
223

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Semantic Framework for Modeling and Simulation of Cyber-Physical Systems

Parastoo Delgoshaei
Department of Civil and

Environmental Engineering
University of Maryland

College Park, MD 20742, USA
Email: parastoo@umd.edu

Mark A. Austin
Department of Civil and

Environmental Engineering
University of Maryland

College Park, MD 20742, USA
Email: austin@isr.umd.edu

Amanda J. Pertzborn
Energy and Environment Division
National Institute of Standards and

Technology (NIST)
Gaithersburg, MD 20899, USA

Email: amanda.pertzborn@nist.gov

Abstract—This paper describes a new semantic framework for
model-based systems engineering, requirements traceability, and
system simulation and assessment of cyber-physical systems
(CPSs). When fully developed this environment will support
the organization and integration of hierarchies of physical and
software components, and perform analysis on their discrete
and continuous behavior. Results of computational analysis will
work alongside domain ontologies for decision making and rule
checking procedures. To support the modeling and simulation
of physical system behavior, and integration of the physical
and cyber domains, we introduce Whistle, a new scripting
language where physical units are embedded within the basic data
types, matrices, and method interfaces to external object-oriented
software packages. The capabilities of Whistle are demonstrated
through a series of progressively complicated applications.

Keywords-Cyber-Physical System; Semantic Modeling; Simula-
tion Environment; Software Design Pattern; Rule Checking.

I. INTRODUCTION

Problem Statement. This paper is concerned with the de-
velopment of procedures and software for the model-based
systems engineering, integration, simulation and performance-
assessment of cyber-physical systems (CPS). It builds upon
our previous work [1] on semantic platforms for requirements
traceability and system assessment. As illustrated in Figure 1,
the distinguishing feature of CPS is a coupling of physical
and cyber systems, with the cyber affecting the physical and
vice versa. In a typical CPS application, embedded computers
and networks will monitor and control physical processes,
usually with feedback. The basic design requirement is that
software and communications technologies will work together
to deliver functionality that is correct and works with no errors.
Unfortunately, present-day design procedures are inadequate
for the design of modern CPS systems. A key problem is that
today we do not have a mature science to support systems engi-
neering of high-confidence cyber-physical systems assembled
from subsystems having multiple physics (e.g., chemical, me-
chanical, electrical) [2], [3]. Design space exploration and trade
studies are also difficult to conduct because decision variables
span parametric, logical, and dependency relationship types.
Components are often required to serve multiple functions –
as such, cause-and-effect mechanisms are no longer localized
and obvious. System relationships can reach laterally across
systems hierarchies and/or intertwined network structures.

sensing
Cyber Domain Physical Domain

action

Figure 1. Interaction of cyber and physical domains in CPS.

In order for cyber-physical design procedures to proceed
in a rational way we need mechanisms to easily combine
abstractions from multiple physics and field equations (e.g.,
solids, fluids, heat, electromagnetics, chemistry) into sets of
coupled equations that model the system. Components may be
discrete (e.g., rigid body elements, control actuation elements,
software logic), or continuous (e.g., differential equations for
fluid flow). The challenge in developing accurate models of
CPS behavior is complicated by differences in the underlying
operation and data-stream flows associated with cyber and
physical components. Whereas physical systems tend to have
behavior that is continuous and associated with flows having
physical quantities, cyber operates on discrete logic. To address
these limitations, new computer programs and languages are
required to address the challenges of distributed, complex
CPSs. Their capabilities need to include establishing feedback
loops between physical processes and computational units
involving robust analysis, decision making mechanisms, dy-
namic modeling, knowledge of sensors and actuators, and com-
puter networks. In a step toward creating this long-term goal,
we are working on the development of a computational infras-
tructure where domain specific ontologies and rule checking
routines operate hand-in-hand with a new scripting language
introduced here as Whistle. This new language employs object-
oriented design principles and software design patterns as a
pathway to addressing challenging design questions.

Model-based Systems Engineering. Model-based systems
engineering (MBSE) development is an approach to systems-
level development in which the focus and primary artifacts
of development are models, as opposed to documents. Our
research methodology is driven by a need to achieve high
levels of productivity in system development. We believe that
high levels of productivity in system development can be
achieved through the use of high-level visual abstractions cou-
pled with lower-level (mathematical) abstractions suitable for
formal systems analysis. The high-level abstractions provide

224

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Proposed Model for Traceability

Engineering

Design
Rule
Checking

Concept
Design

data

Requirements

Visual indicator of requirements status.

query implement

notification Model

Sensors

Sensors

Physical System

Requirements Engineering
Model

StateïofïtheïArt Traceability

Figure 2. Schematics for: (top) state-of-the-art traceability, and (bottom) proposed model for ontology-enabled traceability for systems design and management.

a “big picture” summary of the system under development
and highlight the major components, their connectivity, and
performance. The lower-level abstractions are suitable for
formal systems analysis – for example, verification of com-
ponent interface compatibilities and/or assessment of system
performance through the use of simulation methods. The
former one is achieved through semantic web technologies, i.e.,
with domain specific ontologies. On the other hand, detailed
simulation analysis can be performed by scripting language,
or other analysis packages that are compatible with scripting
language.

A tenet of our work is that methodologies for strategic
approaches to design will employ semantic descriptions of
application domains, and use ontologies and rule-based reason-
ing to enable validation of requirements, automated synthesis
of potentially good design solutions, and communication (or
mappings) among multiple disciplines [4][5][6]. A key element
of required capability is an ability to identify and manage
requirements during the early phases of the system design
process, where errors are cheapest and easiest to correct. The
systems architecture for state-of-the-art requirements traceabil-
ity and the proposed platform model is shown in the upper
and lower sections of Figure 2. In state-of-the-art traceability
mechanisms, design requirements are connected directly to
design solutions (i.e., objects in the engineering model). Our
contention is that an alternative and potentially better approach
is to satisfy a requirement by asking the basic question: What
design concept (or group of design concepts) should I apply
to satisfy a requirement? Design solutions are the instantia-
tion/implementation of these concepts. The proposed architec-
ture is a platform because it contains collections of domain-
specific ontologies and design rules that will be reusable across
applications. In the lower half of Figure 2, the textual re-
quirements, ontology, and engineering models provide distinct
views of a design: (1) Requirements are a statement of “what
is required.” (2) Engineering models are a statement of “how
the required functionality and performance might be achieved,”
and (3) Ontologies are a statement of “concepts justifying a
tentative design solution.” During design, mathematical and

logical rules are derived from textual requirements which, in
turn, are connected to elements in an engineering model. Eval-
uation of requirements can include checks for satisfaction of
system functionality and performance, as well as identification
of conflicts in requirements themselves. A key benefit of our
approach is that design rule checking can be applied at the
earliest stage possible – as long as sufficient data is available
for the evaluation of rules, rule checking can commence;
the textual requirements and engineering models need not be
complete. During the system operation, key questions to be
answered are: What other concepts are involved when a change
occurs in the sensing model? What requirement(s) might be
violated when those concepts are involved in the change? To
understand the inevitable conflicts and opportunities to conduct
trade space studies, it is important to be able to trace back
and understand cause-and-effect relationships between changes
at system-component level and their affect on stakeholder
requirements. Present-day systems engineering methodologies
and tools, including those associated with SysML [7] are not
designed to handle projects in this way.

