International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

230

Frameworks for Natural Language Processing of Textual Reqitements

Andres Arellano Edward Zontek-Carney Mark A. Austin
Government of Chile, Northrop Grumman Corporation, Department of Civil Engineering,
Santiago, Chile Baltimore, MD 21240, USA University of Maryland,
Email: andres.arellano@gmail.com Email: Ecarneyl@umd.edu College Park, MD 20742, USA

Email: austin@isr.umd.edu

Abstract—Natural language processing is the application of au- specified, or perhaps ambiguous. State-of-the art praftes
tomated parsing and machine learning techniques to analyze Figure 1) involves the manual translation of text into a semi
standard text. Applications of NLP to requirements engineeéing formal format (suitable for representation in a requiretaen
include extraction of ontologies from a requirements spedication, database). This is a slow and error prone process. A second
and use of NLP to verify the consistency and/or completeness a key problem is one of completeness. For projects defined by

requirements specification. This paper describes a new appach .
to the interpretation, organization, and management of texual hundreds/thous.an.ds Qf textual requwement.s, how do we know
a system description is complete and consistent?

requirements through the use of application-specific ontalgies
and natural language processing. We also design and exereis
prototype software tool that implements the new framework m Scope and ObjectivesLooking ahead, our work is motivated

a simplified model of an aircraft. by a strong need for computer processing tools that will
Keywords-Systems Engineering; Ontologies; Natural Language help requirements engineers overcome and manage these chal
Processing; Requirements, Rule C’hecking. lenges. During the past twenty years, significant work hasmbe

done to apply natural language processing (NLP) to the domai
of requirements engineering [3] [4] [5]. Applications rang
from using NLP to extract ontologies from a requirements
Problem Statement. Model-based systems engineering de-specification, to using NLP to verify the consistency and/or
velopment is an approach to systems-level development inompletion of a requirements specification.

I. INTRODUCTION

Our near-term research objectives are to use modern lan-
SWage processing tools to scan and tag a set of requirements,
and offer support to systems engineers in their task of aefini
and maintaining a comprehensive, valid and accurate body of
Pequirements. The general idea is as follows: Given a set of
textual descriptions of system requirements, we couldyaeal
Fhem using natural language processing tools, extractieg t
objects or properties that are referenced within the regquir
Pages of Text Simplified Model of Requirements ments. Then, we could match these properties against a define
ontology model corresponding to the domain of this parécul
requirement. Such a system would throw alerts in case of
system properties lacking requirements, and requirentbats

are redundant and/or conflicting.

approach to the interpretation, organization, and managéem
of textual requirements through the use of applicatiorcijoe
ontologies and natural language processing. It builds upo
our previous work in exploring ways in which model-based
systems engineering might benefit from techniques in nhtur
language processing [1] [2].

manual
translation

Figure 2 shows the framework for automated transfor-
mation of text (documents) into textual requirements (semi
formal models) described in this paper. Briefly, NLP proeess
ing techniques are applied to textual requirements to ifjent
Figure 1. Manual translation of text into high-level textuequirements. parts of Speech — sentences are partitioned into words and
then classified as being parts of speech (e.g., nouns, verbs,

etc.). Then, the analyzed text is compared against semantic

As engineering systems become increasingly complex th'f’hodels consisting of domain ontologies and ontologies for

need for automation arises. A key required capability is thespecific applications. System ontologies are matched with

identification and management of requirements during th%éstem properties; subsystem ontologies are matched whith s

early phases of the system design process, when erors g 1 oronerties. and component ontologies are matchiad wi
cheapest and easiest to correct. While engineers are lgpoklrz:

for semi-formal and formal models to work with, the reality omponent properties. Feedback is necessary when semantic

X i . S escriptions of applications do not have complete coverage
remains that many large-scale projects begin with hundreddefined by the domain ontologies.

— sometimes thousands — of pages of textual requirements,
which may be inadequate because they are incomplete, under The contents of this paper are as follows: Section Il

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

231
Feedback

Pages of Text ¢ Validated Model of Requirements

Y
O

Property Analysis
and Validation

A A

——>» NLP

T T

chunking chinking
grammar grammar

Domain Ontologies

System Properties<«————» System Ontology
Subsystem Propertiese———— Subsystem Ontologies

