
Multiple Faults Simulation of Analogue Circuits

Eduard Weber, Klaus Echtle
University of Duisburg-Essen

Dependability of Computing Systems
Essen, Germany

e-mail: (echtle, weber)@dc.uni-due.de

Abstract—Software-based fault simulation can support all
abstraction levels, is flexible and allows reliability assessment at
different stages in the design process. Fault diagnosis and relia-
bility analysis are increasingly important in circuit design and
determine the product’s time-to-market. In this paper, we pro-
vide a new efficient method and systematic scheme for reducing
the time for simulation of multiple simultaneous faults and/or
multiple failure modes per element in an analogue circuit. By
arranging similar multiple faults in groups, some so-called
failure classes can be interpolated with an adequate precision
rather than being evaluated by time-consuming simulation. The
technique can be used to perform efficient multiple fault diag-
nosis based on multiple fault injection. Finally, the implemented
procedure is validated with some simulation results.

Keywords—Fault simulation; fault modeling; multiple fault
injection; fault diagnosis; reliability prediction

I. INTRODUCTION

Fault diagnosis of circuits is a well-developed research
field with a long tradition. The first scientific publications are
from early 1960s. Circuit simulation is nowadays an accepted
standard in the development of electronic circuits. Small to
complex analogue, digital and mixed-signal circuits can be
tested and verified with appropriate simulation software. A
lot of progress has been made in the development of software
tools for the design and verification of analogue and/or
mixed-signal circuits, both in the open-source and in the
commercial sector. Already two decades ago the method of
analogue fault modelling has been suggested to enable both
fault diagnosis and reliability evaluation. Different appro-
aches have been developed for fault simulation of analogue
and mixed-signal circuits. Previous work on analogue fault
modelling focuses on parametric defects (soft faults) and
catastrophic defects (hard faults). Parametric faults are
typically simulated with parameter modifications, while open
and short defects are dealt with via injecting a high or low
resistance on transistor level, respectively.

Fault simulation is generally done by injecting a fault on
transistor level and analysing the circuit’s behaviour by
applying single DC, transient or AC simulation for linear or
nonlinear circuit models. Also, software tools for automatic
fault injection and efficient test generation have been
developed. However, mostly single faults have been con-
sidered in the past.

Test cases for fault injection have been generated often by
hand from an understanding of the design and fault expecta-
tions of major circuit elements (components). Most of the
fault simulators for analogue circuits presented in the litera-
ture cover only parameter or catastrophic faults. Some tools
have attempted to automate test generation and the fault
simulation process for analogue circuits. The runtime prob-
lem of analogue circuit simulation also needs to be addressed,
and advanced simulation techniques are required to accele-
rate the simulation to an acceptable proportion [1].

Most existing fault simulators use the Simulation
Program with Integrated Circuits Emphasis (SPICE), and
modify SPICE net lists to represent faults [2] - [3]. The fault
simulation software [4] used for the work presented in this
paper defines circuit faults in Visual Basic (VB-Script)
language and allows flexible and very accurate fault
modelling. The main goal of this paper is to speed up the
simulation for multiple faults.

II. DIAGNOSIS OF ANALOGUE CIRCUITS

Test and fault diagnosis of analogue circuits are necessary
despite the ongoing digitalization. Analogue circuits are
always required to form the interface to the physical environ-
ment. Analogue signals do not consist of just "low" or "high"
values like in the digital field. In principle, infinite numbers
of signal values are conceivable. The time and frequency
characteristics of analogue signals bring another dimension,
and are an additional issue within circuit assessment. The
propagation of faults is more difficult than in the digital field.
Typically, it does not occur in just one direction, but could be
from any element in all directions towards neighbour ele-
ments within the circuit. A particular fault in an element (like
resistor, capacitor, transistor, etc.) does not provide explicit
information about the resulting signal values. Therefore, a
calculation of signal values (done by circuit simulation) is
always necessary.

Nonlinear models, parasitic elements, charges between
elements or energy-storing elements make diagnosis and
reliability analysis more complex [5]. Because of these
reasons, the automation level of fault diagnosis procedures
for analogue circuits has not yet achieved the development
level realized in the digital field. The reason for the limited
automation is simply due to the nature of analogue circuits.
The predominant design methodology for analogue circuits is
still the individual design based on the designer’s experience.

112

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The simulation of multiple simultaneous faults is even
more complex. The consideration of multiple faults is im-
portant for the following reasons. Different fault modes can
be present in the elements of complex circuits. Their occur-
rence increases even more in rough environments. Also,
multiple parametric faults can be present in the field as a
result of ageing, environmental stress and design errors.
Moreover, multiple fault diagnosis is relevant when a new
circuit design is introduced and a high failure density exists.
The restriction to single fault simulation only can lead to
incorrect evaluation results.

One of the main issues in software-based fault simulation
is the relatively long runtime in case of complex analogue
circuits. In general, the runtime increases rapidly with the
simulated circuit size, the number of faulty elements (fault
depth or multiple fault simulation) and the failure modes per
element. When performing fault simulation, the runtime is
mostly determined by the number of fault injections. Each
injection of a multiple fault has to be simulated separately.
Usually, the simulation time for single faults (at transistor
level) is tractable because of available computer perfor-
mance. Also, the performance of Electronic Design Auto-
mation (EDA) tools has been increased during the last
decade. However, multiple fault injection is a challenge with
respect to runtime.

