International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

92

Design and Implementation of Ambient Intelligent Systems using Discrete Event
Simulations

Souhila Sehili
University of Corsica
SPE UMR CNRS 6134
Corte, France
sehili@univ-corse.fr

Abstract—The Internet of Things (IoT) project enables rapid in-
novation in the area of Internet connected devices and associated
cloud services. An IoT node can be defined as a flexible platform
for interacting with real world objects and making data about
those objects accessible through the Internet. Communication
between nodes is discrete Event-oriented and the simulation
process play an important role in defining assembly of nodes in
such ambient systems. One of today’s challenges in the framework
of ubiquitous computing concerns the design of such ambient
systems. The main problem is to propose a management adapted
to the composition of applications in ubiquitous computing. In
this paper, we propose the definition of a modeling and simulation
scheme based on a discrete-event formalism in order to specify at
the very early phase of the design of an ambient system: (i) the
behavior of the components involved in the ambient system to be
implemented; (ii) the possibility to define a set of strategies that
can be implemented in the execution machine. A pedagogical
example concerning a concurrent access to a switchable on/off
light has been modeled into the Python DEVSimPy environment
in order to validate our approach.

Keywords—IoT; Discrete-event; Simulation; Formalism; Assem-
bly; Smart; Environment.

I. INTRODUCTION

Technological advances in recent years around mobile com-
munication and miniaturization of computer hardware have led
to the emergence of ubiquitous computing. In our previous
paper [1] we have presented how the DEVS formalism can
be used in order simulate the behavior of ambient intelligent
components before any implementation using the WComp
environment. The interest of this approach has been pointed
out on a pedagogical example which allowed to show that
using the DEVS formalism conflicts can be detected using
simulation before any implementation. The word “ubiquitous
computing”was first used in 1988 by Mark Weiser to describe
his vision of future [2] - computing at the twenty-first century
as he had imagined. In his idea, computing tools are embedded
in objects of everyday life. The objects are used both at work
and at home. The user has at its disposal a range of small
computing devices such as smartphone or PDA, and their use
is part of ordinary daily life. These devices make access to
information easier for everyone, anywhere and anytime. Users
then have the opportunity to exchange data easily, quickly
and effortlessly, regardless of their geographic position. The
definition of such complex systems involving sensors, smart-
phones, interconnected objects, computers, etc. results in what
is called ambient systems.

Laurent Capocchi
University of Corsica
SPE UMR CNRS 6134
Corte, France
capocchi @univ-corse.fr

Jean-Francgois Santucci
University of Corsica
SPE UMR CNRS 6134
Corte, France
santucci@univ-corse.fr

One of today’s challenges in the framework of ubiquitous
computing [3] concerns the design of such ambient systems.
One of the main problems is to propose a management adapted
to the composition of applications in ubiquitous computing [4].
Ambient systems applications design involves the management
of many varied devices integrated in objects of everyday life.
The unpredictability of availability of the features of these
devices makes the need for explicit adaptation for this type of
system. The specificity of this adaptation is that it will meet all
the constraints imposed by the context of ambient computing.
The difficulty is to propose a compositional adaptation, which
aims to integrate new features that were not foreseen in the
design, remove or exchange entities that are no longer available
in a given context. Mechanism to address this concern must
then be proposed by middleware for ubiquitous computing.

We have being focused on the WComp environment,
which is a prototyping and dynamic execution environment
for Ambient Intelligence applications. WComp [5] is created
by the Rainbow research team of the I3S laboratory, hosted
by University of Nice - Sophia Antipolis and CNRS. It uses
lightweight components to manage dynamic orchestrations
of Web service for devices, like UPnP [6] or DPWS ser-
vices [7], discovered in the software infrastructure. In the
framework of the WComp, it has been defined a management
mechanism allowing extensible interference between devices.
This is particularly important in the context definition of
new coordination logic. In WComp it has been proposed a
methodology for interference management mechanism to be
dynamically and automatically extensible. In order to deal
with the asynchronous nature of the real world, WComp
has defined an execution machine for complex connections.
In a real case, the assumption of zero reaction time is not
realistic. It is essential to check that the system is fast enough
according to the dynamics of the environment. It is also
essential to make the link between the logical time and physical
time and the relationship between the actual events of the
environment and those used in the definition of synchronous
processes [8]. The entity that is responsible for ensuring these
approximations is the execution machine and is used to treat
the interface between synchronous and asynchronous process
environments [9].

In this paper, we propose the definition a modeling and
simulation scheme based on the DEVS formalism in order to
specify at the very early phase of the design of an ambient
system: (i) the behavior of the components involved in the
ambient system to be implemented; (ii) the possibility to define

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a set of strategies, which can be implemented in the execution
machine. The interest of such an approach is twofold: (i)
the behavior will be used to write the methods required; (ii)
to check the different strategies (to be implemented in the
execution machine) before implementation. The rest of the
paper is as follows: Section II concerns with the background
of the study by presenting the traditional approach for the
design of IoT systems. It briefly introduces a set of middleware
framework before focusing on the WComp Framework. The
DEVS formalism and the DEVSimPy environment are also
presented. In Section III, the proposed approach based on the
DEVS formalism is given. An overview of the approach as well
as the interest in using DEVS simulation is detailed. Section
IV deals with the validation of the approach through a case
study The conclusion and future work are given in Section V.

II. RELATED WORK

There have been a some approaches dedicated to the man-
agement of ubiquitous systems. In this section, we highlight
several kinds of middleware tools have been proposed in the
recent years such as:

Roman et al. [10] proposed a middleware software in-
frastructure Gaia, which assist humans in the development
of applications for ubiquitous computing buildings and homes
intelligent by interacting with devices simultaneously.

