the experimental

dataset: near-Earth CME information provided by Richardson
and Cane [60][61], OMNI hourly averaged solar wind data
at one AU (astronomical unit) from the Coordinated Data
Analysis (Workshop) Web [62], CME measurements given by
the Large Angle and Spectrometric Coronagraph (LASCO)
located on the Solar and Heliospheric Observatory (SOHO)
satellite [63], and some Sun characteristics recorded by NOAA
[64]. These data are combined so that each CME has been
assigned IPI values (such as Bz) prior to the DST minimum
during a predicted area of effect on Earth. Establishing these
values before the DST minimum gives a lead time prior
to the climax of the geomagnetic storms and allows for a
more realistic prediction scenario, especially since Bz typically
minimizes prior to the minimization of the DST value [65].
Also included are the initial measurements about the speed
and angle of a CME at the time of ejection from the Sun
and daily Sun characteristics on the day of ejection. After
filtering out missing values and some unnecessary rows, a
dataset composed of 2,811 CME events from 1996 to 2014
with 28 predictor variables is ready for analysis [33]. Note
only 16 of the 28 predictor variables will be be used in the first
stage. Approximately 5% of the observations in the dataset are
deemed as strongly geoeffective (i.e. produce a geomagnetic
storm with a DST ≤ −100nT). The list of predictor variables
is divided into initial CME and solar characteristics in Table
I and the subsequent IPI in Table II. Predictor variables types
are denoted as continuous (C), discrete (D), or binary (B).

B. Experimental Set-up
The analysis is performed in the R environment version

3.3.2 [66] using the caret (Classification And REgression
Training) package [67]. This package allows for a streamlined
user interface for applying a diverse set of predictive mod-
els from different packages with options to perform various
pre-processing, post-processing, resampling, and visualization
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TABLE I. LIST OF INITIAL CME PROPERTIES AND SUN CHARACTERISTICS

Variable Type Description

MPA C Measurement position angle of CME at the height-time measurements (degrees)
AW C Sky-plane width of CME (degrees)
LS C Linear speed of CME (km/s)
SOI C Quadratic speed of CME at initial height measurement (km/s)
SOF C Quadratic speed of CME at final height measurement (km/s)
SOR C Quadratic speed of CME at height of 20 solar radii (km/s)
Acc C Acceleration of CME in (m/s2)
Poor B Noted as a poor event in the comments
Very Poor B Noted as a very poor event in the comments
RFlux C Daily average 10.7cm flux values of solar radio emissions on CME ejection day in 10−22J/s/m2/Hz
SSN D Number of sunspots recorded on CME ejection day
SSA C Sum of the corrected area of all observed sunspots on CME ejection day in millionths of the solar hemisphere
NR D Number of new sunspot regions on CME ejection day
XrayC D Number of C-class solar flares on CME ejection day
XrayM D Number of M-class solar flares on CME ejection day
XrayX D Number of X-class solar flares on CME ejection day

TABLE II. LIST OF IPI

Variable Type Description

Ey C Interplanetary electric field in millivolts per meter (mV/m)
Bx C X-component magnetic field component (nT)
By C Y-component magnetic field component (nT)
Bz C Southward magnetic field component (nT)
Vsw C Plasma flow speed (km/s)
Phi C Plasma flow direction longitude (degrees)
Theta C Plasma flow direction latitude (degrees)
Dp C Proton density in Newtons per cubic centimeter (N/cm3)
Na Np C Alpha to proton ratio
Tp C Proton temperature in degrees Kelvin (K)
P C Flow pressure in nanopascals (nPa)
Beta C Plasma beta

techniques. In addition, for those models that can perform
variable importance estimation, the caret package can auto-
matically extract these measures for a practitioner’s use. Due to
the large number of models available, a rich series of machine
learning algorithms and statistical models may be realized to
construct the foundation of base-learners. Care is taken to
ensure a diverse collection of 50 models and algorithms is used
[46]. Unfortunately, in an effort to include a larger number
of base-learners, not every model is able to provide model-
specific variable importance scores. That is, they either do not
have a way to calculate variable importance or caret does not
implement one. For this study, less than half (42%) of base-
learners have model-specific importance scores. For those that
do not, the R2 statistic is calculated using a loess smoother
which is fit between the outcome and each predictor variable,
as done by default within the package [68]. A summary of
the 50 chosen base-learners is listed in Table III. Asterisks
“*” indicate those methods that can provide model-specific
variable importance scores.

