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Abstract—Collective communication routines pose a significant
bottleneck of highly parallel programs. Research on different
algorithms for disseminating information among all participat-
ing processes in a collective communication has brought forth
many different algorithms, some of which have a butterfly-
like communication scheme. While these algorithms have been
abandoned from usage in collective communication routines
with larger messages, due to the congestion that arises from
their use, these algorithms have ideal properties for split-phase
allreduce routines: all processes are involved in the computation
of the result in each communication round and they have few
communication rounds. This article will present several different
algorithms with a butterfly-like communication scheme and
examine their usability for a GASPI allreduce library routine.
The library routines will be compared to state-of-the-art MPI
implementations and also to a tree-based allreduce algorithm.
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I. INTRODUCTION

In high performance computing (HPC), one of the main
bottlenecks is always communication. As we are looking
into the exascale age, this bottleneck becomes even more
important than before: with more processes participating in
the computation of a problem, also more communication
between these processes is necessary. But already in the past,
this bottleneck has been observed - especially when using
collective communication routines, e.g., barrier or allreduce
routines, where all processes (of a given group) are active in
the communication. Therefore, many different algorithms have
been developed in the course of time to reduce the runtime
of collective routines and thus, the overall communication
overhead. Key to this reduction of runtime is the underlying
communication algorithm.

In this paper, we extend our work from [1], where we
have introduced an adaption of the n-way dissemination al-
gorithm, such that it is usable for split-phase allreduce oper-
ations, as they are defined in, e.g., the Global Address Space
Programming Interface (GASPI) specification [2]. GASPI is
based on one-sided communication semantics, distinguishing it
from message-passing paradigms, libraries and application pro-
gramming interfaces (API) like the Message-Passing Interface

(MPI) standard [3]. In the spirit of hybrid programming (e.g.,
combined MPI and OpenMP communication) for improved
performance, GASPI’s communication routines are designed
for inter-node communication and leaves it to the programmer
to include another communication interface for intra-node, i.e.,
shared-memory communication. Thus, one GASPI process is
started per node or cache coherent non-uniform memory access
(ccNUMA) socket.

To enable the programmer to design a fault-tolerant appli-
cation and to achieve perfect overlap of communication and
computation, GASPI’s non-local operations are equipped with
a timeout mechanism. By either using one of the predefined
constants GASPI_BLOCK or GASPI_TEST or by giving a
user-defined timeout value, non-local routines can either be
called in a blocking or a non-blocking manner. In the same
way, GASPI also defines split-phase collective communication
routines, namely gaspi_barrier, gaspi_allreduce
and gaspi_allreduce_user, for which the user can
define a personal reduce routine. The goal of our research
is to find a fast algorithm for the allreduce operation, which
has a small number of communication rounds and, whenever
possible, uses all available resources for the computation of
the partial results computed in each communication round.

Collective communication is an important issue in high per-
formance computing and thus, research on algorithms for the
different collective communication routines has been pursued
in the last decades. In the area of the allreduce operation,
influences from all other communication algorithms can be
used, e.g., tree algorithms like the binomial spanning tree
(BST) [4] or the tree algorithm of Mellor-Crummey and Scott
[5]. These are then used to first reduce and then broadcast the
data. Also, more barrier related algorithms like the butterfly
barrier of Brooks [6] or the tournament algorithm described by
Debra Hensgen et al. in the same paper as the dissemination
algorithm [7] influence allreduce algorithms.

Yet, none of these algorithms seems fit for the challenges
of split-phase remote direct memory access (RDMA) allre-
duce, with potentially computation-intense user-defined reduce
operations over an InfiniBand network. The tree algorithms
have a tree depth of dlog2(P )e and have to be run through
twice, leading to a total of 2dlog2(P )e communication rounds.
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In each of these rounds, a large part of the participating
ranks remain idling, while the n-way dissemination algorithm
and Bruck’s algorithm only need dlogn+1(P )e communication
rounds and involve all ranks in every round. Also, the butterfly
barrier has k = dlog2(P )e communication rounds to traverse,
but it is also only fit for 2k participants.

There are two key features which make (n-way) dissemina-
tion based allreduce operations very interesting for both split-
phase implementations as well as user-defined reductions, like
they are both defined in the GASPI specification [2].

1) Split-phase collectives either require an external ac-
tive progress component or, alternatively, progress
has to be achieved through suitable calls from the
calling processes. Since the underlying algorithm for
the split-phase collectives is unknown to the enduser,
all participating processes have to repeatedly call the
collective several times. Algorithms for split-phase
collectives hence ideally both involve all processes
in every communication step and moreover ideally
require a minimum number of steps (and thus a
minimum number of calls). The n-way dissemination
algorithm exactly matches these requirements. It re-
quires a very small number of communication rounds
of order dlogn+1(P )e and additionally involves every
process in all communication rounds.

2) User-defined collectives share some of the above
requirements in the sense that CPU-expensive local
reductions ideally should leverage every calling CPU
in each round and ideally would require a minimum
number of communication rounds (and hence a min-
imum number of expensive local reductions).