Component Propertiese«———— Component Ontologies

Figure 2. Framework for automated transformation of texic(onents) into textual requirements (semi-formal models)

explains the role that semantics can play in modern engifl) Requirements are a statement of “what is required.” (2)
neering systems design and management. Its second purpdsegineering models are a statement of “how the required
is to briefly explain state-of-the-art capability in autdima functionality and performance might be achieved,” and (3)
term recognition and automatic indexing. Section Ill déses Ontologies are a statement of “concepts justifying a targat
two aspects of our work: (1) Working with NLTK, and (2) design solution.” During design, mathematical and logiaéds
Chunking and Chinking. The framework for integration of are derived from textual requirements which, in turn, are
NLP with ontologies and textual requirements is covered inconnected to elements in an engineering model. Evaluation
Section IV. Two applications are presented in Section V: (1)of requirements can include checks for satisfaction ofesyst
Requirements and ontologies for a simple aircraft appioat functionality and performance, as well as identification of
and (2) A framework for the explicit representation of mplei conflicts in requirements themselves. A key benefit of our
ontologies. Sections VI and VIl discuss opportunities fttufe approach is that design rule checking can be applied at the

work and the conclusions of this study. earliest stage possible — as long as sufficient data is alaila
for the evaluation of rules, rule checking can commence;
Il. STATE-OF-THE-ART CAPABILITY the textual requirements and engineering models need not be

complete. During the system operation, key questions to be
Role of Semantics in Engineering Systems Design and answered are: What other concepts are involved when a change
Management. A tenet of our work is that methodologies occurs in the sensing model? What requirement(s) might be
for strategic approaches to design will employ semantic deviolated when those concepts are involved in the change? To
scriptions of application domains, and use ontologies anginderstand the inevitable conflicts and opportunities tuloot
rule-based reasoning to enable validation of requirement§rade space studies, it is important to be able to trace back
automated synthesis of potentially good design solutiand, ~and understand cause-and-effect relationships betweageb
communication (or mappings) among multiple discipline [6 at system-component level, and their effect on stakeholder
[7] [8]. A key capability is the identification and managerhen requirements. Present-day systems engineering metlgidslo
of requirements during the early phases of the system desigand tools, including those associated with SysML [11] are no
process, where errors are cheapest and easiest to cornect. Tesigned to handle projects in this way.
systems architecture for state-of-the-art requiremeateabil-
ity and the proposed platform model [9], [10] is shown in Automatic Term Recognition and Automatic Indexing.
the upper and lower sections of Figure 3. In state-of-the-arStrategies for automatic term recognition and automatic in
traceability mechanisms design requirements are comhectelexing fall into the general area of computational linguasst
directly to design solutions (i.e., objects in the engimeger [12]. Algorithms for single-term indexing date back to the
model). Our contention is that an alternative and potdgtial 1950s, and for indexing two or more words to the 1970s [13].
better approach is to satisfy a requirement by asking thélodern techniques for multi-word automatic term reco@miti
basic question: What design concept (or group of desigmre mostly empirical, and employ combinations of linguis-
concepts) should | apply to satisfy a requirement? Desigtic information (e.g., part-of-speech tagging) and stiati
solutions are the instantiation/implementation of thesa-c information acquired from the frequency of usage of terms
cepts. The proposed architecture is a platform because it candidate documents [14] [15]. The resulting terms can
contains collections of domain-specific ontologies and debe useful in more complex tasks such as semantic search,
sign rules that will be reusable across applications. In theuestion-answering, identification of technical termagy,
lower half of Figure 3, the textual requirements, ontology,automated construction of glossaries for a technical domai
and engineering models provide distinct views of a designand ontology construction [16] [17] [18].

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

232
State—of-the—Art Traceability

[Requirements]4 Engineering

Model

Proposed Model for Traceability

Physical System
-) 3 query) implement CEEEE—
Requirements - Design - Engineering [—— N
notification Concept L dam Model .
= Design “ J
[~ Rule Sensors .ff []
Checking »
—) Sensors
A\ J . ;l—/

Visual indicator of requirements status.

Figure 3. Schematics for: (top) state-of-the-art tradégband (bottom) proposed model for ontology-enableatdability for systems design and management.

IIl. NATURAL LANGUAGE PROCESSING OF text = "These prerequisites are known as (conputer)

REQUIREMENTS systemrequi renents and are often used as a
gui del i ne as opposed to an absolute rule."
tokens = nltk.word_tokeni ze(ny_string)