The fault simulation framework [4] used for the work
presented in this paper can deal with several fault modes
injected simultaneously into elements of a circuit. We con-
sider permanent hard (open and short circuit) and soft faults
(parametric faults). Please note, that even shorts and opens
are dealt with as analogue (not digital) faults, because the
simulator generates the analogue signal throughout the
complete circuit in the case of these faults.

Figure 1 shows how the total simulation time (here
number of simulation runs) is influenced by the number of
multiple faults and the failure modes per element. The
diagram shows a medium-sized circuit example composed of
20 elements where faults are injected, each of which leads to
two different failure modes. The solid line represents the
number of simulation runs for all necessary test cases. This
quantity increases rapidly with the number of multiple faults.

Figure 1. Complexity of fault simulation for an example medium-sized

circuit (20 elements with two fault modes per element).

III. FAULT SIMULATION FRAMEWORK

The starting point of EDA-based fault simulation is the
circuit’s schematic model. The designer can construct a cir-
cuit with all available elements by using some circuit design
tool. A wide variety of measurements and graphical data
representation (also denoted graphs) can be utilized. NI AWR
Microwave Office® (National Instruments) [6] features
broad post-simulation capabilities, allowing displaying of
computed data (measurements, such as gain, noise, power, or
voltage) on rectangular graphs, polar grids, Smith Charts,
histograms, tabular graphs, and 3D graphs, etc. Every defined
measurement point is associated with a particular graph.

The fault simulator [4] uses the graphs to check the
circuit’s behaviour after fault injection by defining tolerance
bands and success areas. The defined tolerance bands and
success areas are stored as parts of so-called goals. The circuit
under diagnosis (CUD) and its success can be measured in
detail by inspection of multiple graphs. After each simulation
run the deviation between the fault-free and faulty response
is computed for preselected measurements. If the difference
exceeds the tolerance band, the injected fault is declared as
not being tolerated by the circuit.

The general process of fault simulation is depicted in
Figure 2. In the first step the fault-free circuit is simulated.
Fault modes for circuit elements are defined within the GUI
of the implemented fault simulator (implemented on top of
the NI AWR Microwave Office simulator [6]). Usually,
several fault modes are possible for each element. Faults are
injected into the user-defined circuit via predefined fault
modes. The fault injection is done automatically and is
undone after every fault simulation run. This means a direct
fault modification inside the original circuit within the EDA
environment. In addition to the hard faults (open or short
circuit) also soft faults (mostly parameter faults that provide
a flexible parameter variation of the models of circuit
elements) are possible. Faults may change the electrical
values (increase or decrease) permanently or for a short time
(e.g., temperature), and modify the behaviour of the
individual elements which can also lead to a global
malfunction of the circuit. After each simulation,
measurement data are compared with user-defined goals
specified by the tolerance bands. Multiple faults are
considered to increase testing quality and enable better
reliability analysis. Obviously, the quality of fault simulation
highly depends on a realistic set of faults. The fault simulator
can automatically generate hard faults (open-circuit, short-
circuit) depending on the elements utilized in the circuit.
Additionally, parameter faults can be generated
automatically or specified by the user.

113

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulation
procedure

Simulation of fault‐free
circuit

Simulation with
fault injection in
error depth x

Fault model
with

 N Faults

Error depth
reached

Search new test
cases for error
depth x +1

New test
cases?

Simulation end

Failure
Analysis and
Evaluation

YES

NO

YES

NO

Comparison series of
measurements / Goals
between error‐free and
faultinjected circuit

Stimulus /
Drivers /

Test Signals

Figure 2. General process of fault simulation.

IV. DEFECTS AND ANALOGUE FAULT MODELING

Fault simulation can only work effectively when the fault
model corresponds as closely as possible to the real physical
defects. One common approach is the usage of inductive fault
analysis (IFA) [7]. The circuit layout and statistical selection
among production errors form the basis for IFA. Physical
defects of the circuit can be modelled by fault models at the
transistor level or at higher abstraction levels. Finally, the
fault list will be developed and adapted by the probability of
occurrence. Due to the characteristics of analogue circuits,
infinitely interim parameter values are possible, so there are
an infinite number of analogue errors and, therefore, indeter-
minable fault models. Therefore, an optimal subset of faults
must be selected to do fault simulation with realistic simu-
lation duration and sufficient accuracy. The defined fault list
at the transistor level serves as input for the sequential or
concurrent fault simulation. The generation of the fault list is
therefore a very important step of fault simulation, since it
directly determines the quality of the simulation results and
time of the analysis. The modelled defects or error types are
simulated with test stimuli according to the profile of circuit’s
application. The results of fault simulation are used to
validate its fault tolerance, fault detection and the circuit’s
quality in general. In other words, Fault simulation reveals
the redundancy of a circuit (whether implemented in the
circuit intentionally or just by chance).

The physical types of defects can be distinguished into
two basic classes. Either a fault has arisen from neighbour-
ship according to the layout, or from an element itself.

Layout-based faults include defects that are only possible
in special layout configurations (e.g., placement of elements).
In particular, shorts are only possible between neighbouring
elements (with very few exceptions). Shorts between distant
elements need not be considered in the fault model.
Accordingly, parasitic capacitances arise when two electrical
connection lines are close enough to each other and the
frequency is in the respective range. Trivially, open faults can
only occur where a connecting line exists in the layout.