In the following section, we will describe related work. In
Section III, we will shortly introduce the algorithms chosen
for the experiments, elaborating on the adaption of the n-
way dissemination algorithm. In addition to the adapted n-
way dissemination algorithm, this paper will also present
Bruck’s algorithm [8] and the butterfly algorithm [6] with two
adaptions for P 6= 2k in more detail. While we have only
shown experimental results of the allreduce function with the
sum operation in the former paper, we will now also show
results using the minimum and the maximum operation in
allreduce. The experimental setup and experimental results are
presented in Section IV, where we also evaluate the results of
the experiments. Section V will then give a conclusion of the
work and an outlook on future work.

II. RELATED WORK

Some related work, especially in terms of developed al-
gorithms, has already been presented in the introduction. Still
to mention is the group around Jehoshua Bruck, which has
done much research on multi-port algorithms, hereby devel-
oping a k-port algorithm with a very similar communication
scheme as that of the n-way dissemination algorithm [8], [9].
These works were found relatively late in the implementation
phase of the adapted n-way dissemination algorithm, why an
extensive comparison of the two has been postponed to this
paper.

In the past years, more and more emphasis has been put on
RDMA techniques and algorithms [10][11] due to hardware
development, e.g., InfiniBandTM[12] or RDMA over Con-
verged Ethernet (RoCE) [13]. While Panda et al. [10] exploit
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Figure 1. Comparison of the Butterfly Algorithm for P = 5 with virtual
processes (left) to the Pairwise Exchange Algorithm for the same number of

processes (right).

the multicast feature of InfiniBandTM, this is not an option for
us because the multicast is a so called unreliable operation and
in addition an optional feature of the InfiniBandTMarchitecture
[12]. Congestion in fat tree configured networks is still a
topic in research, where for example Zahavi is an active
researcher [14]. While a change of the routing tables or routing
algorithm is often not an option for application programmers,
the adaption of node orders within the API is a possible option.

III. ALGORITHMS

Since communication is one of the most important bottle-
necks in parallel computing, many different algorithms have
been developed for the numerous different collective commu-
nication routines. In this section, several algorithms, usable
for collective communication routines, will be presented. Our
focus lies on algorithms with butterfly-like communication
schemes, as these are at the moment not used for communi-
cation with large messages, but our initial research shows that
in modern architecture, the congestion does not arise in the
way expected. In addition to this, the algorithms are not used
for allreduce operations at all, because they potentially deliver
wrong results for some numbers of participating processes, if
implemented in their original design. With some adaptions, this
is no longer true for these algorithms. We start the presentation
of algorithms with the name-giving algorithm, the butterfly
algorithm.

A. Butterfly Algorithm and Pairwise Exchange Algorithm
Eugene D. Brooks introduced the butterfly algorithm in

the Butterfly Barrier in 1986 [6]. It has been designed for
operations with P = 2k participants. It then has k = dlog2 P e
communication rounds, where in each round l, rank p commu-
nicates with p ± 2l−1. Since this algorithm was not intended
for the use with P = 2k−1+q < 2k processes, a first adaption
was made: virtual processes were introduced to virtually have
P ′ = 2k processes to use the algorithm on. Existing processes
adopted the role of these virtual processes as depicted in Figure
1. Processes 0 to 2 act as if they were additional processes 5,
6 and 7 to comply to the communication scheme for P = 8.
This introduces unnecessary additional communication and
overhead. While this is not too dramatic in the case of a
barrier, this becomes very interesting when the message sizes
increase. Even when P = 2k, the symmetric communication
scheme of the butterfly algorithm quickly leads to congestion
in network topologies where there is exactly one link from one
processor to another, as this link will be used in both directions
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Figure 2. Comparison of the 2-way dissemination algorithm (left) to the
adapted 2-way dissemination algorithm (right) for 5 ranks.

at the same time. In addition, the adaption makes the algorithm
unusable for non-idempotent allreduce operations, as data is
transferred and processed more than once.

A different adaption to the original algorithm leads to the
Pairwise Exchange Algorithm (PE). This algorithm is identical
to the previous algorithm if P = 2k and is for example
described in [15]. If the number of processes is not a power
of two, but rather 2k + q, then the q “leftover” processes first
communicate with the first q processes and then wait until the
2k remaining processes have finished the algorithm, as shown
in Figure 1.

The first adaption of the butterfly algorithm would make it
possible to use this algorithm for P 6= 2k, but it would lead to
a repeated inclusion of initial data from the virtual processes,
if used for an allreduce. The pairwise exchange algorithm also
solves this problem, why this will be the only adaption used
in the experiments shown below.

B. (n-way) Dissemination Algorithm
The basis of the n-way dissemination algorithm is the

dissemination algorithm developed by Hensgen et al. in 1988
[7]. To be exact, this algorithm is equivalent to a 1-way
dissemination algorithm as it is defined by Hoefler et al.
in 2006 [16]. In Hoefler’s n-way dissemination algorithm,
each participating process sends and receives n messages per
communication round - instead of just one as presented by
Hensgen et al.