Working with NLTK. The Natural Language Toolkit (NLTK) print tokens
is a mature open source platform for building Python program=>

to work with human language data [19]. ['These’, 'prerequisites’, 'are’, 'known', 'as’,
(', 'conmputer’, ')', 'systenmi, ’'requirements’,
"and', 'are’, 'often’, 'used', 'as', 'a’,
raw text pos-tagged sentences ’ QUI del i ne’ , ‘as’, '’ Opposed’ , 'to’, Tan’,
(string) (list of lists of tuples) " absol ut e’ , "rul e , v]
4
it .. . I The, result of this script is an array that contains all the
text's tokens, each token being a word or a punctuation
bsied Cuned sentenices character. After we have obtained an array with each token
ings) (list of trees) A .. N
— ' (i.e., word) from the original text, we may want to normalize
tokenization Wi R I these tokens. This means: (1) Converting all letters to towe
case, (2) Making all plural words singular ones, (3) Remgvin
gl ing endings from verbs, (4) Making all verbs be in present
— . tense, and (5) Other similar actions to remove meaningless
p“”‘t:gf;ﬁfg“" Ystoftupies differences between words. In NLP jargon, the latter is kmow
asstemmingin reference to a process that strips off affixes and

leaves you with a stem [20]. NLTK provides us with higher
Figure 4. Information extraction system pipeline architee. level stemmerghat incorporate complex rules to deal with the
difficult problem of stemming. The Porter stemmer that uses

))) o the algorithm presented in [21], the Lancaster stemmegdas
Figures 2 and 4 show the essential details of a pipeline fopn [22], or the built in lemmatizer — Stemming is also known as

text (documents) to textual requirements (semi-formaletg)d |emmatization referencing the search of themmaof which
transformation. NLTK provides the basic pieces to accoshpli one is looking an inflected form [20] — found in WordNet.
those steps, each one with different options and degrees gfordnet is an open lexical database of English maintained by
freedom. Starting with an unstructured body of words (i@y Princeton University [23]. The latter is considerably séw
text), we want to obtain sentences (the first step of abstract than all the other ones, since it has to look for the potential
on top of simple words) and have access to each wordtem into its database for each token.

independently (without losing its context or relative piasiing

to its sentence). This process is known takenizationand The next step is to identify what role each word plays
it is complicated by the possibility of a single word being on the sentence: a noun, a verb, an adjective, a pronoun,
associated with multiple token types. Consider, for examnpl preposition, conjunction, numeral, article and inteiiae{24].

the sentence: “These prerequisites are known as (comput€efhis process is known agart of speech taggingor simply
system requirements and are often used as a guideline 80S tagging[25]. On top of POS tagging we can identify
opposed to an absolute rule.” The abbreviated script ofdyth the entities We can think of thesentitiesas “multiple word
code is as follows: nouns” or objects that are present in the text. NLTK provides

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

233
5
——— ——— e ———— ——— - e
When WRB IPRP workVBP asRB aDT senlord) systems NNS NP ., IPRP tuly RB enjoy VBF my PRPS NP
| |
| |
engineer NN work NN
Figure 5. Output from first step on building chunking gramniurpose: Simply pick nouns from test sentence.
s
e e e
When WRB IPRFP workVBP asRB aDT seniordd NP NP IPRP truly RB enjoy VBPF my PRPS NP
|
systemnsa NNS engineer NN work MM
Figure 6. Output from second step on building chunking gramrRurpose: Identify noun phrases.
5
e = PR e e
When WRB IPRP workVBP asRB aDl senior JJ NP .. IPRP tuly RB enoy VBF my PRPS NP
systems NNS angineer NN work NN
Figure 7. Output from third step on building chunking gramni®urpose: Form noun phrases.
5
— e =
When WRB IPRP workVBP asRB abT NP IPRP truly RB enjoy VBF my PRPS NP
= /
seniorJJ systems NNS engineer NN work MM
Figure 8. Output from fourth step on building chunking graannPurpose: Identify the adjective preceding the first nplrase.
5
R — —_——— — —— Jll e —_—
NP work VBP as RB NP truly RB enjoy VBP NP
Whan WRB | PRP aBT seniorJd gystemsNNS engineer NN ~ IPRP my PRPS wiork NN

Figure 9. Output from the example on chinking. Purpose: Ee&lbase verbs and adverbs.

an interface for tagging each token in a sentence with suppléThe first thing to notice from the output is that the tags
mentary information such as its part of speech. Severaktagg are two or three letter codes. Each one represent a lexical
are included, but aoff-the-shelfone is available, based on the category or part of speech. For instance, WRB stands for
Penn Treebank tagset [26]. The following listing shows howWh-adverb including how, where why, etc. PRP stands for

simple is to perform a basic part of speech tagging.

my_string = "Wien | work as a senior systens
engineer, | truly enjoy ny work."
tokens = nl tk.word_tokeni ze(ny_string)

print tokens

t agged_t okens = nl tk. pos_t ag(tokens)
print tagged_tokens
=>

[("Wen, "WRB"), ('I", "PRP"), ("work’, 'VBP),
("as’, '"RB'), ('a', 'Dr’), ('senior’, 'JJ'),
("systens’, "NNS'), ('engineer’, "NN), (',', ',"),
(1, "PRP), ("truly’, "RB'), ('enjoy’, 'VBP),
("my’, "PRP$), ("work’, "NN), (".', ".")]

