
Maximizing Utilization in Private IaaS Clouds with Heterogenous Load through
Time Series Forecasting

Tomáš Vondra and Jan Šedivý
Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27
Prague, Czech Republic

vondrto6@fel.cvut.cz, sedivja2@fel.cvut.cz

Abstract—This document presents ongoing work on creating a

computing system that can run two types of workloads on a

private cloud computing cluster, namely web servers and batch

computing jobs, in a way that would maximize utilization of

the computing infrastructure. To this end, a queue engine

called Cloud Gunther has been developed. This application

improves upon current practices of running batch

computations in the cloud by integrating control of virtual

machine provisioning within the job scheduler. For managing

web server workloads, we present ScaleGuru, which has been

modeled after Amazon Auto Scaler for easier transition from

public to private cloud. Both these tools are tested to run over

the Eucalyptus cloud system. Further research has been done

in the area of Time Series Forecasting, which enables to

predict the load of a system based on past observations. Due to

the periodic nature of the interactive load, predictions can be

made in the horizon of days with reasonable accuracy. Two

forecasting models (Holt-Winters exponential smoothing and

Box-Jenkins autoregressive) have been studied and evaluated

on six server load time series. The autoscaler and queue engine

are not yet integrated. Meanwhile, the prediction can be used

to decide how many servers to turn off at night or as an

internal component for the autoscaling system.

Keywords - Cloud Computing; Automatic Scaling; Job

Scheduling; Real-time Infrastucture; Time Series Forecasting.

I. INTRODUCTION

This paper is an extension of conference article [1].
According to Gartner [2], private cloud computing is

currently at the top of the technology hype; but, its
popularity is bound to fall due to general disillusionment.

Why? While the theoretical advantages of cloud
computing are widely known – private clouds build on the
foundations of virtualization technology and add automation,
which should result in savings on administration while
improving availability. They provide elasticity, which means
that an application deployed to the cloud can dynamically
change the amount of resources it uses. Another connected
term is agility, meaning that the infrastructure can be used
for multiple purposes depending on current needs. Lastly, the
cloud should provide self-service, so that the customer can
provision his infrastructure at will, and pay-per-use, so he
will pay exactly for what he consumed.

The problem is that not all of these features are present in
current products that are advertised as private clouds.

Specifically, this document will deal with the problem of
infrastructure agility.

A private cloud can be used for multiple tasks, which all
draw resources from a common pool. This heterogenous load
can basically be broken down into two parts, interactive
processes and batch processes. An example of the first are
web applications, which are probably the major way of
interactive remote computer use nowadays, the second could
be related to scientific computations or, in the corporate
world, data mining.

This division was chosen because of different service
level measures used in both the fields. While web servers
need to be running all the time and have response times in
seconds, in batch job scheduling, the task deadlines are
generally in units ranging from tens of minutes to days. This
allows a much higher amount of flexibility in allocating
resources to these kinds of workloads. In other words, while
resources for interactive workloads need to always be
provisioned in at least the amount required by the offered
load, a job scheduler can decide on when and where to run
tasks that are in its queue.

Figure 1. Daily load graph of an e-business website [3]

When building a data center, which of course includes
private clouds, the investor will probably want to ensure that
it is utilized as much as possible. The private cloud can help
achieve that, but not when the entire load is interactive. This
is due to the fact that interactive load depends on user
activity, which varies throughout the day, as seen in
Figure 1.

In our opinion, the only way to increase the utilization of
a private cloud is to introduce non-interactive tasks that will
fill in the white parts of the graph, i.e., capacity left unused
by interactive traffic (which of course needs to have priority
over batch jobs).

149

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HPC (High Performance Computing) tasks are
traditionally the domain of grid computing. Lately, however,
they also began to find their way into the cloud. Examples
may be Google’s data mining efforts in their private cloud or
Amazon’s Elastic MapReduce public service [4]. The grid
also has the disadvantage that it is only usable for batch and
parallel jobs, not interactive use.