Seung et al. [11] proposed a new approach in middle-
ware architecture HOMEROS, which adopts a hybrid-network
model to efficiently manage enormous resources, context,
location, allowing high flexibility in the environment of het-
erogeneous devices and users.

Lopes et al. [12] proposed a middleware software infras-
tructure EXEHDA, which manages and implements the follow-
me semantics in which the applications code is installed on-
demand on the devices and this installation is adaptive to
context of each device.

Ferry et al. [13] proposed a middleware WComp based on a
software infrastructure, a service composition architecture, and
a compositional adaptation mechanism used in prototyping and
executing the Ambient Intelligence applications.

III. BACKGROUND
A. IoT Design and WComp

The ubiquitous computing is a new form of computing
that has inspired many works in various fields such as the
embedded system, wireless communication, etc. Embedded
systems offer computerized systems having sizes smaller and
integrated into objects everyday life. An ambient system [14]
is a set of physical devices that interact with each other
(e.g., a temperature sensor, a connecting lamp, etc.). The
design of an ambient system should be based on a software
infrastructure and any application to be executed in such an
ambient environment must respect the constraints imposed by
this software infrastructure.

Devices and software entities provided by the manufac-
turers are not provided to be changed: they are black boxes.
This concept can limit the interactions to use the services they
provide and prevents direct access to their implementation. The
creation of an ambient system can not under any circumstances
pass by a modification of the internal behavior of these entities
but simply facilitate the principle reusability, since an entity

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

93

chooses for its functionality and not its implementation. In
the vision of ubiquitous computing, users and devices operate
in an environment variable and potentially unpredictable in
which the entities involved appear and conveniently disappear
(a consequence of mobility, disconnections, breakdowns, etc.).
It is not possible to anticipate the application design when
we do not have information about availability of any devices.
As a result a set of tools have been dedicated in developing
software infrastructure allowing the design of applications
with the constraint unpredictability availability of component
entities [15].

% sharpDevelop (@] (=] E
File Edit View Build Debug Search Analysis WCompNET Tools Window Help
BE e = X =i Default layout ~ | &
Tools % Containerlcs” Start Page. = X [Properties @ X
Windows Forms ICSharpCode.Sharp =
Beans: Windows Control B E
4 Design
(Narr bean_devs_\
NE 4 Misc
Beans: Demonstration MyPr
Beans: Context
Beans: UPnP Device
NF
® Absolute_Ges_Pressure
® Absolute_Gas Pressure_
® Amp_Current_Sensor A
- X
X tame)
The name of the
o < | Bean
L Projects | Tools [dErrors | [Task List | = Output | Search Results ¥ Clas.. | Hpro..
Ready I3 coll5 ch6

Figure 1. WComp platform.

In this paper, we deal with the WComp framework, which
is used in order to design ambient systems. The WComp
architecture is organized around containers and designers [16]
(Figure 1). The purpose of containers is to take over the
management of the dynamic structure such as instantiation,
destruction of components and connections.

The Designer runs the Container for instantiation and
for the removal of components or connections between
components in the Assembly, which has to be created. A
component belonging to the WComp platform is an instance
of the Bean class implemented in a hight level object
language [17] to use properties at runtime and to calibrate
some variables to refine the interaction.

An application is created by a WComp component assem-
bly in a container, according to SLCA model [18]. WComp
allows to implement an application from an orchestration of
services available in the platform and/or other off-the-shelves
components.

Whatever the tool that may be used, the design of a IoT
component leans on the definition of:

e A set of methods allowing to describe the behaviors
of the component

e The execution machine associated with the considered
component

The design of ambient computing systems involves
a different technique from those used in conventional
computing. Applications are designed dynamically by smart

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

devices (assembly components) of different nature.

The smart device is an identified component, which is
generalized as a class of objects defining a data as property
and containing distinct logic sequences that can manipulate
it, known as methods that are executed when the component
receives an event from others components. The manner of
executing these methods (state automaton [19]) depending on
some inputs is called the execution machine (Figure 2).

State Automaton
g™

< 1o
Execution Machine
(Strategies)

Figure 2. Component state automaton with execution machine.

The construction of an ambient system requires the defini-
tion of:

e The state automaton (methods)

e The execution machine

Several ways to manage the execution machine are known
as strategies; the description of the strategies are defined
manually in the methods of the Bean class (object oriented
class) of WComp framework. Figure 3 describes the traditional
way to design an ambient system using WComp. The behavior
and the components involved in the ambient system, as well as
the Bean classes describing the execution machine, are coded
using the C# language.

M S

Assembly of
components using
Bean (.dll)

C# Project

C# Bean
Method and event
execution machine

&

C# Compiler

L

Managed Assembly
(Bean.dll)

- 4

Execution of the
Assembly

New C# Bean of
components in conflict

Conflict due to
Asynchronous
Coupling?

Application
ready

Figure 3. Traditional IoT component design with WComp.