Personal pronounRB for Adverh JJ for Adjective VBP for
Present verb tenseand so forth [27]. These categories are
more detailed than presented in [24], but they can all beettac
back to those ten major categories. It is important to noge th
possibility of one-to-many relationships between a word an
the possible tags. For our test example, the weodk is first
classified as a verb, and then at the end of the sentence, is
classified as a noun, as expected. Moreover, we found two
nouns (i.e., objects), so we can affirm that the text is saying
something abousystemsan engineerand a work But we
know more than that. We are not only referringato engineer

but to asystems engineeand not only asystems enginegbut

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

234

a senior systems engine€rhis is ourentity and we need to output for this last step. We have identified two entiteenior
recognizeit from the text. In order to do this, we need to systems engineeand work, and that is precisely what we
somehow tag groups of words that represent an entity (e.gwant. Incremental development of the chunking grammar is
sets of nouns that appear in successigsystems’, 'NNS’), complete.

(engineer’, 'NN’)). NLTK offers regular expression processing
support for identifying groups of tokens, specifically noun
phrases, in the text.

Chinking is the complementary process of removing tokens
from a chunk. The script:

. L . - grammar = r"""
Chunking and Chinking. Chunking and chinking are tech- =~ Np: {<.+>+}
niques for extracting information from text. Chunking is a }<VB. *>{
basic technique for segmenting and labeling multi-token se . }<RB. +>{

quences, including noun-phrase chunks, word-level t@eni ., nker = nitk. RegexpPar ser (gr ammar)

tion and part-of-speech tagging. To find the chunk strudire chunks_tree = chunker. par se(tagged_t okens)

a given sentence, a regular expression parser begins wih a fl

structure in which no tokens are chunked. The chunking rulegays chunk everything (i.eNP: {<. * >+1}, and then remove
are applied in turn, successively updating the chunk stract pase verbs (i.elyB) and adverbs (i.e.RB) from the chunk.
Once all of the rules have been invoked, the resulting chunkyhen this script is executed on our test sentence the result i

structure is returned. We can also define patterns for whaski three noun phrase (|d\lP) trees, as shown a|ong the bottom
of words should be excluded from a chunk. These unchunkegf Figure 9.

words are known as chinks. In both cases, the rules for the
parser are specified definingrammars including patterns,

known aschunking or excluding patterns, known akinking V. SYSTEMSINTEGRATION

Figures 5 through 8 iIIustrate.the progressive refinement ofntegration of NLP with Ontologies and Textual Require-
our test sentence by the chunking parser. The purpose of thfients. In order to provide a platform for the integration of
first pass is to simply pick the nouns from our test sentencenatural language processing, ontologies and systemsreequi

relational database (i.e., tables), as well as a systemiitgith

requirements. It can do a basic analysis on these requitsmen
NLTKand match them against the model’s properties, showingtwhic
gnes are covered and which ones are not.

This is accomplished with the script: ments, and to give form to our project, we buitxtReq Vali-

dation a web based software that serves as a proof of concept
gr ammar = "NP: {<NN\>}” for our objectives. The software stores ontology models in a
chunker = nl t k. RegexpPar ser (gr amar)

chunks_tree chunker . par se(tagged_t okens)

Figure 5 is a graphical representation of the results —
identifies “engineer” as a noun. But even this seems not to b
correctly done since we are missing the noun systems. The The software has two main components: The web appli-
problem is that our grammar is overly simple and cannot evegation that provides the user interfaces, handles the &ssin
handle noun modifiers, such as NNS for the representation Q(f)gic, and manages the storage of models and systems. This

plural nouns. The second version of our script: component was built using Ruby on Rails (RoR), a frame-

work to create web applications following the Model View
grammar = "NP: {<NN.«>}" Controller pattern [28]. The views and layouts are supmbrte
chunker = nltk.RegexpParser (granmar)

by the front-end framework Bootstrap [29]; these scrip&s ar
written using Python.