Similar to the butterfly algorithm for P 6= 2k, the n-way
dissemination algorithm transfers certain data elements more
than once to the participating ranks if P 6= (n + 1)k. This is
exemplarily shown for a 2-way dissemination algorithm with
5 ranks in Figure 2 on the left. Nevertheless, the algorithm
shows excellent performance in barrier operations, where it
does not matter, whether a flag is communicated once or
twice. It does not seriously impact the runtime and especially
it does not alter the result of the routine. Using this algorithm
for allreduce is not practicable in these cases though - the
result will be wrong and different on all participating nodes.
To still use this algorithm for allreduce operations, we have
presented an adaption to the n-way dissemination algorithm,
which overcomes these problems in [1]. The below described
adaption of the communication scheme is depicted in Figure
2 in direct comparison to the original communication scheme.

The n-way dissemination algorithm, as presented in [16]
has been developed for spreading data among the participants,
where n is the number of messages transferred in each
communication round. As the algorithm is not exclusive to
nodes, cores, processes or threads, the term ranks will be used

TABLE I. ROUND-WISE COMPUTATION OF PARTIAL RESULTS IN A
2-WAY DISSEMINATION ALGORITHM (FROM [1])

rank round 0 round 1 round 2

0 x0 S0
1 = x0 ◦ x8 ◦ x7 S0

2 = S0
1 ◦ S

6
1 ◦ S

3
1

1 x1 S1
1 = x1 ◦ x0 ◦ x8 S1

2 = S1
1 ◦ S

7
1 ◦ S

4
1

2 x2 S2
1 = x2 ◦ x1 ◦ x0 S2

2 = S2
1 ◦ S

8
1 ◦ S

5
1

3 x3 S3
1 = x3 ◦ x2 ◦ x1 S3

2 = S3
1 ◦ S

0
1 ◦ S

6
1

4 x4 S4
1 = x4 ◦ x3 ◦ x2 S4

2 = S4
1 ◦ S

1
1 ◦ S

7
1

5 x5 S5
1 = x5 ◦ x4 ◦ x3 S5

2 = S5
1 ◦ S

2
1 ◦ S

8
1

6 x6 S6
1 = x6 ◦ x5 ◦ x4 S6

2 = S6
1 ◦ S

3
1 ◦ S

0
1

7 x7 S7
1 = x7 ◦ x6 ◦ x5 S7

2 = S7
1 ◦ S

4
1 ◦ S

1
1

8 x8 S8
1 = x8 ◦ x7 ◦ x6 S8

2 = S8
1 ◦ S

5
1 ◦ S

2
1

rank round 0 round 1 round 2

0 x0 S0
1 = x0 ◦ x7 ◦ x6 S0

2 = S0
1 ◦ S

5
1 ◦ S

2
1

1 x1 S1
1 = x1 ◦ x0 ◦ x7 S1

2 = S1
1 ◦ S

6
1 ◦ S

3
1

2 x2 S2
1 = x2 ◦ x1 ◦ x0 S2

2 = S2
1 ◦ S

7
1 ◦ S

4
1

3 x3 S3
1 = x3 ◦ x2 ◦ x1 S3

2 = S3
1 ◦ S

0
1 ◦ S

5
1

4 x4 S4
1 = x4 ◦ x3 ◦ x2 S4

2 = S4
1 ◦ S

1
1 ◦ S

6
1

5 x5 S5
1 = x5 ◦ x4 ◦ x3 S5

2 = S5
1 ◦ S

2
1 ◦ S

7
1

6 x6 S6
1 = x6 ◦ x5 ◦ x4 S6

2 = S6
1 ◦ S

3
1 ◦ S

0
1

7 x7 S7
1 = x7 ◦ x6 ◦ x5 S7

2 = S7
1 ◦ S

4
1 ◦ S

1
1

in the following. The P participants in the collective operation
are numbered consecutively from 0, . . . , P−1 and this number
is their rank. With respect to rank p, the ranks p+1 and p−1
are called p’s neighbors, where p − 1 will be the left-hand
neighbor.

Let P be the number of ranks involved in the collective
communication. Then k = dlogn+1(P )e is the number of
communication rounds the n-way dissemination algorithm
needs to traverse, before all ranks have all information. In
every communication round l ∈ {1, . . . , k}, every process p
has n peers sl,i, to which it transfers data and also n peers
rl,j , from which it receives data:

sl,i = p+ i · (n+ 1)l−1 mod P
rl,j = p− j · (n+ 1)l−1 mod P,

(1)

with i, j ∈ {1, . . . , n}. Thus, in every round p gets (additional)
information from n(n + 1)l−1 participating ranks - either
directly or through the information obtained by the sending
ranks in the preceding rounds.

When using the dissemination algorithm for an allreduce,
the information received in every round is the partial result the
sending rank has computed in the round before. The receiving
rank then computes a new local partial result from the received
data and the local partial result already at hand.

Let Sp
l be the partial result of rank p in round l, ◦ be the

reduction operation used and xp be the rank’s initial data. Then
rank p receives n partial results Srl,i

l−1 in round l and computes

Sp
l = Sp

l−1 ◦ S
rl,1
l−1 ◦ S

rl,2
l−1 ◦ · · · ◦ S

rl,n
l−1 , (2)

which it transfers to its peers sl+1,i in the next round. This
data movement is shown in Table I for an allreduce based on
a 2-way dissemination algorithm. First for 9 ranks, then for 8
participating ranks. By expanding the result of rank 0 in round
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Figure 3. The data boundaries g and received partial results S
rl,j
i of ranks 0

and 2 (from [1]).