Another advantage to using caret is the option to easily
tune the parameters for a given learner by simply specifying a
number for tuneLength in the train function. Each model has
a predefined range of tuning values to search over proportional
the tuneLength. The higher the tuneLength, the more tuning
executed. The number of tuning parameters range for each
model. In this experimental set-up, tuneLength is left at the
default value of three.

For the SCAD implementation, the rqPen R package is
chosen [69]. This package offers estimation for SCAD as well
as other penalized quantile regression models including lasso.
In addition, it can utilize the recently proposed and efficient
iterative coordinate descent algorithm [49] to compute SCAD

solutions using the QICD function. Because this function is not
offered in caret, it is incorporated within the caret framework
by creating a custom model. It is important to implement this
within caret to be sure SCAD is trained across the same folds
as the base-learners for a fair comparison. To tune SCAD,
only two parameters are adjusted: the regularization value λ
and the quantile level τ . The parameter a in Eq. (5) is left at
the suggested default value of 3.7. The value of λ controls
how much to penalize the coefficients and works similarly
as λ in the popular glmnet package [70]. A diverse range
of values are investigated: λ = {1000, 1, 0.001}. For many
applications of quantile regression, the selection of the quantile
level τ is determined by the user to best suit the research
goal. In this work, τ is treated as a tuning parameter to best
find a balanced between accurately predicting the much rarer
dangerous geomagnetic storms and the more common weaker
counterpart. Quantile levels τ = {0.1, 0.2, 0.3} are selected
since the 20th percentile of the DST value in this dataset is
-49nT, which is approximately the threshold (-50nT) between
weak and moderate storms for other works (e.g., [71]). For
comparison, τ in the rqlasso and rqnc methods is set to 0.2.
Since the default amount of tuning is instituted, nine different
parameter combinations for SCAD are tested. To benchmark
the performance of using SCAD as the meta-learner, linear
regression is also execute by calling the caret method lm at
the meta-level.

C. Estimating Predictive Performance

For many of the previous studies in predicting geomagnetic
storms, the main performance metric utilized has been un-
weighted error criterion (e.g. root mean square error (RMSE)
[23]). While RMSE does penalize larger errors more via the
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TABLE III. LIST OF BASE-LEARNERS

Model/Algorithm/Learner caret Method Model/Algorithm/Learner caret Method

Bagged Regression Trees* treebag Neural Network* nnet
Bayesian Lasso blasso Neural Network with Feature Extraction pcaNNet
Bayesian Lasso (Model Averaged) blassoAveraged Non-convex Penalized Quantile Regression rqnc
Bayesian Regularized Neural Network brnn Non-negative Least Squares* nnls
Bayesian Ridge Regression bridge Partial Least Squares* pls

Boosted Linear Model* glmboost Partitioning Using Deletion,
Substitution, and Addition Moves* partDSA

Boosted Tree bstTree Principal Component Regression pcr
Conditional Inference Random Forest* cforest Projection Pursuit Regression ppr
Conditional Inference Tree ctree Quantile Random Forest qrf
Cubist* cubist Quantile Regression with Lasso Penalty rqlasso
Extreme Gradient Boosting with Linear Booster* xgbLinear Random Forest* ranger
Extreme Gradient Boosting with Tree Booster* xgbTree Regression Tree with One Standard Error Rule* rpart1SE
Extreme Learning Machine elm Regularized Random Forest* RRFglobal
Generalized Additive Model using Loess* gamLoess Relaxed Lasso relaxo
Generalized Additive Model using Splines* gamSpline Ridge Regression with Variable Selection foba
Independent Component Regression icr Robust Linear Model rlm
k-Nearest Neighbors Regression kknn Self-organizing Map bdk
Lasso and Elastic Net Regression* glmnet Spike and Slab Regression spikeslab
Least Angle Regression lars2 Stacked AutoEncoder Deep Neural Network dnn
Linear Regression* lm Stochastic Gradient Boosting* gbm
Linear Regression with Stepwise Selection leapSeq Supervised Principal Component Analysis superpc

