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Abstract—Software-based fault simulation can support all 
abstraction levels, is flexible and allows reliability assessment at 
different stages in the design process. Fault diagnosis and relia-
bility analysis are increasingly important in circuit design and 
determine the product’s time-to-market. In this paper, we pro-
vide a new efficient method and systematic scheme for reducing 
the time for simulation of multiple simultaneous faults and/or 
multiple failure modes per element in an analogue circuit. By 
arranging similar multiple faults in groups, some so-called 
failure classes can be interpolated with an adequate precision 
rather than being evaluated by time-consuming simulation. The 
technique can be used to perform efficient multiple fault diag-
nosis based on multiple fault injection. Finally, the implemented 
procedure is validated with some simulation results. 

Keywords—Fault simulation; fault modeling; multiple fault 
injection; fault diagnosis; reliability prediction 

I.  INTRODUCTION  

Fault diagnosis of circuits is a well-developed research 
field with a long tradition. The first scientific publications are 
from early 1960s. Circuit simulation is nowadays an accepted 
standard in the development of electronic circuits. Small to 
complex analogue, digital and mixed-signal circuits can be 
tested and verified with appropriate simulation software. A 
lot of progress has been made in the development of software 
tools for the design and verification of analogue and/or 
mixed-signal circuits, both in the open-source and in the 
commercial sector. Already two decades ago the method of 
analogue fault modelling has been suggested to enable both 
fault diagnosis and reliability evaluation. Different appro-
aches have been developed for fault simulation of analogue 
and mixed-signal circuits. Previous work on analogue fault 
modelling focuses on parametric defects (soft faults) and 
catastrophic defects (hard faults). Parametric faults are 
typically simulated with parameter modifications, while open 
and short defects are dealt with via injecting a high or low 
resistance on transistor level, respectively.  

Fault simulation is generally done by injecting a fault on 
transistor level and analysing the circuit’s behaviour by 
applying single DC, transient or AC simulation for linear or 
nonlinear circuit models. Also, software tools for automatic 
fault injection and efficient test generation have been 
developed. However, mostly single faults have been con-
sidered in the past. 

Test cases for fault injection have been generated often by 
hand from an understanding of the design and fault expecta-
tions of major circuit elements (components). Most of the 
fault simulators for analogue circuits presented in the litera-
ture cover only parameter or catastrophic faults. Some tools 
have attempted to automate test generation and the fault 
simulation process for analogue circuits. The runtime prob-
lem of analogue circuit simulation also needs to be addressed, 
and advanced simulation techniques are required to accele-
rate the simulation to an acceptable proportion [1].  

Most existing fault simulators use the Simulation 
Program with Integrated Circuits Emphasis (SPICE), and 
modify SPICE net lists to represent faults [2] - [3]. The fault 
simulation software [4] used for the work presented in this 
paper defines circuit faults in Visual Basic (VB-Script) 
language and allows flexible and very accurate fault 
modelling. The main goal of this paper is to speed up the 
simulation for multiple faults. 

II. DIAGNOSIS OF ANALOGUE CIRCUITS 

Test and fault diagnosis of analogue circuits are necessary 
despite the ongoing digitalization. Analogue circuits are 
always required to form the interface to the physical environ-
ment. Analogue signals do not consist of just "low" or "high" 
values like in the digital field. In principle, infinite numbers 
of signal values are conceivable. The time and frequency 
characteristics of analogue signals bring another dimension, 
and are an additional issue within circuit assessment. The 
propagation of faults is more difficult than in the digital field. 
Typically, it does not occur in just one direction, but could be 
from any element in all directions towards neighbour ele-
ments within the circuit. A particular fault in an element (like 
resistor, capacitor, transistor, etc.) does not provide explicit 
information about the resulting signal values. Therefore, a 
calculation of signal values (done by circuit simulation) is 
always necessary. 

Nonlinear models, parasitic elements, charges between 
elements or energy-storing elements make diagnosis and 
reliability analysis more complex [5]. Because of these 
reasons, the automation level of fault diagnosis procedures 
for analogue circuits has not yet achieved the development 
level realized in the digital field. The reason for the limited 
automation is simply due to the nature of analogue circuits. 
The predominant design methodology for analogue circuits is 
still the individual design based on the designer’s experience.  
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The simulation of multiple simultaneous faults is even 
more complex. The consideration of multiple faults is im-
portant for the following reasons. Different fault modes can 
be present in the elements of complex circuits. Their occur-
rence increases even more in rough environments. Also, 
multiple parametric faults can be present in the field as a 
result of ageing, environmental stress and design errors. 
Moreover, multiple fault diagnosis is relevant when a new 
circuit design is introduced and a high failure density exists. 
The restriction to single fault simulation only can lead to 
incorrect evaluation results. 