2 from the second table, it becomes visible, that the reduction
operation has been applied twice to x0:

S0
2 = (x0 ◦ x7 ◦ x6) ◦ (x5 ◦ x4 ◦ x3) ◦ (x2 ◦ x1 ◦ x0). (3)

In general, if P 6= (n+1)k, the final result will include data of
at least one rank twice: In every communication round l, each
rank receives n partial results each of which is the reduction of
the initial data of its (n+1)l−1 left-hand neighbors. Thus, the
number of included initial data elements is described through

l∑
i=1

n(n+ 1)i−1 + 1 = (n+ 1)l (4)

for every round l.

In the cases of the maximum or minimum operation to be
performed in the allreduce, this does not matter. In the case
of a summation though, this dilemma will result into different
final sums on the participating ranks. In general, the adaption
is needed for all operations, where the repeated application of
the function to the same element changes the final result, so
called non-idempotent functions.

The adaption of the n-way dissemination algorithm is
mainly based on these two properties: (1) in every round
l, p receives n new partial results. (2) These partial results
are the result of the combination of the data of the next∑l−1

i=0 n(n+1)i−1 +1 left-hand neighbors of the sender. This
is depicted in Figure 3 through boxes. Highlighted in green are
those ranks, whose data view is represented, that is rank 0’s in
the first row and rank 2’s in the second row. Each box encloses
those ranks, whose initial data is included in the partial result
the right most rank in the box has transferred in a given round.
This means for rank 0, it has its own data, received S6

0 and
S7
0 in the first round (gray boxes) and will receive S5

1 and S2
1

from ranks 2 and 5 in round 2 (white boxes).

As each of the boxes describes one of the partial results
received, the included initial data items can not be retrieved by
the destination rank. The change from one box to the next is
thus defined as a data boundary. The main idea of the adaption
is to find data boundaries in the data of the source ranks in
the last round, which coincide with data boundaries in the
destination rank’s data. When such a correspondence is found,
the data sent in the last round is reduced accordingly. To be
able to do so, it is necessary to describe these boundaries in a
mathematical manner. Considering the data elements included

in each partial result received, the data boundaries of the
receiver p can be described as:

glrcv [jrcv] =

p− n
lrcv−2∑
i=0

(n+ 1)i − jrcv(n+ 1)lrcv−1 mod P, (5)

where jrcv(n+1)lrcv−1 describes the boundary created through
the data transferred by rank rlrcv,jrcv in round lrcv.

Also, the sending ranks have received partial results in the
preceding rounds, which are marked through corresponding
boundaries. From the view of rank p in the last round k, these
boundaries are then described through

gslsnd [jsnd] =

p− s(n+ 1)k−1 − n
lsnd−2∑
i=0

(n+ 1)i

− jsnd(n+ 1)lsnd−1 mod P, (6)

with s ∈ {1, . . . , n} distinguishing the n senders and jsnd, lsnd
corresponding to the above jrcv, lrcv for the sending rank. To
also consider those cases, where only the initial data of the
sending or the receiving rank is included more than once in
the final result, we let lsnd, lrcv ∈ {0, . . . , k−1} and introduce
an additional base border gB in the destination rank’s data.

These boundaries are also depicted in Figure 3 for the
previously given example of a 2-way dissemination algorithm
with 8 ranks. The figure depicts the data present on ranks 0
and 2 after the first communication round in the gray boxes
with according boundaries gB , g0, g1[1] and g1[2] on rank 0
and g20 , g21 [1] and g21 [2] on rank 2. Since the boundaries gB
and g21 [1] coincide, the first sender in the last round, that is
rank 5, transfers its partial result but rank 2 only transfers a
reduction S′ = x2 ◦ x1 instead of x2 ◦ x1 ◦ x0.

More generally speaking, the algorithm is adaptable, if
there are boundaries on the source rank that coincide with
boundaries on the destination rank, i.e.,

gslsnd [jsnd] = glrcv [jrcv] (7)

or gslsnd [jsnd] = gB . Then the last source rank, defined through
s, transfers only the data up to the given boundary and the
receiving rank takes the partial result up to its given boundary
out of the final result. Taking out the partial result in this
context means: if the given operation has an inverse ◦−1,
apply this to the final result and the partial result defined
through glrcv [jrcv]. If the operation does not have an inverse,
recalculate the final result, hereby omitting the partial result
defined through glrcv [jrcv]. Since this boundary is known from
the very beginning, it is possible to store this partial result in
the round it is created, thus saving additional computation time
at the end.