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

94

The compilation allows to derive the corresponding dy-
namic assembling binary files (.dll) of the Bean classes in-
volved in the resulting Assembly [20]. The Assembly can then
be executed. Conflicts are checked: if conflicts (generally due
to asynchronous couplings) are detected the designer has to
write a new behavior of the execution machine by recoding
the Bean classes in order to solve the coupling conflicts while
if no conflict are detected the application is ready. In this
paper, we choose to propose a new approach for a computer
aided design of ambient systems using the DEVS formalism
by developing DEVS simulation concepts and tools for the
WComp platform. The goal is to use the DEVS formalism
and the DEVSimPy framework in order to perform DEVS
modeling and simulations: (i) to detect the potential conflicts
without waiting to implementation and execution phases as in
the traditional approach of Figure 3; (ii) to offer the designer
to choose between different executions strategies and to test
them using DEVs simulations; (iii) to propose a way to
automatically generate the coded of the methods involved in
the execution machine strategies. The DEVS formalism and
the DEVSimPy environment are briefly introduced in the next
two sub-sections while the proposed approach is introduced in
Section III.

B. The DEVS formalism

Since the seventies, some formal works have been directed
in order to develop the theoretical basements for the modeling
and simulation of dynamical discrete event systems [21].
DEVS (Discrete EVent system Specification) [22], [23] has
been introduced as an abstract formalism for the modeling of
discrete event systems, and allows a complete independence
from the simulator using the notion of abstract simulator.

DEVS defines two kinds of models: atomic models and
coupled models. An atomic model is a basic model with
specifications for the dynamics of the model. It describes the
behavior of a component, which is indivisible, in a timed state
transition level. Coupled models tell how to couple several
component models together to form a new model. This kind
of model can be employed as a component in a larger coupled
model, thus giving rise to the construction of complex models
in a hierarchical fashion. As in general systems theory, a DEVS
model contains a set of states and transition functions that are
triggered by the simulator.

Inputs Outputs

Figure 4. Atomic model in action.

A DEVS atomic model AM (Figure 4) with the behavior
is represented by the following structure:

AM =<)(75/7 S76int,5e.’£t7>\?ta >

where:

e X :{(p,v)|(p € inputports, v € X))} is the set of
input ports and values,

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Y : {(p,v)|(p € outputports, v € Y,")} is the set of
output ports and values,

e S:is the set of states,

e Jin: : S — S is the internal transition function that
will move the system to the next state after the time
returned by the time advance function,

® Jeut - @ x X — S is the external transition function
that will schedule the states changes in reaction to an
external input event,

e)\ : S — Y is the output function that will generate
external events just before the internal transition takes
places,

o t,:S — RL is the time advance function that will
give the life time of the current state.

The dynamic interpretation is the following:

o Q={(se)]s €5"0<e<tys)} is the total state
set,

e ¢ is the elapsed time since last transition, and s the
partial set of states for the duration of t,(s) if no
external event occur,

e 0;n: : the model being in a state s at ¢; , it will go into
s', s = ine(s), if no external events occurs before
ti + ta(s)s

e ¢z : when an external event occurs, the model being
in the state s since the elapsed time e goes in s’, The
next state depends on the elapsed time in the present
state. At every state change, e is reset to O.

e)\ : the output function is executed before an internal
transition, before emitting an output event the model
remains in a transient state.

e A state with an infinite life time is a passive state
(steady state), else, it is an active state (transient
state). If the state s is passive, the model can evolve
only with an input event occurrence.

The DEVS coupled model CM is a structure:
CM =< X,Y,D,{My € D}, EIC, EOC,IC >

where:

e X is the set of input ports for the reception of external
events,

e Y is the set of output ports for the emission of external
events,

e D is the set of components (coupled or basic models),
e My is the DEVS model for each d € D,

e FEJ(C is the set of input links that connects the inputs
of the coupled model to one or more of the inputs of
the components that it contains,

e FEOC is the set of output links that connects the
outputs of one or more of the contained components
to the output of the coupled model,

e J(is the set of internal links that connects the output
ports of the components to the input ports of the
components in the coupled models.

In a coupled model, an output port from a model My € D can
be connected to the input of another My € D but cannot be
connected directly to itself.

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

95

The DEVS abstract simulator is derived directly from the
model. A simulator is associated with each atomic model and
a coordinator is associated with each coupled model. In this
approach, simulators allows to control the behavior of each
model, and coordinators allows the global synchronization
between each of them. The communication between all these
elements is performed using four kinds of messages. The
initialization messages (i,t) are used to achieve an initial
temporal synchronization between all actors. The internal
transition messages (x,t) allow the processing of an internal
event, while the external transition messages (z,t) allow the
processing of an external event. Finally, the output messages
(y,t) allow the transportation of the output values to the parent
elements and is the result of an (x,¢) message.

C. The DEVSimPy environment

DEVSimPy [24] (DEVS Simulator in Python language) is
an open Source project (under GPL V.3 license) supported by
the SPE team of the university of Corsica Pasquale Paoli. This
aim is to provide a GUI for the modeling and simulation of Py-
DEVS [25] models. PyDEVS is an Application Programming
Interface (API) allowing the implementation of the DEVS for-
malism in Python language. Python is known as an interpreted,
very high-level, object-oriented programming language widely
used to quickly implement algorithms without focusing on the
code debugging [26]. The DEVSimPy environment has been
developed in Python with the wxPython [27] graphical library
without strong dependences other than the Scipy [28] and the
Numpy [29] scientific python libraries. The basic idea behind
DEVSimPy is to wrap the PyDEVS API with a GUI allowing
significant simplification of handling PyDEVS models (like the
coupling between models or their storage).

Figure 5 depicts the general interface of the DEVSimPy
environment. A left panel (bag 1 in Figure 5) shows the
libraries of DEVSimPy models. The user can instantiate the
models by using a drag-and-drop functionality. The bag 2 in
Figure 5 shows the modeling part based on a canvas with inter-
connection of instantiated models. This canvas is a diagram of
atomic or coupled DEVS models waiting to be simulate.