Scope and Objectives. This paper describes a new approach
to requirements traceability, simulation, and system assess-
ment through the use of semantic platforms coupled with
a component-based language where physical quantities (not
just numbers) are deeply embedded in the language design
and execution. The rationale for providing cyber with this
capability is simple: if the cyber has an enhanced ability to
represent the physical world in which it is embedded, then
it will be in a better position to make decisions that are
appropriate and correct.

Our test-bed application area and driver for this research
is performance-based modeling and design of energy-efficient
building environments. Modern buildings contain a variety
of intertwined networks for the hierarchical arrangement of
spaces (e.g., buildings have floors, floors contain rooms, and
so forth), for fixed circulatory systems, e.g., power and heating,
ventilation, and air conditioning (HVAC), for dynamic circula-
tory systems, e.g., air and water flows, and for wired and wire-

225

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reasoner
Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements define

Classes

Relationships

Ontologies and ModelsDesign Rules and Reasoner

Design Rules

Engineering Model

System Structure

System Behavior

Remarks

System structures are
modeled as networks
and composite hierarchies
of components.

differential equations.
represented by partial

state machines.
modeled with finite
Discrete behavior will be

associated with components.
Behaviors will be

a c d

b

Continuous behavior will be

Figure 3. Framework for implementation of ontology-enabled traceability and design assessment.

Component Modeling Framework

Pipe

Tank Fan

Pump implements
Visualization Interface

Finite Element Interface

Matrix Library Interface
implements

Executable Machine

Input file ... problem description

Tree
Syntax
Abstract

Matrix Library

extends

uses

uses

uses

Simulation Framework and 3D Visualization

drives senses

Finite Element Library implements

Physical Quantity Library uses

uses

Figure 4. Architecture for modeling HVAC systems as networks of connected components, and using finite element solution procedures for computing and
visualizing time-history behavior.

less communications. While there is a desire for each network
to operate as independently as possible, in practice the need
for new forms of functionality will drive components from
different network types to connect in a variety of ways. Within
the building simulation community state-of-the-art dynamic
simulation is defined by Modelica, and steady-state simulation
by DOE-2 and eQuest. From a CPS perspective, the time-
history analysis and control of building system performance
is complicated by the need to model combinations of discrete
(e.g., control) and continuous behaviors (e.g., the physics of
fluid dynamics). Predictions of dynamic behavior correspond

to the solution of nonlinear differential algebraic equations
(e.g., for water, air, and thermal flow) coupled to discrete
equations (e.g., resulting from cyber decisions).

To facilitate and support this vision, we are currently
working toward the platform infrastructure proposed by Fig-
ures 3 and 4. Figure 3 pulls together the different pieces of the
proposed architecture shown in Figure 2. On the left-hand side
the textual requirements are defined in terms of mathematical
and logical rule expressions for design rule checking. Figure 4
highlights the software infrastructure for modeling systems that
are part cyber and part physical. To deal with the complexity of

226

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

update()

Physical System
Controllerlisten()

Hierarchy of ComponentsHierarchy of Requirements

Ontology Controller

Requirement Tables

listen()

listen() listen() listen()

change() update() change() update() change()

Composite Pattern

update()

Requirement Controller

Hierarchy of Ontologies

Observer Pattern

listen()

MVC Patterns

Schematic Drawings
Time History Plots

Ontology View

Models

Controllers

Views

listen()

update() update()

Figure 5. Software architecture for ontology-enabled traceability, annotated with model-view-controller, observer and composite-hierarchy design patterns.

building systems, which are defined by large numbers of phys-
ical and abstract components, we are proposing that models be
organized into composite hierarchies, as shown on the top left-
hand side of Figure 4. Specific component types will simply
implement the composite hierarchy interface. To accommodate
mixtures of discrete and continuous behavior, we are proposing
that the software architecture implement a series of generic
interfaces to software libraries for matrix computations, finite
element analysis, and two- and three-dimensional visualiza-
tion. This element is shown along the bottom of Figure 4.
Finally, we need a capability for components to communicate
across hierarchies, and we are proposing this be accomplished
with listener mechanisms (e.g., a controller component might
listen for data from a collection of sensor components). This
is a work in progress. Looking ahead, our plans are to build
a series of progressively capable software prototypes, with
each iteration of development employing a combination of
executable statecharts for the behavior modeling of HVAC
components, and eventually finite element procedures for the
computation of behaviors over continuous physical domains
(e.g., fluid flow in a pipe network) [8][9][10].

This paper begins with a description of the semantic
platform infrastructure and our use of software design patterns
[11] (e.g., networks of model, view, controllers), software
libraries and languages for semantic applications development
using OWL [12] and Jena [13]. Section III describes related
work. Section IV describes the design and features of Whistle,
a scripting language we are developing to support the imple-
mentation of abstractions shown in Figures 3 and 4. A series
of progressively complicated case study problems is presented
in Section V.

II. SEMANTIC PLATFORM INFRASTRUCTURE

Software Systems Architecture. Figure 5 represents the
software architecture for ontology-enabled traceability and
physical systems simulation, annotated with our use of model-
view-controller, observer, and composite hierarchy software
design patterns. Software design patterns are defined as general
repeatable solutions to common software design problems;
designers customize these templates to suit the design re-
quirements. The model-view-controller (MVC) pattern is an
architectural pattern with three components of model, view,
and controller. This pattern is widely used in graphical user
interface (GUI) applications. The observer design pattern de-
fines a one-to-many relationship between objects. An observer
component registers itself to a subject of interest and will
be notified when an event occurs. An observer can register
to different observable components or be removed when the
interest no longer exists. The composite design pattern is used
to describe groups of objects whose natural organizational
structure is a hierarchy (e.g., a building contains floors; floors
contain rooms; rooms contain desks and chairs). For composite
hierarchies that represent spatial systems, algorithms can be
developed to systematically traverse the hierarchy and process
it according to a pre-defined purpose (e.g., display the contents
of a hierarchy of coordinate systems; query to see if a point
is inside a particular object). Another key benefit is model
flexibility. Suppose, for example, that an engineer is working
with a simple model of a building consisting of an air-handling
unit and rooms defined by walls and doors and windows inside
walls. If the room model is adjusted to a different orientation,
then all of the subsystem elements (i.e., the walls, doors and
windows) will be automatically re-positioned.

227

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We employ a combination of MVC, observer, and com-
posite hierarchy design patterns to synthesize dependency and
data flow relationships between the requirements, ontology
and engineering model work spaces, and a modified version
of MVC where the controller serves as a mediator between
multiple models and views. The latter can also be found
in Apple Cocoa [14]. The requirements, ontology, and the
physical system models are each represented as MVC nodes.
Inside a MVC node, messages are distributed between the
controller, views and models. Then, the observer design pattern
is used to connect controller elements at each MVC node to
other points of interest, thereby enabling traceability and flows
of data across the system architecture. The controller registers
with the model to be notified of a change in a property, and
then updates views following a change in a model property.
In practical terms, an end-user interacts with the views and
makes changes to the model by passing data through the
controller. Views pass the change queries to the controller and
the controller updates the relevant models.