From this, one can directly deduce the number of partici-
pating ranks P , for which the n-way dissemination algorithm
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is adaptable in this manner:

P = gslsnd
[jsnd]− glrcv [jrcv]

= s(n+ 1)k−1 + n

lsnd−2∑
i=0

(n+ 1)i + jsnd(n+ 1)lsnd−1

− n
lrcv−2∑
i=0

(n+ 1)i − jrcv(n+ 1)lrcv−1 . (8)

For given P , a 5-tuple (s, lsnd, lrcv, jsnd, jrcv) can be precal-
culated for different n. Then this 5-tuple also describes the
adaption of the algorithm:

Theorem 1: Given the 5-tuple (s, lsnd, lrcv, jsnd, jrcv), the
last round of the n-way dissemination algorithm is adapted
through one of the following cases:

1) lrcv, lsnd > 0
The sender p − s(n + 1)k−1 sends its partial result
up to gslsnd

[jsnd] and the receiver takes out its partial
result up to the boundary glrcv [jrcv].

2) lrcv > 0, lsnd = 0
The sender p−s(n+1)k−1 sends its own data and the
receiver takes out its partial result up to the boundary
glrcv [jrcv].

3) lrcv = 0, lsnd = 0
The sender p − (s − 1)(n + 1)k−1 sends its last
calculated partial result. If s = 1 the algorithm ends
after k − 1 rounds.

4) lrcv = 0, lsnd = 1
The sender p−s(n+1)k−1 sends its partial result up
to gslsnd

[jsnd − 1]. If jsnd = 1, the sender only sends
its initial data.

5) lrcv = 0, lsnd > 1
The sender p − s(n + 1)k−1 sends its partial result
up to gslsnd

[jsnd] and the receiver takes out its initial
data from the final result.

Proof: We show the correctness of the above theorem
by using that at the end each process will have to calculate
the final result from P different data elements. We therefore
look at (8) and how the given 5-tuple changes the terms
of relevance. We will again need the fact, that the received
partial results are always a composition of the initial data of
neighboring elements.

1) lrcv, lsnd > 0:

P = s (n+ 1)
k−1

+ n

lsnd−2∑
i=0

(n+ 1)
i
+ jsnd (n+ 1)

lsnd−1

−n
lrcv−2∑
i=0

(n+ 1)
i − jrcv (n+ 1)

lrcv−1

= gslsnd
[jsnd]− glrcv [jrcv] . (9)

In order to have the result of P elements, the sender
must thus transfer the partial result including the data up
to gslsnd

[jsnd] and the receiver takes out the elements up to
glrcv [jrcv].

2) lrcv > 0, lsnd = 0:

P = s (n+ 1)
k−1 − n

lrcv−2∑
i=0

(n+ 1)
i − jrcv (n+ 1)

lrcv−1

= s (n+ 1)
k−1 − glrcv [jrcv] (10)

and thus we see that the sender must send only its own data,
while the receiver takes out data up to glrcv [jrcv].

3) lrcv = 0, lsnd = 0:

P = s (n+ 1)
k−1

. (11)

In the first k − 1 rounds, the receiving rank will already
have the partial result of n

∑k−1
i=1 (n+ 1)

i
= (n+ 1)

k−1 − 1
elements. In the last round it then receives the partial sums
of (s− 1) (n+ 1)

k−1 further elements by the first s − 1
senders and can thus compute the partial result from a total
of (s− 1) (n+ 1)

k−1
+ (n+ 1)

k−1
= s (n+ 1)

k−1 − 1
elements. Including its own data makes the final result of
s (n+ 1)

k−1
= P elements. If s = 1 the algorithm is done

after k − 1 rounds.

4) lrcv = 0, lsnd = 1:

P = s (n+ 1)
k−1

+ jsnd (12)

Following the same argumentation as above, the receiving
rank will have the partial result of s (n+ 1)

k−1− 1 elements.
It thus still needs

P −
(
s (n+ 1)

k−1 − 1
)

= s (n+ 1)
k−1

+ jsnd − s (n+ 1)
k−1

+ 1

= jsnd + 1 (13)

elements. Now, taking into account its own data it still needs
jsnd data elements. The data boundary g1 [jsnd] of the sender
includes jsnd elements plus its own data, i.e., jsnd+1 elements.
The jthsnd element will then be the receiving rank’s data, thus
it suffices to send up to g1 [jsnd − 1].

5) lrcv = 0, lsnd > 1:

P = s (n+ 1)
k−1

+ n

lsnd−2∑
i=0

(n+ 1)
i
+ jsnd (n+ 1)

lsnd−1 (14)

In this case, the sender sends a partial result which nec-
essarily includes the initial data of the receiving rank. This
means that the receiving rank has to take out its own initial
data from the final result. Due to lsnd > 1 the sender will not
be able to take a single initial data element out of the partial
result to be transferred.

Note that the case where a data boundary on the sending
side corresponds to the base border on the receiving side, i.e.,
gslsnd

[jsnd] = gB , has not been covered above. In this case,
there is no 5-tuple like above, but rather P − 1 = gslsnd

[jsnd]
and the adaption and reasoning complies to case 4 in the above
theorem.
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Figure 4. Communication scheme of Bruck’s global combine algorithm for
P = 8.

C. Bruck’s Algorithm
In [8], Jehoshua Bruck and Ching-Tien Ho present two

algorithms for global combine operations in n-port message-
passing systems1 The first of the two shows many similarities
to the n-way dissemination algorithm presented above. While
the dissemination algorithm and the n-way dissemination
algorithm were both designed for barrier operations, Bruck’s
algorithm is explicitly designed for global combine operations,
i.e., allreduces.

