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Abstract—The design of many-core system-on-chips confronts
the developer with a more and more challenging task. Modern
embedded applications have a continuously increasing require-
ment for highly parallelized and flexible heterogeneous processor
structures. The interconnection problem becomes a crucial design
decision with a growing number of parallel cores. Today, these
decisions are usually solely based on the designer’s experience.
However, this will not be feasible anymore for future many-core
systems with thousands of cores on a single chip. Automated
guidance and tool support is essential to assist the design of
network-on-chips, a common solution for the interconnection
of modern system-on-chips. In this paper, we introduce a fast,
flexible and accurate analytic model based on queueing theory to
analyze the traffic in network-on-chips. The model requires only
limited knowledge of the system and is therefore well-suited for
the early phase of the design space exploration. It provides a high
flexibility in terms of supported topology, routing scheme and
traffic pattern, and enables to derive various performance metrics
based on the steady-state distribution of the network routers.
We evaluate the analytic model against cycle-accurate simulation
and demonstrate its application based on some simple design
examples, e.g., for buffer dimensioning, localizing bottlenecks, and
benchmarking topologies. Several extension of the basic model
are proposed to consider finite buffers, dynamic traffic, and to
generalize the service time assumptions made for the network
routers. This further increases the accuracy of the basic analytic
model and expands its application area.

Keywords-network-on chip; queueing theory; design space explo-
ration; router model; transient behavior

I. Introduction

IN recent years, analytic models gain in importance to
handle the growing complexity for designing and inter-

connecting multi-processor system-on-chips (MPSoC). In this
paper, we present an extended work of the queueing model for
network-on-chip (NoC) based MPSoC introduced in [1].

In embedded computing, todays applications show a com-
mon trend towards a continuously increasing computational
effort and reliability. This is especially true in the area of
multi-media and mobile communication. These requirements
can only be fulfilled by massively exploiting parallelism.
Emerging technologies like 3D chip stacking [2] promise a
significant boost of the number of processor cores per mm2.
The technology allows the vertical stacking of multiple chips,
e.g., by using through silicon vias, inductive or capacitive
coupling or optical interfaces. It is expected that it will be

(a) Bus (b) Crossbar Switch

(c) NoC: chain (left), 2D-mesh (middle), fully connected (right)

Figure 1. Different alternatives for the interconnection of an MPSoC
with 4 modules (M). (R=router)

possible soon to build stacks of hundreds of active layers, i.e.,
layers with processor elements or memories. By exploiting the
third dimension and taking the ongoing technology scaling
into account, it is expected that todays MPSoCs soon scale
to many-core SoCs with thousands of processors on a single
chip [3]. Already in 2015, we may have 1000 or more cores
on a chip [4]. This trend becomes already obvious today in the
GPU area where existing solutions provide up to 512 parallel
cores [5].

Besides the increasing number of cores, we also recog-
nize a trend towards more heterogeneity on-chip. Though
heterogeneous multi-processor architectures require a more
sophisticated controlling, they enable a better target-oriented
computation. I.e., for every computational task a core can be
selected which fits best the requirements of the task. Com-
bined with a smart power management concept, this enables
building high efficient MPSoCs that offer a high computational
performance and low power consumption at the same time.
A prototype of a heterogeneous MPSoC has been published
in 2008 [6]. The Tomahawk chip consists of six fixed-point
vector DSPs and two scalar floating-point DSPs. In addition,
an LDPC decoder ASIP, a deblocking filter ASIP and an
entropy decoder ASIC is provided. A central control unit
(CoreManager) is responsible for the task scheduling and for
transferring the data and program code between global and
local memories.

If we consider such heterogeneous many-core architectures,
the interconnection problem becomes a serious challenge.
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(a) Application characterization
graph with four modules.

(b) Solution with two modules per router that
take module affinity into account.

(c) Solution with one modules per router to
increase bisection width.

Figure 2. DSE example with two alternative topologies.

Classical interconnection architectures, such as busses or cross-
bar switches, cannot offer the necessary flexibility to support
the different requirements of the heterogeneous processor
cores. Additionally, conventional interconnects offer no good
scaling with respect to throughput or area overhead. NoC
evolved as a flexible and high-performance solution for the
interconnection problem during the last decade [7][8]. NoC is a
packet-switched on-chip network where packets are forwarded
from a source to a destination via several intermediate router
nodes. Each router consists of:

• a small buffer for the intermediate storage of the incom-
ing packets at every input (and/or output),

• a crossbar switch for connecting an input with an output
depending on the target address of a packet,

• and a control logic that realizes the routing and arbitra-
tion protocol of the NoC.

The routing protocol controls the route that a packet takes from
a certain source node to a destination node. The arbitration
controls the contention resolution. I.e., it decides which packet
is forwarded at first, if two packets arrive simultaneously on
different inputs and need to be forwarded to the same output.
Routers can be connected in an arbitrary network topology.
In addition, one or more processing nodes can be connected
to a router. They are called modules. Their functionality is
thereby transparent to the NoC, i.e., this could be a processor,
memory or an external interface. The smallest transfer unit,
to be transmitted over a NoC, is called the flit (flow control
digit).

Figure 1 demonstrates the advantage of NoC over con-
ventional solutions for the interconnection. In Figure 1(a),
the interconnection of four modules by a bus is depicted.
Therein, the red number represents the bisection width of this
infrastructure. The bisection width is defined as the minimal
number of wires that have to be cut to disassemble the
network into two disjoint, equal-sized parts. The minimal
cut represents the bottleneck of the network. Therefore, the
bisection width can be used as a rough performance indicator
for the network throughput. As it can be seen in Figure 1(a),
the bus infrastructure is quite limited with respect to achievable
throughput, since its bisection width is only 1. This is an

issue, if we consider a large number of processors, since the
bisection width does not scale with the number of connected
modules. In contrast, it can be seen in Figure 1(b) that the
crossbar switch offers a very high throughput. The bisection
width scales with the number of modules (4 in this case).
The drawback of the crossbar switch is that its required
chip area grows quadratically with the number of connected
modules. In addition, the delay of the switching logic grows
linearly with the number of connected modules. Therefore,
this interconnection type is not feasible for a large number
of modules. NoC is a very flexible solution as depicted in
Figure 1(c). Depending on the selected topology (chain, 2D-
mesh, or fully connected), the throughput can be adapted
according to the application requirements. In this example, the
bisection width can be varied between 1 and 4. Moreover,
the scalability of the network also depends on the selected
topology and is thus adjustable. While the throughput of the
chain topology does not scale with the number of connected
modules, the fully connected NoC offers a scalability that is
equivalent to that of the crossbar switch. The 2D-mesh is an
intermediate solution. Finally, NoC allows us to make very
flexible design decisions to tradeoff network throughput and
latency against chip area, number of wires and achievable clock
frequency of the resulting circuit.