One of the main issues in software-based fault simulation 
is the relatively long runtime in case of complex analogue 
circuits. In general, the runtime increases rapidly with the 
simulated circuit size, the number of faulty elements (fault 
depth or multiple fault simulation) and the failure modes per 
element. When performing fault simulation, the runtime is 
mostly determined by the number of fault injections. Each 
injection of a multiple fault has to be simulated separately. 
Usually, the simulation time for single faults (at transistor 
level) is tractable because of available computer perfor-
mance. Also, the performance of Electronic Design Auto-
mation (EDA) tools has been increased during the last 
decade. However, multiple fault injection is a challenge with 
respect to runtime. 

The fault simulation framework [4] used for the work 
presented in this paper can deal with several fault modes 
injected simultaneously into elements of a circuit. We con-
sider permanent hard (open and short circuit) and soft faults 
(parametric faults). Please note, that even shorts and opens 
are dealt with as analogue (not digital) faults, because the 
simulator generates the analogue signal throughout the 
complete circuit in the case of these faults.  

Figure 1 shows how the total simulation time (here 
number of simulation runs) is influenced by the number of 
multiple faults and the failure modes per element. The 
diagram shows a medium-sized circuit example composed of 
20 elements where faults are injected, each of which leads to 
two different failure modes. The solid line represents the 
number of simulation runs for all necessary test cases. This 
quantity increases rapidly with the number of multiple faults.  

 
Figure 1. Complexity of fault simulation for an example medium-sized 

circuit (20 elements with two fault modes per element). 

III. FAULT SIMULATION FRAMEWORK 

The starting point of EDA-based fault simulation is the 
circuit’s schematic model. The designer can construct a cir-
cuit with all available elements by using some circuit design 
tool. A wide variety of measurements and graphical data 
representation (also denoted graphs) can be utilized. NI AWR 
Microwave Office® (National Instruments) [6] features 
broad post-simulation capabilities, allowing displaying of 
computed data (measurements, such as gain, noise, power, or 
voltage) on rectangular graphs, polar grids, Smith Charts, 
histograms, tabular graphs, and 3D graphs, etc. Every defined 
measurement point is associated with a particular graph. 

The fault simulator [4] uses the graphs to check the 
circuit’s behaviour after fault injection by defining tolerance 
bands and success areas. The defined tolerance bands and 
success areas are stored as parts of so-called goals. The circuit 
under diagnosis (CUD) and its success can be measured in 
detail by inspection of multiple graphs. After each simulation 
run the deviation between the fault-free and faulty response 
is computed for preselected measurements. If the difference 
exceeds the tolerance band, the injected fault is declared as 
not being tolerated by the circuit.  

The general process of fault simulation is depicted in  
Figure 2. In the first step the fault-free circuit is simulated. 
Fault modes for circuit elements are defined within the GUI 
of the implemented fault simulator (implemented on top of 
the NI AWR Microwave Office simulator [6]). Usually, 
several fault modes are possible for each element. Faults are 
injected into the user-defined circuit via predefined fault 
modes. The fault injection is done automatically and is 
undone after every fault simulation run. This means a direct 
fault modification inside the original circuit within the EDA 
environment. In addition to the hard faults (open or short 
circuit) also soft faults (mostly parameter faults that provide 
a flexible parameter variation of the models of circuit 
elements) are possible. Faults may change the electrical 
values (increase or decrease) permanently or for a short time 
(e.g., temperature), and modify the behaviour of the 
individual elements which can also lead to a global 
malfunction of the circuit. After each simulation, 
measurement data are compared with user-defined goals 
specified by the tolerance bands. Multiple faults are 
considered to increase testing quality and enable better 
reliability analysis. Obviously, the quality of fault simulation 
highly depends on a realistic set of faults. The fault simulator 
can automatically generate hard faults (open-circuit, short-
circuit) depending on the elements utilized in the circuit. 
Additionally, parameter faults can be generated 
automatically or specified by the user. 
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Figure 2. General process of fault simulation. 

IV. DEFECTS AND ANALOGUE FAULT MODELING 

Fault simulation can only work effectively when the fault 
model corresponds as closely as possible to the real physical 
defects. One common approach is the usage of inductive fault 
analysis (IFA) [7]. The circuit layout and statistical selection 
among production errors form the basis for IFA. Physical 
defects of the circuit can be modelled by fault models at the 
transistor level or at higher abstraction levels. Finally, the 
fault list will be developed and adapted by the probability of 
occurrence. Due to the characteristics of analogue circuits, 
infinitely interim parameter values are possible, so there are 
an infinite number of analogue errors and, therefore, indeter-
minable fault models. Therefore, an optimal subset of faults 
must be selected to do fault simulation with realistic simu-
lation duration and sufficient accuracy. The defined fault list 
at the transistor level serves as input for the sequential or 
concurrent fault simulation. The generation of the fault list is 
therefore a very important step of fault simulation, since it 
directly determines the quality of the simulation results and 
time of the analysis. The modelled defects or error types are 
simulated with test stimuli according to the profile of circuit’s 
application. The results of fault simulation are used to 
validate its fault tolerance, fault detection and the circuit’s 
quality in general. In other words, Fault simulation reveals 
the redundancy of a circuit (whether implemented in the 
circuit intentionally or just by chance). 