Multi-layer Perceptron mlp Support Vector Machine with
Linear Kernel svmLinear

Multi-layer Perceptron Network by
Stochastic Gradient Descent* mlpSGD Support Vector Machine with

Polynomial Kernel svmPoly

Multivariate Adaptive Regression Splines* earth Support Vector Machine with
Radial Basis Function Kernel svmRadialSigma

Multivariate Adaptive Regression Splines
(Bagged with Generalized Cross-validation Pruning)* bagEarthGCV Weighted k-Nearest Neighbors knn

squaring operator, it treats each observation the same. In the
context of predicting geomagnetic storms, it is more important
for a model to accurately forecast the DST value associated
for the strongest of storms. At the same time, focusing strictly
on these observations can severely bias a model. Hence, the
central metric used in this work for comparison as well
as optimizing each learner’s parameters is weighted mean
absolute error (WMAE), which can be defined as

WMAE =
1∑
wi

n∑
i=1

wi|yi − ŷi| (6)

such that ŷi is the predicted response value and wi is the weight
associated with the ith observation. This is implemented
within caret by creating a custom metric. Adopting WMAE
allows for the opportunity to penalize models for inaccuracies
when forecasting the more important observations. Given the
potential impact that dangerous storms can have, strong CMEs
are weighted as 10 times more important than the others (DST
> −100nT). Using this 10:1 ratio seems to be a conservative
balance since strong geomangetic storms can result in eco-
nomic losses in trillions of U.S. dollars [72]. In addition to
WMAE, the overall RMSE and RMSE for the strong CME
events will also be reported.

Each of these error metrics are calculated from an average
of ten repeats of 10-fold (10 × 10) nested cross-validation to
ensure a good estimation of error in the presence of parameter
tuning [73]. Furthermore, significance tests between the SCAD
meta-learner and each individual learner are conducted on the

population of error metrics (100 estimates for each from the
10 × 10 nested cross-validation) using the corrected repeated
k-fold cross-validation test [74]. It is important to test for
significant differences to investigate if the extra computation of
stacked generalization is worth the effort compared to simply
using the best performing model [75]. All base-learners and
meta-learners are trained over the same folds with the only
difference being that the meta-learners use the metadata as its
inputs instead of the CME predictor variables. The metadata is
generated using 10-fold nested cross-validation. Note that this
cross-validation is separate from the nested cross-validation
used to estimate the error. Finally, after all of the error testing
is complete, each learner is trained on all of the data with the
parameters optimized via 10-fold cross-validation. The purpose
of this is to enable the variable importance scores extracted
from SCAD and the base-learners to be based on all of the
data.

IV. RESULTS AND DISCUSSION

Table IV reflects the results of the performance in both
stages. The first column lists both meta-learners and the ten
most accurate base-learners ranked in ascending order by
the average WMAE from the second stage. The subsequent
columns represent the averaged error metrics for all CME
events (WMAE and RMSE) and only those which triggered
a strong geomagnetic disturbance (RMSE). Bold and italics
indicate the best performing method. The dagger symbol
“†” denotes instances where a significant difference between
SCAD and the other learners is not found at the conventional
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0.05 significance level.
Not surprisingly, accuracy greatly increases in the second

stage, a direct consequence of including the IPI. In addition,
the majority of the best performing base-learners are all
bagging or boosting ensemble models. It is natural for these
types of techniques to achieve good predictions. Regardless,
SCAD yields the lowest WMAE and RMSE on strong CMEs
compared to these in either stage. In addition, SCAD performs
statistically better than the most accurate base-learners by
themselves for these two metrics in stage two and better than
the majority in stage one. This provides evidence that the
implementation of stacked generalization here has more pre-
dictive power than using just one model. Ting and Witten [39]
indicated in their analysis that stacked generalization delivers
substantial improvements in accuracy for larger datasets. This
is likely due to a more accurate estimation from the cross-
validation process when generating the metadata. Hence, it
is probable that with more data, stacked generalization can
continue to enhance geomagnetic storm prediction over using
only one technique.