However, finding an optimal NoC interconnect for many-
core SoCs is a very challenging task, since many different
design objectives and constraints have to be considered, like
choosing routing and switching methods, selecting topology,
application mapping, etc. [9]. This leads to a huge design
space. In the following, we discuss a small example to motivate
the challenge and the complexity of this process, the so called
design space exploration (DSE). Again, we assume that the
designed MPSoC shall consist of four modules. The MPSoC
is intended for a specific application. The communication
requirements between the modules are known in advance, as
shown in Figure 2(a). The figure shows the application charac-
terization graph (APCG) [9] for the small example. An edge in
the APCG indicates that there is a communication requirement
between the two modules. The annotated numbers represent
the necessary communication amount. Therein, bidirectional
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traffic is assumed with the same communication amount in
both direction. From the DSE point of view, the numbers
could just be thought of some abstract values that represent
the affinity between the modules. More concrete, the numbers
could represent the average traffic amount (e.g., flits/cycle).
The objective of this DSE example is to find a NoC topology
that minimizes the average latency. Additionally, the maximum
number of modules per router is constrained to two.

For the given problem, it might be a good heuristic to
select two modules with a high affinity, i.e., with a high
communication requirement, and assign them to the same
router to minimize the path latency. According to Figure 2(a),
the highest affinity is between modules 1 and 4, as well as,
3 and 4. Unfortunately, we are only allowed to assign two
modules to one router according to our previously defined
constraints. Thus, we just select modules 1 and 4. This results
in the topology that is depicted in Figure 2(b). As it can be
seen, the link between the two routers is quite congested (0.8
flits/cycle). Therefore, it might be a good idea to spend one
router per module, instead, to increase the bisection width
of the network and relax the congestion on the inter-router
links. The resulting topology is shown in Figure 2(c). Though
the congestion is reduced on the inter-router link, there is an
additional router in the path from module 1 to module 4, which
increases the latency of this path. The question is: Which of the
two solutions is better and yields the lower average latency?
This is hard to answer without making a deeper analysis of the
proposed solutions. Thus, the designer might make the wrong
decision here so that the resulting MPSoC will not offer the
expected performance due to a communication bottleneck.

This small example should motivate why fast and accurate
NoC models will be required that give an insight into the sys-
tem and enable us to reduce the design space already in early
design stages. Cycle-accurate simulation based approaches are
too slow for this purpose. For the case of many-core SoCs
there will be a large number of design alternatives. Moreover,
the big number of routers increases the simulation time per
run significantly. Simple high-level system models (e.g., only
considering the propagation latency and ignoring queueing
delays), on the other hand, are able to provide results in very
short time. Due to the high abstraction, however, these models
loose quite some accuracy. More detailed analytic models
provide a good tradeoff between both approaches and are thus
well suited for the NoC exploration of a many-core SoC.

Basically, there are two different approaches for analytic
NoC models. Models based on the Network Calculus [10] are
intended to analyze latency and throughput bounds. Therefore,
worst-case assumptions are made for the traffic that the mod-
ules inject into the NoC as well as for the service times of
the routers to handle a packet. This type of models is well
suited to analyze NoCs with respect to quality of service.
However, for the purpose of DSE it is necessary to have
a more comprehensive view of the system. In general, it is
not a good idea to make design decisions only based on the
worst-case behavior of the system. A second approach utilizes
probabilistic traffic models based on queueing theory [11].
This type of models is much better suited for the purpose
of DSE, since it provides more insight into the system, allows

to derive distributions (e.g., for the router latency), as well
as mean values, and is also suited to yield some information
about service guarantees.

A. Overview
In this paper, we propose an analytic NoC model based

on queueing theory that provides a high degree of flexibility
regarding topology, routing and traffic scheme. In contrast to
existing models, it is not restricted to mean value analysis
but provides information about the state distribution functions
of the routers. It enables us to derive a variety of perfor-
mance metrics, such as mean latency, buffer usage or overflow
probability, and makes the model a very flexible tool for
NoC performance analysis. Furthermore, we discuss several
extensions of the basic NoC model. They give an even deeper
insight into the system and provide more valuable information
to the designer or DSE tool to make their design decisions.

• The basic NoC model is limited to the analysis of the
system behavior in steady-state. Especially for highly
dynamic applications or reconfigurable NoCs, knowl-
edge about the transient behavior of the network is of
great interest, cf. [12], [13]. Such an analysis improves
the understanding of complex processes and can help
to design parameters accurately. Therefore, we present
an extension of the basic NoC model that enables us to
analyze the system behavior in the time domain and in
combination with time-varying rates.

• Making an infinite buffer assumption is a good approach
for the basic NoC model. It keeps the computational
complexity low and allows to do some analysis on
networks in an early DSE design stage where the con-
crete knowledge of the buffer sizes is still not available.
However, the consideration of finite buffers is a valuable
extension which makes the model more accurate and
allows to model congestion in the network. Moreover,
the extension allows to extract new performance metrics,
such as blocking probabilities or traffic acceptance rates.

• The assumption of exponentially distributed service
times is a good starting point for the development of the
basic NoC model. Again, this condition decreases the
computational complexity and is a feasible assumption,
if the concrete service time distributions are still un-
known in an early DSE design stage. Nevertheless, quite
accurate approximate solutions are available in literature
for estimating the behavior of M/G/1 queueing systems
(QS). This allows us to make this generalization without
increasing computational complexity.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. The necessary mathe-
matical fundamentals of queueing theory are provided in Sec-
tion III. Section IV introduces the basic analytic NoC model.
Starting with the system model and its assumptions (IV-A),
the analytic model is discussed on network level (IV-B) and
router level (IV-C). We evaluate the accuracy of the proposed
approach against cycle-accurate simulation in Section V and
provide some DSE application examples. Model extensions are
proposed in Section VI for analyzing the transient network
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Figure 3. General idea of a queueing system.

behavior (VI-A), considering finite buffers at the router inputs
and dealing with arbitrarily distributed service time processes
(VI-B). Finally, Section VII concludes the work.

II. State of the art

Much effort has been spent for more than two decades for
finding adequate traffic models for the analysis of off-chip and
(later) on-chip networks. In 1990, Dally [14] developed ana-
lytic tools for investigating latency and throughput in networks,
but restricting to k-ary n-cube topologies. Recent approaches
focus on the mean value analysis of latency, throughput and
energy consumption. Kiasari et al. presented an M/G/1 queue-
ing model for wormhole switched two-dimensional (2D) torus
NoC topologies, assuming deterministic routing [15]. This
work was extended to G/G/1 queues in [16], which enables
the analysis of bursty traffic. Another queueing-theoretic model
focusing on buffer allocation was proposed by Hu et al. in
[17]. A different approach was published in 2009 in [18],
which introduces an empirical model to estimate contention
delays for constant service time routers. Thereby, the hybrid
router model takes into account Poisson input flows as well
as output flows from preceding constant service time routers.
Ogras et al. presented a fast and flexible analytic approach
in 2010 [19] for the mean value performance analysis of
virtual channel first-come first-serve (FCFS) input buffered
routers for arbitrary topology and service time distribution.
Other recent approaches for modeling on-chip networks [20]
focus on the theory of the Network Calculus [10]. This theory
provides a powerful tool for an estimation of performance
bounds in NoCs, which is essential for giving statements about
the realtime capabilities of a network in early design stages.
However, for the exploration of the average network behavior,
other methods, like stochastic models, are more expedient.