The composite hierarchy design pattern is used to or-
ganize the entities within each workspace. For the require-
ments model, this implies definition of compound requirements
containing other sub-requirements. For the ontology models
this implies that far-reaching ontology might be assembled
from collections of ontologies describing specific domains. For
example, an ontology for building systems might contain a
mechanical systems ontology, among others. Finally, physical
system models are created as hierarchies of components.
Notice that the ontology controller is listening to the physical
system controller and vice versa. This mechanism means that
as a system is operating or is being simulated, changes in the
system state will be reported to the ontology controller and
will be updated in the data stored (individuals) in the ontology
model. Looking the other way, an update to the value of a
component attribute in the physical system model will trigger
rule checking in the ontology workspace and possibly a change
in the satisfaction of system requirements. For both scenarios,
views will be updated upon a change in their models. The
requirement controller listens to the ontology controller. This
connection is the traceability thread back to the requirements.
The requirements view will highlight the relevant requirement
when the associated rule in the ontology is triggered.

Modeling and Reasoning with Ontologies. Textual require-
ments are connected to the ontology model and logical and
mathematical design rules, and from there to the engineering
model. Ontology models encompass the design concepts (on-
tology classes) in a domain, as well as the relationships among
them. Classes are qualified with properties (c.f., attributes in
classes) to represent the consequence of constraint and design
rule evaluations. Examples of valid relationships are: con-
tainment, composition, uses, and ”Is Kind of”. These classes
are place holders for the data extracted from the engineering
model. Individuals are the object counterpart of classes, with
data and object property relationships leading to the resource
description framework -(RDF) graph infrastructure. Each in-
stance of an individual holds a specific set of values obtained
from the engineering model.

Rules serve the purpose of constraining the system
operation and/or system design. They provide the mechanisms

for early design verification, and ensure the intended behavior
is achieved at all times during system operation. We are
currently working with reasoners provided in the Jena API.
A reasoner works with the RDF graph infrastructure and sets
of user-defined rules to evaluate and further refine the RDF
graph. Rule engines are triggered in response to any changes
to the ontological model. This process assures that the model is
consistent with respect to the existing rules. Traceability from
ontologies to requirements is captured via implementation of
the listeners that are notified as a result of change in the
semantic model.

In a departure from past work, we are exploring the
feasibility of creating built-in functions to capture and evaluate
performance criteria, i.e., energy efficiency of the HVAC
system. A second potential use of built-in functions is as
an interface to packages that provide system improvements
through optimization and performance related queries. We note
that a rule-based approach to problem solving is particularly
beneficial when the application logic is dynamic (i.e., where a
change in a policy needs to be immediately reflected through-
out the application) and rules are imposed on the system by
external entities [15][16]. Both of these conditions apply to the
design and management of engineering systems.

III. RELATED WORK

An important facet of our work is use of Semantic Web
technologies [17] as both system models and mechanisms to
derive system behavior. While the vast majority of Semantic
Web literature has used ontologies to define system structure
alone, this is slowly changing. Derler and co-workers [18]
explain, for example, how ontologies along with hybrid system
modeling and simulation and concurrent models of compu-
tation can help us better address the challenges of modeling
cyber-physical systems (CPSs). These challenges emerge from
the inherited heterogeneity, concurrency, and sensitivity to
timing of such systems. Domain specific ontologies are used
to strengthen modularity, and to combine the model of system
functionality with system architecture. As a case in point, the
Building Service Performance Project proposes use of ontolo-
gies and rules sets to enhance modularity and perform cross-
domain information exchange and representation [19]. Koelle
and Strijland are investigating the design and implementation
of a software tool to support semantic-driven architecture with
application of rules for security assurance of large systems in
air navigation [20].

For the cyber side of the CPS problem, visual modeling
languages such as the Unified Modeling Language (UML)
and SysML provide weak semantic support for MBSE. This
leads us to consider languages and tools for MBSE that
have stronger semantics. Consider, for example, the possibility
of conceptual modeling through the use of ontologies and
constraints represented as rules. In the physical domain, some
modeling languages and modeling frameworks are developed
to address the physical modeling and analysis of complex
physical systems. Two well known examples are Modelica
[21] and Ptolemy II [22]. Modelica offers strong physical
modeling capabilities and features to be utilized in compo-
nent based modeling. Physical equations are embedded inside
components and components are connected together via ports.
Some frameworks such as Open Modelica have been developed

228

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to support graphical block diagram modeling with Modelica.
Ptolemy studies modeling and simulation of concurrent real-
time systems with actor-based designs. Actors are software
components that communicate via message sending. A model
is a network of interconnected actors. Moreover, directors
implement a model of computation in this framework and
can be attached to different layers of the model. For example,
discrete-events (DE), data-flow (SDF), and 3-D visualization
are some of the directions supported in Ptolemy [23]. The
challenges for CPS design are greater because we need both
the cyber and physical models to interact with each other,
and at this time the bi-directional link connecting physical
(continuous) operations to computational (discrete) operations
is missing. Ongoing work is trying not only to cover this gap,
but also take a step toward tieing the governing rules in the
domain-specific ontologies to the textual requirements [24].
The work by Simko [25] uses CyPhyML, Hybrid Bond Graphs
and ESMoL to formally describe the structure and behavior of
CPSs. However, deductive reasoning is lacking in this work.

IV. WHISTLE SCRIPTING LANGUAGE

This section introduces Whistle, a new scripting language
where physical units are deeply embedded within the basic data
types, matrices, branching and looping constructs, and method
interfaces to external object-oriented software packages. Whis-
tle builds upon ideas prototyped in Aladdin [26][27][28] a
scripting environment for the matrix and finite element analysis
of engineering systems.

Language Design and Implementation. Scripting languages
[29][30][31] are designed for rapid, high-level solutions to
software problems, ease of use, and flexibility in gluing ap-
plication components together. They facilitate this process by
being weakly typed and interpreted at run time. Weakly typed
means that few restrictions are placed on how information can
be used a priori – the meaning and correctness of information is
largely determined by the program at run time. And since much
of the code needed to solve a problem using a system program-
ming language is due to the language being typed, broadly
speaking, weakly typed scripting languages require less code to
accomplish a task [32]. Whistle is tiny in the sense that it uses
only a small number of data types (e.g., physical quantities,
matrices of physical quantities, booleans and strings). Features
of the language that facilitate the specification of problem
solutions include: (1) liberal use of comment statements (as
with C and Java, c-style and in-line comment statements are
supported), (2) consistent use of function names and function
arguments, (3) use of physical units in the problem description,
and (4) consistent use of variables, matrices, and looping and
branching structures to control the flow of program logic.