Element-based fault types are defects, which arise within
an element. Typically, the model of these faults expresses the
element’s behaviour between its terminals (e.g., emitter, base
and collector of a bipolar transistor, connection pins of
resistors, capacitors, diodes, etc.). Six primary error types
(three shorts and three opens) can be defined for elements
having three terminals and at least two types for passive
elements with two pins. Traditionally, opens and shorts are
modelled in form of resistors with high or low resistance,
respectively. Open defects have a value greater than 1 G
and shorts between 0 and a few ohms, within chips up to 500
ohms [8]. If the resistance of a short is relative small, we
speak of a strong short, otherwise of a weak short.
Analogously, we define a strong open by an almost infinite
resistance, and a weak open by a resistance of some 100 M
or G. Real analogue circuit’s faults have ideal shorts and
opens only in rare cases. Therefore, a set of appropriate para-
meter values must be chosen.

TABLE I. PHYSICAL DEFECTS AND ELECTRONIC FAULT MODELS FOR
OPEN ERRORS.

Physical defect
open defect

Open circuit [9]

Electronic fault model

The resistance value (R) has a
high value (> 100MΩ).

An open defect can have
multiple subtypes:
 Complete (strong) open,

without any electrical
connection

 Partial (weak) open,
variates the line resistance

114

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. PHYSICAL DEFECTS AND ELECTRONIC FAULT MODELS FOR
SHORT ERRORS.

Physikal defect
bridging defect / short

Short circuit with low

resistance [9]

Short circuit with high

resistance [9]

Electronic fault model

The resistance value (R) has
a low value (< 500Ω).

A short circuit can at least be
assumed between the pins of
elements or generally bet-
ween each connection line.
Real shorts have rarely a
resistance value of exactly 0
ohms, most shorts are in the
range between 0 and 500
ohms.

To describe fault models precisely, the cause and the

appearance of errors must be understood. Especially for
analogue circuits, the circuit layout and the element’s para-
meters influence the possible errors and the effect on the
circuit’s performance. Defects or undesirable characteristics
can sneak up not only during manufacturing, but can also
arise at the utilization phase. In Table I and Table II the reader
will find general physical defects and the equivalent electro-
nic fault models.

The following Tables III, IV, and V provide an overview
of the basic types of analogue elements and error models. We
show the simplest errors at first, i.e., shorts by lines and,
therefore, without a resistance value or a capacitance.
Complete interruptions (i.e., opens) of elements are modelled
by disabling the elements (i.e., switching the respective
element OFF). Parameter errors, interruptions and weak
shorts can be expressed by variation of the respective
parameter values. Basically, the implemented fault simulator
can be applied to all assigned elements and circuit models in
the EDA environment. All types of faults are described by a
script language (VBScript) and applied directly to the circuit
schematics before each fault simulation.

TABLE III. SELECTION OF FAULT MODELS FOR A RESISTOR

Element with fault injection

Resistor

Strong short Strong short

 Parameter fault Strong open
 (Depending on model)

TABLE IV. SELECTION OF FAULT MODELS FOR A TRANSISTOR.

Element with fault injection

Transistor

 Strong short BS short (S = substrate)

BC short BE short CE short

Faults of any combination of the ports are possible.

RES
ID=RES1
R=Rx kOhm

RES
ID=RES1
R=Rx Ohm

RES
ID=RES1
R=Rx * (1+K) kOhm

S

C

B

E

1

2

3

4 S

C

B

E

1

2

3

4

S

C

B

E

1

2

3

4

S

C

B

E

1

2

3

4
S

C

B

E

1

2

3

4

RES
ID=RES1
R=Rx kOhm

115

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. SELECTION OF FAULT MODELS FOR A DIODE AND
CAPACITOR.

Element with fault injection

Diode

 Strong short Strong short

 Strong open Parameter fault

 (Depending on the model)

Capacitor

 Strong short Strong short

Parameter fault

(Depending on model)

V. STRATEGIES FOR REDUCING SIMULATION TIME

One of the main problems in analogue fault simulation is
the relatively long simulation time. Acceleration of fault si-
mulation / reducing the simulation duration is an important
goal. To reduce the runtime of simulation with fault injection
the following two general approaches are feasible: reduce the
amount of fault injections (simulation runs) or speed up the
simulation procedure for every fault injection. Several appro-
aches are described in the literature to speed-up the simula-
tion process, including fault or test case ordering [10–13] and
distributed fault simulation [14][15]. Several approaches for
multiple fault generation [16][17] and simulation [18][19] for
reliability analysis are described in the literature as well. In
the following, the reader can find an overview of several tech-
niques on how the simulation duration can be reduced.

A. Concurrent or parallel fault simulation

Simulation by using multiple physical or logical CPU
cores can accelerate the circuit or fault simulation, respec-
tively. Multiple CPU cores can simulate parts of a single
circuit, and collect the results at the end. Then the faster
simulating cores wait for the final part of the simulation and
can then move on to the next fault simulation. In the general
case of fault simulation, the different injected faults can be

simulated independently. For this reason, the fault simulation
can be performed very efficiently because each CPU core
simulates a different fault. If one CPU core finishes earlier, it
starts immediately with the next fault simulation. Parallel
fault simulation can also be processed on independent work-
stations that are connected over a network, see [20].

B. Random fault simulation

Simple random sampling is a widely known test method
for selecting errors in digital systems. It is a classic approach,
where a small subset of errors out of the large set of errors is
selected to determine certain characteristics of the system.
The achieved accuracy depends on the size of the selected
subset. For example, if the number of potential or possible
errors is 5,000 and 500 errors have been selected and simula-
ted, then the reduction in simulation time is a factor of 10.