Currently, there is not much support for running of batch
jobs on private clouds. The well-known scheduling engines
Condor [5] and SGE (Sun Grid engine) [6] both claim
Amazon EC2 (Elastic Compute Cloud) [7] compatibility,
they however cannot control the cloud directly, they only use
resources provisioned by other means (See Section II.).
(SGE seems to be able to control cloud instances in a
commercial fork by Univa, though [8].)

That is why the Cloud Gunther project was started. It is a
web application that can run batch parallel and
pseudoparallel jobs on the Eucalyptus private cloud [9]. The
program does not only run tasks from its queue; it can also
manage the VM (virtual machine) instances the tasks are to
be run on.

What the application currently lacks is support for
advanced queuing schemes (only Priority FCFS (First Come
First Served) has been implemented). Further work will
include integration of a better queuing discipline, which will
be capable of maximizing utilization of the cloud computing
cluster by reordering the tasks as to reduce the likelihood of
one task waiting for others to complete, while there are
unused resources in the cluster, effectively creating a
workflow of tasks (see Section V).

The goal is that the scheduler will be fed with data about
the likely amount of free resources left on the cluster by
interactive processes several hours into the future by a
predictor. This will ensure that the cluster is always fully
loaded, but the interactive load is never starved for resources.

Prediction of load or any other quantity in time is studied
in a branch of statistics called Time Series Analysis and
Forecasting. This discipline has also been studied as part of
this project and first results are presented in this paper.

This document has five sections. After Section I,
Introduction, comes Section II, Related Work, which will
present the state of the art in the area of grid schedulers and
similar cloud systems. Section III, Cloud Technology,
summarizes progress done in cloud research at the Dept. of
Cybernetics, mainly on the ScaleGuru autoscaler and the
Cloud Gunther job scheduler. Section IV, Time Series, deals
with the possibilities for load prediction and evaluates two
forecasting methods on server load data. Section V, Future
Work, outlines the plans for expansion of the scheduler,
mainly to accommodate heterogenous load on the cloud
computing cluster. Section VI, Conclusion, ends the paper.

II. RELATED WORK

As already stated, the most notable job control engines in
use nowadays are probably SGE [6] and Condor [5]. These
were developed for clusters and thus lack the support of
dynamic allocation and deallocation of resources in cloud
environments.

There are tools that can allocate a complete cluster for
these engines, for example StarCluster for SGE [10]. The
drawback of this solution is that the management of the
cloud is split in two parts – the job scheduler, which
manages the instances currently made available to it (in an
optimal fashion, due to the experience in the grid computing
field), and the tool for provisioning the instances, which is
mostly manually controlled.

This is well illustrated in an article on Pandemic
Influenza Simulation on Condor [11]. The authors have
written a web application, which would provision computing
resources from the Amazon cloud and add them to the
Condor resource pool. The job scheduler could then run
tasks on them. The decision on the number of instances was
however left to the users.

A similar approach is used in the SciCumulus workflow
management engine, which features adaptive cloud-aware
scheduling [12]. The scheduler can react to the dynamic
environment of the cloud, in which instances can be
randomly terminated or started, but does not regulate their
count by itself.

The Cloud Gunther does not have this drawback, as it
integrates job scheduling with instance provisioning. This
should guarantee that there is no unused time between the
provisioning of a compute resource and its utilization by a
task, and that the instances are terminated immediately when
they are no longer needed.

A direct competitor to Cloud Gunther is Cloud Scheduler
[13]. From the website, it seems to be a plug-in for Condor,
which can manage VM provisioning for it. Similar to Cloud
Gunther, it is fairly new and only features FCFS queuing.

An older project of this sort is Nephele [14], which
focuses on real-time transfers of data streams between jobs
that form a workflow. It provisions different-sized instances
for each phase of the workflow. In this system, the number
and type of machines in a job are defined upfront and all
instances involved in a step must run at once, so there is little
space for optimization in the area of resource availability and
utilization.

