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Abstract—The effectiveness of the redundancy schemes that have
been developed to enhance the reliability of storage systems
has predominantly been evaluated based on the mean time to
data loss (MTTDL) metric. This metric has been widely used
to compare schemes, to assess tradeoffs, and to estimate the
effect of various parameters on system reliability. Analytical
expressions for MTTDL are typically derived using Markov chain
models. Such derivations, however, remain a challenging task
owing to the high complexity of the analysis of the Markov
chains involved, and therefore the system reliability is often
assessed by rough approximations. To address this issue, a general
methodology based on the direct-path approximation was used to
obtain the MTTDL analytically for a class of redundancy schemes
and for failure time distributions that also include real-world
distributions, such as Weibull and gamma. The methodology,
however, was developed for the case of a single direct path to
data loss. This work establishes that this methodology can be
extended and used in the case where there are multiple shortest
paths to data loss to approximately derive the MTTDL for a
broader set of redundancy schemes. The value of this simple,
yet efficient methodology is demonstrated in several contexts.
It is verified that the results obtained for RAID-5 and RAID-6
systems match with those obtained in previous work. As a further
demonstration, we derive the exact MTTDL of a specific RAID-51
system and confirm that it matches with the MTTDL obtained
from the methodology proposed. In some cases, the shortest
paths are not necessarily the most probable ones. We establish
that this methodology can be extended to the most probable
paths to data loss to derive closed-form approximations for the
MTTDL of RAID-6 and two-dimensional RAID-5 systems in the
presence of unrecoverable errors and device failures. A thorough
comparison of the reliability level achieved by the redundancy
schemes considered is also conducted.

Keywords–Shortest path; direct path; data loss; latent errors;
MTTDL; rebuild; rare events; RAID; closed-form; analysis.

I. INTRODUCTION

Storage systems experience data losses due to device
failures, including disk and node failures. To avoid a permanent
loss of data, redundancy schemes were developed that enable
the recovery of this data. However, during rebuild operations,
additional device failures may occur that eventually lead to
permanent data losses. There is a variety of redundancy
schemes that offer different levels of reliability as they tolerate
varying degrees of device failures. Each of these schemes is
characterized by an overhead, which reflects the additional
operations that need to be performed for maintaining data
consistency, and a storage efficiency, which expresses the

additional amount of data, referred to as parity, that needs to
be stored in the system.

The reliability of storage systems and the effectiveness
of redundancy schemes have predominantly been assessed
based on the mean time to data loss (MTTDL) metric, which
expresses the amount of time that is expected to elapse
until the first data is irrecoverably lost [1][2][3]. During this
period, failures cause data to be temporarily lost, which is
subsequently recovered owing to the redundancy built into the
system.

Analytical expressions for the MTTDL are typically de-
rived using Markov chain models [4], which assume that the
times to component failures are independent and exponen-
tially distributed. A methodology for obtaining MTTDL under
general non-exponential failure and rebuild time distributions,
which therefore does not involve any Markov analysis, was
presented in [5]. The complexity of these derivations depends
on the redundancy schemes and the underlying system con-
figurations considered. The MTTDL metric has been proven
useful for assessing tradeoffs, for comparing schemes, and
for estimating the effect of various parameters on system
reliability [6][7][8][9]. Analytical closed-form expressions for
the MTTDL provide an accurate account of the effect of vari-
ous parameters on system reliability. However, deriving exact
closed-form expressions remains a challenging task owing to
the high complexity of the analysis of the Markov chains
involved [10][11]. For this reason, the system reliability is
often assessed by rough approximations. As the direct MTTDL
analysis is typically hard, an alternative is performing event-
driven simulations [12][13]. However, simulations do not pro-
vide insight into how the various parameters affect the system
reliability. This article addresses these issues by presenting a
simple, yet efficient method, referred to as most-probable-path
approximation, to obtain the MTTDL analytically for a broad
set of redundancy schemes. It achieves that by considering
the most likely paths that lead to data loss, which are the
shortest ones. In contrast to simulations, this method provides
approximate closed-form expressions for the MTTDL, thus
circumventing the inherent complexity of deriving exact ex-
pressions using Markov analysis. Note also that this method
was previously applied in the context of assessing system
unavailability, in particular for systems characterized by large
Markov chains [14]. It turns out that this approach agrees with
the principle encountered in the probability context expressed
by the phrase “rare events occur in the most likely way”.
This is also demonstrated in [15], where the reliability level of
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systems composed of highly reliable components is essentially
determined by the so-called “main event”, which is the shortest
way of failure appearance, that is, along the minimal monotone
paths.

In [5][16][17][18][19], it was shown that the direct-path
approximation, which considers paths without loops, yields
accurate analytical reliability results. To further investigate the
validity of the shortest-path-approximation method, we apply it
to derive the MTTDL results for RAID-5 and RAID-6 systems
and subsequently verify that they match with those obtained
in previous works [2][3] for practical cases where the device
failure rates are much smaller than the device rebuild rates. In
all these previous works though, there is a single direct path
to data loss. In contrast, our article is concerned with the case
where there are multiple shortest paths to data loss. In this
work, we investigate this issue and establish that the shortest-
path-approximation method can be extended and also applied
in the case of multiple shortest paths and can yield accurate
reliability results. In particular, we derive the approximate
MTTDL of a RAID-51 system using the shortest-path approxi-
mation. Subsequently, as a demonstration of the validity of the
method proposed, we derive the exact MTTDL for a specific
instance of a RAID-51 system and confirm that it matches
with the corresponding MTTDL obtained using our method.
Furthermore, we establish that the shortest-path approximation
can be extended to the most probable path approximation in
cases where the shortest paths may not necessarily be the
most probable ones. In fact, an approximation that considers
all direct paths implicitly considers the most probable ones
because the direct paths are the most probable ones owing to
the absence of loops.

The key contributions of this article are the following. We
consider the reliability of the RAID-5, RAID-6, and RAID-
51 systems that was assessed in our earlier work [1]. In
this study, we extend our previous work by also considering
two-dimensional RAID-5 systems. The MTTDL of a specific
square two-dimensional RAID-5 system was estimated through
a Markov chain model in [20], but no closed-form expression
was provided owing to its complexity. In this work, using the
shortest-path-approximation method, we obtain approximate
closed-form expressions for the MTTDL that are general,
simple, yet accurate for real-world systems. Furthermore, we
perform a thorough comparison of the reliability levels, in
terms of the MTTDL, achieved by these schemes. Subse-
quently, we consider the reliability of RAID-6 and two-
dimensional RAID-5 systems in the presence of unrecoverable
(latent) errors and device failures, and establish that in general
the shortest paths may not be the most probable ones, A new
enhanced methodology that considers the most probable paths,
as opposed to the shortest paths, is subsequently introduced for
efficiently assessing system reliability.

The remainder of the paper is organized as follows. Section
II reviews the general framework for deriving the MTTDL
of a storage system. Subsequently, the notion of the direct
path to data loss is discussed in Section III, and the efficiency
of the direct-path approximation is demonstrated in Section
IV. Section V discusses the case of multiple shortest paths to
data loss and presents the analysis of the RAID-51 and two-
dimensional RAID-5 systems. Section VI presents a thorough
comparison of the various redundancy schemes considered.

Section VII provides a detailed analysis and comparison of the
RAID-6 and two-dimensional RAID-5 systems in the presence
of independent unrecoverable sector errors. The shortest-path-
approximation method is enhanced to account for the most
probable paths. Finally, we conclude in Section IX.

II. DERIVATION OF MTTDL

In this section, we review the various methods that are used
to obtain the MTTDL analytically.

A. Markov Analysis

Continuous-time Markov chain (CTMC) models reflecting
the system operation can be constructed when the device
failures and rebuild times are assumed to be independent and
exponentially distributed. Under these assumptions, an appro-
priate CTMC model can be formulated to characterize the sys-
tem behavior and capture the corresponding state transitions,
including those that lead to data loss. Subsequently, using the
infinitesimal generator matrix approach and determining the
average time spent in the transient states of the Markov chain
yields a closed-form expression for the MTTDL of the system
[4]. The results obtained by using CTMC models are often
approximate because in practice the times to device failure and
the rebuild times are not exponentially distributed. To address
this issue, a more general analytical method is required.

B. Non-Markov Analysis

Here, we briefly review the general framework for deriving
the MTTDL developed in [5][16] using an analytical approach
that does not involve any Markov analysis and therefore avoids
the deficiencies of Markov models. The underlying models are
not semi-Markov, in that the the system evolution does not
depend only on the latest state, but also on the entire path that
led to that state. In particular, it depends on the fractions of
the data not rebuilt when entering each state. In [21], it was
demonstrated that a careless evaluation of these fractions may
in fact easily lead to erroneous results.

At any point in time, the system can be thought to be in
one of two modes: normal mode and rebuild mode. During
normal mode, all data in the system has the original amount
of redundancy and there is no active rebuild in process. During
rebuild mode, some data in the system has less than the original
amount of redundancy and there is an active rebuild process
that is trying to restore the redundancy lost. A transition
from normal to rebuild mode occurs when a device fails;
we refer to the device failure that causes this transition as a
first-device failure. Following a first-device failure, a complex
sequence of rebuild operations and subsequent device failures
may occur, which eventually leads the system either to an
irrecoverable data loss (DL), with the probability of this event
denoted by PDL, or back to the original normal mode by
restoring all replicas lost. Typically, the rebuild times are
much shorter than the times to failure. Consequently, the time
required for this complex sequence of events to complete is
negligible compared with the time between successive first-
device failures and therefore can be ignored.

Let Ti be the ith interval of a fully operational period,
that is, the time interval from the time at which the system
is brought to its original state until a subsequent first-device

179

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



failure occurs. As the system becomes stationary, the length of
Ti converges to T . In particular, for a system comprising N
devices with a mean time to failure of a device equal to 1/λ,
the expected length of T is given by [5]

E(T ) := lim
i→∞

E(Ti) = 1/(N λ) . (1)

The notation used is given in Table I. Note that the method-
ology presented here does not involve any Markov analysis
and holds for general failure time distributions, which can
be exponential or non-exponential, such as the Weibull and
gamma distributions.

As the probability that each first-device failure results in
data loss is PDL, the expected number of first-device failures
until data loss occurs is 1/PDL. Thus, by neglecting the
effect of the relatively short transient rebuild periods of the
system, the MTTDL is essentially the product of the expected
time between two first-device-failure events, E(T ), and the
expected number of first-device-failure events, 1/PDL:

MTTDL ≈
E(T )

PDL

. (2)

Substituting (1) into (2) yields

MTTDL ≈
1

N λPDL

. (3)

III. DIRECT PATH TO DATA LOSS

As mentioned in Section II, during rebuild mode, some data
in the system has less than the original amount of redundancy
and there is an active rebuild process that aims at restoring
the lost redundancy. The direct path to data loss represents the
most likely scenario that leads to data loss. This path considers
the smallest number of subsequent device failures that occur
while the system is in rebuild mode and lead to data loss.

The direct-path-approximation method was applied in
[5][16] and led to an analytical approach that does not involve
any Markov analysis and therefore avoids the deficiencies of
Markov models. This approach yields accurate results when
the storage devices are highly reliable, that is, when the ratio
of the mean rebuild time 1/µ (typically on the order of tens of
hours) to the mean time to failure of a device 1/λ (typically
on the order of a few years) is very small:

1

µ
≪

1

λ
, or

λ

µ
≪ 1 , or λ ≪ µ . (4)

More specifically, this approach considers the system to be
in exposure level e when the maximum number of replicas
lost by any of the data (or the maximum number of codeword
symbols lost in an erasure-coded system) is equal to e. Let

TABLE I. NOTATION OF SYSTEM PARAMETERS

Parameter Definition

N Number of devices in the system

1/λ Mean time to failure for a device

1/µ Mean time to rebuild device failures

se(RAID) Storage efficiency of a RAID scheme

S Sector size

Cd Device capacity

Ps Probability of an unrecoverable or latent sector error

ns Number of data sectors in a device (ns = Cd/S)

us consider, for instance, a replication-based storage system
where user data is replicated r times. In this case, the system
is in exposure level e if there exists data with r−e copies, but
there is no data with fewer than r − e copies. Device failures
and rebuild processes cause the exposure level to vary over
time. Consider the direct path of successive transitions from
exposure level 1 to r. In [16], it was shown that PDL can be
approximated by the probability of the direct path to data loss,
PDL,direct, when devices are highly reliable, that is,

PDL ≈ PDL,direct =
r−1
∏

e=1

Pe→e+1, (5)

where Pe→e+1 denotes the transition probability from exposure
level e to e + 1. In fact, the above approximation holds for
arbitrary device failure time distributions, and the relative error
tends to zero as for highly reliable devices the ratio λ/µ tends
to zero [5]. The MTTDL is then obtained by substituting (5)
into (3). In [18], the direct-path methodology is extended to
more general erasure codes, which include RAID systems.