The physical types of defects can be distinguished into 
two basic classes. Either a fault has arisen from neighbour-
ship according to the layout, or from an element itself. 

Layout-based faults include defects that are only possible 
in special layout configurations (e.g., placement of elements). 
In particular, shorts are only possible between neighbouring 
elements (with very few exceptions). Shorts between distant 
elements need not be considered in the fault model. 
Accordingly, parasitic capacitances arise when two electrical 
connection lines are close enough to each other and the 
frequency is in the respective range. Trivially, open faults can 
only occur where a connecting line exists in the layout. 

Element-based fault types are defects, which arise within 
an element. Typically, the model of these faults expresses the 
element’s behaviour between its terminals (e.g., emitter, base 
and collector of a bipolar transistor, connection pins of 
resistors, capacitors, diodes, etc.). Six primary error types 
(three shorts and three opens) can be defined for elements 
having three terminals and at least two types for passive 
elements with two pins. Traditionally, opens and shorts are 
modelled in form of resistors with high or low resistance, 
respectively. Open defects have a value greater than 1 G 
and shorts between 0 and a few ohms, within chips up to 500 
ohms [8]. If the resistance of a short is relative small, we 
speak of a strong short, otherwise of a weak short. 
Analogously, we define a strong open by an almost infinite 
resistance, and a weak open by a resistance of some 100 M 
or G. Real analogue circuit’s faults have ideal shorts and 
opens only in rare cases. Therefore, a set of appropriate para-
meter values must be chosen. 

TABLE I.  PHYSICAL DEFECTS AND ELECTRONIC FAULT MODELS FOR 
OPEN ERRORS. 

Physical defect 
open defect 

Open circuit [9] 

Electronic fault model 
 

 

 
The resistance value (R) has a 
high value (> 100MΩ). 
 
An open defect can have 
multiple subtypes: 
 Complete (strong) open, 

without any electrical 
connection  

 Partial (weak) open, 
variates the line resistance
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TABLE II.  PHYSICAL DEFECTS AND ELECTRONIC FAULT MODELS FOR 
SHORT ERRORS.  

Physikal defect 
bridging defect / short 

 

 
Short circuit with low 

resistance [9] 
 

 
Short circuit with high 

resistance [9] 

Electronic fault model 
 

 
 

The resistance value (R) has 
a low value (< 500Ω). 
 
A short circuit can at least be 
assumed between the pins of 
elements or generally bet-
ween each connection line. 
Real shorts have rarely a 
resistance value of exactly 0 
ohms, most shorts are in the 
range between 0 and 500 
ohms.  

 
To describe fault models precisely, the cause and the 

appearance of errors must be understood. Especially for 
analogue circuits, the circuit layout and the element’s para-
meters influence the possible errors and the effect on the 
circuit’s performance. Defects or undesirable characteristics 
can sneak up not only during manufacturing, but can also 
arise at the utilization phase. In Table I and Table II the reader 
will find general physical defects and the equivalent electro-
nic fault models. 

The following Tables III, IV, and V provide an overview 
of the basic types of analogue elements and error models. We 
show the simplest errors at first, i.e., shorts by lines and, 
therefore, without a resistance value or a capacitance. 
Complete interruptions (i.e., opens) of elements are modelled 
by disabling the elements (i.e., switching the respective 
element OFF). Parameter errors, interruptions and weak 
shorts can be expressed by variation of the respective 
parameter values. Basically, the implemented fault simulator 
can be applied to all assigned elements and circuit models in 
the EDA environment. All types of faults are described by a 
script language (VBScript) and applied directly to the circuit 
schematics before each fault simulation. 

 
 
 
 
 
 
 

TABLE III.  SELECTION OF FAULT MODELS FOR A RESISTOR  

Element with fault injection 

 
Resistor 

                
Strong short                         Strong short   

 
 

            
              Parameter fault                     Strong open                
        (Depending on model) 
 
 

 

TABLE IV.  SELECTION OF FAULT MODELS FOR A TRANSISTOR.  

Element with fault injection 

 
Transistor 

                      
                 Strong short             BS short (S = substrate)  

    
    

      
BC short             BE short             CE short   

 
Faults of any combination of the ports are possible. 
 
 

 

 

 

RES
ID=RES1
R=Rx kOhm

RES
ID=RES1
R=Rx Ohm
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ID=RES1
R=Rx * (1+K) kOhm
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TABLE V.  SELECTION OF FAULT MODELS FOR A DIODE AND 
CAPACITOR.  