Whistle is implemented entirely in Java. We use the tools
JFlex (the Fast Scanner Generator for Java) [33] and BYACC/J
(an extension of Berkeley YACC for Java) [34] to handle the
parsing and lexical analysis of tokens and statements, Java
Collections for the symbol table, and a variety of tree structure
representations of the abstract syntax tree. A good introduction
to symbol tables and abstract syntax tree representations can
be found in the compilers and interpreters text by Mak [35].

Definition and Management of Physical Quantities. A
physical quantity is a measure of some quantifiable aspect of

the modeled world. In Whistle, basic engineering quantities
such as length, mass, and force, are defined by a numerical
value (number itself) plus physical units. Figure 6 is a subset of
units presented in the Unit Conversion Guide [36], and shows
the primary base units, supplementary units, and derived units
that occur in engineering mechanics and structural analysis.
The four basic units needed for engineering analysis are: length
unit L; mass unit M ; time unit t; and temperature unit T .
Planar angles are represented by the supplementary base unit
rad. Derived units are expressed algebraically in terms of
base and supplementary units by means of multiplication and
division, namely:

units = k · LαMβtγT δ · radε (1)

where α,β, γ, δ and ε are exponents, and k is the scale factor.
Numbers are simply non-dimensional quantities represented
by the family of zero exponents [α,β, γ, δ, ε] = [0, 0, 0, 0, 0].
The four basic units play the primary role in determining
dimensional consistency of units in physical quantity and
matrix operations. Because a radian represents the ratio of two
distances (i.e., distance around the perimeter of a circle divided
by its radius), most software implementations deal with radians
as if they were dimensionless entities. Whistle departs from
this trend by explicitly representing radians, and employing
a special set of rules for their manipulation during physical
quantity and matrix operations.

The scripting language libraries provide facilities for dy-
namic allocation of units (in both the US and SI systems), units
copying, consistency checking and simplification, and units
printing. Operations for units conversion are provided. In an
effort to keep the scripting language usage and implementation
as simple as possible, all physical quantities are stored as
floating point numbers with double precision accuracy, plus
units. Floating point numbers are viewed as physical quantities
without units. There are no integer data types in Whistle.

Physical Quantity Arithmetic. Whistle supports the construc-
tion and evaluation of physical quantity expressions involving
arithmetic, relational, and logical operators. The integration of
units into the scripting language provides a powerful check for
the dimensional consistency of formulas. A detailed summary
may be found in Tables I and II. Suppose, for example, that
we want to compute the force needed to move 1 kg over a
distance of 10 m in 2 seconds. The fragment of code:

mass = 1 kg;
distance = 10 m;
dt = 2 sec;

force01 = mass*distance/dtˆ2;
print "*** Required force = ", force01;

demonstrates the procedure for defining the physical quantity
variables mass (kg), distance (m) and dt (sec), and computing
the required force. The output is:

*** Required force = [2.500, N]

Whistle provides a small library of built-in constants (e.g., Pi)
and functions (e.g., Max(), Min(), Sqrt()) for the evaluation

229

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Area Inertia

BASE UNITS DERIVED UNITS

Kilogram

kg

kg.m^2 kg/m^3 N/m^2
Mass

Density Pressure

m^3

Length

m

Meter

Volume

m/s

Velocity

m/s^2

Acceleration

Plane Angle

rad

Radians

UNITS
SUPP:LEMENTARY

Temperature

Time

s

Seconds Hertz

1/s

Frequency

T (F)

Angular AccelerationAngular Velocity

rad/s^2rad/s

Area

T (C)

m^4 m^2

Power

N.m/s

Watt

Energy

N.m

Joule

Force

N

Newton

Mass Inertia

Figure 6. Primary base and derived units commonly found in engineering mechanics.

TABLE I. UNITS ARITHMETIC IN ARITHMETIC OPERATIONS

Description Expression Scale Factor Unit Exponents
Addition q1 + q2 k1 [α1,β1, γ1, δ1, ε1]
Subtraction q1 − q2 k1 [α1,β1, γ1, δ1, ε1]
Multiplication q1 ∗ q2 k1 · k2 [α1 + α2, β1 + β2, γ1 + γ2, δ1 + δ2, ε1 + ε2]
Division q1/q2 k1/k2 [α1 − α2, β1 − β2, γ1 − γ2, δ1 − δ2, ε1 − ε2]
Exponential q1

∧q2 kN†
1 [Nα1, Nβ1, Nγ1, Nδ1, Nε1]†

TABLE II. EXPRESSIONS INVOLVING RELATIONAL AND LOGICAL OPERATORS. A UNITS CONSISTENCY CHECK IS MADE BEFORE THE OPERATION
PROCEEDS, AND THE RESULT OF THE OPERATION IS EITHER TRUE (1) OR FALSE (0). HERE WE ASSUME x = 2 in AND y = 2 ft.

Operator Description Example Result
< less than x < y true
> greater than x > y false
<= less than or equal to x <= y true
>= greater than or equal to x >= y false
== identically equal to x == y false
! = not equal to x ! = y true

&& logical and (x < y) && (x <= y) true
‖ logical or (y < x) ‖ (x <= y) true
! logical not !y false

230

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of arithmetic expressions involving physical quantities. For
example, the expressions:

print "Compute: Abs (-2 cm) --> ",
Abs (-2 cm);

print "Compute: Min (2 cm, 3 cm) --> ",
Min (2 cm, 3 cm);

print "Compute: Max (2 cm, 3 cm) --> ",
Max (2 cm, 3 cm);

generate the output:

Compute: Abs (-2 cm) --> [0.02000, m]
Compute: Min (2 cm, 3 cm) --> [2.000, cm]
Compute: Max (2 cm, 3 cm) --> [3.000, cm]

Relational and Logical Expressions. Whistle provides sup-
port for the representation and evaluation of relational expres-
sions involving the “and operator” (&&), the “or operator”
(‖), and physical quantities. Consider, for example, the pair of
lengths:

x = 10 cm; y = 20 cm;

The ensemble of expressions:

print "z01 = x <= 15 cm && y > x --> ",
x <= 15 cm && y > x;

print "z02 = x <= 15 cm && y < x --> ",
x <= 15 cm && y < x;

print "z03 = x <= 15 cm || y > x --> ",
x <= 15 cm || y < x;

generates the output:

z01 = x <= 15 cm && y > x --> true
z02 = x <= 15 cm && y < x --> false
z03 = x <= 15 cm ||y > x --> true

Program Control. Program control is the basic mechanism
in programming languages for using the outcome of logical
and relational expressions to guide the pathway of a program
execution. Whistle supports the “if” and “if-else” branching
constructs, and the “while” and “for” looping constructs, with
logical and relational operations being computed on physical
quantities. The fragment of code:

x = 0 cm;
while (x <= 10 cm) {

print "*** x = ", x;
if (x <= 5 cm) {

x = x + 1 cm;
} else {

x = x + 2 cm;
}

}

generates the output:

*** x = [0.000, cm]
*** x = [1.000, cm]
*** x = [2.000, cm]
*** x = [3.000, cm]
*** x = [4.000, cm]
*** x = [5.000, cm]
*** x = [6.000, cm]

*** x = [8.000, cm]
*** x = [10.00, cm]

and demonstrates the basic functionality of a while loop and
if-else branching construct working together.