Note that this analysis can also be applied to assess
reliability, in terms of the MTTDL, for systems modeled using
a CTMC. For instance, in [6], a RAID-5 system that was
modeled using a CTMC was analyzed by both a Markov
analysis and an approach similar to the general framework.
This fact is used in Section IV to compare the MTTDL of
RAID systems obtained using the direct-path approximation in
the context of the general framework with the corresponding
MTTDL obtained using Markov analysis of CTMCs. This
approach is simpler, in that it circumvents the inherent com-
plexity of deriving exact MTTDL expressions using Markov
analysis. In Section V, we demonstrate that the direct-path-
approximation method can be extended and also applied in the
case of multiple shortest paths. We establish this for a system
modeled using a CTMC, and conjecture that this should also
hold in the case of non-Markovian systems.

Note that this method is in contrast to other methods
presented in previous works that associate a probability to
each device being in a failed state [22]. In particular, those
works assume that these probabilities are given and therefore
do not account for the rebuild processes, whereas the methods
presented in this work do account for the rebuild processes
through the probabilities of traversing various states until data
loss occurs.

IV. COMPARISON OF MARKOV ANALYSIS AND

DIRECT-PATH APPROXIMATION

A common scheme used for tolerating device (disk) failures
is the redundant array of independent disks (RAID) [2][3].
The RAID-5 scheme arranges devices in groups (arrays), each
with one redundant device, and can tolerate one device failure
per array. Similarly, the RAID-6 scheme arranges devices in
arrays, each with two redundant devices, and can tolerate up
to two device failures per array. Considering a RAID array
comprised of N devices, the storage efficiency of a RAID-5
system is given by

se(RAID-5) =
N − 1

N
, (6)
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and the storage efficiency of a RAID-6 system is given by

se(RAID-6) =
N − 2

N
. (7)

It turns out that the MTTDL of systems comprised of
highly reliable devices can be approximated by using the
direct-path approximation. We proceed to demonstrate this by
presenting two specific examples, the RAID-5 and RAID-6
systems. In both cases, the RAID array is assumed to contain
N devices, and the numbered states of the corresponding
Markov models represent the number of failed devices. The DL
state represents a data loss due to a device failure that occurs
when the system is in the critical mode of operation. A RAID
array is considered to be in critical mode when an additional
device failure can no longer be tolerated. Thus, RAID-5 and
RAID-6 arrays are in critical mode when there are N − 1
devices and N − 2 devices in operation, that is, when they
operate with one device and two devices failed, respectively.

A. MTTDL of a RAID-5 Array

The Markov chain model for a RAID-5 array is shown
in Fig. 1. When the first device fails, the array enters critical
mode, which corresponds to the transition from state 0 to state
1. As initially there are N devices in operation, the mean time
until the first failure is equal to 1/(Nλ), and the corresponding
transition rate is its inverse, that is, Nλ. Subsequently, the
critical mode ends owing to either a successful completion
of the rebuild or another device failure. The former event is
represented by the state transition from state 1 to state 0 with
a rate of µ, given that the mean rebuild time is equal to 1/µ.
The latter event leads to data loss and is represented by the
state transition from state 1 to state DL with a rate of (N−1)λ
given that in critical mode there are N−1 devices in operation.

The exact MTTDL, denoted by MTTDLRAID-5, is obtained

from [6, Eq. (45)] by setting P
(1)
uf = 0:

MTTDLRAID-5 =
µ + (2N − 1)λ

N (N − 1)λ2
. (8)

Note that when λ ≪ µ, the first term of the numerator
in (8) can be ignored, such that the MTTDLRAID-5 can be

approximated by MTTDL
(approx)
RAID-5 as follows:

MTTDL
(approx)
RAID-5 ≈

µ

N(N − 1)λ2
. (9)

This result was obtained in [2] by using an approach that is
essentially the direct-path approximation. Next, we present its
derivation for completeness. The transition from state 0 to state
1 represents the first device failure. The direct path to data loss
involves a subsequent device failure before it can complete the
rebuild process and return to state 0. This corresponds to the
state transition from state 1 to state DL, with the corresponding
probability P1→DL given by

PDL ≈ PDL,direct = P1→DL =
(N − 1)λ

µ + (N − 1)λ
(10)

≈ (N − 1)

(

λ

µ

)

, (11)

N λ

0 1 DL
(   −1)N λ

µ
 

Figure 1. Reliability model for a RAID-5 array.

where the approximation is obtained by using (4) and there-
fore neglecting the second term of the denominators in (10).
Substituting (10) into (3) yields

MTTDL′

RAID-5 ≈
µ + (N − 1)λ

N(N − 1)λ2
. (12)

Note that the approximation given in (9) now follows imme-
diately from (12) by using (4) and therefore neglecting the
second term of the numerator.

B. MTTDL of a RAID-6 Array

The Markov chain model for a RAID-6 array is shown in
Fig. 2. The first device failure is represented by the transition
from state 0 to state 1. As initially there are N devices in
operation, the mean time until the first failure is 1/(Nλ), and
the corresponding transition rate is its inverse, that is, Nλ.
The system exits from state 1 owing to either a successful
completion of the rebuild or another device failure. The former
event is represented by the state transition from state 1 to state
0 with a rate of µ. The latter event is represented by the state
transition from state 1 to state 2 with a rate of (N − 1)λ.
Subsequently, the system exits from state 2 owing to either a
successful completion of the rebuild or another device failure.
The former event is represented by the state transition from
state 2 to state 0 with a rate of µ, given that the mean rebuild
time is equal to 1/µ. The latter event leads to data loss and
is represented by the state transition from state 2 to state DL
with a rate of (N − 2)λ given that in critical mode there are
N − 2 devices in operation.

The exact MTTDL, denoted by MTTDLRAID-6, is obtained

from [6, Eq. (52)] by setting µ1 = µ2 = µ and P
(r)
uf = P

(2)
uf =

0:

MTTDLRAID-6 =
µ2 + 3(N − 1)λµ + (3N2 − 6N + 2)λ2

N (N − 1) (N − 2)λ3
.

(13)

Note that when λ ≪ µ, the last two terms of the numerator
of (13) can be neglected and thus MTTDLRAID-6 can be

approximated by MTTDL
(approx)
RAID-6 as follows:

MTTDL
(approx)
RAID-6 ≈

µ2

N(N − 1)(N − 2)λ3
, (14)

0 1

(   −1)N λN λ

DL2
(   −2)N λ

µ

µ
 

Figure 2. Reliability model for a RAID-6 array.
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which is the same result as that reported in [3].

We now proceed to show how the approximate MTTDL
of the system can be derived in a straightforward manner by
applying the direct-path-approximation technique. The transi-
tion from state 0 to state 1 represents the first device failure.
The direct path to data loss involves two subsequent device
failures before it can complete the rebuild process and return
to state 0. This corresponds to the state transitions from state 1
to state 2 and from state 2 to state DL, with the corresponding
probabilities P1→2 and P2→DL given by

P1→2 =
(N − 1)λ

µ + (N − 1)λ
. (15)

and

P2→DL =
(N − 2)λ

µ + (N − 2)λ
. (16)

Thus, the probability of data loss, that is, the probability that
from state 1 the system goes to state DL before it can reach
state 0, is equal to

PDL ≈ PDL,direct = P1→2 P2→DL

=
(N − 1)λ

µ + (N − 1)λ
·

(N − 2)λ

µ + (N − 2)λ
(17)

≈ (N − 1)(N − 2)

(

λ

µ

)2

, (18)

where the approximation is obtained by using (4) and therefore
neglecting the second terms of the denominators in (17).

We verify that substituting (18) into (3) yields the approx-
imation given in (14).

Remark 1: If the transition from state 2 to state 0 were not
to state 0 but to state 1 instead, as shown in Fig. 2 by the dashed
arrow, the expression for P2→DL given by (16) would still hold.
However, in this case it would hold that PDL > PDL,direct as,
in addition to the direct path 1 → 2 → DL, there are other
possible paths 1 → 2 → 1 → 2 → · · · → 1 → 2 → DL to
data loss. In [16] it was shown that, for systems with highly
reliable components, the direct path dominates the effect of
all other possible paths and therefore its probability, PDL,direct,
approximates well the probability of all paths, PDL, that is,

PDL ≈ PDL,direct = P1→2 P2→DL ≈
(N − 1)(N − 2)λ2

µ2
.

(19)
In this case, the MTTDL is given by

MTTDL′

RAID-6 =
(3N2 − 6N + 2)λ2 + 2(N − 1)λµ + µ2

N (N − 1) (N − 2)λ3
,

(20)

which, as expected, is less than that given in (13). Despite this
difference, the approximation given in (14) still holds because
(19) is the same as (18).

V. MULTIPLE SHORTEST PATHS TO DATA LOSS

Here, we consider redundancy schemes for which there
are multiple shortest paths to data loss. Following the anal-
ysis presented in [16] for the direct-path approximation, we
conjecture that, for systems with highly reliable devices, the
shortest paths dominate the effect of all other possible paths

and therefore the sum of their corresponding probabilities,
PDL,shortest, approximates well the probability of all paths, PDL,
that is,

PDL ≈ PDL,shortest . (21)

A. A RAID-51 Array

We proceed by considering a RAID-51 system, which is a
RAID-5 array with mirroring. The contents of failed devices
are recovered by their mirrors, and if this is not possible,
they are recovered through the corresponding RAID-5 arrays.
The configuration comprises D pairs of mirrored devices,
where each pair contains two devices with identical content.
Therefore, it consists of two identical RAID-5 arrays, for a
total of N = 2D devices and a storage efficiency given by

se(RAID-51) =
D − 1

2D
=

N − 2

2N
. (22)

This configuration was considered in [11], referred to as
RAID 5+1, with the corresponding Markov model shown in
[11, Fig. 7(a)]. It is redrawn in Fig. 3 with the parameters λ and
µ corresponding to the parameters µ and ν of the initial figure,
respectively. Also, the DL states correspond to the ‘Failure’
states, and the state tuples (x, y, z) indicate that there are x
pairs with both devices in operation, y pairs with one device in
operation and one device failed, and z pairs with both devices
failed. Also, some typos regarding the transition rates were
corrected.

An exact evaluation of the MTTDL associated with this
Markov chain model appears to be a very challenging, if
not infeasible, task. Thus, in [11] a rough approximation was
obtained by first deriving the failure and repair rates for a
mirrored pair of devices, and then substituting these values
into expression (9) for a single RAID-5 system. The MTTDL
is obtained in [11, Eq. (11)] as follows:

MTTDL ≈
µ3

4D(D − 1)λ4
. (23)

D2(   −1)λ D2(   −1)λ

D2 λ

3 λ

2 λ

D2(   −2)λ D2(   −2)λ

2 µ

Dλ

2 µ

λ
DL

DL

DL

2 λ

2 λ2 λ

λ(D−1)

2 µ

µD

3 µ

(D−1)µ

µ

µ

D,0,0

D−1,1,0 D−1,0,1

D−2,2,0 D−2,1,1

D−3,3,0 D−3,2,1

0,D−1,1

λ

µ

µ

µ

 

0,D,0

Figure 3. Reliability model for a RAID-51 array.
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1) MTTDL Evaluation Using the Shortest-Path Approxima-
tion: The transition from state (D, 0, 0) to state (D − 1, 1, 0)
represents the first device failure. As initially there are 2D
devices in operation, the mean time until the first failure is
1/(2Dλ), and the corresponding transition rate is its inverse,
2Dλ.

The most likely path to data loss is the shortest path from
state (D− 1, 1, 0) to a DL state, which in this case comprises
two such paths, as shown in Fig. 4: the upper path (D −
1, 1, 0) → (D − 1, 0, 1) → (D − 2, 1, 1) → DL and the lower
path (D − 1, 1, 0) → (D − 2, 2, 0) → (D − 2, 1, 1) → DL.
Each of these paths involves three subsequent device failures.

After the first device has failed, there are D− 1 pairs with
both devices in operation, and one pair, say PR1, with one
device in operation and one device failed, which corresponds
to the transition from state (D, 0, 0) to state (D−1, 1, 0). The
rebuild of the failed device consists of recovering its data to
a new spare device by copying the contents of its mirror to
it, that is, of the device in operation in PR1. Then, the next
event can be either a successful completion of the rebuild or
another device failure. The former event is represented by the
state transition from state (D − 1, 1, 0) to state (D, 0, 0) with
a rate of µ. For the latter event, two cases are considered:

Case 1: Upper path. The second device that fails is the
device in operation concerning pair PR1, which corresponds
to the transition from state (D−1, 1, 0) to state (D−1, 0, 1), as
now both devices of pair PR1 have failed, and all other D−1
pairs remain intact. The transition rate is λ, which is the failure
rate of the last failed device. The contents of the devices of pair
PR1 are recovered through the corresponding RAID-5 arrays.
As both devices of pair PR1 are under rebuild, the transition
rate from state (D−1, 0, 1) back to state (D−1, 1, 0) is 2µ. If,
however, prior to the completion of any of these two rebuilds
another device of the remaining 2(D − 1) devices fails, then
there will be D − 2 pairs with both devices in operation, one
pair, say PR2, with one device in operation and one device
failed, and pair PR1 with both devices failed. This corresponds
to the transition from state (D− 1, 0, 1) to state (D− 2, 1, 1),
with a transition rate equal to 2(D−1)λ. Note that in [11, Fig.
7(a)] this transition rate is erroneously indicated as (2D−1)µ
instead of 2(D − 1)µ.