Element with fault injection 

Diode 

               
              Strong short                      Strong short 

              
             Strong open                    Parameter fault 

                                      (Depending on the model) 

Capacitor 

                 
            Strong short                         Strong short  

 

 
Parameter fault  

(Depending on model) 

V. STRATEGIES FOR REDUCING SIMULATION TIME 

One of the main problems in analogue fault simulation is 
the relatively long simulation time. Acceleration of fault si-
mulation / reducing the simulation duration is an important 
goal. To reduce the runtime of simulation with fault injection 
the following two general approaches are feasible: reduce the 
amount of fault injections (simulation runs) or speed up the 
simulation procedure for every fault injection. Several appro-
aches are described in the literature to speed-up the simula-
tion process, including fault or test case ordering [10–13] and 
distributed fault simulation [14][15]. Several approaches for 
multiple fault generation [16][17] and simulation [18][19] for 
reliability analysis are described in the literature as well. In 
the following, the reader can find an overview of several tech-
niques on how the simulation duration can be reduced. 

A. Concurrent or parallel fault simulation 

Simulation by using multiple physical or logical CPU 
cores can accelerate the circuit or fault simulation, respec-
tively. Multiple CPU cores can simulate parts of a single 
circuit, and collect the results at the end. Then the faster 
simulating cores wait for the final part of the simulation and 
can then move on to the next fault simulation. In the general 
case of fault simulation, the different injected faults can be 

simulated independently. For this reason, the fault simulation 
can be performed very efficiently because each CPU core 
simulates a different fault. If one CPU core finishes earlier, it 
starts immediately with the next fault simulation. Parallel 
fault simulation can also be processed on independent work-
stations that are connected over a network, see [20].  

B. Random fault simulation 

Simple random sampling is a widely known test method 
for selecting errors in digital systems. It is a classic approach, 
where a small subset of errors out of the large set of errors is 
selected to determine certain characteristics of the system. 
The achieved accuracy depends on the size of the selected 
subset. For example, if the number of potential or possible 
errors is 5,000 and 500 errors have been selected and simula-
ted, then the reduction in simulation time is a factor of 10. 

C. Fault models on higher level of abstraction (e.g., for ele-
ments not being subject to fault injection) 

A widely known method to speed up the fault simulation 
is partial simulation on a higher level of abstraction. Parts of 
the circuit can be simulated, for example, in the form of an 
analogue description language (Verilog-AMS or VHDL-
AMS) or by simplified SPICE models. The fault simulator 
can thereby accelerate simulation runs by replacing all ele-
ments without fault injection through behavioural models 
which are on a higher level and more efficient to simulate. In 
most cases, this reduces the simulation time significantly. 

 
TABLE VI.  IMPORTANT PARAMETERS THAT INFLUENCING ELEMENT 

FAILURE RATE. BASED ON [21].  

D is a symbol for dominant parameter and x for important parameter. 

Stress parameters 
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Ambient temp. D    D D D D D 

Junction temp. D D D D      

Power stress D D D x D  x   

Voltage stress D x x x  D x x  

Current stress D   x    x x 

Breakdown voltage x x x x      

Technology x x x x x x x x x 

Complexity x       x  

Package x x x x  x  x x 

Application x x x x  D  x x 

Contact construction x x x x    D D 

Range x x  x x x   x 

Production maturity x x x x x x x x x 

Environment x x x x x x x x x 

Quality x x x x x x x x x 

DIODE1
ID=D2
Nu=1.2
T=21.85 * (1 + K) DegC
Io=1e-6 * (1 + K) mA

CAP
ID=CAP1
C=Cx pF

CAP
ID=CAP1
C=Cx pF

CAP
ID=CAP1
C=Cx * (1 + K) pF
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D. Probability of occurrence of element defects 

Some studies have examined the probability of occur-
rence of individual element fault types. In Table VI, the 
reader will find the most relevant stress parameter types that 
influence the failure rate of analogue electronic elements. 
Table VII provides an overview of statistical distributions of 
faults for different electronic elements. It can be noted that 
60% to 100% of analogue element’s defects are some kind of 
shorts and opens. The remaining faults are mainly drifts of 
parameter values. The fault simulation can be performed only 
on the most likely types of element faults (e.g., 70%). The 
less likely faults can be omitted. 
 

TABLE VII.  STATISTICAL INDICATOR VALUE FOR FAILURE MODES 
BASED ON [21]. 

Element Shorts Opens Drift 

Bipolar transistors 80 20  

Field effect transistors (FET) 80 10 10 

Diodes (Si)          general purpose 80 20  

            Zener 70 20 10 

Resistor,                     fixed (film)  60 40 

Capacitors                      foil 15 80 5 

                                   ceramic 70 10 20 

                                     Ta (solid) 80 15 5 

                                   AI (wet) 30 30 40 

Coils 20 80  

Quartz crystals  80 20 

E. Early abortion of a simulation run 

The values of element parameters and the tolerance bands 
are specified before fault simulation starts. This can be done 
by simulating the fault-free circuit and determining the 
allowed deviations of the measures values. During the fault 
simulation procedure, the measured values can be compared 
with the predetermined tolerance range. If some value is 
above or below the specified limits of fault-free circuit, then 
it is immediately clear that the injected fault has not been 
tolerated. Consequently, further simulation of this injected 
fault can be skipped. The reduction in simulation time de-
pends on the amount of faults that allow early abortion of 
simulation and, moreover, the point in time when the to-
lerance band is violated. This method has already been used 
in transient analogue fault simulation, see [10, 22] for 
example. 