Aside from cluster-oriented tools, desktop grid systems
are also reaching into the area of clouds. For example, the
Aneka platform [15] can combine resources from statically
allocated servers, unused desktop computers and Amazon
Spot instances. It can provision the cloud instances when
they are needed to satisfy job deadlines. Certainly, this
system seems more mature than Cloud Gunther and has
reached commercial availability.

None of these systems deals with the issue of resource
availability in private clouds and fully enjoys the benefits of
the illusion of infinite supply. To the best of our knowledge,
no one has yet dealt with the problem of maximizing
utilization of a cloud environment that is not fully dedicated
to HPC and where batch jobs would have the status of “filler
traffic.”

As to time series forecasting, there are efforts to use it on
Grids, such as the Network Weather Service (NWS)
referenced in a paper by Yang, Foster, and Schopf [16], who
describe a better forecasting method for it. The method
seems much simpler than the ones being applied in this

150

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

article. The NWS project seems to be no longer active,
though.

The problems on grids are different from those in clouds.
In clouds, we discuss automatic scaling of web servers on
identical hardware and data center utilization, whereas in
grids, the main problems are prediction of task execution
times on heterogenous machines, as described by Iverson,
Özgüner, and Potter in [17], and queue wait times and job
interarrival times, discussed by Li in [18].

III. CLOUD TECHNOLOGY

A. Eucalyptus

Eucalyptus [9] is the cloud platform that is used for
experiments at the Dept. of Cybernetics. It is an open-source
implementation of the Amazon EC2 industry standard API
(Application Programming Interface) [7]. It started as a
research project at the University of California and evolved
to a commercial product.

Figure 2. Eucalyptus architecture [9]

It is a distributed system consisting of five components.
Those are the Node Controller (NC), which is responsible of
running virtual machines from images obtained from the
Walrus (Amazon S3 (Simple Storage Service)
implementation). Networking for several NCs is managed by
a Cluster Controller (CC), and the Cloud Controller (CLC)
exports all external APIs and manages the cloud’s
operations. The last component is the Storage Controller
(SC), which exports network volumes, emulating the
Amazon EBS (Elastic Block Store) service. The architecture
can be seen in Figure 2.

Our Eucalyptus setup consists of a server that hosts the
CLC, SC and Walrus components and is dedicated to cloud
experiments. The server manages 20 8-core Xeon
workstations, which are installed in two labs and 1/4 of their
capacity can be used for running VM instances through
Eucalyptus NCs. A second server, which is primarily used to
provide login and file services to students and is physically
closer to the labs, is used to host Eucalyptus CC.

The cloud is used for several research projects at the
Cloud Computing Center research group [19]. Those are:

• Automatic deployment to PaaS (Platform as a
Service), a web application capable of automatic

deployment of popular CMS (Content Management
Systems) to PaaS. [20]

• ScaleGuru, an add-on for private clouds, which adds
automatic scaling and load balancing support for
web applications. [21]

• Cloud Gunther, a web application that manages a
queue of batch computational jobs and runs them on
Amazon EC2 compatible clouds.

Aside from this installation of Eucalyptus, we also have
experience deploying the system in a corporate environment.
An evaluation has been carried out in cooperation with the
Czech company Centrum. The project validated the
possibility of deploying one of their production applications
as a machine image and scaling the number of instances of
this image depending on current demand. A hardware load-
balancer appliance from A10 Networks was used in the
experiment and the number of instances was controlled
manually as private infrastructure clouds generally lack the
autoscaling capabilities of public clouds.

B. ScaleGuru

The removal of this shortcoming is the target of the
ScaleGuru project [21], an autoscaling system that can be
deployed in a virtual machine in a private IaaS cloud and is
able to automatically manage instances of other applications
on it.

The software is written in Node.JS with the MongoDB
database. It is closely modeled after Amazon Auto Scaling
[22], so that users familiar with its structure will easily learn
to use ScaleGuru. Therefore, its data model contains
Autoscaling Groups, which place lower and upper limits on
the number of started instances. Launch Configs then specify
the image of the managed application and its parameters.
Load Balancers manage the hostnames of the managed
services and balanced ports. Lastly, there are Autoscaling
Policies and Autoscaling Alarms, which together form the
scaling rules such as: “If the CPU Utilization was over 80%
for 2 minutes, launch 1 more instance.” Using multiple rules,
it is possible to create a dynamic response curve.