Show Berspectives Options Help

= BB~ @QQ 00 N LA

om

% Diagramo % N4

FeGeneatort
FieGeneator2

ErrorGenerator auicrscops

FiaGenaratect gt Hdden ouput
[re—

- 1 oser
(2) 040
DEVS 1T
* Modeling (3) oxs
] . DEVS o3
(‘DE_VSn_‘nPy Simulation | ° *®
./ Libraries

Zoom | Te | Gri | Legend Drag | Pont Label | Normalize.

Figure 5. DEVSimPy general interface.

A DEVSimPy model can be stored locally in the hard disk
or in cloud through the web in the form of a compressed file
including the behavior and the graphical view of the model

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

separately. The behavior of the model can be extended using
specific plug-ins embedded in the DEVSimPy compressed file.
This functionality is powerful since it makes it possible to
implement new algorithms above the DEVS code of models
in order to extend their handling in DEVSimPy (exploit behav-
ioral attributes, overriding of DEVS methods, etc.). A plug-in
can also be global in order to manage several models through
an generic interface embedded in DEVSimPy. In this case,
the general plug-in can be enabled/disabled for a family of
selected models. An interesting global plug-in called Blink has
been implemented to facilitate the debugging in DEVSimPy.
This plug-in is based on successive steps of the simulation and
blink the models to indicate their activity with a color code
corresponding to the nature of the DEVS transition function
(internal, external, time advance, output).

DEVSimPy capitalizes on the intrinsic qualities of DEVS
formalism to simulate automatically the models. Simulation
is carried out in pressing a simple button, which invokes an
error checker before the building of the simulation tree. The
simulation algorithm can be selected among hierarchical sim-
ulator (default with the DEVS formalism) or direct coupling
simulator (most efficient when the model is composed with
DEVS coupled models). A plug-in manager is proposed in
order to expand the properties of DEVSimPy allowing their
enabling/disabling through a dialog window. For example, a
plug-in called ”Blink” is proposed to visualize the activity of
models during the simulation. It is based on a step by step
approach and illuminates each active model with a color, which
depends on the executed transition function. In this paper, a
plug-in is used to allow the transposition of the execution
machine strategies validated with DEVS simulation to WComp
environment.

This paper shows how the DEVS formalism is suitable
to model synchronous automatons and check the strategies of
the execution machine in a context of IoT system design. It
also presents the power of WComp to design [oT component
based on the strategies defined with DEVSimPy, which is
a framework dedicated to DEVS M&S. Furthermore, the
strategies defined using DEVSimPy are fully integrated in
WComp. The behavior of a DEVS model is expressed through
specifications of a finite state automaton. However, this DEVS
specifications represent both the state automation and the
execution machine. The interest of using DEVS is the ability
to define as many strategies as DEVS model specifications. In
the following section, background information as the DEVS
formalism, DEVSimPy framework and WComp are outlined.

IV. PROPOSED APPROACH

As pointed in Section II-A, the traditional way to design
ambient systems described in Figure 3 has the following
drawback: the creation of Bean class components using the
WComp Platform is performed by the definition of methods
(both implementing the behavior of a device and its execution
machine) in the object oriented language C#. The compilation
allows to obtain a set of library components, which are used in
a given Assembly (which corresponds to the designed ambient
system). However, eventual conflicts due to the connections
involved by the Assembly can be detected only after execution.
This means that the Designer has to modify the execution
machine of some components and restart the design at the

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

96

beginning. We propose a quite different way to proceed, which
is described in Figure 6.

DEVS Specification of
Components and Assembly

|

DEVS Simulation

Conflict due to
Asynchronous
Coupling ?

Transformation
DEVS to Components
and Assembly

Figure 6. IoT component design using DEVS.

The idea is to use the DEVS formalism in order to help
the Designer to:

e Validate different strategies for execution machines
involved in an Assembly.

e Write the methods corresponding to the strategy of the
execution machine he wants to implement.

For that the Designer has first to write the specifications the
components as well as the coupling involved in an Assembly
(corresponding to an ambient system to implement). Then
simulations can be performed. According to the results of
the simulation, conflicts can be highlighted: if some conflicts
exist the DEVS specifications have to be modified if not the
design process goes on with C# implementation as in Figure 3.
The DEVS specifications can be used to help the Designer to
write the methods of the Bean classes in the C# language
Figure 6 and then compile them and execute the resulting
Assembly being assured that there will be no coupling conflict.
Section IV details the proposed approach using a pedagogical
example. Two different execution machine strategies will be
implemented using WComp and using the DEVS formalism.
We will point out how DEVS can be used to simulate execution
machines strategies before compilation and execution of the C
Bean classes. Furthermore, we also point out how the designer
can use the DEVS specifications in order to write the methods
involved in an execution machine strategy.

V. CASE STUDY: SWITCHABLE ON/OFF LIGHT
A. Description

We choose to validate the proposed approach on a peda-
gogical case study: realization of an application to control the
lighting in a room. The case study involved three components
to be assembled: a light component with an input (ON / OFF)
and two switches components with an output (ON / OFF) as
shown in Figure 7.

Two different behaviors concerning the connections be-
tween the switch and the light component are envisioned (cor-
responding to the implementation of two different execution
machines):

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On / Off

Switch 1

On / Off

On/ Off
Switch 2

Figure 7. Assembly of Light and Switches components.

e First behavior: the light is controlled by toggle
switches, which rest in any of their positions

e Second behavior: the light is controlled by push button
switches, which have two-position devices actuated
with a button that is pressed and released

In this part, we will present first how we have implemented
these two previous behaviors using the WComp platform.
Then we will give the DEVS approach involving the DEVS
specifications of the two behaviors of the case study and the
way DEVS can be used for WComp design of the ambient
components.