Case 2: Lower path. The second device that fails is one
of the 2(D − 1) devices in the D − 1 pairs, say a device
concerning PR2. This corresponds to the transition from state
(D − 1, 1, 0) to state (D − 2, 2, 0), as both pairs PR1 and
PR2 now have one device in operation and one device failed,
and all other D − 2 pairs remain intact. The corresponding
transition rate is equal to 2(D − 1)λ. Note that in [11, Fig.
7(a)] this transition rate is erroneously indicated as (2D−1)µ
instead of 2(D − 1)µ. The contents of the failed devices are
recovered from their corresponding mirrors. As both devices
of the two pairs PR1 and PR2 are under rebuild, the transition
rate from state (D−2, 2, 0) back to state (D−1, 1, 0) is 2µ. If,
however, prior to the completion of any of these two rebuilds
another device of the two remaining devices in operation in
PR1 and PR2 fails (say, that of pair PR1), then there will be
D − 2 pairs with both devices in operation, one pair (PR2)
with one device in operation and one device failed, and one
pair (PR1) with both devices failed. This corresponds to the

D,0,0 D−1,1,0

D−2,2,0

D−1,0,1

D−2,1,1 DL

λD2

D2(   −1)λ

D2(   −1)λ

2 λ

2 µ

2 µ

µ

λ

µ λ

µ

Figure 4. Shortest-path reliability model for a RAID-51 array.

transition from state (D − 2, 2, 0) to state (D − 2, 1, 1), with
a transition rate 2λ.

At state (D−2, 1, 1), the failed device in pair PR2 is recov-
ered by its mirror. However, the corresponding failed device in
pair PR1 cannot be recovered because the RAID-5 array has
suffered two device failures. In contrast, the failed device in
pair PR1 can be recovered because the corresponding RAID-5
array has suffered only one device failure.

The completion of the rebuild of the failed device in pair
PR2 corresponds to the transition from state (D − 2, 1, 1) to
state (D−1, 0, 1), with a transition rate of µ. The completion of
the rebuild of the failed device in pair PR1 through the RAID
capability corresponds to the transition from state (D−2, 1, 1)
to state (D − 2, 2, 0), with a transition rate of µ. Note that in
[11, Fig. 7(a)] this transition rate is erroneously indicated as
2µ instead of µ. If, however, prior to the completion of any of
these rebuilds, the device still in operation of pair PR2 fails,
this leads to data loss, as there will be two pairs failed, with
each of the RAID-5 arrays having two devices failed. This
corresponds to the transition from state (D − 2, 1, 1) to state
DL, with a corresponding rate of λ.

The probabilities of the transitions discussed above are
given by

P(D−1,1,0)→(D−1,0,1) =
λ

µ + (2D − 1)λ
, (24)

P(D−1,0,1)→(D−2,1,1) =
2(D − 1)λ

2µ + 2(D − 1)λ
, (25)

P(D−1,1,0)→(D−2,2,0) =
2(D − 1)λ

µ + (2D − 1)λ
, (26)

P(D−2,2,0)→(D−2,1,1) =
2λ

2µ + 2λ
, (27)

and

P(D−2,1,1)→DL =
λ

2µ + λ
. (28)

Consequently, the probability of the upper path to data loss,
Pu, is given by

Pu =P(D−1,1,0)→(D−1,0,1)P(D−1,0,1)→(D−2,1,1)P(D−2,1,1)→DL

=
λ

µ + (2D − 1)λ
·

2(D − 1)λ

2µ + 2(D − 1)λ
·

λ

2µ + λ
, (29)

and that of the lower path to data loss, Pl, is given by

Pl =P(D−1,1,0)→(D−2,2,0)P(D−2,2,0)→(D−2,1,1)P(D−2,1,1)→DL

=
2(D − 1)λ

µ + (2D − 1)λ
·

2λ

2µ + 2λ
·

λ

2µ + λ
. (30)
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By considering (4), (29) and (30) yield the following
approximations:

Pu ≈
λ

µ
·

2(D − 1)λ

2µ
·

λ

2µ
=

(D − 1)λ3

2µ3
(31)

and

Pl ≈
2(D − 1)λ

µ
·

λ

µ
·

λ

2µ
=

(D − 1)λ3

µ3
. (32)

The probability of the shortest paths to data loss, PDL,shortest,
is the sum of Pu and Pl, which by using (21), (31), and (32),
yields

PDL ≈ PDL,shortest = Pu + Pl ≈
3(D − 1)

2

(

λ

µ

)3

. (33)

Substituting (33) into (3), and considering N = 2D,
yields the approximate MTTDL of the RAID-51 system,

MTTDL
(approx)
RAID-51, given by

MTTDL
(approx)
RAID-51 ≈

µ3

3D(D − 1)λ4
. (34)

Remark 2: Note that the prediction given by (34) is higher
than that obtained in [11], which is given by (23). At first
glance, this seems to be counterintuitive. The approximation
in [11] considers only failures of mirrored device pairs, which
corresponds to the upper path to data loss. As this neglects
the lower path, one would expect the prediction in [11] to be
higher, not lower. The reason for this counterintuitive result is
that considering additional paths may, on the one hand increase
the number of paths that lead to data loss, but on the other
hand it may also increase the number of paths that do not lead
to data loss, therefore delaying the occurrence of data loss.
For instance, when the lower path is neglected, the probability
P(D−2,1,1)→DL of the transition from state (D − 2, 1, 1) to
state DL is equal to λ/(λ + µ), which is greater than the
corresponding one given by (28) if also the lower path is
considered.

2) Exact MTTDL Evaluation for D = 3: An exact eval-
uation of the reliability of a RAID-51 system through the
MTTDL associated with the corresponding Markov chain
model shown in Fig. 3 appears to be a very challenging, if
not infeasible, task for arbitrary D. Therefore, we proceed by
considering a RAID-51 system with D = 3. The corresponding
Markov chain model is shown in Fig. 5. The exact MTTDL of

this system, denoted by MTTDL
(D=3)
RAID-51, is obtained by using

the infinitesimal generator matrix approach and determining
the average time spent in the transient states of the Markov
chain [4]. Because of space limitations, we only provide the
final result:

MTTDL
(D=3)
RAID-51 =

2 +20λ
µ +93(λ

µ )2+287(λ
µ )3+677(λ

µ )4+939(λ
µ )5+630(λ

µ )6

12 λ4 µ−3 [3 + 18λ
µ + 35(λ

µ )2 + 30(λ
µ )3]

.

(35)

Note that when λ ≪ µ, MTTDL
(D=3)
RAID-51 can be approximated

by MTTDL
(D=3,approx)
RAID-51 as follows:

MTTDL
(D=3,approx)
RAID-51 ≈

µ3

18λ4
, (36)

2 µ

3 λ

2 λ

2 µ

2 µ

λ
DL

DL
2 λ
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Figure 5. Reliability model for a RAID-51 array with D = 3.

which is the same result as that predicted by (34) for D = 3
and therefore confirms its validity.

B. A Two-Dimensional RAID-5 Array

We consider a two-dimensional RAID-5 array with the
devices arranged in K rows and D columns for a total
of N = KD devices, including superparity [13]. In this
configuration, denoted by 2D-RAID-5, the devices in each row
and each column form a RAID-5 array with the corresponding
storage efficiency given by

se(2D-RAID-5) =
(K − 1) (D − 1)

K D
. (37)

The contents of failed devices are recovered either horizon-
tally or vertically through the corresponding RAID-5 arrays.
This system tolerates all triple device failures and can also tol-
erate more than three device failures for certain constellations,
e.g., the failure of an entire row or column. However, as the
devices are assumed to fail independently, the shortest path to
data loss is due to the failure of four devices occurring in the
constellation shown in Fig. 6 with the failed devices located
in two rows and two columns. The special case of a specific
square RAID-5 array (i.e., K = D) was considered in [20],
but no closed-form expression for the MTTDL was provided
owing to its complexity. Here, we obtain approximate closed-
form expressions for the MTTDL that are general, simple, yet
accurate for real-world systems. Fig. 6 also shows the Markov
chain model corresponding to the shortest path to data loss.
The state tuples (x, y, z, w) indicate that there are x rows
with one device failed and D − 1 devices in operation, y
rows with two devices failed and D − 2 devices in operation,
z columns with one device failed and N − 1 devices in
operation, and w columns with two devices failed and N − 2
devices in operation. The relevant states are shown next to the
corresponding device failure constellations indicated with ‘x’
on the K×D plane.

We now proceed to evaluate the MTTDL using the shortest-
path approximation. The transition from state (0, 0, 0, 0)
to state (1, 0, 1, 0) represents the first device failure. The
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Figure 6. Shortest-path reliability model for a two-dimensional RAID-5 array.

most likely path to data loss is the shortest path from
state (1, 0, 1, 0) to the DL state, which in this case com-
prises three such paths, as shown in Fig. 6: the upper path
(1, 0, 1, 0) → (2, 0, 0, 1) → (1, 1, 1, 1) → DL, the middle path
(1, 0, 1, 0) → (2, 0, 2, 0) → (1, 1, 1, 1) → DL, and the lower
path (1, 0, 1, 0) → (0, 1, 2, 0) → (1, 1, 1, 1) → DL. Each of
these paths involves three subsequent device failures.

After the first device has failed, there are two RAID-5
arrays, one horizontal RAID-5 array, say row H1, and one
vertical RAID-5 array, say column V1, with one device failed
in each of them. Consequently, this failure corresponds to the
transition from state (0, 0, 0, 0) to state (1, 0, 1, 0). As initially
there are KD devices in operation, the mean time until the
first failure is 1/(KDλ), and the corresponding transition rate
is its inverse, KDλ. The rebuild of the failed device can be
performed using either H1 or V 1. Then, the next event can be
either a successful completion of the rebuild or another device
failure. The former event is represented by the state transition
from state (1, 0, 1, 0) to state (0, 0, 0, 0), with a rate of µ. For
the latter event, three cases are considered:

Case 1: Upper path. The second device that fails is one of
the K−1 operating devices in V1. This occurs with a transition
rate of (K − 1)λ and results in another horizontal RAID-5
array, say, row H2, with one device failed. This corresponds
to the transition from state (1, 0, 1, 0) to state (2, 0, 0, 1), as
there are now two rows with one device failed in each of
them and one column with two devices failed. As the contents
of the two failed devices in V1 are rebuilt in parallel through
the corresponding H1 and H2 RAID-5 arrays, the transition
rate from state (2, 0, 0, 1) back to state (1, 0, 1, 0) is 2µ. If,
however, prior to the completion of any of these two rebuilds,
another of the remaining 2(D−1) devices in H1 and H2 (say,
the one in row H1 and column V2) fails, then there will be
– a column, namely V2, with one device failed;
– a row, namely H1, with two devices failed;
– a row, namely H2, with one device failed, and
– a column, namely V1, with two devices failed.
Note that the (K − 2)D operational devices in the remaining
K − 2 horizontal RAID-5 arrays are not considered because
their failure leads to states that are not in the shortest paths.
The above corresponds to the transition from state (2, 0, 0, 1)
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to state (1, 1, 1, 1), with a transition rate equal to 2(D − 1)λ.

Case 2: Middle path. The second device that fails is one
of the (K − 1)(D − 1) operating devices that are not in H1

or V1. This occurs with a transition rate of (K − 1)(D −
1)λ and results in another horizontal RAID-5 array, say, row
H2, and another vertical RAID-5 array, say, column V2, with
one device failed. This corresponds to the transition from state
(1, 0, 1, 0) to state (2, 0, 2, 0) as there are now two rows and
two columns with one device failed in each of them. As the
contents of the two failed devices are rebuilt in parallel through
the corresponding, horizontal or vertical, RAID-5 arrays, the
transition rate from state (2, 0, 0, 1) back to state (1, 0, 1, 0) is
2µ. If, however, prior to the completion of any of these two
rebuilds, either the (H1, V2) or the (H2, V1) device fails, where
(H1, V2) refers to the device in row H1 and column V2, and
(H2, V1) to that in row H2 and column V1, then there will be
– a column and a row with one device failed, and
– a column and a row with two devices failed.
Note that the remaining KD − 4 operational devices are not
considered because their failure leads to states that are not
in the shortest paths. The above corresponds to the transition
from state (2, 0, 2, 0) to state (1, 1, 1, 1), with a transition rate
equal to 2λ.