Matrix Data Structure. Figure 7 shows the high-level layout
of memory for the matrix data structure.

Reference to Matrix Object

Reference to body
of matrix.

Matrix parameters.

Ro
w

 u
ni

ts
bu

ffe
r

Column units buffer

Matrix Name

BODY OF MATRIX

Figure 7. Layout of memory in matrix data structure.

Memory is provided for a character string containing the
matrix name, two integers for the number of matrix rows and
columns, as well as the matrix body. The matrix element units
are stored in two one-dimensional arrays of type Dimension.
One array stores the column units, and a second array the row
units. The units for matrix element at row i and column j
are simply the product of the i-th element of the row units
buffer and the j-th element of column units buffer. Our use
of row and column units matrices means that this model does
not support the representation of matrices of quantities having
arbitrary units. For most engineering applications, however,
matrices are simply a compact and efficient way of describing
families of equations of motion and equilibrium, and collec-
tions of data.

Engineering considerations dictate that the terms within
an equation be dimensionally consistent. Similarly, consistency
of dimensions in large collections of engineering data also
must hold. In practical terms, the assumptions made by this
model not only have minimal impact on our ability to solve
engineering problems with matrices, but requires much less
memory than individual storage of units for all matrix ele-
ments. Whistle performs dimensional consistency checks (and
possible conversion of units types) before proceeding with all
matrix operations. All that is required is examination of the
row and column matrix units – there is no need to examine
consistency of units at the matrix element level.

Matrix Operations. We are building computational support
for standard matrix operations (e.g., addition, subtraction, mul-
tiplication, solution of linear equations) on physical quantities.
For example, the fragment of code:

231

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Force = [2 N, 3 N, 4 N];
Distance = [1 m; 2 m; 3 m];
Work = Force*Distance;

is a simple calculation for the work done by a force moving
through a prescribed distance. The output is as follows:

Matrix: Force
row/col 1 2 3

units N N N
1 2.00000e+00 3.00000e+00 4.00000e+00

Matrix: Distance
row/col 1

units m
1 1.00000e+00
2 2.00000e+00
3 3.00000e+00

Matrix: Work
row/col 1

units Jou
1 2.00000e+01

Notice that the computation of units for the work done is
automatically handled.

Java Bytecode Components. Early versions of the scripting
environment [27] were essentially closed and came with a
small set of built-in functions (e.g., Max(x,y), Abs (x), Sqrt
(x)). Now, users can import references to compiled Java classes
accessible in the JVM (Java Virtual Machine), and under
certain restrictions, the methods of those classes can become
part of the scripting environment. As we will soon see in the
case study examples in section V, scripting statements of the
form:

import className;

will dynamically load className into the scripting environ-
ment at runtime. When a class is loaded, all of the classes it
references are loaded too. This class loading pattern happens
recursively, until all classes needed are loaded.

This capability means that end-users can use the scripting
language to glue computation components together and export
heavy-duty computations to external mechanisms, such as Java
libraries, or any other libraries to which Java can interface.
Because our work has been driven by the simulation needs
of energy efficient buildings, we initially had in mind that
these classes would represent physical components in the
building. However, from a scripting language perspective,
whether or not the component represents a physical entity
is irrelevant. As such, and as we will see in the case study
examples below, components can also be defined for plotting,
data modeling, executable statechart behaviors or, in fact, any
modeling abstraction that uses physical quantity interfaces.

V. CASE STUDY PROBLEMS

We now demonstrate the capabilities of Whistle by
working step by step through five progressively complicated
case study problems.

Case Study 1: Parsing a Simple Assignment Statement.
The computational platform parses problem specifications into
an abstract syntax tree, and then executes the statements by
traversing the syntax tree in a well-defined manner. To see
how this process works in practice, let’s begin by working
step by step through the details of processing the assignment
statement:

x = 2 in;

Figure 8 shows the parse tree for this statement.

QUANTITY_CONSTANT

VARIABLE

x 2 in

NUMBER Dimension

ASSIGN

=

Figure 8. Parse tree for x = 2 in.

The interpreter parses and stores the character sequence “2 in”
as the physical quantity two inches. Notice how 2 juxtaposed
with in implies multiplication; we have hard-coded this in-
terpretation into the scripting language because 2 in is more
customary and easier to read than 2 * in. This quantity is
discarded once the statement has finished executing.

The abstract syntax tree is as follows:

Starting PrintAbstractSyntaxTree() ...
== ...

<COMPOUND>
<ASSIGN>

<VARIABLE id="x" level="0" />
<QUANTITY_CONSTANT value="[2.000, in]" />

</ASSIGN>
</COMPOUND>

== ...
Finishing PrintAbstractSyntaxTree() ...

Compound statements allow for the modeling of sequences of
individual statements. The assignment is defined by two parts,
a variable having an identification “x” and a quantity constant
having the value 2.0 in.

Internally, the quantity constant is automatically con-
verted to its metric counterpart. Table III shows the name and
value of variable “x” as well as details of the units type, scale
factor and exponent values.

Case Study 2: Hierarchy of Water Tank Models. The
purpose of this example is to see how modules of Java code

232

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

QUANTITY NAME AND VALUE

Quantity Name : x
Quantity Value : 0.0508 (m)
--
UNITS
--
Units Name : "in" Length Exponent : 1
Units Type : US Mass Exponent : 0
Scale Factor : 0.0254 Time Exponent : 0

Temp Exponent : 0
Radian Exponent : 0

--

TABLE III. SYMBOL TABLE STORAGE FOR QUANTITY x = 2 IN.

can be imported into the scripting language environment and
become part of the admissible syntax.

CircularWaterTank RectangularWaterTank

AbstractWaterTank

String name;
Quantity height;
Quantity waterlevel;

Quantity basewidth;
Quantity basedepth;

String toString();
Quantity getTankCapacity();

String toString();
Quantity getTankCapacity();

Quantity diameter;

Figure 9. Water tank class hierarchy, annotated with a partial list of variables
and methods.

Figure 9 shows a simple class hierarchy for the modeling of
water tank components. The AbstractWaterTank class defines
concepts and parameters common to all water tanks (e.g.,
name, waterlevel, height of the tank). The classes Rectangu-
larWaterTank and CircularWaterTank add details relevant to
tanks with rectangular and circular base areas, respectively.
For example, circular water tanks are defined by their diam-
eter. Rectangular water tanks are defined by the parameters
basewidth and basedepth. Geometry specific methods are writ-
ten to compute tank capacities, and so forth.