III. Fundamentals of Queueing Theory

For detailed studies of queueing theory in combination with
network modeling we refer to [21], [22] and [11]. Subse-
quently, we give a short overview of the fundamentals. The
basic understanding of queueing systems and Markov models
is required in Section IV-C to follow the derivation of the
router model.

A basic multi-server queueing system (QS) is depicted in
Figure 3. A QS models the incoming stream of customers
(here: flits) as a stochastic arrival process with a known

distribution and mean arrival rate λ. The arrival stream is
passed to a queue with a fixed number of K waiting slots.
Note that K can also be zero or infinite. If no waiting slot
is free upon arrival of the customer, the customer is rejected.
Therefore, the accepted traffic that arrives at the queue is in
general not equal to the offered traffic at the input of the QS.
This is only the case, if an infinite queue is assumed. The
customers in the queue are forwarded to m (parallel) servers in
a certain order, which is defined by the service discipline of the
QS (e.g., FIFO, LIFO). The service (i.e., service time) is again
modeled by a stochastic process with a known distribution and
mean arrival rate μ. The served customers of the m servers
leave the QS as a combined departure process. Its mean rate
is equal to that of the accepted traffic. A queueing system can
mainly be characterized by four parameters:

• the type of arrival process (A),
• the type of service process (B),
• the number of servers (m),
• and the number of waiting slots (K).

An easy way to describe a QS is provided by the Kendall
notation [23]: A/B/m/K. Examples for the arrival and ser-
vice time process are: exponential/memoryless (M), con-
stant/deterministic (D), Erlang-k-distributed (Ek), general (G).
If the number of waiting slots is infinite, K is often omitted.
Some examples are: M/M/1, M/D/1, G/G/1/K, M/G/m, etc.

The models presented in this work (Section IV-C) are based
on the classical M/M/1 QS, which can be characterized by
closed-form expressions. The simplicity of this queueing sys-
tem arises from the Markov property (also called memoryless
property) which is an inherent property of the exponentially
distributed arrival and service process. It makes the system
independent of past events, i.e., the next arrival/departure
time is independent of the last arrival/departure time. As a
consequence, the state of an M/M/1 system can fully be
characterized by the probability distribution of finding a certain
number of customers k in the system which is described by

πk = (1 − ρ)ρk.

Therein, ρ describes the average utilization of the queue, which
depends on the relation between arrival rate and service rate
and is defined as ρ = λ/μ. An extended version of this
probability distribution is applied in Section IV-C to derive the
steady-state of NoC routers. Based on the distribution various
performance indicators can be derived, like the average number
of customers:

N = E[πk] =

inf∑
k=0

kπk =
ρ

1 − ρ .

A fundamental result of the queueing theory, known as Little’s
law, describes the relation between the average number of
customers and the average time spent in the system (T):

N = λT.

This is a general result which is independent of the distribu-
tion of the arrival or service process. It enables the analytic
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Figure 4. Modeling routers by multiple queueing systems.

computation of mean waiting times (i.e., latencies), which is
an important performance measure for NoC, i.e.,

T =
1/μ

1 − ρ .

Furthermore, it is possible to derive the tail probability based
on the distribution of the number of customers. It represents
the probability that the number of customers in the system
exceeds a given capacity K:

P[k > K] =

inf∑
k=K+1

πk = ρ
K+1.

This is an interesting performance measure which can be
employed for the task of buffer dimensioning (see Section V)
and to provide certain service guarantees (e.g., maximum
latencies).

The preceding expressions refer to a steady-state where
transients have faded away and the system has reached
stationarity. Our basic NoC model (Section IV) assumes
steady-state which is sufficient for most analyses. However,
for some purposes, e.g., analysis of startup behavior or time-
varying traffic rates, it might be attractive to analyze transient
characteristics as well. Therefore, we extend our basic model
in Section VI-A. Unfortunately, analytical expressions for the
transient behavior are often cumbersome or even hard to find
[11]. In this case, numerical techniques can be applied (see
Section VI-A).

Figure 4 depicts how the QS approach can be employed to
model a single NoC router. Therein, every input is modeled
by a separate QS. This is a natural mapping, since we assume
indeed that every input has a separate buffer. The customer
arrival stream is mapped to the stream of incoming flits with
known mean arrival rates λ1, ..., λi. Every input queue is served
by a single server: the switch. Actually, all inputs are served
by the same server. As mentioned before, an arbiter resolves
contention cases. However, the contention resolution has a
significant influence on the mean service rate for every input.
For this purpose, a service time model has to be employed
that decouples the input queues first under consideration of
contention and arbitration policy. In [24], a service time
estimation for round-robin arbitration has been proposed.
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Figure 5. The Hierarchical structure of the proposed analytic model.

IV. Basic NoC Model

Before we can start to introduce the analytic model, we
need to define the system model and model assumptions
first (Section IV-A). Some common restrictions are made to
reduce the model complexity and keep it practicable. Still, we
focus on preserve a high flexibility to serve a broad spectrum
of applications. The basic NoC model is introduced in two
steps, on network level (Section IV-B) and on router level
(Section IV-C).

A. System Model
We assume the routers to be arranged in an arbitrary topol-

ogy. An arbitrary number of cores is allowed to be connected to
a single router. Due to the low buffer requirements, wormhole
switching is the most favored switching technique for realizing
best-effort services in on-chip networks today [9]. Therefore,
we restrict our model to this technique. The routing protocol,
on the other hand, shall not be restricted. Concerning the
arbitration scheme, we restrict to the first-come first-serve
method. Extensions to other arbitration schemes, like the
popular round-robin, are feasible, as shown in [24]. Routers
consist of an arbitrary number of buffered input ports and an
arbitrary number of (unbuffered) output ports. In this section,
we assume infinite buffer size.

Furthermore, we assume external packet arrivals from mod-
ules to possess Poisson characteristic [11], i.e., they have
exponentially distributed inter-arrival times with known mean
values. This assumption is often made to approximate real
network traffic while reducing the model complexity at the
same time. The router service times include processing delay
for arbitration as well as forwarding delay for the packet
and are assumed to be exponentially distributed. Furthermore,
knowledge of the mean router service rate and router service
latency is required. We assume it w.l.o.g. to be equal for all
routers in the network. Finally, we imply a common clock for
all routers.

To provide a flexible as well as a fast analytic model
we propose to follow a hierarchical approach as depicted in
Figure 5. We split the NoC model into an analysis on network
level and on router level. By performing the analysis on router
level and combining the results on network level, we thus
reduce the complexity.

The network model receives multiple inputs that have to
be specified by the user. The traffic scenario is described by
the traffic characterization matrix T and the external arrival
rate vector l. The topology and interconnection are specified
via the connectivity matrix Γ. Finally, information about the
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TABLE I: Model parameters and notation.