Case 3: Lower path. The second device that fails is one of
the D−1 operating devices in H1. This occurs with a transition
rate of (D− 1)λ and results in another vertical RAID-5 array,
say column V2, with one device failed. This corresponds to
the transition from state (1, 0, 1, 0) to state (0, 1, 2, 0), as there
are now one row with two devices failed and two columns
with one device failed in each of them. As the contents of
the two failed devices in H1 are rebuilt in parallel through
the corresponding V1 and V2 RAID-5 arrays, the transition
rate from state (2, 0, 0, 1) back to state (1, 0, 1, 0) is 2µ. If,
however, prior to the completion of any of these two rebuilds
another of the remaining 2(K − 1) devices in V1 and V2 (say
the one in row H2 and column V1) fails, then there will be
– a column, namely V2, with one device failed;
– a row, namely H1, with two devices failed;
– a row, namely H2, with one device failed, and
– a column, namely V1, with two devices failed.
Note that the (D − 2)K operational devices in the remaining
D−2 vertical RAID-5 arrays are not considered because their
failure leads to states that are not in the shortest paths. The
above corresponds to the transition from state (0, 1, 2, 0) to
state (1, 1, 1, 1), with a transition rate equal to 2(K − 1)λ.

At state (1, 1, 1, 1), the failed device in H2 and the failed
one in V2 are recovered through their corresponding RAID-
5 arrays. However, the failed device in row H1 and column
V1 cannot be immediately recovered because both of its cor-
responding RAID-5 arrays has suffered two device failures. It
can only be recovered upon completion of the rebuild of either
one of the two previously mentioned devices. In particular, the
completion of the rebuild of the failed device in V2 corresponds
to the transition from state (1, 1, 1, 1) to state (2, 0, 0, 1), with
a transition rate of µ. The completion of the rebuild of the
failed device in H2 corresponds to the transition from state
(1, 1, 1, 1) to state (0, 1, 2, 0), with a transition rate of µ. If,
however, prior to the completion of any of these two rebuilds,
the device still in operation in row H2 and column V2 fails, this
leads to data loss, as there will be four failed devices with each

of the corresponding RAID-5 arrays having two failed devices.
This corresponds to the transition from state (1, 1, 1, 1) to state
DL, with a corresponding rate of λ.

The probabilities of the transitions discussed above are
given by

P(1,0,1,0)→(2,0,0,1) =
(K − 1)λ

µ + (KD − 1)λ
, (38)

P(2,0,0,1)→(1,1,1,1) =
2(D − 1)λ

2µ + 2(D − 1)λ
, (39)

P(1,0,1,0)→(2,0,2,0) =
(K − 1)(D − 1)λ

µ + (KD − 1)λ
, (40)

P(2,0,2,0)→(1,1,1,1) =
2λ

2µ + 2λ
, (41)

P(1,0,1,0)→(0,1,2,0) =
(D − 1)λ

µ + (KD − 1)λ
, (42)

P(0,1,2,0)→(1,1,1,1) =
2(K − 1)λ

2µ + 2(K − 1)λ
, (43)

and

P(1,1,1,1)→DL =
λ

2µ + λ
. (44)

Consequently, the probability of the upper path to data loss,
Pu, is given by

Pu = P(1,0,1,0)→(2,0,0,1) P(2,0,0,1)→(1,1,1,1) P(1,1,1,1)→DL

=
(K − 1)λ

µ + (KD − 1)λ
·

2(D − 1)λ

2µ + 2(D − 1)λ
·

λ

2µ + λ
, (45)

that of the middle path to data loss, Pm, is given by

Pm = P(1,0,1,0)→(2,0,2,0) P(2,0,2,0)→(1,1,1,1) P(1,1,1,1)→DL

=
(K − 1)(D − 1)λ

µ + (KD − 1)λ
·

2λ

2µ + 2λ
·

λ

2µ + λ
, (46)

and that of the lower path to data loss, Pl, is given by

Pl = P(1,0,1,0)→(0,1,2,0) P(0,1,2,0)→(1,1,1,1) P(1,1,1,1)→DL

=
(D − 1)λ

µ + (KD − 1)λ
·

2(K − 1)λ

2µ + 2(K − 1)λ
·

λ

2µ + λ
. (47)

By considering (4), equations (45), (46), and (47) yield the
following approximations:

Pu ≈
(K − 1)λ

µ
·
2(D − 1)λ

2µ
·

λ

2µ
=

(K − 1)(D − 1)λ3

2µ3
,

(48)

Pm ≈
(K − 1)(D − 1)λ

µ
·
2λ

2µ
·

λ

2µ
=

(K − 1)(D − 1)λ3

2µ3
,

(49)

and

Pl ≈
(D − 1)λ

µ
·

2(K − 1)λ

2µ
·

λ

2µ
=

(K − 1)(D − 1)λ3

2µ3
.

(50)
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The probability of the shortest paths to data loss, PDL,shortest,
is the sum of Pu, Pm and Pl, which by using (21), (48), (49),
and (50), yields

PDL ≈ PDL,shortest = Pu+Pm+Pl ≈
3(K − 1)(D − 1)

2

(

λ

µ

)3

.

(51)

Substituting (51) into (3), and considering N = KD,
yields the approximate MTTDL of the two-dimensional RAID-

5 system, MTTDL
(approx)
2D-RAID-5, given by

MTTDL
(approx)
2D-RAID-5 ≈

2µ3

3K (K − 1)D (D − 1)λ4
. (52)

VI. RELIABILITY COMPARISON

Here, we assess the relative reliability of the various
schemes considered. As discussed in Section III, the direct-
path-approximation method yields accurate results when the
storage devices are highly reliable, that is, when the ratio λ/µ
of the mean rebuild time 1/µ to the mean time to failure of
a device 1/λ is very small. We perform a fair comparison by
considering systems with the same amount of user data stored
under the same storage efficiency. Note that, according to (6)
and (22), the storage efficiency of a RAID-5 system cannot
be less than 1/2, whereas that of a RAID-51 system is always
less than 1/2. Consequently, these two systems cannot be fairly
compared.

The MTTDL of a system comprising nG RAID arrays is
assessed by [8]

MTTDLsys =
MTTDLRAID

nG
, (53)

where MTTDLRAID denotes the MTTDL of a single RAID
array.

A. RAID-5 vs. RAID-6

Let N5 and N6 be the sizes of a RAID-5 and a RAID-6
array, respectively. Assuming the same storage efficiency, we
deduce from (6) and (7) that N6 = 2N5. Also, the user data
stored in a RAID-6 array can also be stored in a system of
nG = 2 RAID-5 arrays. Using (9) and (53), the approximate

MTTDL of the RAID-5 system, MTTDL
(approx, system)
RAID-5 , is ob-

tained as follows:

MTTDL
(approx, system)
RAID-5 =

MTTDL
(approx)
RAID-5

2
(54)

≈
µ

2N5(N5 − 1)λ2
. (55)

Also, the approximate MTTDL of the RAID-6 system,

MTTDL
(approx, system)
RAID-6 , is obtained from (14) by setting N =

N6 = 2N5:

MTTDL
(approx, system)
RAID-6 = MTTDL

(approx)
RAID-6 (56)

≈
µ2

2N5(2N5 − 1)(2N5 − 2)λ3
. (57)

Using (55) and (57) yields

MTTDL
(approx, system)
RAID-5

MTTDL
(approx, system)
RAID-6

= 2 (2N5 − 1) ·
λ

µ
. (58)

Thus, the reliability of the RAID-5 system is less than that
of the RAID-6 system by a magnitude dictated by the ratio
λ/µ, which is very small.

B. RAID-6 vs. RAID-51

Assuming the same storage efficiency for the two systems,
we deduce from (7) and (22) that N6 = (4 − N6)D, which
is satisfied by N6 = D = 3 only. Furthermore, the user
data stored in a RAID-51 array comprised of three pairs
can also be stored in system of nG = 2 RAID-6 arrays of
size three. The approximate MTTDL of the RAID-6 array,

MTTDL
(approx, system)
RAID-6 , is obtained from (14) by setting N = 3:

MTTDL
(approx, system)
RAID-6 ≈

MTTDL
(approx)
RAID-6

2
≈

µ2

12λ3
. (59)

The approximate MTTDL of the RAID-51 system,

MTTDL
(approx, system)
RAID-51 , is obtained from (34) by setting

D = 3:

MTTDL
(approx, system)
RAID-51 ≈

µ3

18λ4
. (60)

Using (59) and (60) yields

MTTDL
(approx, system)
RAID-6

MTTDL
(approx, system)
RAID-51

=
3

2
·

λ

µ
. (61)

Thus, the reliability of the RAID-6 system is lower than
that of the RAID-51 system by a magnitude dictated by the
ratio λ/µ, which is very small.

C. RAID-6 vs. 2D-RAID-5

In general, there are several combinations of N6, K and
D that yield the same storage efficiency for the two systems.
From (7) and (37), it follows that

N6 − 2

N6
=

(K − 1) (D − 1)

K D
, (62)

which also implies that

D =
(K − 1)N6

2K − N6
. (63)

First, we examine whether there is a square 2D-RAID-5
system that has the same storage efficiency as that of a RAID-
6 system. Substituting D = K into (62), after some manipula-
tions, yields N6−K = K/(2K−1), which is not feasible given
that 0 < K/(2K − 1) < 1, for K > 1. Therefore, we proceed
by assuming, without loss of generality, that D ≥ K + 1. It
follows that K/(K + 1) ≤ D/(D − 1) < 1, which using (62)
implies that (K − 1)/(K + 1) ≤ (N6 − 2)/N6 < (K − 1)/K,
which in turn yields

K + 1 ≤ N6 ≤ 2K − 1 . (64)
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Let us consider a system comprised of a single 2D-RAID-5
array with the user data stored in (K−1)(D−1) devices. This
data can also be stored in a system comprised of nG RAID-6
arrays, where

nG =
(K − 1) (D − 1)

N6 − 2

(63)
=

K (K − 1)

2K − N6
. (65)

From (64) and (65), it follows that

K ≤ nG ≤ K (K − 1) . (66)

The values of K, D, and N6 that that yield the same storage
efficiency for the two systems are listed in Table II. We now
fix K and consider the following two extreme combinations
of the other two parameters, N6 and D, obtained using (64)
and (63), respectively.

1) N6 = D = K + 1: From (65), it follows that the user
data is stored in a system of nG = K RAID-6 arrays. Using
(14) and (53), the approximate MTTDL of the RAID-6 system,

MTTDL
(approx, system)
RAID-6 , is obtained as follows:

MTTDL
(approx, system)
RAID-6 =

MTTDL
(approx)
RAID-6

K
(67)

≈
µ2

(K + 1)K2 (K − 1)λ3
. (68)

TABLE II. EQUAL STORAGE EFFICIENCY VALUES (K ≤ 20)

K D N6 K D N6 K D N6

2 3 3 11 12 12 16 33 22

3 4 4 11 34 17 16 45 24

3 10 5 11 45 18 16 65 26

4 5 5 11 100 20 16 81 27

4 9 6 11 210 21 16 105 28

4 21 7 12 13 13 16 145 29

5 6 6 12 22 16 16 225 30

5 16 8 12 33 18 16 465 31

5 36 9 12 55 20 17 18 18

6 7 7 12 77 21 17 52 26

6 10 8 12 121 22 17 120 30

6 15 9 12 253 23 17 256 32

6 25 10 13 14 14 17 528 33

6 55 11 13 27 18 18 19 19

7 8 8 13 40 20 18 34 24

7 15 10 13 66 22 18 51 27

7 22 11 13 92 23 18 85 30

7 36 12 13 144 24 18 136 32

7 78 13 13 300 25 18 187 33

8 9 9 14 15 15 18 289 34

8 21 12 14 39 21 18 595 35

8 49 14 14 78 24 19 20 20

8 105 15 14 169 26 19 39 26

9 10 10 14 351 27 19 58 29

9 16 12 15 16 16 19 96 32

9 28 14 15 21 18 19 153 34

9 40 15 15 28 20 19 210 35

9 64 16 15 46 23 19 324 36

9 136 17 15 56 24 19 666 37

10 11 11 15 70 25 20 21 21

10 21 14 15 91 26 20 57 30

10 27 15 15 126 27 20 76 32

10 36 16 15 196 28 20 133 35

10 51 17 15 406 29 20 171 36

10 81 18 16 17 17 20 361 38

10 171 19 16 25 20 20 741 39

Also, the approximate MTTDL of the 2D-RAID-5 system,

MTTDL
(approx,system)
2D-RAID-5 , is obtained from (52) as follows:

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5 (69)

≈
2µ3

3 (K + 1)K2 (K − 1)λ4
. (70)

Using (68) and (70) yields

MTTDL
(approx, system)
RAID-6

MTTDL
(approx,system)
2D-RAID-5

=
3

2
·

λ

µ
. (71)

Thus, the reliability of the RAID-6 system is lower than
that of the 2D-RAID-5 system by a magnitude dictated by the
ratio λ/µ, which is very small.