Now let us assume that the source code for these classes
has been compiled in a Java bytecode and references to
their specifications are accessible in the JVM (Java Virtual
Machine). The fragment of code:

import whistle.component.hvac.CircularWaterTank;

makes all of the public methods in CircularWaterTank
and AbstractWaterTank available to the library of terms
acceptable to the scripting language environment. A circular

water tank component with diameter 2 m and height 2 m is
created by writing:

tank01 = CircularWaterTank();
tank01.setDiameter(2.0 m);
tank01.setHeight(2 m);

The variable tank01 references an object of type Circu-
larWaterTank stored within the JVM. In a departure from
standard programming and scripting languages, which support
exchange of basic data types (e.g., float, double) and references
to objects in method calls, our philosophy is that participating
java classes will work with quantities, matrices of quantities,
booleans and strings. Thus, in order to compute and see the
tank capacity, we can write:

capacity = tank01.getTankCapacity();
print "*** Capacity is: ", capacity;

The output is as follows:

*** Capacity is: [6.283, mˆ3]

Case Study 3: Visualization of Pump Model Data. Pumps (a
fan is a pump that moves a gas) are a type of turbomachinery
that are generally modeled using empirical data because mod-
els based deductively upon first principles of physics can only
represent generalized, idealized behavior, not actual specific
behavior. Pump performance is difficult to predict because
it requires understanding the complex interaction between
the pump and the fluid: the shape of the impeller blades,
the friction between the blades and the fluid at different
temperatures, pressures, and impeller speeds, the details of the
pipes and valves upstream and downstream of the pump all
have an effect on the pump performance. Manufacturers of
pumps create performance curves based on measurements of
pumps. The curves show head (pressure), brake horse power,
and efficiency as a function of flow rate for a given impeller
diameter. The performance of the same pump design with
a different impeller diameter, different rotational speed, or
different fluid can be calculated from a set of performance
curves using the similarity laws. These curves can be used to
produce a curve of dimensionless head versus dimensionless
flow rate that is more generally useful for incorporation into a
modeling program [37], [38].

While the principal purpose of component modeling is
for the representation of entities in the physical world, from
a scripting perspective, the concept of components extends to
services designed to support the analysis and visualization of
CPS. To this end, we are in the process of developing data
model and visualization components. Figure 10 shows a plot
of pump performance data for a size 3, drawthrough 9 inch,
BCMpress Fan. Note that the y-axis is dimensionless pressure,
where the pressure head is normalized by ρ ∗D2 ∗N2, where
ρ is density, D is impeller diameter, and N is rotational speed
(rpm). The x-axis is dimensionless flow, where the flow rate

233

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Dimensionless pressure as a function of dimensionless flow of a pump as calculated from standard manufacturer pump curves.

is normalized by ρ ∗D3 ∗N . These normalizations are based
on idealizations known as “fan laws”.

The scripting language specification employs data model
and plot components, i.e.,

// Import data model from XML file

data01 = DataModel();
data01.getData("pumpModel.xml");

// Plot pressure head vs discharge rate ...

plot01 = PtPlot();
plot01.setSize(600, 700);
plot01.setTitle("BCMpress Fan Performance");
plot01.setXLabel("Dimensionless Flow Rate Q");
plot01.setYLabel("Dimensionless Pressure Head");

// Transfer data model to plot component ...

c01 = data01.getCurve ("level01");
nsteps = c01.getNoPoints();
for (i = 0; i < nsteps; i = i + 1) {

plot01.addPoint(c01.getX(i), c01.getY(i));
}

plot01.display();

DataModel() is an experimental component for the storage and
management of data models, and their import/export in an xml
format. The PtPlot() component is an interface to the PtPlot
visualization package distributed with PtolemyII [23].

Case Study 4: Oscillatory Flow between Two Tanks. The
language supports the representation of differential equations
in their discrete form, and solution via numerical integration
techniques.

H1(t)

Friction Force

Friction Force

Length L

Tank 1

Tank 2

D

H2(t)

Control Volume

Figure 11. Summary of forces acting on a pipe element connecting two
tanks.

Consider, for example, the problem of computing the oscilla-
tory flow of fluid between two tanks as illustrated in Figure 11.
Let v(t) and Q(t) be the velocity (m/sec) and flowrate (m3/sec)
in the pipe, measured positive when the flow is from Tank 1
to Tank 2. For a pipe cross section, Ap, and tank cross-section
areas A1 and A2, conservation of mass implies:

Q(t) = Apv(t) = −A1
dH1(t)

dt
= A2

dH2(t)

dt
. (2)

234

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When water depths H1(t) $= H2(t), this “head” differential
will cause fluid to flow through the pipe. Transient behavior
of the fluid flow is obtained from the equations of momentum
balance in the horizontal direction of the control volume, i.e.,

[
dv(t)

dt

]
+

[
f1
2D

]
v(t)|v(t)| =

[g
L

]
[H1(t)−H2(t)] . (3)

Notice that each term in equation (3) has units of acceleration,
and that damping forces work to reduce and overall amplitude
of accelerations. Damping forces are proportional to pipe
roughness and inversely proportional to pipe diameter. The
time-history response is computed by creating discrete forms
of equations (2) and (3), and systematically integrating the
first-order equations of motion with Euler integration. First,
the update for momentum balance is given by:

v(t+ dt) = v(t) +

[
dv(t)

dt

]
dt. (4)

Updates in the water depth for each tank are given by:

H1(t+ dt) = H1(t)−
[
Ap

A1

]
v(t)dt. (5)

and

H2(t+ dt) = H2(t) +

[
Ap

A2

]
v(t)dt. (6)

If the tank and pipe components are defined as follows:

// Define tank and pipe components

tank01 = RectangularWaterTank();
tank01.setName("Tank 01");
tank01.setHeight(10 m);
tank01.setBaseWidth(3 m);
tank01.setBaseDepth(5 m);
tank01.setWaterLevel(5 m);

tank02 = RectangularWaterTank();
tank02.setName("Tank 02");
tank02.setHeight(5 m);
tank02.setBaseWidth(2.0 m);
tank02.setBaseDepth(2.5 m);
tank02.setWaterLevel(1 m);

pipe01 = Pipe();
pipe01.setLength(5.0 m);
pipe01.setRadius(10.0 cm);
pipe01.setRoughness(0.005);

then the script:

velFluid = pRough/(4*pRadius)*velOld*Abs(velOld)*dt;
velUpdate = g/pLength*(h01Old - h02Old)*dt;
velNew = velOld + velUpdate - velFluid;

shows the essential details of computing the fluid velocity
update with Euler integration. During the executable phases of
simulation (right-hand side of Figure 4), the runtime interpreter
checks for dimensional consistency of terms in statements
before proceeding with their evaluation. Figures 13 and 14
are plots of the tank water levels (m) versus time (sec), and
volumetric flow rate (m3/sec) versus time (sec), respectively.

Case Study 5: Tank with Water Supply and Shut-off Valve.
This example, adapted from Turns [39], illustrates the steady
and transient states of mass conservation and control volume
of a tank with a shut-off valve and water supply system.

H(t)

supply pipe

exit pipe and
valve.

control volume

tank

z

Figure 12. Front elevation of tank, supply pipe, and exit pipe and valve.