Notably, the dominance of SCAD falters when evaluating
RMSE for all events. This is expected since the majority
of the other methods are estimating the conditional mean,
rather than a particular part of the DST value’s distribution.
It is important to reinforce that analyzing the overall RMSE
alone can be misleading in this context. For instance, the best
performing base-learner in stage one, the regularized random
forest, achieves a statistically lower error (RMSE = 27.96)
compared to SCAD (RMSE = 34.90). However, looking at
the strong CME RMSE reveals a much higher value (87.19
compared to 67.61). This occurs for the linear regression meta-
learner as well. Hence, if a practitioner only considered this
metric, a degradation in accuracy for the strong events will
be realized. Therefore, for practical purposes in predicting
geomagnetic storms, it is more appropriate to analyze error
metrics such as the WMAE or subsets of RMSE, given the
most costly and dangerous storms do not occur very often.

In addition to the arguments above against only considering
RMSE on all CME events, additional benefits of using SCAD
over linear regression at the meta-level exist, namely the
sparsity property. Because linear regression does not perform
variable selection, each base-learner prediction is given some
weight to make a final estimate. However, with SCAD, certain
subsets can be selected, depending on the tuning parameters.
This, thereby, reduces the complexity of the problem. During
these experiments, SCAD selects 48.31 and 18.71 base-learner
predictions on average in stages one and two, respectively.
Moreover, any attempt at making any inference at the meta-
level using linear regression is frivolous due to the high amount
of correlation, which will cause the coefficient estimates to
become erratic [76]. Hence, SCAD should be preferred over
linear regression for this dataset since it can produce sparser
and more interpretable solutions with statistically better er-
ror in the important metrics. The quality of being able to
dynamically select which base-learners are most useful for
prediction at the meta-level may help improve on the fixed
form bias issues of stacked generalization mentioned by Vilalta
and Drissi [77].

The variable importance scores from stacked generalization
can be found in Figure 3 for both stages. Note that these are
min-max normalized to represent a score out of 100 where 100

signifies the most useful predictor variable. Note further that
since stage one does not use all the predictor variables, not all
are listed. The most significant predictor variable in stage one
for predicting DST is the sunspot area (SSA). Its high ranking
makes sense since sunspot activity can be closely tied with
CME occurrences [2]. In stage two, the two most dominating
are Ey (which is an interaction between Bz and Vsw) and Bz .
Given the strong relationship between these predictor variables
and the DST value throughout the literature, their contributions
towards prediction makes sense. More importantly, the higher
values placed on Ey and Bz and lower values on those such
as Dp and Tp in determining geomagnetic storm intensity is
consistent with other literature (see [26][78][79][80][27] and
references therein). Note that when the IPI is introduced, the
influence of the stage one predictor variables decreases. This
is to be expected given the advantages of using IPI.

Though the study of stacked generalization is not a new
concept, this idea has not been explored in the realm of
forecasting geomagnetic storm strength from CMEs much
if not at all. Given the importance of making forecasts, it
becomes all the more important to leverage the best analytical
tools for space weather prediction. As shown in other studies, it
is necessary to incorporate IPI since these are the most useful
for determining the DST value. However, as emphasized by
Kim et al. [27], this leaves little time to prepare on Earth
once the information is collected at the L1 Lagrangian point.
Research in attaining IPI sooner is currently being done. Savani
et al. [81] are working towards resolving this type of issue by
predicting the magnetic structure of impending CMEs. More
accurate forecasts of the IPI will lead to better predictions with
more lead time. In addition, since time is such a factor, compu-
tationally efficient approaches must be used. Luckily, although
stacked generalization requires extra computation, especially
for large datasets, it can be easily parallelized across many
clusters since creating the metadata is an independent process.
This allows for scalability as new models and algorithms are
constantly being developed. Incorporating a larger number of
faster and smarter base-learners provides the opportunity to
increase predictive power.