aims to include different types of nouns. The output is shown Figure 10 is collage of elements in the system architec-
in Figure 6. Now we can see all three nouns properly identifiedture and application models and controllers. The modelvie
Unfortunately, the first two are not forming a single nouncontroller software architecture for TextReq is shown i tip
phrase, but two independent phrases. The refined script: |eft-hand schematic. The interface between the web apjglita
and the Python scripts is handled through streams of data
grammar = "NP: {<NN «>+}" at a system level. The content of the streams uses a simple
gﬂﬂﬂtgr_t r‘eg' ikéﬁﬁﬁﬁéffggfgggf’;grg“;gr_z okens) key/valuedata structure, properly documented. The right-hand
schematic is a UML diagram of the application models. The
énodelscorresponding to the MVC architecture of the web
application, reveal the simple design used to represent an
Ontology and a System. The first one consists of a Model
— named after an Ontology Model, and not because it is a

chunks_tree = chunker. parse(tagged_t okens)

take care of this problem by adding a match-one-or-mor
operator+. The output is shown in Figure 7. The final script:

grammar = "NP: {<JJ.*>*<NN. *>+}" " " .
chunker = nlt k. RegexpPar ser (gr ammar) MVC model — that has many Entities. The Entities, in turn,
chunks_tree = chunker . par se(tagged_t okens) have many Properties. The latter is even simpler, congistin

only a Systemthat has manysSystem Requirementslost of
advances the parsing process a few steps further. We alreathe business logic resides in the models; notice, in paaticu
know that we want to consider any kind of adjectives, sosystem-level interpretation of results from the naturaglaage
we add the match-one-or-more operatoafter the adjective processing. And finally, the bottom left schematic is a col-
codeJJ. And we use+ to permit other words to be present lection of UML diagrams for the application controllers. ®u
between the adjective and the noun(s). Figure 8 shows th TextReq's simplicity, its controllers and views are nipst

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/systems_and_measurements/

Database

-L-»

Model
(Active Record)

©

Controller

Model Architecture

Controllers

id cinteger

name 'string

created_at datetime

updated_at :datetime
9,

id Ginteger
name ;string
model_id :integer
created_at :datetime

updated_at :datetime
]

System

id sinteger
name stnng

entity_id integer
created _at :datetime
updated_at :datetime

id nteger

entity_id :integer
model_id tinteger
name string
created _at :datetime

SystemsCantroller

analyze
create
destroy
edit
index
mew
show
update
validate

EntitiesController ModelsController ProperticsController SystemRequirementsController
ereate create create create
destroy destroy destroy destroy
- edit edit edit edit

ApplicationController Sk Index: index b
new new new new
show show show show
update update update update

_layout
_layout _layout _layout _layout
entity_params model_params property_pardms Se1_system_requircment
sel_enlity sel_muodel sel_properly J system_requiremeni_params

_layout
sel_system
system_params

updated_at datetime

SystemRequirement

id :integer

tithe istring
deseription itext
system_id tinteger
created_at :datetime

updared_at datetime

235

Figure 10. System architecture collage. Top left: Softwanehitecture for TextReq validation. Bottom left: UML diagn of application controllers.
Right-hand side: UML diagram of application models.

Back

o 3

Ontology Model EI
+Model: Transportation
+Entity: Aircraft
+Engines
+Wings
+Slides
+Throttle Levels
+Altitude Indicator
Length: 254 meters
Passengers Capacity
TextReq Validation Systems Requrements Modeis Entties Proparties TextReq Validation Systems Requrements Modeils Entties Properties
.
Model Entity
Name: Aircraft
m ::‘-:ck on Properties: engines
Station w.lngs
Rail Line s
Train throttie levers
Route altitude indicator
Aircratt length
passeangers capacity

Figure 11. Relationship among aircraft and transportatiotology models, and an aircraft entity model. Top left: Siifired ontology model for an aircraft.
Bottom left: Detailed view of the Transportation ontologydel. Bottom right: Detailed view for the entity Aircraft.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

236

boilerplate. We have one controller for each part of the rhodeprocess described in Section Ill. The output from these®asti

of the application plus an overall “application controll&ach is shown in Figures 14 and 15, respectively. The analysis

model’s controller implements the methods required to land and validation actions match the system’s properties taken

the client’s requests, following a REST (representatiostate, from its ontology model against information provided in the

transfer) architecture. requirements. In this case study example, the main point to

note is that the Aircraft ontology has the property slide=e(s
igures 11 and 13), but slides is not specified in the textual

requirements (see Figure 12). As a ressiltj des shows up

as an unverified property in Figure 15.

The source code for both the web application and th
Python scripts are openly hosted in GitHub, in the repogitor
https://github.com/aarellano/textrv.