In dlogn+1(P )e communication rounds, every participating
process transfers and receives n partial reduction results from
other processes. Let ◦ be the reduction operation used and xp
be the initial data of process p. The partial results transferred
by rank p in round l are computed in two versions: Sp

l [0] is the
reduction of all previously received results without the initial
data of the computing process and Sp

l [1] = xp ◦ Sp
l [0]. In

each round, the group of destination ranks is split up into two
groups, one of which will receive S0

p , and the other will receive
S1
p . For determining these groups, two things are necessary:

the base (n + 1) representation of P − 1 and the counter c,
which counts the number of elements on which the reduction
has already been performed.

For ease of readability, the algorithm will here be described
with the help of an example for P = 8 and n = 2 from
the view of rank 0. The complete communication scheme for
this example is depicted in Figure 4. The general description
and the proof can be found in [8]. The algorithm will need
k = dlog3(8)e = 2 communication rounds. For each of these
rounds l, an αl−1 is needed to split the destination ranks in
two groups: one receiving Sp

l [0] and the other Sp
l [1]. These αi

are computed through the representation of P − 1 = 7 in a
base 3 notation:

7 = (21)3 = (α1α0)3. (15)

In the first round, only the partial result S0
1 [1] = x0 is

transferred to αk−1 = α1 = 2 process. The destination
processes are

s1,1 ≡ p− 1 mod (P ) ≡ −1 mod 8 ≡ 7 (16)
s1,2 ≡ p− 2 mod (P ) ≡ −2 mod 8 ≡ 6. (17)

At the same time, rank 0 will receive partial results from its
peers r1,1 ≡ p + 1 mod (P ) ≡ 1 and r1,2 = 2, namely
S1
1 [1] = x1 and S2

1 [1] = x2. Rank 0 can then calculate new

1The notation has been heavily changed from the original paper to fit the
notation throughout the rest of the paper.

partial results to be transferred in the following round:

S0
2 [0] = S0

1 [0] ◦ S1
1 [1] ◦ S2

1 [1] = x1 ◦ x2 (18)
S0
2 [1] = S0

1 [1] ◦ S1
1 [1] ◦ S2

1 [1] = x0 ◦ x1 ◦ x2. (19)

At the same time, c is increased to c = α1 = 2, which will be
needed for the computation of the communication peers in the
next round. Rank 0 will now transfer S0

2 [1] to α0 = 1 rank:

s2,1 ≡ p− α0 · (c+ 1) mod (P ) ≡ −3 mod 8 ≡ 5, (20)

and S0
2 [0] to the remaining n− α0 = 2− 1 = 1 rank:

s2,2 ≡ p−c−α0·(c+1) mod (P ) ≡ −5 mod 8 ≡ 3. (21)

At the same time, rank 0 will receive partial results from ranks

r2,1 ≡ p+ (c+ 1) mod (P )

≡ 3 mod 8 ≡ 3 (22)
r2,2 ≡ p+ c+ α0(c+ 1) mod (P )

≡ 5 mod 8 ≡ 5. (23)

Then, rank 0 can compute the final result

S0
3 [1] = S0

2 [1] ◦ S3
2 [1] ◦ S5

2 [0]

= x0 ◦ x1 ◦ x2 ◦ (x3 ◦ x4 ◦ x5) ◦ (x6 ◦ x7). (24)

Bruck’s algorithm was the last to be presented in this paper,
and a comparison of the different algorithms will be given in
the next subsection.

D. Comparison
The algorithms with a butterfly-like communication scheme

presented in this paper have some significant differences,
starting with the number of communication rounds needed
to complete the algorithm. The pairwise exchange algorithm
needs blog2(P )c+2 communication rounds, while the adapted
n-way dissemination algorithm and Bruck’s algorithm only
need dlogn++1(P )e communication rounds. In a split-phase
allreduce, this will lead to a significant difference in the
number of repeated calls to the allreduce routine. In addition
to that, q ranks will be idling in the PE algorithm, while the
other P − q ranks need to do some computation between the
communication steps. To still exploit the full potential of a
split-phase allreduce, an application will have to distribute the
workload accordingly.

Even though Bruck’s algorithm and the adapted n-way dis-
semination algorithm need the same number of communication
rounds to complete an allreduce, an important difference is
the applicability to different group sizes P . While Bruck’s
algorithm works for all pairs (n, P ), the n-way dissemination
algorithm can not be adapted for all pairs. In those cases,
where the algorithm is not adaptable, alternative solutions
need to be found for the n-way dissemination algorithm.
One possibility could be, to transfer larger messages in the
communication rounds, carrying not only a given partial result
but maybe some additional initial data items to complete the
allreduce properly. Nevertheless, the adaption to the n-way
dissemination algorithm can be an important addition to the
repertoire of allreduce algorithms in a communication library,
because it makes sense to have different algorithms for dif-
ferent combinations of message sizes, number of participating
ranks and reduction routines, as described, e.g., in [17].
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Figure 5. GASPI allreduce with 1 integer and SUM implemented on top of
ibverbs in comparison to MPI allreduce (from [1]).