F. Leave out elements outside the test object 

Circuit may include some “additional elements” that are 
not of interest because they are outside the test object. They 
should be excluded from simulation.  

G. Leave out unrecognizable defects 

In special cases, it may be clear that some faults of an 
element do not cause an effect that can be recognized. 
Examples are unconnected elements, special types of 
elements, or elements that fulfil some protection 
functionality. Since the simulator would not notice any effect 
of an injected fault, the respective fault case can be omitted.  

H. Monotonicity assumption 

A basic rule (if applicable) is the assumption of mono-
tonic behaviour. Two joint faults will not be tolerated, if at 
least one of them is not tolerated when injected as single fault. 
By “tolerated” we mean that the circuit under diagnosis 
(CUD) is still providing its function according to a given 
maximum deviation from the expected behaviour. The 
monotonicity assumption has the advantage that many 
irrelevant multiple fault combinations can be discarded 
before being simulated. The effect to the number of test cases 
(= simulation runs) is quite substantial. Discarding dual faults 
will also result in a smaller number of considered triple faults, 
and so on. The simulation time is reduced for all multiple 
fault combinations (see Figure 3). The dashed line shows that 
the quantity of simulation runs can be reduced significantly 
by assuming monotonic behaviour as follows: When a set F 
of multiple simultaneous faults is not tolerated, then also a 
superset of F will not be tolerated. Consequently, the superset 
needs not be simulated. The assumption of monotonic 
behaviour is slightly pessimistic. In practice there are rare 
exceptions. Think of two resistors in series, each of 1 k. If 
both of them are parametrically faulty and half their 
resistance down to 500 ohms, then the voltage at the point 
between them does not necessarily change. It may still be 
correct. Monotonicity does not always exist. However, we 
have observed that it exists in an overwhelming majority of 
cases with only very few exceptions. In general, the monoto-
nicity assumption reduces the number of both considered 
circuit elements and failure modes per element. 

 
Figure 3. Complexity of fault simulation for an example medium sized 

circuit (20 elements with two fault modes per element). Only ten 
elements are considered at monotonicity assumption for multiple  

faults (≥ 2). 
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I. Standardized input parameters 

During fault simulation, a circuit simulation is made for 
every fault injection. Repetitive parts of the circuit simula-
tion, such as DC analysis (steady-state) can be conducted 
only once by simulation of the fault-free circuit. Thus, the 
fault simulations finish earlier and reduce the total simulation 
time. 

J. Measurement-based simulation 

Once the measurement point within the circuit have been 
defined, one may identify parts of the circuit that do not 
exercise an influence to these measurement points. Con-
sequently, the non-relevant parts can be excluded from simu-
lation to achieve an overall acceleration. The exclusion does 
not affect the checks whether or not the tolerance bands are 
violated. Note that the decision on an exclusion is more 
complicated in analogue circuits compared to digital circuits, 
because there may be no clear input and output pins of an 
element. In a bipolar transistor, for example, the base current 
determines the collector current. However, depending on the 
operation conditions, there may also be an influence from the 
collector to the base. 

K. Faults classes (focus of this paper)  

In the remainder of the paper, we present a further method 
how the number of simulation runs can be reduced, see 
Sections  IV and V. Before we describe the method we will 
formalize the selection of test cases to achieve a better pre-
cision in the description of the fault classes (= sets of fault 
cases) the new method is making use of. 

Formally, the relationship between faults, elements of the 
circuit, injections and simulation runs is defined by the 
following tuples and functions:  
1) C = {c0, … , cm} is the set of circuits to be evaluated, 

c0  C is the fault-free circuit. 
2) E = {transistor1, transisitor2, ..., resistor1, ..., …} 

is the set of elements of the circuit c0. 
3) F = {short_circuit, open_circuit, parameter_mod., ...} 

is the set of considered fault modes of the circuit c0. 
4) I = { (f, e) F  E : probability of fault f in element e} 

is the set of potential injections. 
5) I* = { i*  I : (x  i*, y  i*, x y) x|E  y|E } 

is the set of potential multiple injections. I* is a subset 
of the power set of I. By x|E and y|E we denote the 
element of injection x or injection y, respectively. 
The inequality x|E  y|E excludes joint injection of 
different faults to the same element of the circuit.  

6) Q : F  E  [0, 1] 
is the probability of fault f  F in a faulty element 
e  E. If a fault f  F is not applicable to an element  
e  E then Q(f, e) = 0. For a given faulty element e  E 
the sum of fault probabilities is always 1:   
fF: Q(f, e) =1. 