V. CASE STUDY PROBLEMS Case Study 2: Framework for Explicit Representation of

We now demonstrate the capabilities of the proposedultiple Ontologies. In case study 1, a one-to-one associ-

methodology by working through two case study problems. ation relationship between the system and an ontology was
employed, with more complex relationships handled through

hierarchical structures in ontologies. These simplifyiagr
sumptions are suitable when we simply want to show that such
a simple system setup can work. However, as the number of
design requirements and system heterogeneity (i.e., ptaulti

requires two inputs: (1) An ontology model that defines Whatdlsmplmes, mult|ple physics) increases, the only tr_laketa
we are designing, and (2) A system defined by its requirement§athway forward is to make the ontology representations ex-
It is worth noting that while the ontology model and systemP!iCit and to model cause-and-effect dependency relsligs
requirements are unrealistically simple, and deal withy anl among domains in design solutions (i.e., having mixtures

handful of properties, a key benefit is that we can visualiz&?! Niérarchy and network system structures). While each of
them easily. the participating disciplines may have a preference toward

operating their domain as independently as possible from

The upper left-hand side of Figure 11 shows the aircrafthe other disciplines, achieving target levels of perfaroe
model we are going to use. We manage a flattened (i.e., tabulagind correctness of functionality nearly always requirest th
version of a simplified aircraft ontology. This simple ortgy disciplines coordinate activities at key points in the eyst
suggests usage of a hierarchical model structure, withadirc operation. These characteristics are found in a wide ramge o
properties also being represented by their own specializethodern aircraft systems, and they make design a lot more
ontology models. For instance, an ontology model for thedifficult than it used to be.

Wings which in turn could have more nested models, along
with leaf properties likelength Second, it makes sense to To see how such an |mplerr_1entat|on mlg_ht proceed, Figure
include a property in the model even if its value is not set18 illustrates systems validation for requirements cagri
Naturally, this lacks valuable information, but it doesegius ~ SyStem-level aircraft specification and detailed wheetesps
the knowledge that that particular property is part of theleip specification. Requirements would be organized into system

so we can check for its presence level requirements (for the main aircraft system) and ssitesy
level requirements (for the wheels, power systems, and so

The step-by-step procedure for usiiigxtReq Validation forth). Full satisfaction of the high-level wheel requirents
begins with input of the ontology model, then its entitiesgda specification is dependent on lower-level details (e.gunditer,
finally the properties for each entity. The next step is tat@e width, material) being provided for the wheel
a system model and link it to the ontology. We propose a
one-to-one association relationship between the systehaan
ontology, with more complex relationships handled throhigh

Case Study 1: Simple Aircraft Application. We have

exercised our ideas in a prototype application, step-bp-st
development of a simplified aircraft ontology model and a
couple of associated textual requirements. The softwatesy

VI. DISCUSSION

erarchical structures in ontologies. This a;sumption bfimp We have yet to fully test the limits of NLP as applied to
development because when we are creating a system we ornyquirements engineering. The two case studies preseated h
need to refer to one ontology model and one entity. demonstrate a framework for using NLP in conjunction with

domain ontologies in order to verify requirements coverage

The system design is specified througgxtual system o
requirements To enter them we need a system, a title andThere may be other applications of NLP. A framework for

a description. For example, Figure 12 shows all the systerﬁe”fy.Ing ‘r‘eqwr_ements coverage V}fh'le maintaining colsicy
Requirements for the systeldMDBus 787 Notice that each y using “requirements templates ha§ been prop(_)_sed. [31(D]. F
requirement has a title and a description, and it belongs to BliS Paradigm, all requirements describing a specific céipab
specific system. The prototype software has views (details n MuSt be structured according to a predetermined set of tem-
provided here) to highlight connectivity relationshipsvieeen plates. Coverage can then be verified by mapping instances of
the requirements, system model (in this case, a simplifie mplates in a set of decomposed requirements to an original

model of a UMDBus 787), and various aircraft ontology ist of required capabilities. Figure 17 shows a workflowttha
models ' combines the requirements template framework with our own.

Since the requirements follow templates, it is straighifmd
Figure 13 is a detailed view of the System UMDBus 787.for NLP to extract high-level information. Capabilities rca
Besides the usual actions to Edit or Delete a resource, it ithen be flowed down for decomposition of each systems
important to notice that this view has th@malyzeandValidate requirements. An even further extension of this idea is ® us
actions whose purpose is to trigger the information eximact NLP while writing requirements in real time. If an ontology

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/systems_and_measurements/

Id Title

1 Aplane needs wings

3 The plane needs throttle levers

4 The length of the plane

5 The plane should have engines

6 The capacity is 255
passengers

Description

TextReq Validation Systems Requirements Models Entities Properties

System Requirements

Each thrust lever displays the engine number of the engine it controls

The length of the entire aircraft should be 254 meters

The aircraft needs to have a passengers capacity of 255

A wing is a type of fin with a surface that produces aerodynamic force for flight or propulsion through the
atmosphere

An aircraft engine is the component of the propulsion system for an aircraft that generates mechanical power