B. WComp implementation

The behaviors corresponding to the toggle switch and push
button switch have been implemented using two different
Bean classes in WComp platform in order to be assembled
separately with a light component.

The Bean class (Figure 8) in WComp platform is a self-
contained class enabling the reuse of the component and facili-
tate the sharing of it component by other systems. This class is
introduced in a specific category of the graphic interface (Con-
tainer WComp) and the references (#Category in Figure 8)
are added in the class. The implementation of the Bean class
requires the definition of the name of the Bean class, which is
the name of the component in the Designer (#Bean Name in
Figure 8). The Properties of the Bean class contain the setter
and getter of the class attributes. The Methods implement the
behaviors of the component (#Propriety, #Methods in Figure 8)
and the EventHandler activate the methods when events are
emitted.

Looking at the structure of the Bean class we identify
the part that involves a set of actions to follow in a given
situation (Methods). These actions define the behaviours of
the component that have been identified by the programmer
early in the design process.

To illustrate this point, we choose to clarify the observed
behaviors by implementing them in the methods of different
classes.

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

97

using System;
using WComp.Beans;
[Bean[Category="""]]

f#fCategory

publicint Myprop {
get{
return myprop; }
set{
myprop = value; }
public void MyMethod() {

A method sending an event HMethods

public delegate void stringValueEventHandler{string val};

publiceventstringValueEventHandler PropertyChanged; {{Fyonts
private void MyEvent(int i} {
if [PropertyChanged !=null})
PropertyChanged|i);

Figure 8. Bean class structure in WComp.

1) First behavior implementation: corresponding to the
toggle switch described in the Figure 9, the line 2 is used to
check the position of the toggle switch: if ON is true the line
3 ensures that there are subscribers before calling the event
PropertyChanged. In the lines 4 and 5 the event is raised and
a resulting string is transmitted. The Bean class returns the
String once The ControlMethod method is invoked.

public woid ControlMethod(bool on) {
if(on)

{if (PropertyChanged != null)
PropertyChanged ("Light _On");
}else{PropertyChanged ("Light _0ff");}
}

Figure 9. First light method implementation in WComp.

2) Second behavior implementation: Corresponding to the
push button switch described in the Figure 10. The initializa-
tion of the lightstate variable of component Light is performed
through line 1. Line 3 allows to switch the value of the
lightstate variable while line 4 allows to initialize the message
to be returned. Line 5 is dedicated to check the lightstate
variable and to eventually change to returned message. Lines 6
and 7 allow to ensure that there are subscribers before calling
the event Property-Changed and transmit the returned message.

The compilation step is performed for each Bean class. The
compiler produces modules that are the traditional executable
files (DLL) reusable and manipulated in the WComp platform.
After this process each bean class is instantiated and connected
with two check-box representing the respective switches in
order to realize the required assembly in the WComp platform
(Figure 11).

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public bool lightstate = false;
public void ControlMethod () {
lightstate =! lightstate;

string msg = "light_off";
if (lightstate) { msg ="light_on";}
if (PropertyChanged != null)

PropertyChanged (msg) ;

Figure 10. Second light method implementation in WComp.

b
® WCompBeanslight [L T
Cherkng ul T T light on
II__ighl Label
>_'__| ¢ ight Message
CheckBox
Switch?

Figure 11. WComp assembly components.

C. DEVS Specifications

In order to highlight the interest of the DEVS formalism
in the management of conflicts between the interconnected
components in WComp platform, we defined a DEVS atomic
model for each component in DEVSimPy Framework. The
behaviors of the light component are implemented in the
atomic model Light (Figure 12). The assembly is a DSP
diagram (DSP stands for DEVSimPy) and is easy to reuse
in DEVSimPy.

Switch_1

L4

| MessagesCollector

i Light

Switch_2

Figure 12. Object interaction diagram for the light component.

Figure 13 depicts the template of an atomic model class in
Python language into DEVSimPy.

The implementation of this class needs some specific
imports when the model inherits another module or library
(#Specific import in Figure 13). The class has a constructor
(__init __ ()) with a particular attribute “’self.state” that allow
to define the state variables (#Initialization in Figure 13). The
transition functions like d;,,; and d.,; are implemented through
intTransition(self) and extTransition(self) methods (#DEVS
external transition function and #DEVS internal transition
function in Figure 13). The output function A is implemented

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

98

Import os
Import platform
Import Domaininterface

##Specificimport

Def outFonction(self):
pass

defintTransition(self):
pass

def timeAdvance(self):
return self.state["sigma’]

DEVS Time Advance function

Figure 13. Aotmic Model structure in DEVSimPy.

in the outFunction(self) method and the time advance function
t, in timeAdvance(self) method.

In the structure of the atomic model class, the different
actions related to the component behaviors are defined in the
external transition that we have chosen to clarify below in the
two cases defined in the Section I'V-B.

The specifications of the behaviors are achieved using
finite-state automaton (Figures 14 and 16) that allows to
specify the component behaviors formally [30] and facilitate
the deployment in DEVSimPy as an atomic model.

1) The toggle switch behavior: in the transition graph
“automaton” given in Figure 14, each state is represented by
a pair (state/output). This means that the states are “statel and
state2” and the associated output are ’Set_On and Set_Off”.
The input value is given by the transition between one state
and the next state. The system can remain in the same state
(loop) as stationary state.