C. Fault models on higher level of abstraction (e.g., for ele-
ments not being subject to fault injection)

A widely known method to speed up the fault simulation
is partial simulation on a higher level of abstraction. Parts of
the circuit can be simulated, for example, in the form of an
analogue description language (Verilog-AMS or VHDL-
AMS) or by simplified SPICE models. The fault simulator
can thereby accelerate simulation runs by replacing all ele-
ments without fault injection through behavioural models
which are on a higher level and more efficient to simulate. In
most cases, this reduces the simulation time significantly.

TABLE VI. IMPORTANT PARAMETERS THAT INFLUENCING ELEMENT

FAILURE RATE. BASED ON [21].

D is a symbol for dominant parameter and x for important parameter.

Stress parameters
 H

yb
ri

d
ci

rc
ui

ts

B
ip

ol
ar

 tr
an

si
st

or
s

F
E

T
s

D
io

de
s

R
es

is
to

rs

C
ap

ac
it

or
s

C
oi

ls
, t

ra
ns

fo
rm

.

R
el

ay
s,

 s
w

it
ch

es

C
on

ne
ct

or
s

Ambient temp. D D D D D D

Junction temp. D D D D

Power stress D D D x D x

Voltage stress D x x x D x x

Current stress D x x x

Breakdown voltage x x x x

Technology x x x x x x x x x

Complexity x x

Package x x x x x x x

Application x x x x D x x

Contact construction x x x x D D

Range x x x x x x

Production maturity x x x x x x x x x

Environment x x x x x x x x x

Quality x x x x x x x x x

DIODE1
ID=D2
Nu=1.2
T=21.85 * (1 + K) DegC
Io=1e-6 * (1 + K) mA

CAP
ID=CAP1
C=Cx pF

CAP
ID=CAP1
C=Cx pF

CAP
ID=CAP1
C=Cx * (1 + K) pF

116

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Probability of occurrence of element defects

Some studies have examined the probability of occur-
rence of individual element fault types. In Table VI, the
reader will find the most relevant stress parameter types that
influence the failure rate of analogue electronic elements.
Table VII provides an overview of statistical distributions of
faults for different electronic elements. It can be noted that
60% to 100% of analogue element’s defects are some kind of
shorts and opens. The remaining faults are mainly drifts of
parameter values. The fault simulation can be performed only
on the most likely types of element faults (e.g., 70%). The
less likely faults can be omitted.

TABLE VII. STATISTICAL INDICATOR VALUE FOR FAILURE MODES
BASED ON [21].

Element Shorts Opens Drift

Bipolar transistors 80 20

Field effect transistors (FET) 80 10 10

Diodes (Si) general purpose 80 20

 Zener 70 20 10

Resistor, fixed (film) 60 40

Capacitors foil 15 80 5

 ceramic 70 10 20

 Ta (solid) 80 15 5

 AI (wet) 30 30 40

Coils 20 80

Quartz crystals 80 20

E. Early abortion of a simulation run

The values of element parameters and the tolerance bands
are specified before fault simulation starts. This can be done
by simulating the fault-free circuit and determining the
allowed deviations of the measures values. During the fault
simulation procedure, the measured values can be compared
with the predetermined tolerance range. If some value is
above or below the specified limits of fault-free circuit, then
it is immediately clear that the injected fault has not been
tolerated. Consequently, further simulation of this injected
fault can be skipped. The reduction in simulation time de-
pends on the amount of faults that allow early abortion of
simulation and, moreover, the point in time when the to-
lerance band is violated. This method has already been used
in transient analogue fault simulation, see [10, 22] for
example.

F. Leave out elements outside the test object

Circuit may include some “additional elements” that are
not of interest because they are outside the test object. They
should be excluded from simulation.

G. Leave out unrecognizable defects

In special cases, it may be clear that some faults of an
element do not cause an effect that can be recognized.
Examples are unconnected elements, special types of
elements, or elements that fulfil some protection
functionality. Since the simulator would not notice any effect
of an injected fault, the respective fault case can be omitted.

H. Monotonicity assumption

A basic rule (if applicable) is the assumption of mono-
tonic behaviour. Two joint faults will not be tolerated, if at
least one of them is not tolerated when injected as single fault.
By “tolerated” we mean that the circuit under diagnosis
(CUD) is still providing its function according to a given
maximum deviation from the expected behaviour. The
monotonicity assumption has the advantage that many
irrelevant multiple fault combinations can be discarded
before being simulated. The effect to the number of test cases
(= simulation runs) is quite substantial. Discarding dual faults
will also result in a smaller number of considered triple faults,
and so on. The simulation time is reduced for all multiple
fault combinations (see Figure 3). The dashed line shows that
the quantity of simulation runs can be reduced significantly
by assuming monotonic behaviour as follows: When a set F
of multiple simultaneous faults is not tolerated, then also a
superset of F will not be tolerated. Consequently, the superset
needs not be simulated. The assumption of monotonic
behaviour is slightly pessimistic. In practice there are rare
exceptions. Think of two resistors in series, each of 1 k. If
both of them are parametrically faulty and half their
resistance down to 500 ohms, then the voltage at the point
between them does not necessarily change. It may still be
correct. Monotonicity does not always exist. However, we
have observed that it exists in an overwhelming majority of
cases with only very few exceptions. In general, the monoto-
nicity assumption reduces the number of both considered
circuit elements and failure modes per element.