NM Number of modules

NR Number of router nodes

NE Number of edges

T =
[
ts,d
]

Traffic characterization matrix (of size NM ×NM) with elements
ts,d that specify the send probability from module s to module
d

l = [ls] External arrival rate vector (of size NM × 1) with elements ls
representing the arrival rate (packets/cycle) from source module
s

Γ =
[
γs,d
]

Connectivity matrix (of size (NM + NR) × (NM + NR)) with
elements γs,d ; γs,d > 0, if there is a directed connection from
s to d; the value γs,d represents the link ID for this connection
(sgn(Γ) ≡topology matrix)

R =
[
rs,d,i
]

Routing matrix (of size NM × NM × NE ) with elements rs,d,i
defines the probability that link i is occupied for routing a packet
from source module s to target module t (

∑
∀i rs,d,i = 1)

x Average router service time

applied routing scheme is provided via the routing matrix R.
An overview of the notation and a more detailed explanation
is given in Table I.

Based on this information, the network model is able to
compute local parameters for each router node individually,
i.e., the inputs for the router model. The local parameters
comprise the local arrival rates λi that is the accumulated
arrival rate over all traffic flows that cross router input i.
Furthermore, the forwarding probabilities fi, j are computed.
fi, j defines the probability that a packet arriving at a router
input i is forwarded to a router output j (please note that the
indices i and j correspond to the unique identifier of the link
that is connected to router input or output). The computation of
the local arrival rates and forwarding probabilities is discussed
in more detail in Section IV-B.

The local parameters can now be applied to a queueing
model on router level. It is responsible for deriving the
compound distribution for the number of packets in the input
queues, which represent the router state. Consequently, the
knowledge of the compound distribution enables a computation
of key performance indicators, such as average buffer usage,
overflow probabilities or mean queueing delays. The queueing
model on router level is introduced in Section IV-C.

Finally, the performance metrics, computed on router level,
have to be combined on network level, e.g., to derive path
delays by summing up the queueing delays and the fix router
propagation latencies.

B. Network Model

We can derive the vector of local arrival rates λ, with
elements λi (1 ≤ i ≤ NE), by summing up all traffic flows that
cross a specific link (and router input queue, respectively).
Therein, NE is the number of links in the network. The
traffic characterization matrix T provides information about
a pairwise traffic flow probability between each module s and
d. By weighting T with the external arrival rates l, we get the
traffic intensities (in packets/cycle) for each pair of modules.
Finally, we multiply the traffic intensities with the probability
that the flow will pass link i (given by routing matrix R) and
sum up the fractions of the contributing traffic flows:

λi =

NM∑
s=1

NM∑
d=1

ls · ts,d · rs,d,i, 1 ≤ i ≤ NE . (1)

The notation is given in Table I. By applying the definition
of the Frobenius inner product [25], we can rewrite (1) as
matrix equation as follows:

λi = tr
(
(L · T)T Ri

)
. (2)

In (2), tr(•) represents the trace of the matrix, L is the NM×
NM diagonal matrix representation of vector l:

L := diag(l),

and Ri the corresponding submatrix of R that consists of all
elements rs,d,i with 1 ≤ s, d ≤ NM . We can select the set of
local arrival rates Λr for a single router node r by exploiting the
knowledge of the topology that is contained in the connectivity
matrix Γ. I.e., we collect all λi where i is the ID of an input
edge of router r:

Λr :=
{
λγs,r | γs,r � 0; s ∈ {1, . . . ,NM + NR}

}
. (3)

We continue to compute the forwarding probability matrix
F. The matrix element fi, j (1 ≤ i, j ≤ NE) can be defined
as traffic intensity between router input i and router output j
normalized to the total arrival rate at input i, i.e., λi:

fi, j :=

∑NM
s=1

∑NM
d=1

ls · ts,d · rs,d,i · rs,d, j · δi, j
λi

, 1 ≤ i, j ≤ NE . (4)

We call the term δi, j the link selector matrix. It ensures
that there is only a forwarding probability fi, j > 0, if (i, j)
represents an input/output link pair of the same router:

δi, j :=

{
1, i f ∃s, r, d with γs,r = i ∧ γr,d = j
0, otherwise .

Therein, γs,r and γr,d are corresponding elements of the con-
nectivity matrix Γ. Equation (4) can be rewritten in matrix
form:

fi, j :=
δi, j

λi
· tr
(
(L · T)T

(
Ri ◦ Rj

))
, (5)

where ◦ represents the entry-wise multiplication (i.e., the
Hadamard product) of two matrices. Finally, we also restrict
the set of forwarding probabilities Fr to a single router node
r, similar to the approach in (3), and come to (6):

Fr :=
{
fγs,r ,γr,d | γs,r, γr,d � 0; s, r ∈ {1, . . . ,NM + NR}

}
. (6)

C. Router Model
Based on the assumptions that we made in Section IV-A, an

M/M/1 queueing system [11] with exponential interarrival and
service times will be appropriate to model the router behavior.
However, in reality, the traffic situation within a router looks
more complicated, as the example in Figure 6a) shows.

Therein, we find splitting and merging of traffic flows that
contend with other input queues for multiple output ports.
Furthermore, each input has different probabilities of being
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Figure 6. The original router model is transformed to an equivalent queueing model where the service rates of the input queues are mutually
coupled. As a second step, an approximation by state aggregation is applied to decouple the queues.

forwarded to a specific output. To be able to represent the
router system by a queueing model, we propose using a
simplified equivalent system, as depicted in Figure 6b). The
idea is to include the contention delays into the service times
and thereby receiving port specific service times (or service
rates, respectively). In fact, if a packet in front of a (FIFO)
queue is blocked due to a contending queue, this is nothing
else than a delayed service. Therefore, it is reasonable to
consider the contention delay as a service time increase (or
service rate decrease). Consequently, we come to a reduced
equivalent system that consists of one queue per input, each
with an individual server with a service rate μi(y), as shown in
Figure 6b). Therein, the service rates depend on the current
router state y, i.e., contention situation. The service rates
decrease according to the degree of contention in the current
router state. We recognize that the service of contending
queues is still coupled.

Due to the memoryless property of the exponentially dis-
tributed arrival and service processes, the state of the equivalent
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Figure 7. Example of a two-dimensional Markov model for a router
with two inputs and the decomposition into reversible sub-chains.

router system can now solely be defined by the number of
flits contained in the input queues. If we represent the state
by a vector where each element represents the fill level of a
single input queue, we can model the system by means of a
multidimensional Markov chain. This is illustrated in Figure 7
for the case of a router with two inputs (please ignore the
depicted macro states for now). Therein, the transition rates
are defined by the arrival rate λi and service rate μi for each
input independently. Let x be the current state vector of the
router. Then, a transition from state x → x + ei (where ei is
the i’th unit vector, i.e., a vector of all zeros except element i,
which is equal to one) has an intensity of λi. On the other
hand, a transition x → x − ei has an intensity of μi. The
boundaries of the Markov chain are an exception to that rule
(first column/row in Figure 7). There, we find a different
contention situation. In the case of two inputs, we have no
contention caused by the second input anymore. Therefore,
the transition rates for x → x − ei change to μ, i.e., the basic
router service rate without contention delay.