Example: If we assume only two fault modes F = {open, 
short} and only two elements E = {R1, R2}, there may be four 

injections I = {(open, R1), (open, R2), (short, R1), (short, R2)} 
and four double injections. In all we obtain:   
 
I*  =  { {(open, R1)},  {(open, R2)},  {(short, R1)},   
{(short, R2)},  {(open, R1), (open, R2)},   
{short, R1), (short, R2)},  {(open, R1), (short, R2)},   
{short, R1), (open, R2)} }. 
 
If shorts are more likely for R1 and opens are more likely for 
R2 we may get, say, 
Q(open, R1) = 0.2,   Q(short, R1) = 0.8    (0.2 + 0.8 = 1). 
Q(open, R2) = 0.4,   Q(short, R2) = 0.6    (0.4 + 0.6 = 1). 

P : E  [0,1] is the function indicating the probability that 
element e  E is fault-free. 

Function R: I*{0,1} is a simulation run with joint 
injection of all faults from i  I*. The method returns 1 if the 
injected faults are tolerated according to the tolerance cri-
terion, otherwise 0. In the following, the fault simulation 
procedure is described for single, double, triple fault injec-
tion. 

Single faults: 
I1 = I is the set of single fault injections to be evaluated by 
simulation.  
T1 = { i  I1 : R( {i} ) = 1 } is the set of single injections that 
have been tolerated. The function 
ଵܲ 	ൌ ∑ Rሺiሻ		ሺ1	– 	Pሺi|Eሻሻ		Qሺi|Fሻ୧୍భ ∏ Pሺy|Eሻ୷	ሺ୍భ\୧ሻ   

expresses the probability of tolerated single injections. 
Double faults:  

I2 = {{(f, e), (f’, e’)} :  (f, e)  T1,  (f’, e’)  T1,  e  e’ } 
is the set of double injections to be evaluated by simulation. 
I2 has been defined on the basis of T1, not I1, because the non-
tolerated injections from the complement I1 \ T1 are excluded 
due to the assumption of monotonicity. 
T2 = {i*  I2 : R(i*) = 1} is the set of double injections that 
have been tolerated. 
ଶܲ ൌ ∑ Rሺi∗ሻ∏ ሺ1–Pሺx|EሻሻQሺx|Fሻ୶୧∗୧∗୍మ ∏ Pሺy|Eሻ୷ሺ୍మ\୧∗ሻ   

expresses the probability of tolerated double injections. 
Triple faults:   

I3={{(f, e), (f',e’), (f’’,e’’)} : {(f, e), (f’, e’)}T2,  
(f’’, e’’)T1,  e  e’,  e  e’’,  e’  e’’}  is the set of triple 
injections to be evaluated by fault simulation. Again, the non-
tolerated previous injections have been excluded due to the 
assumption of monotonicity.  
T3 = {i*  I3 : R(i*) = 1} is the set of triple injections that 
have been tolerated.  

ଷܲ ൌ ∑ Rሺi∗ሻ∏ ൫1–Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗୍య ∏ Pሺy|Eሻ୷ሺ୍య\୧∗ሻ  
expresses the probability of tolerated triple injections. 

The injections of higher numbers of joint faults are 
defined accordingly. 

VI. FAULT CLASS ALGORITHM 

The algorithm is an heuristic approach that is based on an 
observation of simulation results [4] of so-called fault classes. 
A fault class is a set of test cases (series of fault injections) 
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all of which have the same number of faults and the same 
types of fault modes, independent of the element where the 
faults are injected. 

Experimental results show that three fault classes FC1, 
FC2 and FC3 for multiple faults mostly exhibit a monotoni-
cally increasing degree of tolerance, when the fault distance 
between FC1 and FC2 is 1, and also the fault distance 
between FC2 and FC3 is 1. By a fault distance d(FC, FC’) 
(similar to the Hamming distance), we understand the number 
of fault modes that differ between FC and FC’. The degree t 
of tolerance is defined by the number of tolerated test cases 
divided by the number of all test cases of a fault class. 

The case d(FC1, FC2) = d(FC2, FC3) = 1 means that each 
pair of fault classes differs by just one fault mode. For 
example, consider the following fault classes:   
 
FC1 (open, open, open),   
FC2 (open, open, short),   
FC3 (open, short, short).  
 
The fault distances are d(FC1, FC2) = d(FC2, FC3) = 1 and 
d(FC1, FC3) = 2. Typically this leads to   
either  t(FC1) ≤ t(FC2) ≤ t(FC3)   
or t(FC1) ≥ t(FC2) ≥ t(FC3).  
From this observation we developed an algorithm that can be 
characterized as follows: 
 Search for fault classes FC1, FC2, FC3 satisfying the 

condition above – or search for even longer chains (>3 
multiple faults) of fault classes with this property. 

 Determine which of the chains will typically lead to  
an ascending or descending degree of tolerance. To 
decide that, analysing the fault classes of the previous 
fault depth is necessary, see Step 2 of this section below.  