This study brings several future work opportunities. Firstly,
as more data is collected on CMEs in more advanced ways,
implementation on larger datasets is possible for both clas-
sification and regression tasks. With more data, stacked gen-
eralization is more probable to find predictive improvements
[39]. Secondly, this work only includes 50 base-learners.
Increasing this number by incorporating different models and
algorithms could yield even better results. With regards to
the respective variable importances, exploring ways to extract
model-specific measures can be investigated, despite whether
a model or algorithm inherently implements them or not.
Additionally, analyzing the variable importance scores at dif-
ferent quantiles may reveal some new behaviors regarding the
predictor variables, much like in quantile process regression
[82]. Furthermore, introducing some type of cost matrix, as
done for MetaFraud [35], or re-weighting WMAE can better
optimize parameters at both the base and meta-levels.

V. CONCLUSION

In this work, a meta-learning framework is suggested to
predict geomagnetic storms. This approach consists of two
stages:
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Figure 3. Variable importance scores from stacked generalization in both stages.
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TABLE IV. PREDICTIVE PERFORMANCE

Stage 1 Stage 2

Learner All CMEs Strong CMEs All CMEs Strong CMEs

(Meta) WMAE RMSE RMSE WMAE RMSE RMSE

SCAD 33.59 34.90 67.61 18.44 18.76 39.17
Linear Regression 35.96 28.86 91.63 19.41† 17.85 46.09

(Base) WMAE RMSE RMSE WMAE RMSE RMSE

Cubist 38.35 30.98 96.44 20.04 18.20† 47.04
Extreme Gradient Boosting with Linear
Booster 35.11† 29.41 85.28 20.41 19.32† 51.06

Extreme Gradient Boosting with Tree
Booster 35.56† 28.80 85.84 20.68 19.25† 49.40

Random Forest 35.70† 28.21 87.98 20.74 18.32† 50.27
Regularized Random Forest 35.48† 27.96 87.19 20.88 18.39† 50.95
Boosted Tree 37.59 29.08 92.71 21.27 19.09† 51.86
Multivariate Adaptive Regression Splines
(Bagged with Generalized Cross-Validation Pruning) 39.57 29.89 99.45 21.84 19.17† 51.70

Stochastic Gradient Boosting 38.48 29.78 95.03 21.95 19.44† 52.30
Conditional Inference Random Forest 39.70 29.92 101.74 22.07 19.00† 53.87

1) Execute stacked generalization with a SCAD pe-
nalized quantile meta-learner to make a preliminary
estimate of DST based on initial CME and Sun data.

2) Update the prediction with another round of stacked
generalization after collecting the vital IPI.

The general outline is similar to the process by Kim et al. [27].
However, instead of focusing on estimating the conditional
mean for DST, quantile regression is implemented to find
a better balance between predicting dangerous geomagnetic
storms effectively without rendering estimation for the weaker
ones useless. Using a regularized quantile regression model at
the meta-level provides more adaptability since it can specify
specific parts of the conditional distribution and choose the best
number of base-learners for that particular region. The posited
method is evaluated on an inclusive dataset consisting of
various characteristics about the solar wind condition, CMEs,
and the Sun. In addition, careful experimental methodology is
utilized to estimate generalization error and statistical signifi-
cance. Results show that this framework performs significantly
better on the most informative error metrics than the best tuned
model or algorithm at the base-level. Moreover, this approach
provides an opportunity to study the critical space weather
indicators at the beginning of a CME’s life and right before
its impact on Earth via the variable importance scores from
stacked generalization.

Given our dependence on telecommunications and com-
mercial satellites, any disruption in these services could cost
millions of dollars for corporations and government agencies
world-wide. At the same time, logistically, these entities cannot
simply shut down power or telecommunication operations
every time a CME approaches Earth. Therefore, it is imperative
to make accurate classifications and forecasts as to which of
these CMEs that approach Earth can have the potential to trig-
ger devastating geomagnetic storms. Putting into action more
sophisticated modeling techniques like stacked generalization
have the opportunity to improve predictions. Instituting these
in multi-step approaches can greatly benefit in preparation
time for geomagnetic storms. Utilizing more complex systems
enables the ability to make more accurate predictions, thereby,
saving money and reducing the probability for severe geomag-
netic storm events wreaking havoc on modern society.
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