Figure 3. Complexity of fault simulation for an example medium sized

circuit (20 elements with two fault modes per element). Only ten
elements are considered at monotonicity assumption for multiple

faults (≥ 2).

117

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

I. Standardized input parameters

During fault simulation, a circuit simulation is made for
every fault injection. Repetitive parts of the circuit simula-
tion, such as DC analysis (steady-state) can be conducted
only once by simulation of the fault-free circuit. Thus, the
fault simulations finish earlier and reduce the total simulation
time.

J. Measurement-based simulation

Once the measurement point within the circuit have been
defined, one may identify parts of the circuit that do not
exercise an influence to these measurement points. Con-
sequently, the non-relevant parts can be excluded from simu-
lation to achieve an overall acceleration. The exclusion does
not affect the checks whether or not the tolerance bands are
violated. Note that the decision on an exclusion is more
complicated in analogue circuits compared to digital circuits,
because there may be no clear input and output pins of an
element. In a bipolar transistor, for example, the base current
determines the collector current. However, depending on the
operation conditions, there may also be an influence from the
collector to the base.

K. Faults classes (focus of this paper)

In the remainder of the paper, we present a further method
how the number of simulation runs can be reduced, see
Sections IV and V. Before we describe the method we will
formalize the selection of test cases to achieve a better pre-
cision in the description of the fault classes (= sets of fault
cases) the new method is making use of.

Formally, the relationship between faults, elements of the
circuit, injections and simulation runs is defined by the
following tuples and functions:
1) C = {c0, … , cm} is the set of circuits to be evaluated,

c0  C is the fault-free circuit.
2) E = {transistor1, transisitor2, ..., resistor1, ..., …}

is the set of elements of the circuit c0.
3) F = {short_circuit, open_circuit, parameter_mod., ...}

is the set of considered fault modes of the circuit c0.
4) I = { (f, e) F  E : probability of fault f in element e}

is the set of potential injections.
5) I* = { i*  I : (x  i*, y  i*, x y) x|E  y|E }

is the set of potential multiple injections. I* is a subset
of the power set of I. By x|E and y|E we denote the
element of injection x or injection y, respectively.
The inequality x|E  y|E excludes joint injection of
different faults to the same element of the circuit.

6) Q : F  E  [0, 1]
is the probability of fault f  F in a faulty element
e  E. If a fault f  F is not applicable to an element
e  E then Q(f, e) = 0. For a given faulty element e  E
the sum of fault probabilities is always 1:
fF: Q(f, e) =1.

Example: If we assume only two fault modes F = {open,
short} and only two elements E = {R1, R2}, there may be four

injections I = {(open, R1), (open, R2), (short, R1), (short, R2)}
and four double injections. In all we obtain:

I* = { {(open, R1)}, {(open, R2)}, {(short, R1)},
{(short, R2)}, {(open, R1), (open, R2)},
{short, R1), (short, R2)}, {(open, R1), (short, R2)},
{short, R1), (open, R2)} }.

If shorts are more likely for R1 and opens are more likely for
R2 we may get, say,
Q(open, R1) = 0.2, Q(short, R1) = 0.8 (0.2 + 0.8 = 1).
Q(open, R2) = 0.4, Q(short, R2) = 0.6 (0.4 + 0.6 = 1).

P : E  [0,1] is the function indicating the probability that
element e  E is fault-free.

Function R: I*{0,1} is a simulation run with joint
injection of all faults from i  I*. The method returns 1 if the
injected faults are tolerated according to the tolerance cri-
terion, otherwise 0. In the following, the fault simulation
procedure is described for single, double, triple fault injec-
tion.

Single faults:
I1 = I is the set of single fault injections to be evaluated by
simulation.
T1 = { i  I1 : R({i}) = 1 } is the set of single injections that
have been tolerated. The function
ଵܲ 	ൌ ∑ Rሺiሻ		ሺ1	– 	Pሺi|Eሻሻ		Qሺi|Fሻ୧୍భ ∏ Pሺy|Eሻ୷	ሺ୍భ\୧ሻ

expresses the probability of tolerated single injections.
Double faults:

I2 = {{(f, e), (f’, e’)} : (f, e)  T1, (f’, e’)  T1, e  e’ }
is the set of double injections to be evaluated by simulation.
I2 has been defined on the basis of T1, not I1, because the non-
tolerated injections from the complement I1 \ T1 are excluded
due to the assumption of monotonicity.
T2 = {i*  I2 : R(i*) = 1} is the set of double injections that
have been tolerated.
ଶܲ ൌ ∑ Rሺi∗ሻ∏ ሺ1–Pሺx|EሻሻQሺx|Fሻ୶୧∗୧∗୍మ ∏ Pሺy|Eሻ୷ሺ୍మ\୧∗ሻ

expresses the probability of tolerated double injections.
Triple faults:

I3={{(f, e), (f',e’), (f’’,e’’)} : {(f, e), (f’, e’)}T2,
(f’’, e’’)T1, e  e’, e  e’’, e’  e’’} is the set of triple
injections to be evaluated by fault simulation. Again, the non-
tolerated previous injections have been excluded due to the
assumption of monotonicity.
T3 = {i*  I3 : R(i*) = 1} is the set of triple injections that
have been tolerated.

ଷܲ ൌ ∑ Rሺi∗ሻ∏ ൫1–Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗୍య ∏ Pሺy|Eሻ୷ሺ୍య\୧∗ሻ
expresses the probability of tolerated triple injections.