For solving the Markov chain, we still need to know the
service rates μi that include the contention delay to be able to
define the transition rates. For this purpose, we apply an idea
that was proposed in [19] to determine the mean waiting time
for a similar input buffered router model assuming an FCFS
arbiter. We modify this approach to find an estimation for the
mean service time, i.e., the waiting time of the flit in front
of the queue. Similar to [19], we first compute the pairwise
contention probability ci, j for all inputs pairs (i, j) of a router
with P inputs based on the forwarding probabilities F that can
be derived according to (5):

ci, j =

P∑
k=1

fi,k f j,k, i � j, 1 ≤ i, j ≤ P. (7)

From (7), an equivalent matrix equation can be derived

C = F · FT. (8)

Note that the main diagonal of the contention probability
matrix C in (8) is set to ”1” which makes the following compu-
tation more convenient. Based on the contention probabilities,
we can derive an expression to estimate the mean service times
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xi(y) under contention:

xi(y) := x + x
P∑

j=1, j�i

ci, jy j, 1 ≤ i ≤ P. (9)

The first summand x of (9) represents the mean router service
time for the packet in front of queue i. The second summand
considers the contention delay. Therein, the vector y represents
the instantaneous fill state of each input queue, i.e., yi = 0, if
input queue i is empty and does not contribute to the contention
delay and yi = 1 otherwise. We call y the router macro state
in the following and can directly derive it from the router state
x:

yi =

{
0, i f xi = 0
1, i f xi > 0

,

or rather informally: y = sgn(x).
We can still condense (9) somewhat by exploiting the

convenient definition of contention probability matrix C and
provide a short form matrix equation for the mean service rates
μi(y) (i.e., the inverse of the mean service times):

μi(y) :=

[
1

μ
Ci

Ty
]−1

, 1 ≤ i ≤ P. (10)

With the definition for the mean service rates μi(y) in (10)
we have now all necessary inputs to solve the Markov chain
in order to obtain the steady-state probability distribution.
However, in trying to do so, we are confronted with another
challenge. If we apply the Kolmogorov criterion for reversibil-
ity of Markov chains, we soon realize that it does not hold
for some cases in the peripheral region of our Markov chain.
Accordingly, the chain is not time reversible; see Figure 7
and examine the following state transitions: (0, 0) → (1, 0) →
(1, 1)→ (0, 1)→ (0, 0), and the corresponding return path. We
notice that the product of the transition rates is not equal for
both directions, and thus, it does not fulfill the Kolmogorov
criterion [26]:

λ1 · λ2 · μ1 · μ � λ2 · λ1 · μ2 · μ.
Consequently, we are not allowed to apply local balance
equations to solve the chain. Unfortunately, we are not able to
find a closed-form solution for the infinite Markov chain solely
based on the global balance equations. Fehske and Fettweis
[27] recently encountered exactly the same problem when
trying to solve an equivalent Markov chain. They proposed an
approximation to find a solution for the stationary distribution.
The approach is based on the concept of aggregation of
variables that is well known by economics for quite some
years [28]. The proposed algorithm consists of the following
steps.

We start decomposing our Markov chain into reversible sub-
chains. This is done by collecting all states x that belong to the
same macro state (or aggregate state) y = sgn(x) in a common
set S(y):

S(y) �
{
x ∈ NP

0 | sgn(x) = y
}
.

The idea behind the definition is that all states are collected in
the macro state where we find a similar contention situation. If
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Figure 8. Example: Markov chain on macro state level assuming a
router with two inputs.

we consider a contending queue, it does not matter how many
packets it contains, only if it contains at least one packet or
not. Consequently, the mean service rates are homogeneous
within each macro state. Thus, service rates are decoupled by
this aggregation approach, as Figure 6 c) shows. An example
for the Markov chain decomposition for the case of two input
ports is provided in Figure 7. Therein, we decompose the two-
dimensional Markov chain into four macro states. Macro state
(0, 0) contains all states where both input queues are empty
(which is only a single router state (0, 0)). Macro states (1, 0)
and (0, 1) collect the states where only one of the two queues is
empty. Hence, we have no contention within these two macro
states. Macro state (1, 1) represents all router states where both
queues are not empty. In this two-dimensional example, this
is the only macro state where contention occurs.

Since the transition rates are homogeneous within each
macro state, the sub-chains are reversible and can be solved.
This leads to a product form solution for the stationary proba-
bility distribution of the number of customers (i.e., packets) π̃
in an M/M/1 queueing system that is well known from classical
queueing theory [11][27]:

π̃(x) =

{ ∏
i∈N1(y) (1 − ρi(y)) ρxi−1

i (y)σ(y), for y � 0
σ(0), for y = 0 (11)

with utilization ρi(y) of input queue i defined as

ρi(y) :=
λi

μi(y)
.

The terms σ(y) denote the probabilities of finding the system
in macro state y (i.e., one of the states in S(y)). Note that
(11) only yields an estimate for the solution of the stationary
probability distribution. This is because we omit the transitions
between the macro states at this consideration. Also, note that
(11) is conditioned on the probabilities of the corresponding
macro state σ(y) to ensure that

∑
x π̃(x) = 1.

So far, we have no knowledge about the macro state proba-
bilities σ(y). We can compute σ(y) by solving the (now finite)
Markov chain on macro state level. Figure 8 shows a solution
for the transition rate p(y, y′) from macro state y to macro
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Figure 9. Topology and traffic pattern of first simple test scenario
(M=module, R=router).

state y′, as provided by [27]:

p(y, y′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi, for y′ = y + ei
μi(y) − λi, for y′ = y − ei
0, else

, (12)

where ei again represents the unit vector for dimension i. Based
on (12), we can now define the transition probability matrix

P =
[
pi j

]
with pi j := p

(
yi, y j

)
. With the definition of

pii := −
2P∑
j=1

pi j

we normalize the row sum to 0.
Finally, we can follow the usual approach and solve the

equation system for the vector of macro state probabilities σ
based on the transition probability matrix P:

σP = 0,

under the side condition
∑

y σ(y) = 1.
Based on (11), we can now compute the approximates

for the state probabilities π̃(x). We can derive several key
performance indicators, such as the mean number of packets
in the queue E[xi]:

E[xi] ≈
∑

x
π̃(x)xi =

∑
y

ρi(y)

1 − ρi(y)
σ(y), (13)

or the mean queueing delay Wi for input queue i by applying
Little’s law [11]:

Wi =
E[xi]

λi
.

V. Numerical evaluation

We show the accuracy of the proposed NoC model by
comparing it against cycle-accurate NoC simulation. Due to
the similar system model assumptions we decided to compare
our approach against the model proposed in [19] as well as
the NoC simulation tool that has been used therein [29].