The system behavior corresponds to four states as follows: (I)
The tank is empty, (II) The tank is being filled to a depth of
1 m, (III) The shut-off valve is opened and the water level is
decreasing, (IV) The water level in the tank reaches a steady
state and does not change. Based on conservation of mass for
an unsteady filling process, we obtain the change in water level
from equation (7),

[
dH(t)

dt

]
ρAt = ρv1A1, (7)

where H(t) is water height in the tank in (m), ρ is water
density and is equal to 997 (kg/m3), At is cross-section area
of the tank in (m2), A1 is cross-section area of supply pipe in
(m2), v1 is average velocity of inlet water in (m/sec). When
the water height is 1 m, the shut-off valve opens and the height
of water in the tank will be updated based on equations:

[
dH(t)

dt

]
ρAt = ṁ1 − ṁ2, (8)

where ṁ1 and ṁ2 are the instantaneous mass flow of inlet and
outlet pipes in (kg/s):

ṁ2 = ρv2A2, (9)

where A2 is the cross-section area of the outlet pipe in (m2):

235

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Tank water levels (m) versus time (sec).

Figure 14. Volumetric flow rate (m3/sec) versus time (sec).

236

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Time-history response for a tank having a water supply and shut-off valve. Upper plot: tank water level (m) versus time (sec). Lower plot: discrete
statechart behaviors at various points in the time-history response.

ṁ1 = ρv1A1, (10)

v2(t) = 0.85
√
g (H(t)− z), (11)

where v(t) is outlet velocity in (m/s) and z is the location of the
shut-off valve in (m). In order to mimic the physical equations,
we used the scripting language to model components of the
tank, supply, and exit pipes with their associated parameters.

The fragment of script below illustrates the essential
details of defining the circular water tank and pipe components:

// Define tank and pipe components

tank01 = CircularWaterTank();
tank01.setName("Tank 01");
tank01.setDiameter(1*0.15 m);

// Define supply pipe

pipe01 = Pipe();

pipe01.setRadius(10.0 mm);

The heart of the time-history simulation is a looping construct
that contains two cases (or discrete states) for physical behav-
ior:

// Case 1: Water level is below 1 m:

DepthUpdate = pipe1Velocity * pipe1Area*dt / tankArea;
DepthNew = DepthOld + DepthUpdate;
response01 [i][0] = i * dt;
response01 [i][1] = DepthNew;
DepthOld = DepthNew;

// Case 2: Water level is above 1 m:

massFRSupplyPipe = rho*pipe1Velocity * pipe1Area;

velocityExit = 0.85*Sqrt(g*(DepthOld - 0.1 m));
massFRExitPipe = rho* velocityExit*pipe02.getArea();

massFlowRateCV = massFRSupplyPipe - massFRExitPipe;

dHeight = massFRCV/(rho*tankArea)*dt;
DepthNew = DepthOld + dHeight;
response01 [i][0] = i * dt;

237

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

response01 [i][1] = DepthNew;
DepthOld = DepthNew;

Figure 15 shows the time-history response of the water level
in the tank as it transitions from an empty tank to steady state
where the water level remains unchanged t height of 0.9 m. In
order to visualize the discrete behavior of this system, we em-
ploy our previously developed executable statechart package
[10]. This package is capable of modeling and implementation
for event-driven behavior with finite state machines. It supports
modeling for: (1) Simple, hierarchical and concurrent states,
start and final states, (2) History and deep-history pseudostates
in hierarchical states, (3) Fork and join pseudostates for
concurrent states, (4) Segmented transitions using junction
points, and (5) Events, guards and actions for transitions.
Visualization of the statechart behaviors is supported through
use of mxGraphics in our code. The MVC design pattern
(see Section II) is used to make views come alive as models
transition through a sequence of states. The abbreviated script:

import whistle.statechart.TankStatechart;

....
statechart = TankStatechart();
statechart.startStatechart();
statechart.TransitionEvent(init);

if(DepthOld >= 1 m){
statechart.TransitionEvent(valveOpen);
....

}
....

shows how a statechart element for the water tank is created
in an input file developed by the scripting language, and
how the language is capable of triggering an event to the
statechart when the water level exceeds 1 m. The bottom
level of Figure 15 shows how different regions of continuous
behavior correspond to the discrete states in the tank statechart.

VI. CONCLUSION

The purposes of this paper have been two-fold: (1) to
describe a semantic platform infrastructure for the model-
based systems engineering of cyber-physical systems, and (2)
to describe a new and novel scripting language called Whistle.
Both efforts are a work in progress. The proposed semantic
platform infrastructure will enhance systems engineering prac-
tice by lowering validation costs (through rule checking early
in design) and providing support for performance assessment
during system operation. Our focus in this paper has been to
describe the basic features of Whistle, and to show how it
can be used to simulate the behavior of a variety of systems
characterized by fluid flows and simple control.

Our plans for the future are to conduct research in
scripting language design and computational modeling so that
Whistle provides the CPS modeling infrastructure and systems
integration glue needed to implement the vision of Figures

3 through 5. We envision cyber-physical systems having be-
haviors that are both distributed and concurrent, and defined
by mixtures of local- and global- rule-based control. For the
time-history behavior modeling and control of energy-efficient
buildings, the finite element method is attractive because
problem solutions (e.g., spatial distributions of temperature
and pressure in large enclosures) can be formulated from
first principles of engineering such as momentum balance.
Solution procedures need to be robust, scalable, and extensible
to energy-balance calculations. We will design a family of
component model interfaces (see the left-hand side of Figure
4), extend them for the implementation of a build components
library (e.g., tanks, pipes, valves) and where needed, participate
in finite element analysis, actuation, and control. In order for
modeling procedures to be efficient we need mechanisms that
take advantage of the natural hierarchy of physical systems.
Engineers should be provided with the capability to position
sensors inside water tanks, and then connect tanks together
with networks of pipes and pumps. At the same time, we
also need a capability for components to communicate across
hierarchies, and we are proposing this be accomplished with
listener mechanisms (e.g., a controller component might listen
for data from a collection of sensor components and then
depending on the water level reading, take an appropriate
action). The keys to making this work are software interfaces
designed to support a multitude of system viewpoints (e.g.,
a visualization interface for 2D- and 3D- visualization, a
finite element interface for the description of element-level
behaviors cast in a matrix format, a communications interface
for sensor to controller communication) and Whistle’s feature
to import and work with references to compiled bytecodes
in the Java Virtual Machine. Whistle will act as the glue for
systems integration and access to procedures for simulation,
visualization and system assessment.

ACKNOWLEDGMENT

The work reported here is part of a US National Institute of
Standards and Technology (NIST) funded program dedicated
to the development of standards for CPS design, modeling,
construction, verification and validation.

REFERENCES

[1] P. Delgoshaei, M.A. Austin, and D.A. Veronica, “A semantic platform
infrastructure for requirements traceability and system assessment,” The
Ninth International Conference on Systems (ICONS 2014), February
2014, pp. 215-219, ISBN: 978-1-61208-319-3.