 Quantify the tolerance of the first and the last fault class 
of a chain by simulation. 

 Quantify the tolerance of the remaining fault classes of a 
chain by interpolation. 
Fault classes are defined by the modes of the injected 

faults and their number of simultaneously injected faults.  
FC2(x, y) denotes a fault class for two joint injections, namely 
fault modes x and y. Since the fault classes  
FC2(x, y) and FC2(y, x) are identical, we enforce a unique 
notion by assuming an order among the fault modes. Since 
fault modes x and y may be identical (injection of two faults 
of identical mode into different elements), we require x  y 
for FC2(x,y). For an arbitrary fault class FCn(x1, x2, …, xn) 
we require x1  x2  …  xn. Then, a fault class for double 
fault injection is defined as follows:  
FC2(x, y)  =  { {(f, e), (f’, e’)}  I2 : f = x, f’ = y }  
A fault class for the injection of n faults is defined accord-
ingly: FCn(x1,…, xn) = {{(f1, e1),…, (f1, e1)} In : fi = xi}. 

The subset of test cases in a fault class FCn(x1,…, xn) that 
has been tolerated is called tolerance class TCn(x1,…, xn). The 
following holds: TCn(x1,…, xn)  FCn(x1,…, xn). Moreover, 
TCn(x1,…, xn) = FCn(x1,…, xn)  TCn. The quotient of the 

cardinality of TCn(x1,…, xn) and the cardinality of  
FCn(x1,…, xn) is called tolerance degree tn(x1,…, xn). Thus 

t௡ሺxଵ, … , 	x௡ሻ ൌ 	
|TC௡ሺxଵ,… , 	x௡ሻ|
|FC௡ሺxଵ, … , 	x௡ሻ|

 

The heuristic approach is defined in the following steps 
and the algorithm is shown in Figures 4 and 5. We assume 
that the tolerance classes TC1(…) and TC2(…) have already 
been generated by the respective fault simulations. Con-
sequently, the tolerance degrees t1(…) and t2(…) are known. 
Then the following steps describe how the fault classes 
FC3(…) for triple fault simulation – or interpolation! – are 
formed. 

A. Step 1 – Generation Of Fault Classes 

A fault class FC3(x, y, z) with 3 faults is generated by 
combining all test cases of TC2 with all test cases of TC1 in 
the following way: Each union of a test case tc2  TC2(x,y) 
and a test case tc1  TC1(z) form a test case tc3  FC3(x,y,z) 
provided  x, y and z inject faults into different elements. Since 
we avoid double injections into a single element, the 
respective combined injections {x, y, z} are filtered out. The 
corresponding algorithm is shown in Figure 4. In the algo-
rithm we denote the fault mode of injection x by x|F. 

 
Figure 4. Generate Fault Classes. 

B. Step 2 – Search Fault Class Chains 

The search of fault class chains starts with a search in TC2. 
We inspect all pairs of tolerance classes TC2(x, y) and  
TC2(x’, y’) and filter out those with a fault distance of 1 and, 
moreover, with “significantly unequal” tolerance degrees 
(the difference should be at least). Formally: 
d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   
where  may be in the range of 5% of the absolute values. 
From the fault distance 1 we can conclude that either 
x = x’ or y = y’. In the following, we assume x = x’ and  
y  y’ without loss of generality. 

From the two tolerance classes TC2(x, y) and TC2(x, y’) 
we derive the following chain of three fault classes:  
< FC3(x, y, y),  FC3(x, y, y’),  FC3(x, y’, y’) > 
According to the observation of likely monotonicity (see 
Section II and Section IV) we only simulate the test cases of 
the first and the last fault class in the chain to obtain the 
tolerance degrees t3(x, y, y) and t3(x, y’, y’), respectively. The 
tolerance degree t3(x, y, y’) of the inner fault class in the chain 
is obtained by interpolation:  
t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2.  
The algorithm can be seen in Figure 5. 

Procedure 1 Generate Fault Classes 
for all test cases tc2  TC2 do 
   for all test cases tc1 e TC1 do 
   {  test case {x, y, z} = i j; 
       if x|E  y|E and x|E  z|E and y|E  z|E then 
          FC3(x|F, y|F, z|F) = FC3(x|F, y|F, z|F)  {x, y, z} 
   } 
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Figure 5. Search Fault Class Chains. 