System Actions

1

m m m m m
a a a a o
= = =3 = =3

Figure 12. Panel showing all the requirements for the systé&iDBus 787

TextReq Validation

System

Name
Model
Entity
Properties

System requirements

Systems Requirements Models Entities

UMDBus 787

Transportation

Aircraft

engines

wings

slides

throttle levers

altitude indicator

length

passengers capacity

A plane needs wings

The plane needs throttle levers
The length of the plane

The plane should have engines
The capacity is 255 passengers

Properties

Figure 13. Detailed view for the SystetMDBus 787

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

237

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/systems_and_measurements/

238

Basic Properties

Property Value
Chars 547
Len tokens 94
Sentences 1
Porter stems 94
Lancaster stems 94
Wnl stems 94

Objects

Figure 14. Basic stats from the text, and a list of the estiticognized in it.

System Validation

Veried propertes
Unverified properties

Figure 15. This is the final output from the application wanldl It shows what properties are verified (i.e., are presernhé system requirements) and which
ones are not.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

Aircraft System Validation

—— Unverified Properties cost

—— Verified Properties engines length wings
_ A
capacity | automatic
| update
1
—— Unverified Properties wheels | =---
1
|
|
Wheel System Validation !
; defines
—— Verified Properties material diameter width I
|

Figure 16. Systems validation for requirements coveringiesy-level aircraft specification and detailed wheel sysspecification.

High-level I Nip System List .| Select
Requirements e Capability Lists System
Capability List, Template List
Fill out Decomposed Requirements Repeat for all
Templates Systems
Verify using
NLP

Figure 17. Framework for NLP of textual requirements witmpdates.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

239

of requirements templates exists, perhaps applicatieaisp [8]
NLP could be incorporated into a tool that helps construdt an
validate requirements as they are written. Some engineiéirs w
complain that they are being forced to comply to prescribed
standards for writing requirements. Perhaps they will have
difficulty in expressing their intent? Our view is that: (1)
writing requirements in a manner to satisfy template fosmat
is not much different than being asked to spell check your10]
writing, and (2) the existence of such templates may drasti-
cally increase the opportunity for automated transforomatif
textual requirements into semi-formal models (see Figyre 1

[9]

[11]
VII. CONCLUSIONS ANDFUTURE WORK [12]
When a system is prescribed by a large number of (non
formal) textual requirements, the combination of previgus [13]

defined ontology models and natural language processihg tec
niques can play an important role in validating and verifyin [14]
a system design. Future work will include formal analysis
on the attributes of each property coupled with use of NLP[15]
to extract ontology information from a set of requirements.
Rigorous automatic domain ontology extraction requires a
deep understanding of input text, and so it is fair to sayi6]
that these techniques are still relatively immature. Asedot
in Section VI, a second opportunity is the use of NLP tech-
niques in conjunction with a repository of acceptable “téatgp ~ [17]
sentence structures” for writing requirements [30]. Hipal
there is a strong need for techniques that use the different
levels of detail in the requirements specification, and drin
ontology models from different domains to validate that the
requirements belongs to the supposed domain. This challendl8]
belongs to the NLP area afassification
VIIIL [19]

Financial support to the first author was received from thg2o]

Fulbright Foundation.

A CKNOWLEDGMENTS

[21]
REFERENCES

[1] A. Arellano, E. Carney, and M.A. Austin, “Natural Langyg@Processing [22]
of Textual Requirements,” The Tenth International Confeee on
Systems (ICONS 2015), Barcelona, Spain, April 19-24, 2@p593—

97.

[2] M.A. Austin and J. Baras, “An Introduction to InformatieCentric (23]
Systems Engineering,” Tutorial FO6, INCOSE, ToulousenEea June,

2004. [24]

[3] V. Ambriola and V. Gervasi, “Processing Natural Langedgequire-
ments,” Proceedings 12th IEEE International Conferencéorated [25]
Software Engineering, IEEE Computer Society, 1997, pp436—

[4] C. Rolland and C. Proix, “A Natural Language Approach fRe- [26]
quirements Engineering,” Advanced Information Systemgi&ering,
Springer, 1992, pp. 257-277. [27]

[5] K. Ryan, “The Role of Natural Language in RequirementgiBeering,”
Proceedings of the IEEE International Symposium on Remérdgs
Engineering, IEEE Comput. Soc. Press, 1993, pp. 240-242. [28]

[6] M.A. Austin, V. Mayank, and N. Shmunis, “PaladinRM: GiraBased
Visualization of Requirements Organized for Team-Basedidpe’ [29]
Systems Engineering: The Journal of the International Cibuon
Systems Engineering, Vol. 9, No. 2, May, 2006, pp. 129-145. [30]

[71 M.A. Austin, V. Mayank, and N. Shmunis, “Ontology-Bas¥élidation
of Connectivity Relationships in a Home Theater System,” st21
International Journal of Intelligent Systems, Vol. 21, N6, October,
2006, pp. 1111-1125.