We assumed following common simulation parameters:

• deterministic, dimension-ordered XY-routing,
• flit traffic, i.e., packet size = 1,
• input buffered routers with FCFS arbiter and service

rates of μ = 0.5,
• large buffer size (256 flits) to approximate the infinite

buffer model, and
• simulation run time of 105 cycles with a warm-up period

of 104 cycles.

We investigate the following two topology/traffic scenarios
under different load conditions (defined by number of injected
packets/cycle) and compare the average packet transmission
latency in the network.

A. Introductory Example
First, we choose a very simple scenario to investigate the

model behavior under a clear contention situation. Therefore,
we consider a simple chain of four routers, as depicted in
Figure 9, where a single module is connected to each router.
The modules 1 and 4 are sending their packets to modules 2
and 3 with equal probability. Modules 2 and 3 do not send
any packets. Hence, we find at router 2 and 3 a contention
situation with the following forwarding probability matrix F:

F =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0.5 0 0.5
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
The result under different load conditions is shown in

Figure 10. We find that the latency estimation for our pro-
posed approach (red curve with + marker) follows very well
the cycle-accurate simulation results (black curve with point
marker) under a low and medium load condition. However,
it significantly underestimates the network saturation limit
where latency tends to infinity (0.66 packets/cycle in our
model compared to 0.8 packets/cycle in the cycle-accurate
simulation). The reference mean value model from [19] (blue
curve with circle marker) shows a slight overestimation of the
latencies under mid load conditions but estimates the network
saturation point quite well.

The reason for the poor estimation of the network saturation
point of our model is the applied aggregation approach for
approximating the solution of a Markov chain. Therein, the
stability of the overall solution is determined by the stability of
the ”worst-case” aggregate, i.e., the aggregate with the highest
contention. If the solution for the ”worst-case” aggregate tends
to infinity the overall solution tends to infinity as well. To avoid
this behavior, we propose to determine an average service time
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Figure 10. Performance results for 4x1 chain analyzing the average
packet latency in comparison to cycle-accurate simulation.
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Figure 11. Traffic pattern of 4x4 2D-mesh test scenario with
application-specific traffic [30] [19].

xi over all macro states for every router input. This is done by
computing the expectation of the mean service times xi(y) over
all macro states based on the known macro state probabilities
σ(y):

xi =
∑

y∈{0,1}P
xi(y)σ(y)yi. (14)

Therein, yi constrains the expectation to those macro states
where queue i is not empty. We compute the average waiting
time Wi for input queue i based on (14):

Wi =
xi

1 − λi xi
.

The result of the refined approach is also depicted in
Figure 10 (green curve with square marker). It shows a
very good match compared to the cycle-accurate simulation.
The latencies under low/mid load conditions, as well as the
network saturation point, are estimated very accurately by this
approach. The average estimation error is less than 3%.

B. Multimedia application scenario
In addition, we choose a 4x4 2D-mesh topology using a

more diverse traffic pattern of the generic multimedia applica-
tion from [30]. The traffic scenario is depicted in Figure 11
while the topology and the core mapping is shown in Fig-
ure 12. We target to compare the estimation quality of the
average latencies under more complex contention situations.
The results are plotted in Figure 13 and confirm the accurate
results of the first scenario. Again, the average estimation error
is around 3% (9% for the reference model). However, we still
notice a slight underestimation of the network saturation limit
of about 2.5% for that case. The reference mean value model
shows a better accuracy in this region.

Note that the presented results only serve as proof of
concept. However, they easily scale to larger networks. The
relative accuracy of the latency estimation is expected to
stay in the same range under similar contention situations,
independent of the NoC size because the analysis of the
queueing delay is done on router level and only accumulated
on network level.

Figure 12. Core mapping based on 4x4 2D-mesh topology (R=router)
[19]. The annotated numbers represent the index of the associated
input buffer. The color denotes the tail probabilities (P[x ≥ 1]) at the
corresponding input buffers (red=high, yellow=medium, blue=low)
which reveals the bottlenecks in the 4x4 2D-mesh.

C. Buffer dimensioning based on tail probability estimation

One advantage of the presented NoC traffic model is its
flexibility to derive arbitrary performance metrics based on
the distribution of the number of customers from (11). This is
demonstrated in the following. An important step of the design
space exploration for NoC based MPSoC is the so called
buffer dimensioning. Therein, the necessary buffer capacity
K is estimated for every router input for a given, topology,
application (i.e., traffic pattern) and routing scheme. Memory
consumes a lot of chip area and is therefore a crucial factor
to reduce chip production cost. Hence, a careful investigation
and optimization of the router memories is recommended. We
employ the tail probability Ptail to invest the necessary buffer
amount. This measure indicates the probability that a certain
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Figure 13. Performance results for 4x4 2D-mesh with generic mul-
timedia application traffic analyzing the average packet latency in
comparison to cycle-accurate simulation.
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Figure 14. Analysis of the tail probability for a single router input
buffer in a 4x4 2D-mesh with generic multimedia application traffic
in comparison to cycle-accurate simulation.

buffer fill level is exceeded and is thus well suited for this
purpose. It can easily be derived from the distribution of the
number of customers π̃ of the presented infinite buffer model.

Ptail = P[xi ≥ K] = 1 −
∑

x,xi<K

π̃(x) (15)

Equation (15) computes the tail probability for router input
queue i. On this basis, we can now examine the buffer
requirements focusing on a single router input of the presented
4x4 2D-mesh scenario. The location of the selected buffer
(index 28) is illustrated in Figure 12. We investigate the tail
probability for different injection rates (in range 0.8 to 2.4
packets/cycle) and different K (1, 2, 4, and 16). The results
are again validated by comparison with cycle-accurate NoC
simulations, as shown in Figure 14.

The figure yields much information that can help a designer
to optimize the buffer according to the expected traffic volume.
First, we define a threshold that is used to decide whether
it is worth to investigate additional memory or not. We first
consider the curves obtained from the analytical model. We
take a tail probability of 0.2 as our threshold. This means that
for a given K and traffic load, it is recommended to increase
K, if the buffer is completely filled in at least 20% of the
time. In Figure 14, we can see that under low and medium
traffic load the threshold is not exceeded; even for a very small
buffer size (K=1). At an injection rate of 1.2 packets/cycle,
the curve ”Analytic (K=1)” reaches the threshold and thus it
is recommended to use a buffer size of 2 for this traffic load.
This is sufficient up to an injection rate of 1.7 packets/cycle,
where the green curve (Analytic K=2) exceeds the defined
threshold. For higher injection rates it is recommended to use
a buffer size of K=4. Only within the small region of 2 to
2.2 packets/cycle, it would make sense to use an even bigger
buffer (K=16). For higher injection rates, the incoming traffic
cannot be served anymore and the buffer is completely filled,
independent of the buffer size. From our previous analysis

of Figure 13, we know that the overall network saturation is
already reached at an injection rate of about 1.6 packets/cycle.
Taking this additional information into account, there is no
need for over-provisioning the buffer by considering injection
rates beyond network saturation. Finally, we can conclude from
Figure 14 that a buffer size of only 2 is already sufficient to
deal with all sensible traffic loads (up to 1.6 packets/cycle) for
the given application scenario. Furthermore, Figure 14 depicts
the results from the cycle-accurate simulation as reference. We
find that the analytic model is able to represent the general
behavior of the simulation quite well. However, we also see
that it generally underestimates the tail probability due to the
simplified assumptions of the arrival and service time distribu-
tions (M/M/1), as well as, the additional inaccuracy caused by
the aggregation approach. Nevertheless, the influence on the
design decisions is insignificant so that the proposed approach
is well suited for the early DSE phases.