C. Step 3 – Calculation of Probabilities 

The simulations of FC3(x, y, y) and FC3(x, y’, y’) deliver 
the set of all tolerated test cases, this means the two tolerance 
classes TC3(x, y, y) and TC3(x, y’, y’). The probability of 
tolerating the respective triple faults can be calculated by the 
formula presented in Section III. When this formula is 
applied to tolerance class TC3(x, y, y) we obtain 

∑ ∏ ൫1–Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗்஼యሺ௫,௬,௬ሻ ∏ Pሺy|Eሻ୷ሺ்஼యሺ௫,௬,௬ሻ\୧∗ሻ   

For tolerance class TC3(x, y’, y’) we obtain: 

∑ ∏ ൫1– Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗்஼యሺ௫,௬ᇱ,௬ᇱሻ ∏ Pሺy|Eሻ୷ሺ்஼యሺ௫,௬ᇱ,௬ᇱሻ\୧∗ሻ    

The probability of tolerating the triple faults of the inter-
polated fault class cannot be obtained directly, because the 
test cases of this class have not been simulated. For this 
reason, we approximate the probability by multiplying the 
respective formula with the tolerance degree: 
	t3ሺx, y, y’ሻ ∙
∑ ∏ ቀ1–Pሺx|Eሻቁ Qሺx|Fሻxi∗i∗ܶ3ܥሺݕ,ݕ,ݔ′ሻ

∏ Pሺy|Eሻyቀܶ3ܥሺݕ,ݕ,ݔ′ሻ\i
∗
ቁ

  

The tolerance class of the non-simulated fault class is 
generated by selecting a portion of t3(x, y, y’) test cases at 
random. For the injection of more than three joint faults, 
steps 1 to 3 can be applied accordingly. 

VII. EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed solution to 
reduce the simulation time is evaluated. The fault simulation 
framework [4] is used to evaluate the dependability of five 
example electronic circuits. It should be noted that for the 
used circuits only permanent faults (e.g., short, open or para-
meter deviations) have been considered. The simulation time 
(fault injection and simulation) depends on the number of 
elements, the number of injected faults per element and the 
fault depth. Appropriate fault tolerance criteria have been 
defined on circuit outputs. 

All of the circuits have been evaluated in two ways. The 
first evaluation was without generation of fault classes (all 
multiple fault combinations have been simulated with the 
monotonicity assumption). The second evaluation applied the 
new method with fault classes (therefore, only a portion of 
the test cases needed to be simulated). The remaining fault 
classes (which have not been simulated) have been evaluated 
by interpolation according to the algorithm in steps 1 to 3. 
This way the new method can be compared directly to the 
solution without using fault classes.  

The result of the comparison of some simulations results 
is shown in Table VIII. The second to last column shows that 
the speedup achieved by the new approach is 50% in the 
average (see bottom line of Table VIII: “Average 1.53”). It 
has to be paid by an error in the results (see last column). The 
error refers to the absolute value of the fraction “result with 
new method” / “result without new method”. A deviation 
around 1.3% is noticed in the average (see bottom line of 
Table 8: “Average 1.28 %”). 

VIII. CONCLUSION 

Fault simulation of analogue circuits with multiple faults 
is an important problem to deal with, since their appearance 

TABLE VIII.  COMPARISON OF SOME FAULT SIMULATION RESULTS

Circuit name No. of simulation runs Speed-up factor Error 

 Number of 
simulation runs for 

all possible fault 
combinations 

Number of 
simulation runs 

with monotonicity 
assumption 

Number of simulation 
runs  

for the new approach 
with fault classes 

Our approach over 
simulation with  
monotonicity  
assumption 

Our approach over 
fault simulation 

with monotonicity  
assumption 

Two stage BJT amplifier with 
feedback (Fault depth 1-4) 

22422 356 284 1.25 5.4 % 

LM741 AMP [23] 
(Fault depth 1-4) 

3923175 2090 1718 1.22 0.5 % 

Broadband VHF/UHF amplifier 
[24] (Fault depth 1-3) 

695525 18187 10928 1.66 1.8 % 

Limiter BSP [25]  
(Fault depth 1-4) 

1045256 1208 858 1.40 0.2 % 

Voltage stabilizer circuit I 
(Fault depth 1-3) 

8358 4088 2688 1.53 0.15 % 

Voltage stabilizer circuit II 
(Fault depth 1-4) 

317248 11173 5209 2.14 0.10 % 

  

 

 Average: 1.53 Average.: 1.28 % 

   

Procedure 2 Search Fault Class Chains 
for all pairs (TC2, TC2’) of tolerance classes with two injections do 
   if d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   then 
   { fault class FC = FC3(x, y, y), 
      fault class FC’ = FC3(x, y, y’), 
      fault class FC’’ = FC3(x, y’, y’); 
      t3(x, y, y) = simulation of FC3(x, y, y); 
      t3(x, y’, y’) = simulation of FC3(x, y’, y’); 
      t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2; 
   } 
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is unavoidable in real systems. In this paper, we have intro-
duced the fault class concept for our approach to reduce the 
simulation time for multiple fault analysis. We discussed the 
idea of fault classes, providing conditions that ensure chains 
of fault classes with ascending or descending degree of 
tolerance. We implemented the procedure and evaluated it 
experimentally. In this paper, we have successfully reduced 
the duration of software-based fault simulation for multiple 
faults and different fault modes. In the evaluated example 
circuits, our methodology shows that the number of 
simulation runs is significantly lower while preserving the 
precision quite well. 
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