2) N6 = 2K − 1 and D = (K − 1)(2K − 1): From
(65), it follows that the user data is stored in a system of
nG = K(K − 1) RAID-6 arrays. Using (14) and (53), the
approximate MTTDL of the RAID-6 system is obtained as
follows:

MTTDL
(approx, system)
RAID-6 =

MTTDL
(approx)
RAID-6

K (K − 1)
(72)

≈
µ2

2K (K − 1)2 (2K − 1) (2K − 3)λ3
.

(73)

Also, the approximate MTTDL of the 2D-RAID-5 system is
obtained from (52) as follows:

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5 (74)

≈
2µ3

3K2 (K − 1)2 (2K − 1) (2K − 3)λ4
.

(75)

Using (73) and (75) yields

MTTDL
(approx, system)
RAID-6

MTTDL
(approx,system)
2D-RAID-5

=
3K

4
·

λ

µ
. (76)

Thus, the reliability of the RAID-6 system is lower than
that of the 2D-RAID-5 system by a magnitude dictated by the
ratio λ/µ, which is very small.

D. RAID-5 vs. 2D-RAID-5

In general, there are several combinations of N5, K and
D that yield the same storage efficiency for the two systems.
From (6) and (37), it follows that

N5 − 1

N5
=

(K − 1) (D − 1)

K D
, (77)

or, equivalently,

2N5 − 2

2N5
=

(K − 1) (D − 1)

K D
. (78)

From (62) and (78), it follows that the (K, D, N5) combi-
nations correspond to the the (K, D, N6) ones, where N6 is
even and N5 = N6/2. From Table II, we deduce that the first
two combinations are the following: K = 3, D = 4, N5 = 2,
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and K = 4, D = 9, N5 = 3. From (62), (64), and (78), it
follows that

K + 1

2
≤ N5 ≤ K − 1 . (79)

We now fix K to be an odd number and consider the
following two extreme combinations regarding the other two
parameters, D and N .

1) N5 = (K + 1)/2 and D = K + 1: In this case, the
user data is stored in (K − 1)(D− 1) = K(K − 1) devices in
the 2D-RAID-5 system, which implies that this data can also
be stored in a system of nG = 2K RAID-5 arrays. Using (9)
and (53), the approximate MTTDL of the RAID-5 system is
obtained as follows:

MTTDL
(approx, system)
RAID-5 =

MTTDL
(approx)
RAID-5

2K
(80)

≈
2µ

(K + 1)K (K − 1)λ2
. (81)

Also, the approximate MTTDL of the 2D-RAID-5 system is
obtained from (52) as follows:

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5 (82)

≈
2µ3

3 (K + 1)K2 (K − 1)λ4
. (83)

Using (81) and (83) yields

MTTDL
(approx, system)
RAID-5

MTTDL
(approx,system)
2D-RAID-5

= 3K ·

(

λ

µ

)2

. (84)

Thus, the reliability of the RAID-5 system is lower than
that of the 2D-RAID-5 system by a magnitude dictated by the
square of the ratio λ/µ, which is very small.

2) N5 = K − 1 and D = (K − 1)2: In this case, the
user data is stored in (K − 1)(D − 1) = (K − 1)[(K − 1)2 −
1] = K(K − 1)(K − 2) devices in the 2D-RAID-5 system,
which implies that this data can also be stored in a system
of nG = K(K − 1) RAID-5 arrays. Using (9) and (53), the
approximate MTTDL of the RAID-5 system is obtained as
follows:

MTTDL
(approx, system)
RAID-5 =

MTTDL
(approx)
RAID-5

K (K − 1)
(85)

≈
µ

K (K − 1)2 (K − 2)λ2
. (86)

Also, the approximate MTTDL of the 2D-RAID-5 system is
obtained from (52) as follows:

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5 (87)

≈
2µ3

3K2 (K − 1)3 (K − 2)λ4
. (88)

Using (86) and (88) yields

MTTDL
(approx, system)
RAID-5

MTTDL
(approx,system)
2D-RAID-5

=
3K (K − 1)

2
·

(

λ

µ

)2

. (89)

Thus, the reliability of the RAID-5 system is lower than
that of the 2D-RAID-5 system by a magnitude dictated by the
square of the ratio λ/µ, which is very small.

E. Erasure Codes: Maximum Distance Separable (MDS) vs.
non-MDS

An (l,m)-erasure code is a mapping from l user data
symbols (or blocks) to a set of m (> l) symbols, called a
codeword, in such a way that some subsets of the m blocks
of the codeword can be used to decode the l user data blocks.
Maximum distance separable (MDS) erasure codes have the
property that any l of the m symbols can be used to decode
a codeword. Examples of such codes include RAID-5 (an
(N,N + 1)-MDS code), RAID-6 (an (N,N + 2)-MDS code),
and r-way replication (an (1, r)-MDS code). As an MDS
erasure code can decode data from any l of the m codeword
symbols, a system employing such a code can sustain up to
(m − l) device failures. This implies that the most probable
path to data loss has exactly (m − l) ‘hops’, starting from
the first-device failure and ending at data loss. As each hop
has a probability proportional to λ/µ (when λ/µ ≪ 1), the

resulting PDL is proportional to (λ/µ)(m−l). This can be seen
from the PDL equations (11) and (18) for RAID-5 and RAID-6,
respectively.

In contrast, erasure codes that do not have the MDS prop-
erty may not be able to sustain (m− l) device failures. Exam-
ples of such non-MDS codes include RAID-51 (a (D−1, 2D)
non-MDS code) and 2D-RAID-5 (a ((D − 1) (K − 1),D K)
non-MDS code). Both these non-MDS codes can sustain any
three device failures; however, the fact that they have consid-
erably higher redundancy may allow them to sustain certain
other subsets of more than three devices, e.g., the failure of
an entire row or column. Note that (m− l) is equal to D + 1
(≥ 3) and D+K−1 (≥ 3) for the RAID-51 and 2D-RAID-5,
respectively, and therefore could be much higher than three for
larger values of D and K. Despite this, these codes can sustain
only up to three arbitrary device failures. This implies that the
most probable path to data loss for RAID-51 and 2D-RAID-5
has exactly three hops, starting from the first-device failure and
ending at data loss, and hence the resulting PDL is proportional
to (λ/µ)3. This can be seen from the PDL equations (33) and
(51) for RAID-51 and 2D-RAID-5, respectively.

Although it may seem that non-MDS codes are not useful
because they provide a lower reliability than their MDS equiv-
alents for the same storage efficiency, they have an advantage
over MDS codes in the presence of correlated device failures
that makes them valuable in practice. To see this, consider
a system employing RAID-51, where each RAID-5 array is
across D devices belonging to a different storage node. Such
a system can sustain the failure of any node even though a
node failure implies that all D devices belonging to that node
are considered failed. Therefore, by carefully selecting the non-
MDS code and the data placement, data can be protected from
correlated failures.
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VII. MOST PROBABLE PATHS TO DATA LOSS

In the preceding sections, we demonstrated that the reliabil-
ity of systems comprised of highly reliable devices can be well
approximated by considering the most likely paths that lead to
data loss, namely, the shortest paths. These paths represent the
smallest number of successive device failures that lead to data
loss.

Here, we demonstrate that in general the shortest paths may
not be the most likely paths that lead to data loss. We therefore
extend our methodology to account for the most probable paths
that lead to data loss. Clearly, the most probable paths are
direct paths to data loss, i.e., paths without loops, but they
may not be the shortest ones.

A. Unrecoverable or Latent Errors

When the storage devices are disks, in addition to disk
failures, data loss may occur owing to errors in individual
disk sectors that cannot be recovered with a reread or the
sector-based error-correction code (ECC). Such media-related
errors are referred to as unrecoverable or latent sector er-
rors [6][8][11][18]. We proceed by considering the family
of devices that exhibit such behavior. The occurrence of
unrecoverable sector errors is particularly problematic when
combined with device failures. For example, if a device fails
in a RAID-5 array, the rebuild process must read all the
data on the remaining devices to reconstruct the data lost.
Consequently, an unrecoverable error on any of the operational
devices would result in an irrecoverable loss of data. A similar
problem occurs when two devices fail in a RAID-6 scheme.
In this case, any unrecoverable sector errors encountered on
the good devices during the rebuild process also lead to data
loss.

The system reliability depends on the probability Ps of an
unrecoverable error on a typical sector [6], as well as the sector
size, S, and the device capacity, Cd. It in fact depends on the
number of sectors in a device, ns, which is given by

ns =
Cd

S
. (90)

The notation used is summarized in Table I. The parameters
are divided according to whether they are independent or
derived and listed in the upper and the lower part of the table,
respectively.

B. A RAID-6 Array Under Latent Errors

The effect of unrecoverable sector errors in a RAID-6
system was analyzed in [6]. We proceed by briefly review-
ing the Markov model developed to characterize the system
behavior and capture the corresponding state transitions. The
corresponding CTMC model shown in Fig. 7 is obtained from
[6, Fig. 7] by setting µ1 = µ2 = µ. The numbered states of
the Markov model represent the number of failed devices. The
DF and UF states represent a data loss due to a device failure
and an unrecoverable sector failure, respectively.

When the first device fails, the array enters degraded mode,
which corresponds to the transition from state 0 to state 1,
with a transition rate of Nλ. The rebuild of a sector of the
failed device is performed based on up to N−1 corresponding

0 1 2

DF

UF

(   −1)N λN λ

(   −2)N λ

Puf
(2)

(1−       )µ

Puf
(2)

µ

Puf
(r)

µ

P
(r)

uf(1−       )µ

Figure 7. Reliability model for a RAID-6 array under latent errors.

sectors residing on the remaining devices. The rebuild fails
when two or more of these sectors are in error. Consequently,
the probability Precf that a given sector of the failed device
cannot be reconstructed is equal to the probability that two or
more of the corresponding sectors residing in the remaining
devices are in error and is given by [9, Eq. (12)]:

Precf ≈

(

N − 1

2

)

P 2
s . (91)

Remark 3: Equation (91) is obtained from

Precf =

N−1
∑

j=2

(

N − 1

j

)

P j
s (1 − Ps)

N−1−j ≈

(

N − 1

2

)

P 2
s ,

(92)

which is derived from Equation (47) of [6] by setting Pseg =
Ps. Note that (92) accounts for all combinations of sector
errors that cause the rebuild of the given sector to fail.
However, the most probable combinations of sector errors
are those that involve only two sectors in error, which is the
least number of sectors in error that cause the rebuild to fail.
These combinations yield the approximation given in (91).

The probability that an unrecoverable failure occurs in
degraded mode because the rebuild of the failed device cannot

be completed, P
(r)
uf , is then given by [9, Eq. (9)]:

P
(r)
uf = 1 −

[

1 −

(

N − 1

2

)

P 2
s

]ns

≈ ns

(

N − 1

2

)

P 2
s , (93)

where ns is the number of sectors in a device.

The system exits from state 1 owing to either another
device failure or completion of the rebuild. The former event
is represented by the state transition from state 1 to state
2 with a rate of (N − 1)λ. The latter event occurs with
a rate of µ and includes two possibilities: a failed rebuild

(due to an unrecoverable failure) with probability P
(r)
uf and a

successful rebuild with probability 1−P
(r)
uf . The former event

is represented by the state transition from state 1 to state UF

with a rate of µP
(r)
uf , and the latter one is represented by the

state transition from state 1 to state 0 with a rate of µ(1−P
(r)
uf ).

When a second device fails (state transition from state 1
to state 2), the RAID-6 array enters the critical mode as an
additional device failure leads to data loss. The rebuild of the
two failed devices is performed based on the remaining N −2
devices. The rebuild fails if any sector of these N − 2 devices

is in error. The probability of this event, P
(2)
uf , is given by [9,
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Eq. (10)]:

P
(2)
uf = 1 − (1 − Ps)

(N−2) ns ≈ (N − 2)ns Ps . (94)

The system exits from state 2 owing to either another
device failure or completion of the rebuild. The former event
is represented by the state transition from state 2 to state
DF with a rate of (N − 2)λ. The latter event occurs with
a rate of µ and includes two possibilities: a failed rebuild

(due to an unrecoverable failure) with probability P
(2)
uf and a

successful rebuild with probability 1−P
(2)
uf . The former event

is represented by the state transition from state 2 to state UF

with a rate of µP
(2)
uf , and the latter one by the state transition

from state 2 to state 0 with a rate of µ(1 − P
(2)
uf ).