[2] NIST. “Strategic R&D opportunities for 21st Cyber-physical systems:
connecting computer and information systems with the physical world,”
National Institute of Science and Technology(NIST), Gaithersburg, MD,
USA, 2013.

[3] J. Wing, “Cyber-physical systems research challenges,” National Work-
shop on High-Confidence Automotive Cyber-Physical Systems, Troy, MI,
USA, 2008.

[4] M.A. Austin,V. Mayank, and N. Shmunis, “Ontology-based validation
of connectivity relationships in a home theater system,” The 21st
International Journal of Intelligent Systems, Vol. 21, No. 10, pp. 1111–
1125, October 2006.

238

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] M.A. Austin, V. Mayank, and N. Shmunis, “PaladinRM: graph-based
visualization of requirements organized for team-based design,” Sys-
tems Engineering: The Journal of the International Council on Systems
Engineering, Vol. 9, No. 2, pp. 129–145, May 2006.

[6] N. Nassar and M.A. Austin, “Model-based systems engineering de-
sign and trade-off analysis with RDF graphs,” 11th Annual Confer-
ence on Systems Engineering Research (CSER 2013), Georgia Insti-
tute of Technology, Atlanta, GA, March 19-22, 2013, pp. 216–225,
doi:10.1016/j.procs.

[7] S. Fridenthal, A. Moore, and R. Steiner, “A practical guide to SysML,”
MK-OMG, 2008.

[8] P. Delgoshaei and M.A. Austin, “Software design patterns for ontology-
enabled traceability,” Conference on Systems Engineering Research
(CSER 2011), Redondo Beach, Los Angeles, April 15-16, 2011.

[9] P. Delgoshaei and M.A. Austin, “Software patterns for traceability
of requirements to finite-state machine behavior: application to rail
transit systems design and management,” The 22nd Annual International
Symposium of The International Council on Systems Engineering (IN-
COSE 2012), Rome, Italy, 2012, pp. 2141-2155, DOI: 10.1002/j.2334-
5837.2012.tb01463.x.

[10] P. Delgoshaei, “Software patterns for traceability of requirements to
state machine behavior,” M.S. Thesis in Systems Engineering, University
of Maryland, College Park, MD 20742, November 2012.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
elements of reusable object-oriented software,” Addison-Wesley Profes-
sional Computing Series, 1995.

[12] OWL w3 See http://www.w3.org/TR/owl-features/ (Accessed, February
2004).

[13] 2013. Apache Jena, accessible at: http://www.jena.apache.org.
[14] R. Eckstein, “Java SE application design with MVC,”

Sun Microsystems, 2007. For more information, see
http://www.oracle.com/technetwork/articles/javase/index-142890
(Accessed, November 2014).

[15] M.H. Qusay, “Getting started with the Java rule
engine API (JSR 94): toward rule-based applications,”
Sun Microsystems, 2005. For more information, see
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
(Accessed, March 10, 2008).

[16] G. Rudolf, “Some guidelines for deciding whether to use a
rules engine,” 2003, Sandia National Labs. For more information
see http://herzberg.ca.sandia.gov/guidelines.shtml (Accessed, March 10,
2008).

[17] T. Berners-Lee, J. Hendler, and O. Lassa, “The semantic web,”
Scientific American, pp. 35–43, May 2001.

[18] P. Derler, E.A Lee, and A.S. Sangiovanni-Vincentelli, “Modeling
cyberphysical systems,” Proceedings of the IEEE, 100, January 2012.

[19] D. Macpherson and M. Raymond, “Ontology across building, emer-
gency, and energy standards,” The Building Service Performance Project,
Ontology Summit, 2009.

[20] R. Koelle and W. Strijland, “Semantic driven security assurance for
system engineering in SESAR/NextGen,” In Integrated Communications,
Navigation and Surveillance Conference (ICNS), 2013, pp. k2-1–k2-12.

[21] P. Fritzson, “Principles of Object-Oriented modeling and simulation
with Modelica 2.1,” Wiley-IEEE Press, 2003.

[22] E.A. Lee, “Finite state machines and models in Ptolemy II,” Technical
report, EECS Department, University of California, Berkeley, 2009. For
more information, see http://ptolemy.eecs.berkeley.edu/ptolemyII (Ac-
cessed, August 1, 2014).

[23] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
“Heterogeneous concurrent modeling and design in Java (volume 1:
introduction to Ptolemy II),” Technical Report ECB/EECS-2008-28,
Department Electrical Engineering and Computer Sciences, University
of California, Berkeley, CA, April 2008.

[24] J. Lin, S. Sedigh, and A. Miller, “A semantic agent framework for cyber-
physical systems,” Semantic agent systems studies in computational
intelligence, Vol. 344, pp. 189-213, 2011.

[25] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Szti-
panovits, “Specification of cyber-physical components with formal
semantics integration and composition,” The 16th ACM-IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems,
2013.

[26] M.A. Austin, X.G. Chen, and W.J. Lin, “ALADDIN: A computational
toolkit for interactive engineering matrix and finite element analysis,”
Technical Research Report TR 95-74, Institute for Systems Research,
College Park, MD 20742, August 1995.

[27] M.A. Austin, W.J. Lin, and X.G. Chen, “Structural matrix computations
with units,” Journal of Computing in Civil Engineering, ASCE, Vol.14,
No. 3, pp. 174–182, July 2000.

[28] M.A. Austin, “Matrix and finite element stack machines for structural
engineering computations with units,” Advances in Engineering Soft-
ware, Vol. 37, No. 8, pp. 544–559, August 2006.

[29] J.K. Osterhout, “Tcl and the Tk Toolkit,” Addison-Wesley Professional
Computing Series, Reading, MA 01867, 1994.

[30] L. Wall, T. Christiansen, and R. Schwartz, “Programming Perl,”
O’Reilly and Associates, Sebastopol, CA 95472, 2nd edition, 1993.

[31] R.L. Schwartz, T. Phoenix, and B.D Foy, “Learning Perl,” O’Reilly
and Associates, Sebastopol, CA 95472, 4th edition, July 2005.

[32] J. Ousterhout, “Scripting: higher level programming for the 21st
century,” IEEE Computer Magazine, March 1998.

[33] JFlex -The fast scanner generator for Java: See http://jflex.de/, (Ac-
cessed: August 1, 2013).

[34] Berkeley Yacc: See http://invisible-island.net/byacc/, (Accessed: August
1, 2013).

[35] R. Mak, “Writing compilers and interpreters: a software engineering
approach (Third Edition),” Wiley Publishing Inc, 2009.

[36] “Unit Conversion Guide,” “Fuels and petrochemical division of
AICHE,” 1990.

[37] F.M. White, ”Fluid mechanics (4th Edition),” McGraw-Hill, 1999.
[38] J. Wright, “Building performance simulation for design and optimiza-

tion,” chapter HVAC systems performance and prediction, pp. 312–340,
Spon Press (an imprint of Taylor & Francis), London and New York,
2010.

[39] S.R. Turns, “Thermal-fluid sciences: an integrated approach,” Cam-
bridge University Press, 2006.