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

240

N. Nassar and M.A. Austin, “Model-Based Systems EngiimgeDesign
and Trade-Off Analysis with RDF Graphs,” 11th Annual Coefeze
on Systems Engineering Research (CSER 2013), Georgidutasof
Technology, Atlanta, GA, March 19-22, 2013.

P. Delgoshaei, M.A. Austin, and D. A. Veronica, “A Semiarfelatform

Infrastructure for Requirements Traceability and SystesseSsment,”
The Ninth International Conference on Systems (ICONS20Mde,

France, February 23-27, 2014, pp. 215-219.

P. Delgoshaei, M.A. Austin, and A. Pertzborn, “A Seniafframework
for Modeling and Simulation of Cyber-Physical Systemsfetnational
Journal On Advances in Systems and Measurements, Vol. 73Mo.
December, 2014, pp. 223-238.

S. Fridenthal, A. Moore, and R. Steinek, Practical Guide to SysML
MK-OMG, 2008.

K. Kageura and B. Umino, “Methods of Automatic Term Renition:
A Review,” Terminology, Vol. 3, No. 2, 1996, pp. 259-289.

L.L. Earl, “Experiments in Automatic Extracting and dexing,”
Information Storage and Retrieval, Vol. 6, No. 6, 1970, pp3-288.

S. Ananiadou, “A Methodology for Automatic Term Recdgn,” Pro-
ceedings of 15th International Conference on Computdtiomguistics
(COLING94), 1994, pp. 1034-1038.

K Frantzi, S. Ananiadou, and H. Mima, “Automatic Recdgm
of Multi-Word Terms: The C-Value/NC-Value Method,” Intextional
Journal on Digital Libraries, Vol. 3, No. 2., 2000, pp. 11301

D. Fedorenko, N. Astrakhantsev, and D. Turdakov, “An&tic Recog-
nition of Domain-Specific Terms: An Experimental Evaluatfo Pro-
ceedings of SYRCoDIS 2013, 2013, pp. 15-23.

A. Judea, H. Schutze, and S. Bruegmann, “Unsupervisednihg
Set Generation for Automatic Acquisition of Technical Terology
in Patents,” Proceedings of COLING 2014, the 25th Inteometi
Conference on Computational Linguistics: Technical Papebublin,
Ireland: Dublin City University and Association for Comptional
Linguistics, 2014, pp. 290-300.

L. Kozakov, Y. Park, T. Fin, et al., “Glossary Extragtiand Utilization
in the Information Search and Delivery System for IBM Tedcahi
Support,” IBM Systems Journal, Vol. 43, No. 3, 2004, pp. 563-

NLTK Project, “Natural Language Toolkit NLTK 3.0 Docentation,”
See http://www.nltk.org/ (Accessed: December 1, 2015).

C. Manning and H. Schuetze, “Foundations of Statistidatural
Language Processing,” The MIT Press, 2012.

M.F. Porter, “An Algorithm for Suffix Stripping,” Progm: Electronic
Library and Information Systems, MCB UP Ltd, Vol. 14, No. 38D,
pp. 130-137.

C.D. Paice, “Another Stemmer,” ACM SIGIR Forum, ACM,
See: http://dl.acm.org/citation.cfm?id=101306.10131@I. 24, No. 3,
November, 1990, pp. 56-61.

Princeton University, “About WordNet - WordNet - AboMYordNet,”
See https://wordnet.princeton.edu/ (Accessed: Decerhb2015).

M. Haspelmath, “Word Classes and Parts of Speech,”
http://philpapers.org/rec/lHASWCA, (Accessed: Decenihe2015).
S. Bird, E. Klein, and E. Loper, “Natural Language Pregiag with
Python,” O'Reilly Media, Inc., 2009.

University of Pennsylvania, Penn Treebank Project,
http://www.cis.upenn.edu/ treebank/ (Accessed, Decerbp2015).

B. Santorini, “Part-of-Speech Tagging Guidelines ftire Penn
Treebank Project (3rd Revision),” Technical Reports (CIS)
http://repository.upenn.edu/cigeports/570, 1990.

Ruby on Rails. See http://rubyonrails.org/ (AccessBécember 1,
2015).
Bootstrap. See http://getbootstrap.com/2.3.2/ éssed, December 1,
2015).

E. Hull, K. Jackson and J. Dick, Requirements EngimegriSpringer,
2002.

e Se

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

See