We now proceed to show how the approximate MTTDL
of the system can be derived in a straightforward manner
by appropriate application of the direct-path-approximation
technique. The transition from state 0 to state 1 represents the
first device failure. The shortest path to data loss involves a
subsequent transition from state 1 to UF, with a corresponding
probability P1→UF given by

P1→UF =
µP

(r)
uf

µ + (N − 1)λ

(4)
≈ P

(r)
uf . (95)

Note that there are two additional non-shortest paths,
namely 1 → 2 → DF and 1 → 2 → UF, each involving
two transitions, that lead to data loss. The probability P1→2

of the transition from state 1 to state 2 is given by (15)

P1→2 =
(N − 1)λ

µ + (N − 1)λ
≈

(N − 1)λ

µ
. (96)

The probability P2→DF of the transition from state 2 to state
DF is given by (16)

P2→DF =
(N − 2)λ

µ + (N − 2)λ
≈

(N − 2)λ

µ
. (97)

Also, the probability P2→UF of the transition from state 2 to
state UF is given by

P2→UF =
µP

(2)
uf

µ + (N − 2)λ
≈ P

(2)
uf . (98)

Consequently, the probabilities of the two paths to data loss,
P1→2→DF and P1→2→UF, are given by

P1→2→DF = P1→2 P2→DF ≈
(N − 1)(N − 2)λ2

µ2
, (99)

and

P1→2→UF = P1→2 P2→UF ≈
(N − 1)λP

(2)
uf

µ
. (100)

Thus, the probability of the direct paths to data loss that
cross state 2, P1→2→DL, is given by

P1→2→DL = P1→2→DF + P1→2→UF

≈
(N − 1)λ

µ

[

(N − 2)λ

µ
+ P

(2)
uf

]

. (101)

From (95) and (99), and using (93), it follows that the ratio
of the probabilities of the two paths 1 → UF and 1 → 2 → DF
is given by

P1→UF

P1→2→DF

≈
1

2
ns

(

λ

µ

)

−2

P 2
s . (102)

Clearly, for very small values of Ps, this ratio is also very
small, which implies that the path 1 → 2 → DF is significantly
more probable than the shortest path 1 → UF. In contrast to
the cases considered in Sections IV and V, where the shortest
paths were also the most probable ones, here the shortest path
is not. Therefore, we need to enhance the notion of the
shortest paths by considering the most probable ones.

In view of this finding, we proceed by assessing the system
reliability in a region of small values of Ps in which the path
1 → 2 → DF is the most probable one. From (99) and (100),
and using (94), it follows that the path 1 → 2 → DF is the
most probable one when Ps is in region A obtained by

λ

µ
≫ ns Ps ⇔ Ps ≪

1

ns
·
λ

µ
(region A) . (103)

Subsequently, for Ps > λ/(ns µ), that is, when Ps is in region
B, the other path to data loss, 1 → 2 → UF, becomes the most

probable one. In fact, when P
(2)
uf approaches one, the PDL and

MTTDL no longer depend on Ps. Owing to (94), this occurs
when Ps is in region C obtained by

P
(2)
uf ≈ 1 ⇔ Ps '

1

(N − 2)ns
(region C) . (104)

Note that in region C, the path 1 → 2 → UF is also more
probable than the shortest path 1 → UF. Consequently, from

(95) and (100), setting P
(2)
uf = 1, and using (93), it follows

that in region C it holds that

ns

(

N − 1

2

)

P 2
s / (N − 1)

λ

µ

⇔ Ps /

√

2λ

(N − 2)ns µ
(region C) . (105)

Subsequently, for Ps '
√

2λ/[(N − 2)ns µ], that is, when Ps

is in region D, the shortest path to data loss 1 → UF, becomes

the most probable one. In fact, when P
(r)
uf approaches one,

PDL and MTTDL no longer depend on Ps. Owing to (93),
this occurs when Ps is in region E obtained by

P
(r)
uf ≈ 1 ⇔ Ps '

√

2

(N − 1) (N − 2)ns
(region E) .

(106)
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Combining the preceding, (101) yields

PDL

≈















































(N−1)(N−2) λ2

µ2 , A : Ps ≪ λ
ns µ

(N−1)(N−2) λ ns

µ Ps , B : λ
ns µ / Ps / 1

(N−2) ns

(N−1) λ
µ , C : 1

(N−2) ns

/ Ps /
√

2 λ
(N−2) ns µ

(N−1)(N−2) ns

2 P 2
s ,

D :
√

2 λ
(N−2) ns µ / Ps /

√

2
(N−1)(N−2) ns

1 , E :
√

2
(N−1)(N−2) ns

/ Ps ≤ 1 .

(107)

Substituting (107) into (3) yields

MTTDL
(approx)
RAID-6

≈















































µ2

N(N−1)(N−2) λ3 , A : Ps ≪ λ
ns µ

µ
N(N−1)(N−2) λ2 ns

P−1
s , B : λ

ns µ / Ps / 1
(N−2) ns

µ
N(N−1) λ2 , C : 1

(N−2) ns

/ Ps /
√

2 λ
(N−2) ns µ

2
N(N−1)(N−2) λ ns

P−2
s ,

D :
√

2 λ
(N−2) ns µ / Ps /

√

2
(N−1)(N−2) ns

1
N λ , E :

√

2
(N−1)(N−2) ns

/ Ps ≤ 1 .

(108)

Remark 4: The preceding expression specifies three re-
gions, namely A, D, and E, where the MTTDL is independent
of Ps. This corresponds to three plateaus, as shown in [6, Fig.
9(c)].

Remark 5: Depending on the parameter values, some of
the regions may vanish. For instance, region C vanishes when
√

2λ/[(N − 2)ns µ] < 1/[(N−2)ns], or equivalently, 2 (N−
2)ns λ/µ < 1.

Remark 6: The most probable paths are obtained by first
identifying all direct paths to data loss, i.e., paths to data loss
without loops, then evaluating their probability of occurrence,
and finally selecting the most probable ones. Nevertheless,
the MTTDL can be obtained analytically by considering all
direct paths, which are more probable than those having
loops. Therefore, it suffices to simply sum the probabilities
of all direct paths to data loss to obtain the PDL, and in
turn, the MTTDL. The paths with the highest probabilities
naturally dominate the sum and therefore implicitly determine
the system reliability.

The direct paths to data loss are the following: 1 → UF,
1 → 2 → DF and 1 → 2 → UF. From (95), (99), and (100),
it follows that

PDL ≈ P1→UF + P1→2→DF + P1→2→UF

≈ min

(

1, P
(r)
uf +

(N − 1)λ

µ

[

(N − 2)λ

µ
+ P

(2)
uf

])

.

(109)

Note that the expression in (109) may exceed one and, as it
expresses the probability of data loss, needs to be truncated
to one. Assuming that the expression does not exceed one,

substituting (109) into (3) yields

MTTDL
(approx)
RAID-6

≈
µ2

N{µ2 P
(r)
uf + (N − 1)λ [(N − 2)λ + µP

(2)
uf ]}λ

,

(110)

with P
(r)
uf and P

(2)
uf given by (93) and (94), respectively.

We verify that by setting µ1 = µ2 = µ, and using (4),
the exact MTTDL expression given in [6, Eq. (52)] yields
MTTDL ≈ τ0 ≈ µ2/(NλV ), which after some manipulations
gives the same result as in (110).

Remark 7: If the transition from state 2 to state 0 were
not to state 0 but to state 1 instead, as shown in Fig. 7 by
the dashed arrow, the corresponding MTTDL could still be
approximated by (108) and (110) because the expressions for
P1→UF, P1→2→DF, p1→2→UF, and PDL given by (95), (99),
(100), and (109) respectively, would still hold.

C. A Two-Dimensional RAID-5 Array Under Latent Errors

We consider the two-dimensional RAID-5 array analyzed
in Section V-B in which the devices may contain unrecoverable
or latent sector errors. We consider the probability Ps of an
unrecoverable sector error to be small. This in turn implies that
when considering the cases that lead to unsuccessful rebuilds
of sectors residing on failed devices, and according to Remark
3, it suffices to consider only the most probable ones, which
are those that involve the least number of sectors in error.

We now proceed to evaluate the MTTDL using the
most-probable-path approximation. The transition from state
(0, 0, 0, 0) to state A ≡ (1, 0, 1, 0) represents the first device
failure as shown in in Fig. 8. The rebuild of the failed device
can be performed using either the corresponding horizontal
RAID-5 array H1 or the corresponding vertical RAID-5 array
V1.

The rebuild of a given sector, say SEC, of the failed device
fails when there are at least three corresponding sectors on
other devices in error, with the four sectors (including SEC)
occurring in a constellation of two horizontal rows (horizontal
RAID-5 stripes) and two vertical columns (vertical RAID-5
stripes). Note that the sector in the constellation that resides
opposite to SEC can be located in any of the (K−1)(D−1)
devices that are not in H1 and V1. Consequently, the proba-
bility PA that SEC cannot be reconstructed is given by

Psf ≈ 1−(1−P 3
s )(K−1)(D−1) ≈ (K−1)(D−1)P 3

s . (111)

As the failed device contains ns sectors, the probability
that an unrecoverable failure occurs because its rebuild cannot
be completed, PA, is then given by

PA ≈ 1 − (1 − Psf)
ns

(111)
≈ 1 − (1 − P 3

s )(K−1)(D−1)ns

(112)

≈ (K − 1)(D − 1)ns P 3
s . (113)

When a second device fails, the 2D-RAID-5 array enters
either state B ≡ (2, 0, 0, 1), state C ≡ (2, 0, 2, 0) or state
D ≡ (0, 1, 2, 0), as shown in Fig. 8. When the system is in state
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Figure 8. Reliability model for a 2D-RAID-5 array under latent errors.

B, the contents of the two failed devices in V1 are rebuilt in
parallel through the corresponding H1 and H2 RAID-5 arrays.
The rebuild fails when there is a pair of corresponding sectors
in error in some of the D − 1 pairs of devices in the H1 and
H2 RAID-5 arrays. As the number of such pairs is equal to
(D − 1)ns, the probability of an unsuccessful rebuild, PB, is
given by

PB ≈ 1 − (1 − P 2
s )(D−1)ns ≈ (D − 1) ns P 2

s . (114)

When the system is in state C, the contents of the two
failed devices are rebuilt in parallel through the corresponding
horizontal or vertical RAID-5 arrays. The rebuild fails when
there is a pair of corresponding sectors in error in the (H1,
V2) and (H2, V1) devices, where (H1, V2) refers to the device
in row H1 and column V2, and (H2, V1) to that in row H2

and column V1. As the number of such pairs is equal to ns,
the probability of an unsuccessful rebuild, PC, is given by

PC ≈ 1 − (1 − P 2
s )ns ≈ ns P 2

s . (115)

When the system is in state D, the contents of the two failed
devices in H1 are rebuilt in parallel through the corresponding
V1 and V2 RAID-5 arrays. The rebuild fails when there is a pair
of corresponding sectors in error in some of the K − 1 pairs
of devices in the V1 and V2 RAID-5 arrays. As the number
of such pairs is equal to (K − 1)ns, the probability of an
unsuccessful rebuild, PD, is given by

PD ≈ 1 − (1 − P 2
s )(K−1)ns ≈ (K − 1) ns P 2

s . (116)

When the system is in state E ≡ (1, 1, 1, 1), it suffices one
latent sector error in the device in row H2 and column V2 to
cause the rebuild to fail. As this device contains ns sectors,
the probability that an unrecoverable failure occurs because
the rebuild of the failed devices cannot be completed, PE, is
then given by

PE ≈ 1 − (1 − Ps)
ns ≈ ns Ps . (117)

As shown in Fig. 8, the shortest path from state (1, 0, 1, 0)
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to data loss involves a subsequent transition from state
(1, 0, 1, 0) to UF, with a corresponding probability, PA→UF,
given by

PA→UF =
µPA

µ + (K D − 1)λ
≈ PA . (118)

Next, we consider the three additional direct, two-hop non-
shortest paths, namely, A → B → UF, A → C → UF, and
A → D → UF, each involving two transitions, that lead to
data loss. We proceed to evaluate the probabilities of their
occurrence. From Fig. 8, it follows that

PB→UF =
2µPB

2µ + 2 (D − 1)λ
≈ PB , (119)

PC→UF =
2µPC

2µ + 2λ
≈ PC , (120)

and

PD→UF =
2µPD

2µ + 2 (K − 1)λ
≈ PD . (121)

From (38) and (119), and using (114), it follows that

PA→B→UF =PA→B PB→UF ≈ (K − 1)
λ

µ
PB (122)

≈ (K − 1) (D − 1)ns
λ

µ
P 2

s . (123)

From (40) and (120), and using (115), it follows that

PA→C→UF =PA→C PC→UF ≈ (K − 1) (D − 1)
λ

µ
PC (124)

≈ (K − 1) (D − 1)ns
λ

µ
P 2

s . (125)

From (42) and (121), and using (116), it follows that

PA→D→UF =PA→D PD→UF ≈ (D − 1)
λ

µ
PD (126)

≈ (K − 1) (D − 1)ns
λ

µ
P 2

s . (127)

Next, we consider the six additional direct non-shortest
paths, namely, A → B → E → DF, A → C → E → DF,
A → D → E → DF, A → B → E → UF, A → C → E → UF,
and A → D → E → UF, each involving three transitions, that
lead to data loss.