The injections of higher numbers of joint faults are
defined accordingly.

VI. FAULT CLASS ALGORITHM

The algorithm is an heuristic approach that is based on an
observation of simulation results [4] of so-called fault classes.
A fault class is a set of test cases (series of fault injections)

118

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all of which have the same number of faults and the same
types of fault modes, independent of the element where the
faults are injected.

Experimental results show that three fault classes FC1,
FC2 and FC3 for multiple faults mostly exhibit a monotoni-
cally increasing degree of tolerance, when the fault distance
between FC1 and FC2 is 1, and also the fault distance
between FC2 and FC3 is 1. By a fault distance d(FC, FC’)
(similar to the Hamming distance), we understand the number
of fault modes that differ between FC and FC’. The degree t
of tolerance is defined by the number of tolerated test cases
divided by the number of all test cases of a fault class.

The case d(FC1, FC2) = d(FC2, FC3) = 1 means that each
pair of fault classes differs by just one fault mode. For
example, consider the following fault classes:

FC1 (open, open, open),
FC2 (open, open, short),
FC3 (open, short, short).

The fault distances are d(FC1, FC2) = d(FC2, FC3) = 1 and
d(FC1, FC3) = 2. Typically this leads to
either t(FC1) ≤ t(FC2) ≤ t(FC3)
or t(FC1) ≥ t(FC2) ≥ t(FC3).
From this observation we developed an algorithm that can be
characterized as follows:
 Search for fault classes FC1, FC2, FC3 satisfying the

condition above – or search for even longer chains (>3
multiple faults) of fault classes with this property.

 Determine which of the chains will typically lead to
an ascending or descending degree of tolerance. To
decide that, analysing the fault classes of the previous
fault depth is necessary, see Step 2 of this section below.

 Quantify the tolerance of the first and the last fault class
of a chain by simulation.

 Quantify the tolerance of the remaining fault classes of a
chain by interpolation.
Fault classes are defined by the modes of the injected

faults and their number of simultaneously injected faults.
FC2(x, y) denotes a fault class for two joint injections, namely
fault modes x and y. Since the fault classes
FC2(x, y) and FC2(y, x) are identical, we enforce a unique
notion by assuming an order among the fault modes. Since
fault modes x and y may be identical (injection of two faults
of identical mode into different elements), we require x  y
for FC2(x,y). For an arbitrary fault class FCn(x1, x2, …, xn)
we require x1  x2  …  xn. Then, a fault class for double
fault injection is defined as follows:
FC2(x, y) = { {(f, e), (f’, e’)}  I2 : f = x, f’ = y }
A fault class for the injection of n faults is defined accord-
ingly: FCn(x1,…, xn) = {{(f1, e1),…, (f1, e1)} In : fi = xi}.

The subset of test cases in a fault class FCn(x1,…, xn) that
has been tolerated is called tolerance class TCn(x1,…, xn). The
following holds: TCn(x1,…, xn)  FCn(x1,…, xn). Moreover,
TCn(x1,…, xn) = FCn(x1,…, xn)  TCn. The quotient of the

cardinality of TCn(x1,…, xn) and the cardinality of
FCn(x1,…, xn) is called tolerance degree tn(x1,…, xn). Thus

t௡ሺxଵ, … , 	x௡ሻ ൌ 	
|TC௡ሺxଵ,… , 	x௡ሻ|
|FC௡ሺxଵ, … , 	x௡ሻ|

The heuristic approach is defined in the following steps
and the algorithm is shown in Figures 4 and 5. We assume
that the tolerance classes TC1(…) and TC2(…) have already
been generated by the respective fault simulations. Con-
sequently, the tolerance degrees t1(…) and t2(…) are known.
Then the following steps describe how the fault classes
FC3(…) for triple fault simulation – or interpolation! – are
formed.

A. Step 1 – Generation Of Fault Classes

A fault class FC3(x, y, z) with 3 faults is generated by
combining all test cases of TC2 with all test cases of TC1 in
the following way: Each union of a test case tc2  TC2(x,y)
and a test case tc1  TC1(z) form a test case tc3  FC3(x,y,z)
provided x, y and z inject faults into different elements. Since
we avoid double injections into a single element, the
respective combined injections {x, y, z} are filtered out. The
corresponding algorithm is shown in Figure 4. In the algo-
rithm we denote the fault mode of injection x by x|F.

Figure 4. Generate Fault Classes.

B. Step 2 – Search Fault Class Chains

The search of fault class chains starts with a search in TC2.
We inspect all pairs of tolerance classes TC2(x, y) and
TC2(x’, y’) and filter out those with a fault distance of 1 and,
moreover, with “significantly unequal” tolerance degrees
(the difference should be at least). Formally:
d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|  
where  may be in the range of 5% of the absolute values.
From the fault distance 1 we can conclude that either
x = x’ or y = y’. In the following, we assume x = x’ and
y  y’ without loss of generality.

From the two tolerance classes TC2(x, y) and TC2(x, y’)
we derive the following chain of three fault classes:
< FC3(x, y, y), FC3(x, y, y’), FC3(x, y’, y’) >
According to the observation of likely monotonicity (see
Section II and Section IV) we only simulate the test cases of
the first and the last fault class in the chain to obtain the
tolerance degrees t3(x, y, y) and t3(x, y’, y’), respectively. The
tolerance degree t3(x, y, y’) of the inner fault class in the chain
is obtained by interpolation:
t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2.
The algorithm can be seen in Figure 5.