The program consists of four parts, which are easily
replaceable. The Application Core implements the
autoscaling logic. It uses the Monitoring component to
provide input. Currently it supports collection of CPU
utilization, disk and network throughput using an agent on
the managed instances. This has the advantage that it is not
hypervisor-dependent, but requires the user’s cloud API key
so that the agent can be injected. If implemented as a service
on the private cloud, this is not a problem and has the
advantage that the user can sign in to the autoscaler using
these keys.

The scaling decisions are implemented through the Cloud
Controller component, which supports Amazon EC2
compatible clouds and was tested on Eucalyptus. It can track
the state of launched instances and can retry launching on
failure. All errors are logged to the web interface. Launched
instances are added to Nginx configuration through the Load
Balancer Controller.

151

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. ScaleGuru evaluation [21]

The software was evaluated in a lab setup with
Wordpress as the managed application. The PHP version of
RUBiS [23], which is a web application created as a
benchmarking etalon, was also tried, but it proved to be ill
suited for a cloud scaling experiment, as the design of the
system is 10 years old and is, contrary to Wordpress, not
prepared for horizontal scaling.

A graph from the benchmarking scenario is on Figure 3.
In blue is the number of simulated users, who are alternating
between thinking (0.5 - 2 s) and waiting for server response.
The peak load was about 100 requests per second. In red is
the number of instances single CPU and 512 MB RAM on
an Intel(R) Core(TM) i3-2100T CPU @ 2.50GHz (2 cores, 4
threads) machine). In green are the response times at the load
tester. A drawback of the software load balancer can be seen
on the failed connection count (black), which spikes for
several hundred milliseconds every time the balancer
configuration is reloaded. HAProxy was also tried but had
the same problem. The x axis is in milliseconds, y in units of
instances and percents of failed connections.

The ScaleGuru application has a modern looking web
interface created using Twitter Bootstrap. The monitoring
panel, shown on Figure 5, has the number of running
instances in green, pending in orange and the red line is
average CPU utilization across the autoscaling group.
Machine access using a query interface is also possible, it is
however currently not Amazon-compatible.

What is important in the context of this paper is that all
historical performance data on all autoscaling groups are
saved in the database, which enables later analysis using
time series methods.

Therefore, the autoscaler will provide input for further
experiments on the level of particular applications and will
create non-static load in the context of the whole private
cloud. A next version of the system could also use the output

of the predictor as input for its autoscaling decisions and thus
be able to provision capacity for a spike (of a predictable
daily or weekly nature), before an actual overload happens.

As far as we know, it is the only piece of autoscaling
software, which is installable on a private cloud and fairly
universal, and, therefore, suitable for experiments. All other
solutions we found were either offered as remotely as
Software as a Service or were simple scripts created for a
particular project.

C. Cloud Gunther

While the ScaleGuru project will also be instrumental for
further research, the Cloud Gunther and possibilities for its
further development are the main topic of this article.

Figure 4. Communication scheme in Cloud Gunther [24]

The application is written in the Ruby on Rails
framework and offers both interactive and REST
(Representational State Transfer) access. It depends on
Apache with mod_passenger, MySQL and RabbitMQ for
operation. It can control multiple Amazon EC2 [20]
compatible clouds. The queuing logic resides outside the
MVC (Model, View, Controller) scheme of Rails, but shares
database access with it. The communication scheme is on
Figure 4.

152

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. ScaleGuru web interface [21]

The Scheduler daemon contains the Priority FCFS
queuing discipline and is responsible for launching instances
and submitting their job details to the message broker. The
Agent on the instance then retrieves these messages and
launches the specified user algorithm with the right
parameters. It is capable of running multiple jobs of the same
type from the same user, thus saving the overhead of
instance setup and teardown.