A possibly very important advantage of Bruck’s algorithm
and the n-way dissemination algorithm in comparison to the
PE is the choice of communication peers. While the PE
algorithm has a true butterfly communication scheme, the other
two algorithms do not. Depending on the underlying network
and routing, two messages will be transferred in opposite
directions on the same path in a true butterfly scheme. This will
not happen in the butterfly-like schemes of Bruck’s algorithm
and the n-way dissemination algorithm.

In this paper, we cannot show experiments and results for
all different use-case scenarios, but will show a comparison of
the three algorithms, implemented as allreduce library routines
on top of GASPI.

IV. EXPERIMENTS AND RESULTS

We have implemented the described algorithms as allreduce
library functions, using only GASPI routines, in the scope
of a GASPI collective library and tested the routines on two
different systems:

Cluster 1: A system with 14 nodes, each having two
sockets with 6-core Westmere X5670 @2.93GHz processors
and an InfiniBand QDR network in fat tree configuration.
On this system, the algorithm was compared to the allreduce
routines of MVAPICH 2.2.0 and OpenMPI 1.6.5, because no
Intel MPI implementation is available on this system. In the
following plots, only the OpenMPI runtime is shown, because
the MVAPICH implementation is much slower. Thus, a user
would not use this implementation for allreduce-heavy jobs
and for a better readability, we do not plot these runtimes.

Cluster 2: A system with two sockets nodes of with 8-
core Sandy Bridge E5-2670/1600 @2.6GHz processors and an
InfiniBand FDR10 network in fat tree configuration. On this
system, the algorithm was compared to the allreduce routines
of Intel MPI 4.1.3.049 and OpenMPI 1.8.1. In the following
plots, only the Intel MPI runtime is shown, because it was
always the faster implementation.

The cluster that was used for the tests in the previous paper
was no longer available for experiments. In the previous paper
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Figure 6. Comparison of allreduce with sum, implemented with ibverbs and
implemented as GASPI library routine Cluster 1. One GASPI process per

socket.

[1], we had implemented only the n-way dissemination algo-
rithm directly on top of ibverbs, which showed a significant
performance improvement when compared to an Intel MPI,
as seen in Figure 5. To enable portability to different GASPI
implementations, the option of implementing library routines
was now chosen. The GASPI implementation used, is the GPI2-
1.1.1 by the Fraunhofer ITWM [18].

We will show runtime comparisons for the smallest possi-
ble message size (one integer) and the largest possible message
size (255 doubles) in GASPI allreduce routines. In the second
case, the reduction operation is applied element-wise to an
array of 255 doubles. The runtimes shown are average times
from 104 runs to balance single higher runtimes which may
be caused through different deterministically irreproducible as-
pects like jitter, contention in the network and similar. Timings
were taken right before the call and then again immediately
after the call returned. Between two calls of an allreduce, a
barrier was called to eliminate caching effects.

We have started one GASPI process per NUMA socket,
which is the maximum number of GASPI processes that can
be started per node. In addition to a comparison with the
fastest MPI implementation on each cluster, we have also
implemented a binomial spanning tree as a GASPI allreduce
library routine, to show the difference between a good perform-
ing tree implementation and an implementation with butterfly-
like algorithms. For better readability of the plots, we have
omitted the graphical representation of the runtimes of the
GPI2 allreduce, because it was, as to be expected, faster than
the library routines in most cases.

To convey an idea of the overhead induced through the
implementation of the allreduce as a GASPI library routine
instead of implementing the allreduce directly with ibverbs,
this overhead is depicted in Figure 6. The runtime for the
allreduce with one integer increases by a factor of up to 1.84
and with 255 doubles, it even increases by a factor of up to
2.18. This will have to be kept in mind, when regarding the
following results.

While the BST and the PE transfer a fixed number of
messages per communication round, the n-way dissemination
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Figure 7. Comparison of Allreduce implementations with 1 integer and sum
as reduction operation on Cluster 1. One GASPI process per socket.
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Figure 8. Comparison of Allreduce implementations with 1 integer and
maximum as reduction operation on Cluster 1. One GASPI process per

socket.

algorithm and Bruck’s algorithm may transfer different num-
bers of messages per communication round. Since Bruck’s
algorithm works for all combinations of (n, P ), we have fixed
n = 5 for these experiments. For the n-way dissemination
algorithm the n is chosen in the first call of the allreduce
routine and the smallest n possible is chosen. This procedure
differs from the procedure in the former paper, where a number
of allreduces was started in the first call and the fastest n was
chosen. Further research has shown, that the overhead induced
by calling a sufficiently high number of allreduces to chose
a n in this first call is not necessarily compensated through
the potentially faster following allreduces. In the future, static
but network dependent lookup tables need to be developed
or further research on the choice of n depending on the
bandwidth, latency and message rate of the underlying network
needs to be done.