Set_On
Set-Off

Set_On

Set_Off

Figure 14. Automaton of the toggle switch behavior.

The corresponding DEVSimPy implementation of the au-
tomaton is given in Figure 15 and expressed through the
external transition of the atomic model Light (Figure 12).

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

1 self.intstate= "OFF"
def extTransition(self):
for i in xrange(len(self.IPorts)):
msg=self.peek(self.IPorts[il)
if msg
self.result[il=msg.value [1]
if self.result[i]l==self.intstate
self.finstate=self.intstate
else:
self .finstate=self.result[il]
i self.state[’sigma’]=0

Figure 15. External transition function of the light atomic model.

The initialization of the state variable instate is done in line
1 (initial value is OFF). Line 3 and line 4 allow to assign the
variable msg with the value of the events on the input ports.
From line 5 to line 10 the code allows to assign the value of
the state variable instate according to the value of the variable
msg: if the message on the port is equal to the initial state then
the state variable remains on the same state else the value of
the instate variable is changed. By setting the variable sigma
to 0, line 11 allows to activate the output function.

2) The push-button switch behavior: the transition graph
“automaton” given in Figure 16 is a different one that in
Figure 14, where the system cannot remain in the same state
for each input. The system move to the other state.

Set_On

Set Off

Figure 16. Automaton of the push-button switch behavior.

The corresponding DEVSimPy implementation of the au-
tomaton is given in Figure 17 and expressed through the
external transition of the atomic model Light (Figure 12).

def extTransition(self):
2 for i in xrange(len(self.IPorts)):
msg=self.peek(self.IPorts[i])

if msg
self .result[i]l=msg.value[1]
if self.intstate == "QON":
self.finstate= "OFF"
else:

self .finstate="0N"
self.intstate=self.finstate

Figure 17. External transition function of the atomic model Light.

Line 2 and line 3 allow to assign the variable msg with
the value of the events on the input ports. From line 4 to line
10, the code allows to switch the value of the state variable
intstate and finstate from ON to OFF or OFF to ON according
to the values of the input ports.

99
D. Simulation results

In both cases, once the modeling scheme has be realized
using the DEVSimPy environment, we are able to perform
simulations that correspond to the behavior of the ambient
system according to the two different execution machines
that have been defined. The simulation results obtained with
DEVSimPy are illustrated in a MessageCollector model, which
is often used to store messages received during the simulation.
The MessageCollector model organizes its results in a table
(see Figure 18 and Figure 19).

In Figure 18, we show several lines which highlight the
result of events from two toggle switches, in the first line
we describe the position of toggle switches [TON’, ’ON’] the
resulting event is the Lamp *ON’. The simulation results of the
first case express the fact that the execution machine allows
the ambient system under study remains in the initial position
("ON” or "OFF”) until we will actuate another position using
one of the switches.

In Figure 19, we show a several lines which highlight the
result of events from two push button switches. The simulation
results of the second case express the fact that the execution
machine allows the ambient system under study to alternately
”ON” and "OFF” with every push of one of the switches.

® - 0 MessagesCollector

HFEA S@AT @ 1

Atomic_try (Port 0)

Event Message

[J<cvalue=[['ON',"ON], "ON'], time = 0.0>>

1 << value = [['OFF', 'OFF'], "OFF'], time = 1.0>>
2 <<value = [['ON', "OFF'], "OFF"], time = 2.0>>
3 <<value =[['OFF', 'ON'], 'ON'], time = 3.0>>

4 <<value = [['ON', "OFF'], 'OFF'], time = 4.0>>
5 <<value =[['OFF', 'ON'], 'ON'], time = 5.0>>

6 <<value = [['ON’, "ON'], "ON'], time = 6.0>>

7 <<value = [['OFF', 'OFF'], "OFF'], time = 7.0>>

0 N R W N -

Figure 18. First simulation results captured with MessagCollector.

@ - O MessagesCollector

HE@h @A T @

Light (Port 0)

Event Message
1 << value =['ON'], time = 0.0>>
2 1 << value = ['OFF'], time =0.01>>
3 |2 <<value =['ON'], time = 1.0>>
4 |3 <<value =['OFF'], time = 1.01>>
5 |[4 <<value =['ON'], time = 2.0>>
6 |5 <<value =['OFF'], time =2.01>>
7 |6 << value =['ON'], time = 3.0>>

Figure 19. Second simulation results captured with MessageCollector.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Integration of DEVS implementation in WComp

As depicted in Figure 20, the integration of strategies in
WComp starts by defining the DEVS atomic model (AM) cor-
responding to the component in which strategies are identified
(using functions) in DEVSimPy environment (Light in the case
study).

AM @ Wcomp Plug-in . DEVSimPy

| =~ Strategy

DEVS Validation

Simulations
Strategy Behavior
Load strategy.py Python file
WComp
Compile (DLL) g
Container
Bean class (C#)

Figure 20. DEVSimPy/WComp integration process.

These strategies will be defined in a dedicated interface
from a DEVSimPy local plug-in. The access to the local plug-
in will be through the context menu of the atomic model
only when the general plug-in called WComp of strategies is
activated (Figure 21).

“% Preferences Manager (@ =RREN X

General Simulation Editeur m
MNom Size Date
9 verbose 6 Ko 2014-10-17
X blink TKo 2014-10-17
wiwcomp 3Ke 2014-10-17

Authars: L, Capocchi {capocchi@univ-corse. fr), 5. Sehili

Date: 15/10/2014

Description:

Plug-n to enabled the “wcomp™ submenu of the .amd contextual menu
Depends: Nathing

Figure 21. General plug-in WComp in DEV Simpy.