Up to now, we focused on the investigation of a single
input buffer under different injections rates. If we fix the
injection rate to a value close to the network saturation (1.6
packets/cycles), we are able to analyze the buffer requirements
under worst-case conditions for the whole NoC at once.
The results are presented in Figure 15 and provide the NoC
designer an easily comprehensible and intuitive tool for the
buffer dimensioning.

The figure illustrates the tail probability as color-coded
blocks for all buffers of the network (x-axis) and different
buffer sizes K (y-axis). Thereby, a blue block corresponds to
a low Ptail, i.e., a quite relaxed traffic situation. A red block
represents a high Ptail, and reveals potential bottlenecks. For
these cases, it is suggested to increase the buffer size until
reaching the green or blue region to optimize the traffic flow
and avoid network congestion. We observe in Figure 15 that
a quite low buffer size (K=1 or K=2) is sufficient for most
buffers. Only a few buffers require some additional memory.
E.g., a buffer size of 4 would be reasonable for input buffers
28 and 29. The bottleneck in this network scenario is clearly
buffer 46 which is connected to the output of ”MEM1”. This
is accordant to the traffic scenario in Figure 11, where MEM1
has a very high traffic load at its output. The diversity of
the traffic load is caused by the application specific traffic
pattern, which is clearly represented in Figure 15. The scenario
demonstrates the advantage of a careful network analysis and
buffer dimensioning quite well. Individual buffer sizing can
save a lot of memory while ensuring a high performance at
the same time.

Annotating the network topology with the corresponding
color-coded tail probabilities (for K=1) at the input identifiers
yields a clear picture concerning the localization of the bot-
tlenecks. This is illustrated in Figure 12. We find the highest
congestion around the modules ”MEM1”, ”CPU1”, ”DSP1”,
and ”DSP2”. Relating to the traffic pattern in Figure 11, we can
verify that these components are indeed highly interconnected,
communication intensive, centric nodes.

As mentioned before, we observe a big diversity of the buffer
loads due to the application scenario. Assuming a uniform
traffic scenario (i.e., each module communicating with every
other module with the same probability), we expect a more
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Figure 15. Buffer dimensioning for 4x4 2D-mesh with generic mul-
timedia application traffic at fix injection rate (1.6 packets/cycle).

uniform utilization of the buffers in the network. For this
purpose, we repeat the buffer dimensioning analysis for the
4x4 2D-mesh applying uniform traffic. Again the injection rate
was chosen close to the network saturation (0.31 packets/cycle
at a basic flit service rate of μ = 0.5). The results are depicted
in Figure 16. We can see that the buffer utilization is now much
more uniform than in the case of the application specific traffic.
Nevertheless, we still find some bottlenecks in the region of
buffer 26 to 35 and 46 to 55. Referring to Figure 12, we find
that all these buffers are inputs of center routers. The center
bottleneck is a commonly known characteristic of 2D-mesh
topologies under uniform traffic.

The result confirms the validity and suitability of the pro-
posed analytic model. It shows that we can already gain much
insight into the system behavior in an early design stage
with only a limited amount of information concerning system
parameters.

D. DSE Scenario
Now, we have all necessary analytic tools at hand to clarify

the question put at the end of the small DSE example in
Section I. Therein, we proposed two alternative topologies
(Figure 2(b) and Figure 2(c)) for a given application specific
traffic scenario (Figure 2(a)). The first topology (solution a)
employs two modules per router, while the second topology
(solution b) spends a single router for every module. Finding
a trade-off between latency, throughput and area consumption,
we were not able to find a clear answer in Section I concerning
which of the two alternatives is better suited. We investigated
the small DSE example more closely performing a tail proba-
bility analysis using the proposed analytic model. Annotating
the color-coded tail probabilities P[x ≥ 1] (according to
Figure 12), we can visualize the performance bottlenecks for
the two topologies, as depicted in Figure 17. It can be seen
that the left router in solution a) is a serious bottleneck in the
network. Indeed, the arriving traffic even exceeds the service
capabilities of the router. Therefore, the average packet latency

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

9

10

Ta
il 

pr
ob

ab
ili

ty

Router Channel Index

B
uf

fe
r s

iz
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 16. Buffer dimensioning analysis for 4x4 2D-mesh with
uniform traffic at 0.31 packets/cycle.

in the NoC tends to infinity, if we employ the infinite buffer
queueing model. We can conclude that solution a) is not suited
to fulfill the performance requirement of the given application
scenario. Solution b) offers an increased bisection width. This
results in a better spatial distribution of the traffic load in the
network. Though the link between the routers at module 4
and 3 has still a high load, all routers are able to handle the
incoming traffic. The average latency in the network is 8.4
cycles, according to the analytic results. Now, we are able
to make a clear decision. Topology a) is not able to achieve
the required throughput. Therefore, solution b) would be the
better alternative in this case, even though the additional two
routers cause increased chip area. The results of this small
DSE demonstrate that a little change can sometimes make
a big difference. Hence, it is worth to spend some effort to
investigate the interconnection more closely.
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Figure 17. Results for small DSE example from Section I employing
analytic model; comparison of solution with one (a) and two (b)
modules per router. The color denotes the tail probabilities (P[x ≥
1]) at the corresponding input buffers (red=high, yellow=medium,
blue=low).
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VI. Extensions

The previous section demonstrated the feasibility and ac-
curacy of the basic NoC model. However, several extensions
are possible to further increase the accuracy and expand the
application area of the proposed model.

A. Transient Behavior of NoC Router
The router and NoC models presented in Section IV describe

the steady-state behavior of NoCs with adequate accuracy,
but real systems do not necessarily work in steady-state. For
instance, after starting a system, it needs time to converge to
steady-state. Furthermore, application and communication pat-
terns can change over time causing time-varying traffic rates in
NoCs. An example of adaptive application and communication
patterns can be found in [12], where a runtime adaptive NoC
with dynamic routes and buffer allocations is proposed. This
example illustrates that stationarity is not assured and it is of
principal interest to consider transient characteristics as well.
In the following, we outline model extensions that capture the
transient behavior of a router.

In order to enable a transient analysis, we apply a gener-
alization of the aggregation technique published in [31]. The
technique in [31] is designed for continuous-time queueing
systems, but we adapt it to discrete-time processes. Most
variables used so far become time-dependent, e.g., arrival rates
are described by λ(t) instead of λ.