In Figures 7 to 10 the runtime results on Cluster 1 are
shown with one GASPI process started per NUMA socket.
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Figure 9. Comparison of Allreduce implementations with 255 doubles and
sum as reduction operation on Cluster 1. One GASPI process per socket.
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Figure 10. Comparison of Allreduce implementations with 255 doubles and
maximum as reduction operation on Cluster 1. One GASPI process per
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Figures 7 and 8 show the runtime results for the allreduce
with one integer and sum, respectively maximum reduction
operation. Figures 9 and 10 show the same for 255 doubles.
In all cases except the maximum operation with 255 doubles,
none of the library routines are faster than the OpenMPI
implementation. This comes as no surprise, as the allreduce
library routines are implemented on top of GASPI routines,
while the OpenMPI allreduce may make direct use of ibverbs
routines. The runtimes of the GASPI library allreduce are
steadier when using the allreduce on 255 doubles than on one
integer. When increasing the message size, the butterfly-like
algorithms have faster runtimes than the BST. Even though it
has been suggested, that the symmetric communication scheme
of the PE algorithm will lead to a high congestion in the
network, this is not confirmed by the results of the experiments:
The pairwise exchange algorithm has a runtime close to
the OpenMPI implementation. When using the maximum as
reduction operation, all butterfly-like algorithms have similar
runtimes and are even faster than the OpenMPI allreduce
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Figure 11. Comparison of Allreduce implementations with one integer and
sum as reduction operation on Cluster 2. One GASPI process per socket.
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Figure 12. Comparison of Allreduce implementations with one integer and
max as reduction operation on Cluster 2. One GASPI process per socket.

implementation for several process numbers. Overall, Bruck’s
algorithm shows best results for small messages, i.e., one
integer, and the PE algorithm shows the best results for large
messages, i.e., allreduces on 255 doubles. The adapted n-
way dissemination algorithm runtime plot is very volatile,
especially for small messages. At least for larger messages,
it shows consistently faster runtimes than the BST. For all al-
gorithms, the allreduce with large messages and the maximum
operation is significantly slower than the equivalent allreduce
with summation as reduction routine.

Figures 11 to 14 show the averaged runtime results on
Cluster 2. Here, the difference in runtime between the Intel
MPI allreduce and the GASPI allreduce routines is significant
for small messages, as can be seen in Figures 11 and 12. Only
for larger numbers of involved processes the runtimes of the
GASPI routines and those of the Intel MPI implementation
converge (Figure 11). While the plots are not as erratic as on
Cluster 1, this might be due to the fact, that on this system
we could not test every process count. Especially Bruck’s
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Figure 13. Comparison of Allreduce implementations with 255 doubles and
sum as reduction operation on Cluster 2. One GASPI process per socket.
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Figure 14. Comparison of Allreduce implementations with 255 doubles and
max as reduction operation on Cluster 2. One GASPI process per socket.

algorithm outperforms the other butterfly-like algorithms and
the BST for allreduces with small messages. For large mes-
sages, i.e., 255 doubles, the GASPI library implementations of
the allreduce and the Intel MPI implementation have similar
runtimes. Even though the Intel MPI implementation is still
faster for a process count up to 48, the gap to the runtimes of
the GASPI library has closed to a great extent. With higher
number of processes, the GASPI library routines are even
faster than the Intel MPI allreduce. Again, the PE shows
surprisingly good results, especially for large messages and
the sum operation, while the BST’s runtimes are at the upper
limit of the library runtimes.

V. CONCLUSION AND FUTURE WORK

We have examined different algorithms with a butterfly-like
communication scheme for the suitability in a GASPI allreduce
library function. In [1] we had presented an adaption to the
n-way dissemination algorithm, which was here compared to
other algorithms with a similar communication structure. Two
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important properties of these algorithms are their low number
of communication rounds while at the same time involving
all processes in each computation step of the algorithm. This
makes them ideal candidates for a split-phase allreduce routine
as defined in the GASPI specification.

We have seen in the experiments, that algorithms with a
butterfly-like communication scheme are often significantly
faster than, e.g., the BST and sometimes even reach the
performance of existing MPI implementations. This is espe-
cially important to note, because the results presented in this
article are results obtained from library implementations, i.e.,
not directly implemented on ibverbs but rather with GASPI
routines. As shown in Figure 6, the overhead induced through
this additional layer of indirection can slow a routine down
by a factor of 2. Considering this, an implementation of the
allreduce routine with ibverbs should accelerate the routine to
approximately the level of the MPI implementations shown for
small messages and even faster in the case of large messages.
This is a relevant starting point for future research.

Another important comparison to make is the influence of
the different network interconnects on the algorithm. While in
the former paper, the FDR network had an immense influence
on the runtime of the n-way dissemination algorithm. In this
case, we are comparing a QDR network to a FDR-10 network
and do not see the same performance increase. Instead, we
partially even see a decrease in speed. While Bruck’s algorithm
does not need more than 10 µs for small messages Cluster 1, it
needs 16 µs on Cluster 2. For large messages we see a speedup
from 32 µs to 30 µs for the global maximum and from 30 µs to
27 µs for the global sum. This again highlights the importance
of adjusting the used algorithms to the underlying network
and will be investigated further in the scope of a library with
collective routines for GASPI implementations.

All in all, algorithms with a butterfly-like communication
scheme should not be ignored for new communication routines
and libraries. The increasing message rates and network topol-
ogy developments might make the use of these algorithms very
feasible again.
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