Once simulations are performed and strategies are vali-
dated in the DEVSimPy framework, we load the strategies
file (strategy.py in Figure 20) that contains strategies into
WComp. This is done to through IronPython [31], which is
an implementation of Python for .NET allowing us to leverage
the .NET framework using Python syntax and coding styles.

For that, the class Bean of the component Light has been
created in WComp and the references (line 1-2) have been

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

100

added as illustrated in Figure 22 in order to insert Python
statements into C# code.

I using IronPython.Hosting;

» using IronPython.Runtime;

i using Microsoft.Scripting.Hosting;
+ using Microsoft.CSharp;

Figure 22. C# importing to use Python functions.

As illustrated in Figure 23, the IronPython runtime (line
1) and the Dynamic Type (line 2) have been created and the
strategy Python file (line 3) has been loaded.

| ScriptRuntime python=Python.CreateRuntime ();
> dynamic pyfile = python.UseFile(@"Path");
i String string = pyfile.Strategies();

Figure 23. C# code to insert Python Strategies function.

After the compilation of the Bean class, the corresponding
binary file (dll) is inserted in the resulting assembly to be
interconnected with other components.

F. Interest of the approach

As described in Sections IV-C and IV-D, the proposed
approach allows to study the behavior of an ambient system
using DEVS simulations before any WComp implementation.
This will allow a Designer of ambient system to select the
desired execution machine that adapts to the context of use
before the design phase of the component under WComp
platform to reduce the time and implementation cost.

In Section IV-C, we briefly introduce how the DEVS
specifications can be used by an ambient system Designer to
write the code of execution machine. From the two previous
cases defined in Section IV-C, we can note that the method
of the Bean class under WComp platform of a given ambient
component present some similarities with the external transi-
tion of the corresponding DEVS atomic model of the same
component (in the one part, see Figure 9 and Figure 15, and
on the other part Figure 10 and Figure 17).

Furthermore, in Section IV-E, we performed simulations
of strategies defined in the local plug-in of the atomic model
of the component in DEVSimPy that are loaded in WComp
framework through an implementation of python for .NET
(IronPython) in the Bean class. This will allow us to validate
and implement all the components, which WComp platform
reuse them directly.

VI. CONCLUSION AND FUTURE WORKS

This paper deals with an approach for the design and the
implementation of IoT ambient systems based on Discrete
Event Modelling and Simulation. The traditional way leans
on: (i) the definition of the behavior of IoT components in
a Library; (ii) the design of the coupling of components
belonging to the Library; (iii) the execution of the resulting
coupling. If some errors are detected, the designer has to
redefine the behavior of the components (especially by redefin-
ing the behavior of the execution machine, which allows to

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

describe the behavior of the ambient system in case of time
conflicts).

This paper introduces a new approach based on DEVS
simulations: instead of waiting the implementation phase to
detect eventual conflicts, we propose an initial phase consisting
in DEVS modeling and simulation of the behavior of compo-
nents involved in an ambient system, as well as the behavior of
execution machines. Once the DEVS simulations have brought
successful results, the Designer can implement the behavior
of the given ambient system using an IoT framework such
as WComp. The presented approach has been applied on a
pedagogical example that is described in detail in the paper:
implementation of two different behaviors of a given ambient
system, definition of the corresponding DEVS specification,
implementation of the DEVS behavior using the DEVSimPy
framework, analysis of the simulation results. Furthermore, we
have also pointed out that the DEVS specifications can be used
in order to help the Designer to write the behavior of the IoT
components.

Our future work will consist in two main directions. Firstly,
we have to work on the Design of complex IoT systems using
DEVS formalism and DEVSimPy framework. Secondly, we
have to propose an approach allowing to automatically write
the behavior of the execution machines after their validation
based on DEVS simulation. This automatic generation of the
behavior will be performed from the DEVS external state
transition function coding and will consist in generating the
corresponding execution machine code (for example C# code
in the case of the WComp framework).

REFERENCES

[1]1 S. Sehili, L. Capocchi, and J.-F. Santucci, “Iot component design and
implementation using devs simulations,” in The Sixth International
Conference on Advances in System Simulation (SIMUL), 2014, pp.
71-76.

[2] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, Jul. 1999, pp. 3—11. [Online].
Available: http://doi.acm.org/10.1145/329124.329126

[3] M. Satyanarayanan, ‘“Pervasive computing: Vision and challenges,”
IEEE Personal Communications, vol. 8, 2001, pp. 10-17.

[4] M. Zhao, G. Privat, E. Rutten, and H. Alla, “Discrete
control for the internet of things and smart environments,”
in Presented as part of the 8th International Workshop on
Feedback Computing. Berkeley, CA: USENIX, 2013. [Online].
Available: https://www.usenix.org/conference/feedbackcomputing13/
workshop-program/presentation/Zhao

[5] V. Hourdin, N. Ferry, J.-Y. Tigli, S. Lavirotte, and G. Rey, “Middleware
in ubiquitous computing,” Computer Science and Ambient Intelligence,
2013, pp. 71-88.

[6] M. Jeronimo and J. Weast, “Upnp design by example: A software
developer’s guide to universal plug and play,” in Intel Press, 2003.

[71 S. Unger, E. Zeeb, F. Golatowski, D. Timmermann, and H. Grandy,
“Extending the devices profile for web services for secure mobile device
communication,” in Presented as part of the 8th International Workshop
on Feedback Computing, 2013.