The two other daemons are responsible for collecting
messages from the queue, which are sent by the instances.
The Instance Service serves to terminate instances, which
have run out of jobs to execute; the Outputs daemon collects
standard and error outputs of user programs captured by the
launching Agent. A Monitoring daemon is yet to be
implemented.

The web application itself fulfills the requirement of
multitenancy by providing standard user login capabilities.
The users can also be categorized into groups, which have
different priorities in the scheduler.

The cloud engine credentials are shared for each cloud
(for simpler cloud access via API and instance management
via SSH (Secure Shell)).

Each cloud engine has associated images for different
tasks, e.g., image for Ruby algorithms, image for Java, etc.
The images are available to all users, however when
launched, each user will get his own instance.

The users can define their algorithm’s requirements, i.e.,
which image the algorithm runs on and what instance size it
needs. There is also support for management of different
versions of the same algorithm. They may only differ in
command line parameters, or each of them may have a

binary program attached to it, which will be uploaded to the
instance before execution.

Individual computing tasks are then defined on top of the
algorithms. The task consists of input for the algorithm,
which is interpolated into its command line with the use of
macros, as well as the instance index and total count of
instances requested. These values are used by pseudoparallel
algorithms to identify the portion of input data to operate on,
and by parallel algorithms for directing communication in
message passing systems.

Figure 6. Cloud Gunther – part of the New Task screen [24]

As one can see in Figure 6, the system is ready for
private clouds. It can extract the amount of free resources

153

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from Eucalyptus and the scheduler takes it into account when
launching new instances.

The Cloud Gunther has been tested on several real
workloads from other scientists. Those were production
planning optimization, recognition of patterns in images and
a multiagent simulation. They represented a parameter sweep
workflow, a pseudoparallel task and a parallel task,
respectively.

VM images for running the tasks were prepared in
cooperation with the users. Usability was verified by having
the users set up algorithm descriptions in the web interface.
The program then successfully provisioned the desired
number of VM instances, executed the algorithms on them,
collected the results and terminated the instances.

The main drawback, from our point of view, is that when
there are jobs in the queue, the program consumes all
resources on the cluster.

This is not a problem in the experimental setting, but in a
production environment, which would be primarily used for
interactive traffic and would attempt to exploit the agility of
cloud infrastructure to run batch jobs as well, this would be
unacceptable.

In such a setting, the interactive traffic needs to have
absolute priority. For example, if there was a need to
increase the number of web servers due to a spike in
demand, then in the current state, the capacity would be
blocked by Cloud Gunther until some of its tasks finished. It
would be possible to terminate them, but that would cause
loss of hours of work. A proactive solution to the
heterogenous load situation is needed.

IV. TIME SERIES

The sought solution will deal with estimation of the
amount of interactive load in time. The interactive traffic
needs to have priority over the batch jobs. Therefore, the
autoscaler will record the histogram of the number of
instances that it is managing. From this histogram, data on
daily, weekly and monthly usage patterns of the web servers
may be extracted and used to set the amount of free
resources for Cloud Gunther.

A similar problem exists in desktop grids.
Ramachandran, in article [25], demonstrates the collection of
availability data from a cluster of desktop machines and
presents a simulation of predictive scheduling using this
data. The abstraction of the cloud will shield away the
availability of particular machines or their groups, the only
measured quantity will be the amount of available VM slots
of a certain size.

With a predictor, instead of seeing only the current
amount of free resources in the cloud, the batch job
scheduler could be able to ask: “May I allocate 10 large
instances to a parallel job for the next 4 hours with 80%
probability of it not being killed?”

A solution to this question exists in statistics, in a
discipline called Time Series Analysis. A good tutorial is
written by Keogh [26]. It has very wide coverage, mainly on
filtering, similarity measures, Dynamic Time Warping and
lower bounds on similarity. However, the solution was found
elsewhere, although clustering on particular days and

offering the next day after the best match as forecast is also a
valid approach and was evaluated as better than the two
others presented here in the bachelor thesis of Babka [27] on
photovoltaic power plant output prediction.