Procedure 1 Generate Fault Classes
for all test cases tc2  TC2 do
 for all test cases tc1 e TC1 do
 { test case {x, y, z} = i j;
 if x|E  y|E and x|E  z|E and y|E  z|E then
 FC3(x|F, y|F, z|F) = FC3(x|F, y|F, z|F)  {x, y, z}
 }

119

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Search Fault Class Chains.

C. Step 3 – Calculation of Probabilities

The simulations of FC3(x, y, y) and FC3(x, y’, y’) deliver
the set of all tolerated test cases, this means the two tolerance
classes TC3(x, y, y) and TC3(x, y’, y’). The probability of
tolerating the respective triple faults can be calculated by the
formula presented in Section III. When this formula is
applied to tolerance class TC3(x, y, y) we obtain

∑ ∏ ൫1–Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗்஼యሺ௫,௬,௬ሻ ∏ Pሺy|Eሻ୷ሺ்஼యሺ௫,௬,௬ሻ\୧∗ሻ

For tolerance class TC3(x, y’, y’) we obtain:

∑ ∏ ൫1– Pሺx|Eሻ൯Qሺx|Fሻ୶୧∗୧∗்஼యሺ௫,௬ᇱ,௬ᇱሻ ∏ Pሺy|Eሻ୷ሺ்஼యሺ௫,௬ᇱ,௬ᇱሻ\୧∗ሻ

The probability of tolerating the triple faults of the inter-
polated fault class cannot be obtained directly, because the
test cases of this class have not been simulated. For this
reason, we approximate the probability by multiplying the
respective formula with the tolerance degree:
	t3ሺx, y, y’ሻ ∙
∑ ∏ ቀ1–Pሺx|Eሻቁ Qሺx|Fሻxi∗i∗ܶ3ܥሺݕ,ݕ,ݔ′ሻ

∏ Pሺy|Eሻyቀܶ3ܥሺݕ,ݕ,ݔ′ሻ\i
∗
ቁ

The tolerance class of the non-simulated fault class is
generated by selecting a portion of t3(x, y, y’) test cases at
random. For the injection of more than three joint faults,
steps 1 to 3 can be applied accordingly.

VII. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed solution to
reduce the simulation time is evaluated. The fault simulation
framework [4] is used to evaluate the dependability of five
example electronic circuits. It should be noted that for the
used circuits only permanent faults (e.g., short, open or para-
meter deviations) have been considered. The simulation time
(fault injection and simulation) depends on the number of
elements, the number of injected faults per element and the
fault depth. Appropriate fault tolerance criteria have been
defined on circuit outputs.

All of the circuits have been evaluated in two ways. The
first evaluation was without generation of fault classes (all
multiple fault combinations have been simulated with the
monotonicity assumption). The second evaluation applied the
new method with fault classes (therefore, only a portion of
the test cases needed to be simulated). The remaining fault
classes (which have not been simulated) have been evaluated
by interpolation according to the algorithm in steps 1 to 3.
This way the new method can be compared directly to the
solution without using fault classes.

The result of the comparison of some simulations results
is shown in Table VIII. The second to last column shows that
the speedup achieved by the new approach is 50% in the
average (see bottom line of Table VIII: “Average 1.53”). It
has to be paid by an error in the results (see last column). The
error refers to the absolute value of the fraction “result with
new method” / “result without new method”. A deviation
around 1.3% is noticed in the average (see bottom line of
Table 8: “Average 1.28 %”).

VIII. CONCLUSION

Fault simulation of analogue circuits with multiple faults
is an important problem to deal with, since their appearance

TABLE VIII. COMPARISON OF SOME FAULT SIMULATION RESULTS

Circuit name No. of simulation runs Speed-up factor Error

 Number of
simulation runs for

all possible fault
combinations

Number of
simulation runs

with monotonicity
assumption

Number of simulation
runs

for the new approach
with fault classes

Our approach over
simulation with
monotonicity
assumption

Our approach over
fault simulation

with monotonicity
assumption

Two stage BJT amplifier with
feedback (Fault depth 1-4)

22422 356 284 1.25 5.4 %

LM741 AMP [23]
(Fault depth 1-4)

3923175 2090 1718 1.22 0.5 %

Broadband VHF/UHF amplifier
[24] (Fault depth 1-3)

695525 18187 10928 1.66 1.8 %

Limiter BSP [25]
(Fault depth 1-4)

1045256 1208 858 1.40 0.2 %

Voltage stabilizer circuit I
(Fault depth 1-3)

8358 4088 2688 1.53 0.15 %

Voltage stabilizer circuit II
(Fault depth 1-4)

317248 11173 5209 2.14 0.10 %

 Average: 1.53 Average.: 1.28 %

Procedure 2 Search Fault Class Chains
for all pairs (TC2, TC2’) of tolerance classes with two injections do
 if d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   then
 { fault class FC = FC3(x, y, y),
 fault class FC’ = FC3(x, y, y’),
 fault class FC’’ = FC3(x, y’, y’);
 t3(x, y, y) = simulation of FC3(x, y, y);
 t3(x, y’, y’) = simulation of FC3(x, y’, y’);
 t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2;
 }

120

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is unavoidable in real systems. In this paper, we have intro-
duced the fault class concept for our approach to reduce the
simulation time for multiple fault analysis. We discussed the
idea of fault classes, providing conditions that ensure chains
of fault classes with ascending or descending degree of
tolerance. We implemented the procedure and evaluated it
experimentally. In this paper, we have successfully reduced
the duration of software-based fault simulation for multiple
faults and different fault modes. In the evaluated example
circuits, our methodology shows that the number of
simulation runs is significantly lower while preserving the
precision quite well.