The probabilities of occurrence of the first three paths are
the corresponding probabilities of these paths in the absence
of sector errors given by (48), (49), and (50), respectively, that
is,

PA→B→E→DF ≈ PA→C→E→DF ≈ PA→D→E→DF

≈
(K − 1) (D − 1)

2

(

λ

µ

)3

. (128)

Thus,

PA→E→DF = PA→B→E→DF + PA→C→E→DF + PA→D→E→DF

≈
3 (K − 1) (D − 1)

2

(

λ

µ

)3

. (129)

According to (44), it holds that

PE→DF ≈
λ

2µ
. (130)

From (129) and (130), we deduce that

PA→E = 3 (K − 1) (D − 1)

(

λ

µ

)2

. (131)

Also, it holds that

PE→UF =
2µPE

2µ + λ
≈ PE . (132)

Combining (131) and (132) yields

PA→E→UF = PA→E PE→UF ≈ 3 (K−1) (D−1)

(

λ

µ

)2

PE .

(133)

Thus, the probability of the direct paths to data loss that
cross state E is given by

PA→E→DL = PA→E→DF + PA→E→UF

≈ 3 (K − 1) (D − 1)

(

λ

µ

)2 (
λ

2µ
+ PE

)

.

(134)

From (118) and (129), and using (113), it follows that the
ratio of the probabilities of the two paths A → UF and A →
E → DF is given by

PA→UF

PA→E→DF

≈
2

3
ns

(

λ

µ

)

−3

P 3
s . (135)

Clearly, for very small values of Ps, this ratio is also very
small, which implies that the path A → E → DF is signifi-
cantly more probable than the shortest path A → UF.

In view of this finding, we proceed by assessing the system
reliability in a region of small values of Ps in which the path
A → E → DF is the most probable one. Using (117), it follows
that the first term of the summation in (134) dominates when
Ps is in region H obtained by

λ

2µ
≫ ns Ps ⇔ Ps ≪

1

2
·

1

ns
·
λ

µ
(region H) . (136)

Subsequently, for Ps > λ/(2ns µ), that is, when Ps is in
region I, the other path to data loss A → E → UF becomes
the most probable one. In fact, when PE approaches one, the
PDL and MTTDL no longer depend on Ps. Owing to (117),
this occurs when Ps is in region J obtained by

PE ≈ 1 ⇔ Ps '
1

ns
(region J) . (137)

Note that in region J, the path A → E → UF is also more
probable than any of the paths A → B → UF, A → C → UF,
and A → D → UF. For small values of Ps, according to
(123), (125), and (127), these two-hop paths are equally likely
to occur. Therefore, the probability PA→X→UF of a transition
from state A to state UF through some other state X (X = B
or C or D) is given by

PA→X→UF = 3 (K − 1) (D − 1)ns
λ

µ
P 2

s . (138)
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Consequently, from (133) and (138), and setting PE = 1, it
follows that in region J it holds that

3 (K − 1) (D − 1)ns
λ

µ
P 2

s / 3 (K − 1) (D − 1)

(

λ

µ

)2

⇔ Ps /

√

λ

ns µ
(region J) . (139)

Subsequently, for Ps '
√

λ/(ns µ), that is, when Ps is in
region L, the two-hop paths to data loss, A → X → UF ,
become the most probable ones. In fact, as Ps increases,
according to (114), (115), and (116), first PB, then PD and PC

approach one, and therefore the PDL and MTTDL no longer
depend on Ps. This occurs when Ps is in region M, with
the corresponding probability, PA→X→UF, obtained from (122),
(124), and (126), by setting PB = PC = PD = 1, that is,

PA→X→UF = (K D − 1)
λ

µ
(region M) . (140)

Combining (138) and (140), we deduce that in region M it
holds that

3 (K − 1) (D − 1)ns
λ

µ
P 2

s ' (K D − 1)
λ

µ

⇔ Ps '

√

KD − 1

3 (K − 1) (D − 1)ns
(region M) .

(141)

Also, in region M, the paths A → X → UF are more probable
than the shortest path A → UF. Consequently, from (118) and
(140), and using (113), it follows that in region M it holds that

(K − 1) (D − 1)ns P 3
s / (K D − 1)

λ

µ

⇔ Ps /

[

(K D − 1)λ

(K − 1) (D − 1)ns µ

]
1
3

(region M) .

(142)

Subsequently, for Ps ' {(KD − 1)λ/[(K − 1) (D −
1)ns µ]}1/3, that is, when Ps is in region Q, the shortest
path to data loss A → UF becomes the most probable one.
In fact, when PA approaches one, the PDL and MTTDL no
longer depend on Ps. Owing to (113), this occurs when Ps is
in region R obtained by

PA ≈ 1 ⇔ Ps '

[

1

(K − 1) (D − 1)ns

]
1
3

(region R) .

(143)

Combining the preceding, (101) yields

PDL

≈



































































































3(K−1)(D−1) λ3

2 µ3 , H : Ps ≪ λ
2 ns µ

3(K−1)(D−1) λ2 ns

µ2 Ps , I : λ
2 ns µ / Ps / 1

ns

3(K−1)(D−1) λ2

µ2 , J : 1
ns

/ Ps /
√

λ
ns µ

3(K−1)(D−1) λ ns

µ P 2
s ,

L :
√

λ
ns µ / Ps /

√

KD−1
3 (K−1) (D−1) ns

(KD−1) λ
µ ,

M :
√

KD−1
3 (K−1) (D−1) ns

/ Ps /
[

(KD−1) λ
(K−1)(D−1) ns µ

]
1
3

(K − 1)(D − 1)ns P 3
s ,

Q :
[

(KD−1) λ
(K−1)(D−1) ns µ

]
1
3

/ Ps /
[

1
(K−1)(D−1) ns

]
1
3

1 , R :
[

1
(K−1)(D−1) ns

]
1
3

/ Ps ≤ 1 .

(144)

Substituting (144) into (3), and considering N = KD,
yields the approximate MTTDL of the two-dimensional RAID-

5 system, MTTDL
(approx)
2D-RAID-5, given by

MTTDL
(approx)
2D-RAID-5

≈











































































































2 µ3

3K(K−1)D(D−1) λ4 , H : Ps ≪ λ
2 ns µ

µ2

3K(K−1)D(D−1) λ3 ns

P−1
s ,

I : λ
2 ns µ / Ps / 1

ns

µ2

3K(K−1)D(D−1) λ3 , J : 1
ns

/ Ps /
√

λ
ns µ

µ
3K(K−1)D(D−1) λ2 ns

P−2
s ,

L :
√

λ
ns µ / Ps /

√

KD−1
3 (K−1) (D−1) ns

µ
KD(KD−1) λ2 ,

M :
√

KD−1
3 (K−1) (D−1) ns

/ Ps /
[

(KD−1) λ
(K−1)(D−1) ns µ

]
1
3

1
K(K−1)D(D−1) λ ns

P−3
s ,

Q :
[

(KD−1) λ
(K−1)(D−1) ns µ

]
1
3

/ Ps /
[

1
(K−1)(D−1) ns

]
1
3

1
KDλ , R :

[

1
(K−1)(D−1) ns

]
1
3

/ Ps ≤ 1 .

(145)

Following Remark 6, we obtain the PDL by summing the
probabilities of all direct paths to data loss. From (118), (122),
(124), (126), and (134), it follows that

PDL ≈ PA→UF + PA→B→UF + PA→C→UF + PA→D→UF

+ PA→E→DF + PA→E→UF = min

(

1, PA

+ [(K − 1)PB + (K − 1)(D − 1)PC + (D − 1)PD]
λ

µ

+ 3 (K − 1) (D − 1)

(

λ

2µ
+ PE

) (

λ

µ

)2
)

. (146)

Note that the expression in (146) may exceed one and, as it
expresses the probability of data loss, needs to be truncated
to one. Assuming that the expression does not exceed one,
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substituting (146) into (3), and considering N = KD, yields
the approximate MTTDL of the two-dimensional RAID-5
array as follows:

MTTDL
(approx)
2D-RAID-5

≈
1

K D λ

/{

PA +

+ [(K − 1)PB + (K − 1)(D − 1)PC + (D − 1)PD]
λ

µ

+ 3 (K − 1) (D − 1)

(

λ

2µ
+ PE

) (

λ

µ

)2
}

, (147)

where PA, PB, PC, PD, and PE are given by (112), (114), (115),
(116), and (117), respectively.

D. A RAID-5 Array Under Latent Errors

The MTTDL of a RAID-5 array under latent sector errors
was initially derived in [6] and is included in this article for
completeness. The corresponding CTMC model is obtained
from [6, Fig. 6] and shown in Fig. 9. When a device fails
(state transition from state 0 to state 1), the RAID-5 array
enters the critical mode as an additional device failure leads to
data loss. The rebuild of the failed device is performed based
on the remaining N −1 devices. The rebuild fails if any sector
of these N−1 devices is in error. The probability of this event,

P
(1)
uf , is given by [6, Eq. (1)]

P
(1)
uf = 1 − (1 − Ps)

(N−1) ns ≈ (N − 1)ns Ps . (148)

The system exits from state 1 owing to either another
device failure or completion of the rebuild. The former event
is represented by the state transition from state 1 to state UF

with a rate of µP
(1)
uf , and the latter one by the state transition

from state 1 to state 0 with a rate of µ(1 − P
(1)
uf ).

We now proceed to show how the approximate MTTDL of
the system can be derived in a straightforward manner by ap-
propriately applying the direct-path-approximation technique.
The transition from state 0 to state 1 represents the first device
failure. The probabilities of the direct paths to data loss, P1→DF

and P1→UF, are given by

P1→DF =
(N − 1)λ

µ + (N − 1)λ
≈

(N − 1)λ

µ
, (149)

and

P1→UF =
µP

(1)
uf

µ + (N − 1)λ
≈ P

(1)
uf . (150)

N λ

0

DF

UF

1

(   −1)N λ

Puf
(1)

µ

Puf
(1)

(1−       )µ

Figure 9. Reliability model for a RAID-5 array under latent errors.

Combining (149) and (150) yields

PDL ≈ P1→DL = P1→DF + P1→UF

=
(N − 1)λ + µP

(1)
uf

µ + (N − 1)λ
(151)

≈ min

(

1, (N − 1)

(

λ

µ

)

+ P
(1)
uf

)

. (152)

Note that the expression in (152) may exceed one and, as it
expresses the probability of data loss, needs to be truncated
to one. Assuming that the expression does not exceed one,
substituting (152) into (3) yields

MTTDL
(approx)
RAID-5 ≈

µ

N λ [(N − 1)λ + µP
(1)
uf ]

, (153)

which is the result obtained by Equation (45) of [6] when the
first term of the nominator is ignored.

From (149) and (150), and using (148), it follows that the
path 1 → DF is the most probable one when Ps is in region
A obtained by

λ

µ
≫ ns Ps ⇔ Ps ≪

1

ns
·
λ

µ
(region A) . (154)

Note that this is the same region as that in (103) for a RAID-6
array.

Subsequently, for Ps > λ/(ns µ), that is, when Ps is in
region F, the other path to data loss, 1 → UF, becomes the

most probable one. In fact, when P
(1)
uf approaches one, the

PDL and MTTDL no longer depend on Ps. Owing to (148),
this occurs when Ps is in region G obtained by

P
(2)
uf ≈ 1 ⇔ Ps '

1

(N − 1)ns
(region G) . (155)

Combining the preceding, (152) yields

PDL ≈ P1→DL

≈











(N−1) λ
µ , A : Ps ≪ λ

ns µ

(N − 1)ns Ps , F : λ
ns µ / Ps / 1

(N−1) ns

1 G : 1
(N−1) ns

/ Ps ≤ 1 .

(156)

Substituting (156) into (3) yields

MTTDL
(approx)
RAID-5 ≈

≈











µ
N(N−1) λ2 , A : Ps ≪ λ

ns µ
1

N(N−1) λ ns

P−1
s , F : λ

ns µ / Ps / 1
(N−1) ns

1
N λ G : 1

(N−1) ns

/ Ps ≤ 1 .

(157)

E. RAID-5 vs. RAID-6 Under Latent Errors

In region A, the ratio of the corresponding reliabilities is
given by (58). In regions G and C, the corresponding MTTDLs
are obtained from (157) and (108) as follows:

MTTDL
(approx)
RAID-5 ≈

1

N5 λ
(region G) , (158)

and

MTTDL
(approx)
RAID-6 ≈

µ

N6 (N6 − 1)λ2
(region C) . (159)
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Moreover, according to (54) and (56), it holds

that MTTDL
(approx, system)
RAID-5 = MTTDL

(approx)
RAID-5 /2 and

MTTDL
(approx, system)
RAID-6 = MTTDL

(approx)
RAID-6 , respectively.