1) Transient behavior of uncoupled queues: The first step of
the modified aggregation approach is to determine the transient
behavior of uncoupled, independent queues described by the
state probabilities πk(y, t), which has to be done for all macro
states y separately. We utilize standard tools for discrete-time
markov chains for constructing a transition matrix Q [11].
The transient behavior of the state probabilities is computed
iteratively by multiplying the state probabilities of the previous
time step by the transition matrix, i.e., π(y, t + 1) = π(y, t)Q.
In order to enable this computation, we restrict the state space
of a single queue to be finite.

2) Transient behavior of coupled queues: In the second
part of the aggregation approach, the state probabilities of
independent queues are utilized for approximating the transient
behavior of coupled queues. Referring to [31], the transient
rates among macro states (see (12)) can be generalized to

p(y, y′, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi(t) for y′ = y + ei,

(1 − λi(t))μi(y, t) π1(y,t)
(1−π0(y,t)) for y′ = y − ei,

0 else.

Next, we summarize the transition rates to a transition matrix
Q̃(t). By iterative multiplication of the previous system state
by the transition matrix, we derive the transient behavior of
the coupled system, i.e., σ(y, t + 1) = σ(y, t)Q̃(t). Finally, in
analogy to Section IV-C, the resulting macro state probabilities
σ(y, t) can be used to determine various key performance
indicators.

3) Numerical evaluation: For illustration, we consider a
single router with three input/output pairs. Flits enter the router
at one input and leave it at an output of a different input/output
pair. Therefore, flits cannot be routed from the input to the
output of the same input/output pair. We assume a maximum
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Figure 18. Mean queue length of one input of the router over time and
after system startup. The proposed aggregation technique is compared
to a discrete event simulation for different arrival rates λ.

finite buffer length of 10 flits per queue. At each input, an
arrival process with a fixed mean intensity λ is assumed, and
the traffic destinations are uniformly distributed. In different
simulation runs, we use diverse mean intensities between 0.6
and 0.8 flits per cycle. If needed, time-varying traffic intensities
can also be applied within one simulation run. We utilize
the transient model and determine the average buffer load
according to (13) over the first 500 cycles after system startup.
The results in Figure 18 show that the time the system needs to
converge to stationarity clearly depends on the arrival rate. For
high traffic scenarios the system needs about 300 cycles, while
the same system approaches stationarity for λ = 0.6 within 50
cycles.

Furthermore, we compare the aggregation technique to a
cycle-accurate discrete event simulation (DES), where we
simulate the system event by event. We perform a Monte Carlo
simulation and average over 30000 realizations in order to
obtain the average behavior of the system. The comparison
of the aggregation technique to the DES reveals that the
approximation works quite accurately, especially for low and
high traffic scenarios the error is negligibly small. The largest
error can be found for λ = 0.7, where the relative error of the
mean queue size is 11%.

There are several applications for the transient model. It can,
for instance, be used to predict dynamic behavior of NoC in
algorithms that adapt application mappings or traffic patterns
dynamically.

B. Blocking in NoC with finite buffers and generalized service
The model approach, proposed in Section IV-C, is based on

an infinite buffer queueing model, which offers the advantage
of low computational complexity. However, this assumption
also entails some drawbacks. First, the spatial distribution of
the traffic congestion in the network cannot be considered.
Therefore, the prediction of performance measures becomes
inaccurate, since every router is analyzed independently of the
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Figure 19. Mutual dependency of accepted traffic (A) and congestion
feedback parameter Pf ull in finite buffer queueing networks.

subsequent (i.e., downstream) routers. This does not reflect the
real on-chip situation accurately. Finally, buffer dimensioning
based on tail probabilities, as demonstrated in Section V, is
feasible but with limited accuracy. This is because blocking of
injected traffic is not considered by the infinite buffer model.

Therefore, it is reasonable to consider an extension of the
basic NoC model for finite buffer constraints. In the scope of
the section, we sketch first ideas and challenges, which come
with this extension. The integration and numerical evaluation
is up for future work. Finite buffer models are well-known
in queueing theory. Closed-form solutions are available for
the most simple form, the M/M/1/K system [11]. However,
first investigations show that the assumption of exponentially
distributed service times limits the accuracy gain of the finite
buffer model. Hence, it seems reasonable to consider a more
general M/G/1/K system for this purpose. Unfortunately, there
is no closed-form solution available for the distribution of
the number of customers in an M/G/1 queueing system.
A quite accurate and computationally efficient two-moment
approximation is proposed in [32]. It can easily be extended
to M/G/1/K systems following the approach of [33]. A good
estimation of the blocking probability in an M/G/1/K system
is also proposed by [34].

The biggest challenge in modeling finite buffer queueing
networks is the spatial distribution of the traffic congestion. In
case that an input buffer is filled, the service at the preceding
(i.e., upstream) router stops for the corresponding output
port. This means that the traffic congestion is propagated in
upstream direction, the opposite direction of the data flow. It
is necessary to derive an analytic expression for the probability
that the buffer is filled, which is propagated as parameter in
upstream direction to model traffic congestion. Note that this
probability does not correspond to the blocking probability,
since packets are never blocked (i.e., rejected) once they are
injected in the NoC.

We realize that the accepted traffic (A) is propagated down-
stream while the congestion parameter Pf ull is propagated
upstream, as depicted in Figure 19. Unfortunately, we find
mutual dependencies between these two parameters in the
network, if we consider general topologies. We propose an
iterative fixed-point algorithm on network level to approximate
the steady-state solution of a finite buffer queueing network.

We conclude that though this approach will become more
computationally complex, it promises for an increased accu-
racy and enables analyzing network congestion and blocking
of the injected traffic.

VII. Conclusion & FutureWork

In this paper, we presented an analytic approach for mod-
eling on-chip networks for many-core SoC based on queueing
theory. In contrast to many existing models, the approach is
very flexible in terms of supported topology, routing scheme
and traffic pattern. The approach overcomes the limitations
of the mean value analysis introduced in the existing work.
Instead, it provides information about a steady-state distri-
bution of the network routers. This allows to derive various
key performance indicators, such as overflow probabilities or
average queueing delays, which is very important information
for dimensioning network resources, such as buffers, links,
etc. We demonstrated the very high accuracy of the approach
by comparison to a cycle-accurate simulation. The average
estimation error for the mean latencies in a 4x4 2D-mesh is
only 3%. The application of the proposed model was shown
based on some simple design examples for buffer dimen-
sioning, localizing bottlenecks, and benchmarking topologies.
Extensiona of the basic model were proposed to consider
finite buffers, dynamic traffic, and to generalize the service
time assumptions made for the network routers. This further
increases the accuracy of the basic analytic model and expands
its application area.

The application and detailed evaluation of the suggested
model extensions are left for future work. Furthermore, the
consideration of link failures and error-prone routers em-
ploying a stochastic error model allows to investigate re-
siliency mechanisms for NoC. Finally, supporting multiple
clock domains (i.e., globally asynchronous locally synchronous
systems) and frequency scaling is another open topic in order
to explore a many-core NoC more accurately.
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