REFERENCES

[1] E. Weber and K. Echtle, “Efficient Simulation of Multiple
Faults for Reliability Analysis of Analogue Circuits,” in
DEPEND 2015. The Eighth International Conference on
Dependability, 2015, pp. 23–28.

[2] Z. R. Yang and M. Zwolinski, “Fast, robust DC and transient
fault simulation for nonlinear analogue circuits,” in Design,
Automation and Test in Europe Conference and Exhibition
1999. Proceedings, 1999, pp. 244–248.

[3] H. Spence, “Automatic analog fault simulation,” in
Conference Record. AUTOTESTCON '96, 1996, pp. 17–22.

[4] E. Weber and K. Echtle, “Simulation-Based Reliability
Evaluation for Analog Applications,” in 2014 IEEE
International Reliability Physics Symposium (IRPS), The
Institute of Electrical and Electronics Engineers, 445 Hoes
Lane, Piscataway, NJ 08855, USA, 2014, 4B.2.1-4B.2.6.

[5] P. Kabisatpathy, A. Barua, and S. Sinha, Fault Diagnosis of
Analog Integrated Circuits. Boston, MA: Springer, 2005.

[6] Microwave Office | NI AWR Design Environment.
Available:
http://www.awrcorp.com/de/products/microwave-office
(2016, Feb. 01).

[7] J. Shen, W. Maly, and F. Ferguson, “Inductive Fault
Analysis of MOS Integrated Circuits,” IEEE Des. Test.
Comput, vol. 2, no. 6, 1985, pp. 13–26.

[8] R. Rodriguez-Montanes, Bruls, E. M. J. G, and J. Figueras,
“Bridging defects resistance in the metal layer of a CMOS
process,” J Electron Test, vol. 8, no. 1, 1996, pp. 35–46.

[9] H.-J. Wunderlich, Ed, Models in Hardware Testing: Lecture
Notes of the Forum in Honor of Christian Landrault.
Dordrecht: Springer Science+Business Media B.V, 2010.

[10] J. Hou and A. Chatterjee, “Concurrent transient fault
simulation for analog circuits,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst, vol. 22, no. 10, 2003.

[11] P. N. Variyam and A. Chatterjee, “FLYER: fast fault
simulation of linear analog circuits using polynomial

waveform and perturbed state representation,” in Tenth
International Conference on VLSI Design, 1997, pp. 408–
412.

[12] A. V. Gomes, R. Voorakaranam, and A. Chatterjee,
“Modular fault simulation of mixed signal circuits with fault
ranking by severity,” IEEE International Symposium on
Defects and Fault Tolerance in VLSI Systems, 1998, pp.
341–348.

[13] H. Hashempour et al., “Test time reduction in
analogue/mixed-signal devices by defect oriented testing:
An industrial example,” Design, Automation & Test in
Europe, 2011.

[14] T. Markas, M. Royals, and N. Kanopoulos, “On distributed
fault simulation,”, Computer, vol. 23, no. 1, 1990.

[15] C. P. Ravikumar, V. Jain, and A. Dod, “Faster fault
simulation through distributed computing,” Tenth
International Conference on VLSI, pp. 482–487, 1997.

[16] S. Kajihara, T. Sumioka, and K. Kinoshita, “Test generation
for multiple faults based on parallel vector pair analysis,”,
International Conference on Computer Aided Design
(ICCAD), 1993, pp. 436–439.

[17] H. H. Zheng, A. Balivada, and J. A. Abraham, A Novel Test
Generation Approach for Parametric Faults in Linear
Analog Circuits: Proceedings / 14th IEEE VLSI Test
Symposium, Princeton, New Jersey. Los Alamitos, Calif:
IEEE Computer Society Press, 1996.

[18] K. Saab, N. Ben-Hamida, and B. Kaminska, “Parametric
fault simulation and test vector generation,” Meeting on
Design Automation, 2000, pp. 650–656.

[19] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, “Multiple
faults: modeling, simulation and test,” 7th Asia and South
Pacific Design Automation Conference, pp. 592–597, 2002.

[20] S. Spinks, “ANTICS analogue fault simulation software,” in
IEE Colloquium on Testing Mixed Signal Circuits and
Systems, 1997, p. 13.

[21] A. Birolini, Reliability engineering: Theory and practice,
7th ed. Heidelberg, New York: Springer, 2014.

[22] Junwei Hou, CONCERT: a concurrent transient fault
simulator for nonlinear analog circuits. New York, NY:
Association for Computing Machinery, 1998.

[23] National Semiconductor, LM741 Operational Amplifier.
Available: http://web.mit.edu/6.301/www/LM741.pdf
(2015, Mar. 05).

[24] C. G. Gentzler and S. K. Leong, “Broadband VHF/UHF
amplifier design using coaxial transformers,” High
Frequency Electronics, pp. 42–51,
http://www.polyfet.com/HFE0503_Leong.pdf, 2003.

[25] AWR Corporation, Bipolar Limiting Amplifier Circuit.
Available:
https://awrcorp.com/download/faq/english/docs/Getting_St
arted/Tonal_Analysis.html (2015, Mar. 05).

121

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