Consequently, from (158) and (159), and given that
N6 = 2N5, it follows that in region C∩G it holds that

MTTDL
(approx, system)
RAID-5

MTTDL
(approx, system)
RAID-6

= (N6 − 1) ·
λ

µ
. (160)

Thus, the reliability of the RAID-5 system in region C∩G
is less than that of the RAID-6 system by a magnitude dictated
by the ratio λ/µ, which is very small. As this holds in both
regions A and C∩G, we deduce that this also holds in region
B∩F. Consequently, for all realistic values of Ps, the reliability
of the RAID-5 system is lower than that of the RAID-6 system
by a magnitude dictated by the ratio λ/µ.

F. RAID-6 vs. 2D-RAID-5 Under Latent Errors

In region H∩A, the ratios of the corresponding reliabilities
are given by (71) and (76) for cases 1 and 2, respectively.

1) N6 = D = K+1: In regions C and J, the corresponding
MTTDLs are obtained from (108) and (145) as follows:

MTTDL
(approx)
RAID-6 ≈

µ

(K + 1)K λ2
(region C) , (161)

and

MTTDL
(approx)
2D-RAID-5 ≈

µ2

3 (K + 1)K2 (K − 1)λ3
(region J) .

(162)

Also, according to (67) and (69), it holds that

MTTDL
(approx, system)
RAID-6 = MTTDL

(approx)
RAID-6 /K and

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5, respectively.

Consequently, from (161) and (162), it follows that in
region J∩C it holds that

MTTDL
(approx, system)
RAID-6

MTTDL
(approx,system)
2D-RAID-5

= 3 (K − 1) ·
λ

µ
. (163)

2) N6 = 2K − 1 and D = (K − 1)(2K − 1): In regions
C and J, the corresponding MTTDLs are obtained from (108)
and (145) as follows:

MTTDL
(approx)
RAID-6 ≈

µ

2 (K − 1) (2K − 1)λ2
(region C) ,

(164)
and

MTTDL
(approx)
2D-RAID-5 ≈

µ2

3K2 (K − 1)2 (2K − 1) (2K − 3)λ3

(region J) . (165)

Also, according to (72) and (74), it holds that

MTTDL
(approx, system)
RAID-6 = MTTDL

(approx)
RAID-6 /[K(K − 1)] and

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5, respectively.

Consequently, from (164) and (165), it follows that in
region J∩C it holds that

MTTDL
(approx, system)
RAID-6

MTTDL
(approx,system)
2D-RAID-5

=
3K (2K − 3)

2
·

λ

µ
. (166)

Thus, in both cases, the reliability of the RAID-6 system
in region J∩C is lower than that of the 2D-RAID-5 system by
a magnitude dictated by the ratio λ/µ, which is very small. As
this holds in both regions H∩A and J∩C, we deduce that this
also holds in region I∩B. Consequently, for all realistic values
of Ps, the reliability of the RAID-6 system is lower than that
of the 2D-RAID-5 system by a magnitude dictated by the ratio
λ/µ.

G. RAID-5 vs. 2D-RAID-5 Under Latent Errors

In region H∩A, the ratios of the corresponding reliabilities
are given by (84) and (89) for cases 1 and 2, respectively.

1) N5 = (K + 1)/2 and D = K + 1: In region G, the
corresponding MTTDL is obtained from (157) as follows:

MTTDL
(approx)
RAID-5 ≈

2

(K + 1)λ
(region G) , (167)

In region J, the corresponding MTTDL is given by (162). Also,

according to (80) and (82), it holds that MTTDL
(approx, system)
RAID-5

= MTTDL
(approx)
RAID-5 /(2K) and MTTDL

(approx,system)
2D-RAID-5 =

MTTDL
(approx)
2D-RAID-5, respectively. Consequently, from (167)

and (162), it follows that in region J∩G it holds that

MTTDL
(approx, system)
RAID-5

MTTDL
(approx,system)
2D-RAID-5

= 3K (K − 1) ·

(

λ

µ

)2

. (168)

2) N5 = K−1 and D = (K−1)2: In regions G and J, the
corresponding MTTDLs are obtained from (157) and (145) as
follows:

MTTDL
(approx)
RAID-5 ≈

1

(K − 1)λ
(region G) , (169)

and

MTTDL
(approx)
2D-RAID-5 ≈

µ2

3K2 (K − 1)3 (K − 2)λ3

(region J) . (170)

Also, according to (85) and (87), it holds that

MTTDL
(approx, system)
RAID-6 = MTTDL

(approx)
RAID-6 /[K(K − 1)] and

MTTDL
(approx,system)
2D-RAID-5 = MTTDL

(approx)
2D-RAID-5, respectively.

Consequently, from (169) and (170), it follows that in
region J∩G it holds that

MTTDL
(approx, system)
RAID-6

MTTDL
(approx,system)
2D-RAID-5

= 3K (K − 1) (K − 2) ·

(

λ

µ

)2

.

(171)

Thus, in both cases, the reliability of the RAID-5 system
in region J∩G is lower than that of the 2D-RAID-5 system by
a magnitude dictated by the square of the ratio λ/µ, which is
very small. As this holds in both regions H∩A and J∩G, we
deduce that this also holds in region I∩F. Consequently, for
all realistic values of Ps, the reliability of the RAID-5 system
is lower than that of the 2D-RAID-5 system by a magnitude
dictated by the square of the ratio λ/µ.
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VIII. NUMERICAL RESULTS

We consider a system comprised of devices with Cd = 1
TB and S = 512 bytes. Note that in all cases PDL depends
on λ and µ only through their ratio λ/µ. Consequently, the
quantity λ MTTDL, which owing to (3) and (53), is given by

λ MTTDL ≈
1

nG N PDL

. (172)

also depends on λ and µ only through their ratio λ/µ. In the
remainder, we set λ/µ = 0.001. The λ MTTDLs of RAID-6,
2D-RAID-5, and RAID-5 systems are evaluated analytically
using (110), (147), and (153), respectively.

The combined effects of device and unrecoverable failures
in a RAID-5 and a RAID-6 array (nG = 1) of size N = 8 can
be seen in Fig. 10 as a function of the unrecoverable sector
error probability: it shows the most probable paths that lead
to data loss along with the resulting λ MTTDL measure. The
backward arrows have been included because they affect the
probability of occurrence of these paths. The dotted backward
arrows indicate transitions that are no longer possible.

The λ MTTDL for the RAID-5 array, indicated by the
dashed line, exhibits two plateaus that, according to (157),
correspond to the regions A and G. The first plateau, in region
A, corresponds to the case where there are no unrecoverable
errors and therefore data loss occurs owing to two successive
device failures. The second plateau, in region G, corresponds
to the first device failure after a mean time of N λ, which
in turn leads to data loss during rebuild due to unrecoverable
errors.

The λ MTTDL for the RAID-6 array, indicated by the
solid line, exhibits three plateaus that, according to (108),
correspond to the regions A, C, and G. The first plateau,
in region A, corresponds to the case where there are no
unrecoverable sector errors, and therefore data loss occurs
owing to three successive device failures. In this case, the most
probable path is not the shortest path, 1 → UF, but the path
1 → 2 → DF, indicated by the solid red line in Fig. 11. This
line is horizontal because, according to (99), the probability
of occurrence of this path does not depend on Ps. In region
B, the most probable path is the path 1 → 2 → UF, indicated
by the dashed blue line in Fig. 11. Also, according to (100)
and (104), in region C, the probability of occurrence of this
path becomes independent of Ps, which results in the second
plateau. This corresponds to a second device failure, which
in turn leads to data loss during rebuild due to unrecoverable
errors. Subsequently, in region D, the most probable path is
the shortest path, 1 → UF, indicated by the dotted green
line in Fig. 11. Also, according to (95) and (106), in region
E, the probability of occurrence of this path becomes one,
independent of Ps, which results in the third plateau. This
corresponds to the first device failure, which in turn leads to
data loss during rebuild due to unrecoverable errors.

Note that the plateaus G and E correspond to the same
MTTDL value of 1/(N λ). Similarly, the plateaus A and C
correspond to the same MTTDL value of µ/[N(N − 1)λ2].
From (103), (104), (154), and (155), it follows that region B
is about the same as region F. Furthermore, from (108) and
(157), it follows that in regions A, B, and C, the MTTDL
of the RAID-5 array is lower than that of the RAID-6 array

Figure 10. λ MTTDL for a RAID-5 and a RAID-6 array under latent errors
(λ/µ = 0.001, N5 = N6 = 8, and Cd = 1 TB).
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Figure 11. Direct-path probabilities for a RAID-6 array under latent errors
(λ/µ = 0.001, N = 8, and Cd = 1 TB).

by a factor of (N − 2)λ/µ, (N − 2)λ/µ, and (N − 1)λ/µ,
respectively.

Next, we consider a 2D-RAID-5 array with K = 9 and
D = 64, and therefore a corresponding storage efficiency of
0.875. We also consider a system comprised of nG = 72
RAID-5 arrays of size N = 8 and a system comprised of
nG = 36 RAID-6 arrays of size N = 16, such that these
systems store the same amount of user data as the 2D-RAID-5
array under the same storage efficiency. The combined effects
of device and unrecoverable failures on the λ MTTDL measure
are shown in Fig. 12 as a function of the unrecoverable sector
error probability. The various regions and plateaus are also
depicted. The probabilities of occurrence of all direct paths to
data loss for the 2D-RAID-5 array are shown in Fig. 13. We
observe that the shortest path to data loss, A → UF, indicated
by the dotted green line, becomes the most probable one only if
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Figure 12. λ MTTDL for a RAID-5, RAID-6, and 2D-RAID-5 system under
latent errors (λ/µ = 0.001, N5 = 8, N6 = 16, K = 9, D = 64, and
Cd = 10 TB).
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Figure 13. Direct-path probabilities for a 2D-RAID-5 array under latent
errors (λ/µ = 0.001, K = 9, D = 64, and Cd = 10 TB).

Ps > 10−4. We also observe that for Ps < 10−7, the reliability
of the 2D-RAID-5 system is higher than that of the RAID-6
system, which in turn is higher than that of the RAID-5 system.

In Section VII, the MTTDL was derived in two ways:
by considering the most probable path to data loss and by
considering all direct paths to data loss (see Remark 6). The
corresponding results for the RAID-5 system are obtained by
(157) and (153) and shown in Fig. 14. The corresponding
results for the RAID-6 system are obtained by (108) and (110)
and shown in Fig. 15. Finally, the corresponding results for the
2D-RAID-5 array are obtained by (145) and (147) and shown
in Fig. 16.
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Figure 14. λ MTTDL for a RAID-5 system under latent errors (λ/µ = 0.001,
N = 8, nG = 72, and Cd = 10 TB).
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Figure 15. λ MTTDL for a RAID-6 system under latent errors (λ/µ = 0.001,
N = 16, nG = 36, and Cd = 10 TB).

IX. CONCLUSIONS

We considered the mean time to data loss (MTTDL) metric,
which assesses the reliability level of storage systems. This
work presented a simple, yet efficient methodology to approx-
imately assess it analytically for systems with highly reliable
devices and a broad set of redundancy schemes. We extended
the direct-path approximation to a more general method that
considers the most probable paths, which are often the shortest
paths, that lead to data loss. We subsequently applied this
method to obtain a closed-form expression for the MTTDL
of a RAID-51 system. We also considered a specific instance
of a RAID-51 system, then derived the corresponding exact
MTTDL, and subsequently confirmed that it matches that ob-
tained from the shortest-path-approximation method. Closed-
form approximations were also obtained for the MTTDL of
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Figure 16. λ MTTDL for a 2D-RAID-5 array under latent errors (λ/µ =

0.001, K = 9, D = 64, and Cd = 10 TB).

RAID-6 and two-dimensional RAID-5 systems in the presence
of unrecoverable errors and device failures. Subsequently, a
thorough comparison of the reliability levels achieved by the
redundancy schemes considered was conducted. As the direct-
path approximation accurately predicts the reliability of non-
Markovian systems with a single shortest path, we conjecture
that the shortest-path-approximation method would also accu-
rately predict the reliability of non-Markovian systems with
multiple shortest paths.

Application of the shortest-path-approximation methodol-
ogy developed to derive the MTTDL for systems using other
redundancy schemes, such as erasure codes, is a subject of
future work.

This methodology can also be applied to system models
that additionally consider node, rack, and data-center failures.
In such models, there may be short paths to data loss that are
not very likely to occur (e.g., disaster events), and direct paths
to data loss that are highly probable, but not necessarily short.
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