[8] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proceedings of the IEEE, vol. 79, no. 9, 1991, pp.
1270-1282.

[91 S. Schewe and B. Finkbeiner, “Synthesis of asynchronous systems,” in
16th International Symposium on Logic Based Program Synthesis and
Transformation (LOPSTR 2006). Springer Verlag, 2006, pp. 127-142.

[10] M. Romén, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt, “Gaia: A middleware platform for active spaces,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 6, no. 4, Oct. 2002,
pp. 65-67. [Online]. Available: http://doi.acm.org/10.1145/643550.
643558

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

101

S. W. Han, Y. B. Yoon, H. Y. Youn, and W.-D. Cho, “A new middle-
ware architecture for ubiquitous computing environment,” in Software
Technologies for Future Embedded and Ubiquitous Systems, 2004.
Proceedings. Second IEEE Workshop on. IEEE, 2004, pp. 117-121.

J. Lopes, R. Souza, C. Geyer, C. Costa, J. Barbosa, A. Pernas,
and A. Yamin, “A middleware architecture for dynamic adaptation in
ubiquitous computing,” Journal of Universal Computer Science, vol. 20,
no. 9, 2014, pp. 1327-1351.

N. Ferry, V. Hourdin, S. Lavirotte, G. Rey,
and J.-Y. Tigli, “WComp, a Middleware for Ubiquitous
Computing”, ser. InTech, Feb. 2011, ch. 8, pp. 151-
176. [Online]. Available: http://www.intechopen.com/articles/show/
title/wcomp-a-middleware-for-ubiquitous-computing

M. Riveill,

Y. Liu, “Design of the smart home based on embedded system,”
in Computer-Aided Industrial Design and Conceptual Design, 2006.
CAIDCD’06. 7th International Conference on. IEEE, 2006, pp. 1-3.

D. Cheung-Foo-Wo, “Adaptation dynamique par tissage d’aspects
d’assemblage,” Ph.D. dissertation, Université de Nice Sophia Antipolis,
20009.

V. Monfort and F. Felhi, “Context aware management plateform to
invoke remote or local e learning services: Application to navigation
and fishing simulator,” in Ambient Intelligence and Future Trends-
International Symposium on Ambient Intelligence (ISAmI 2010).
Springer, 2010, pp. 157-165.

G. Gauffre, S. Charfi, C. Bortolaso, C. Bach, and E. Dubois, ‘“Devel-
oping mixed interactive systems: A model-based process for generating
and managing design solutions,” in The Engineering of Mixed Reality
Systems. Springer, 2010, pp. 183-208.

V. Hourdin, J.-Y. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “Slca,
composite services for ubiquitous computing,” in Proceedings of the
International Conference on Mobile Technology, Applications, and
Systems. ACM, 2008, p. 11.

S. Eugene Xavier, “Theory of automata formal languages and com-
putation,” in The Engineering of Mixed Reality Systems. New Age
International (P) Ltd, 2005, ISBN: 978-81-224-2334-1.

V. Monfort and S. Cherif, “Bridging the gap between technical het-
erogeneity of context-aware platforms: Experimenting a service based
connectivity between adaptable android, wcomp and openorb,” in IJCSI
International Journal of Computer Science Issues, vol. 8, no. 3. 1JCSI,
May 2011, ISBN: 978-81-224-2334-1.

B. P. Zeigler, “An introduction to set theory,” ACIMS Laboratory,
University of Arizona, Tech. Rep., 2003, URL: http://www.acims.
arizona.edu/EDUCATION/ [Retrieved: April, 2014].

B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, Second Edition,. Academic Press, 2000.

B. Zeigler and H. Sarjoughian, “System entity structure basics,”
in Guide to Modeling and Simulation of Systems of Systems,
ser. Simulation Foundations, Methods and Applications. Springer
London, 2013, pp. 27-37. [Online]. Available: http://dx.doi.org/10.
1007/978-0-85729-865-2_3

L. Capocchi, J. E. Santucci, B. Poggi, and C. Nicolai, “DEVSimPy: A
Collaborative Python Software for Modeling and Simulation of DEVS
Systems,,” in WETICE. IEEE Computer Society, 2011, pp. 170-175,
URL: http://code.google.com/p/devsimpy/ [Retrieved: Dec 2014].

X. Li, H. Vangheluwe, Y. Lei, H. Song, and W. Wang, “A testing
framework for devs formalism implementations,” in Proceedings on
the 2011 Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, ser. TMS-DEVS ’11. San Diego, CA,
USA: Society for Computer Simulation International, 2011, pp. 183—
188.

F. Perez, B. E. Granger, and J. D. Hunter, “Python: An ecosystem for
scientific computing,” Computing in Science and Engineering, vol. 13,
no. 2, 2011, pp. 13-21, URL: http://dblp.uni-trier.de/db/journals/cse/
csel3.html#PerezGH11 [Retrieved: February, 2014].

N. Rappin and R. Dunn, “Wxpython in action.”
Manning, 2006.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001, [accessed 2015-05-26]. [Online]. Available:
http://www.scipy.org/

Greenwich, Conn:

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

102

[29] T. E. Oliphant, “Python for scientific computing,” Computing in Science
and Engineering, vol. 9, no. 3, May/June 2007.

[30] N. Belloir, J.-M. Bruel, and F. Barbier, “Intégration du test dans les
composants logiciels,” in Workshop OCM dans lingnierie des SI during
INFORSID, 2002.

[31] M. Foord and C. Muirhead, “Ironpython in action,” in Manning Publi-
cations Co., 2009.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