A. Holt-Winters exponential smoothing

Due to the fact that the ScaleGuru autoscaler was not yet
tested in a real environment, it was decided to obtain
experimental data from single servers of a web hosting
company. These are monitored by Collectd and time series
data stored in RRDTool’s Round Robin Databases. While
examining the documentation for export possibilities, a
function by Brutlag [28] was discovered, which uses Holt-
Winters exponential smoothing to predict the time series one
step ahead and then raise an alarm if the real value is too
different from the prediction. This allows to automatically
detect spikes in server of network activity.

A good description of exponential smoothing methods
including mathematical notation is written by Kalekar [29].
Simple exponential smoothing is similar to moving average.
It has a single parameter, α, which controls the weight of the
current observation versus the historical value and a single
memory that holds the average. It is good for time series that
do not exhibit trend or seasonality, and its prediction is a
straight line in the mean.

Double or Holt’s exponential smoothing takes trend into
account. It has 2 parameters, α and β, and a memory of 2, the
mean and the slope. The slope is calculated as an
exponentially smoothed difference between the current value
and predicted mean. Predictions from this model are a
straight line from the mean under the average slope.

Lastly, Triple or Holt-Winters exponential smoothing
takes seasonality into account. It has 3 parameters, α, β and
γ and a memory of 2 plus the number of observations per
period. The seasonal memory array holds the factor or
addend (depending on whether multiplicative or additive
seasonality is used) of each observation point in the season
to the exponentially smoothed value, and is itself updated
through exponential smoothing. The prediction from this
model looks like the average season repeated over in time,
starting at the average value and “stair-stepping” with the
trend.

Estimation of the parameters can either be done by hand
and evaluated using MSE (Mean Squared Error) or MAPE
(Mean Average Percentage Error) on the training data (a
quick explanation of their significance is in Hyndman [30]),
or it can be left to statistics software, which can do fitting by
least square error. For the experiments in this paper, the R
statistics package [31] was used, particularly the forecast
package by Hyndman [32]. The RRDTool implementation is
not suitable as it only forecasts one point into the future for
spike detection.

An introduction to time series in R, including loading of
data, creating time series objects, extracting subsets,
performing lags and differences, fitting linear models, and
using the zoo library is written by Lundholm [33]. A
summary of all available time series functions is in the time
series task view [34], while a more mathematical view of the

154

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capabilities including citations of the authors of particular
packages is in McLeod, Yu and Mahdi [35].

B. Experiments

1) Loading of data
The evaluation of the method was done on six time series

from servers running different kinds of load. The data was
first extracted from RRDTool and pushed into MySQL by a
bash script, which was being run every day to get data at the
desired resolution. The RRD format automatically
aggregates data points using maximum, minimum and
average, after they overflow the configured age boundaries.
Those were (in files created by Collectd) 10 hours in 30
second intervals, 24 h in 60 s, 8 days in 8 minutes, 1 month
in 37 min, and 1 year in 7.3 hours.

The chosen initial resolution for experiments was 15
minutes, as the aim is to forecast a) for IaaS clouds, where
instance start-up takes about 5 minutes, plus user
initialization, and accounting is done in hours, and b) for
batch jobs, where the user will probably give task durations
in hours or their fractions. Later, it will be evident that this
resolution is appropriate for forecasts with the horizon of
days, which was the goal of the selection.

The data was then loaded into R (using manual [36]).
There was a total of 8159 observations or 2.8 months of data.
Time series objects (ts) were created. Their drawback is that
observations need to be strictly periodic and the x axis is
indexed only by numbers. Any missing values have been
interpolated (there was no larger consecutive missing
interval). For uneven observation intervals, the “zoo” library
may be used, which indexes observations with time stamps
[37]. It was not used here, so for clarification: The
measurement interval starts with time stamp 1128, which
was November 28, and then the count increases every day by
1 irrespective of the calendar as the seasonal frequency was
set to 1 day. Therefore, the interval contains Christmas at
about 1/3, and it ends on Thursday.
2) Time series diagnostics

The servers included in the experiments have code names
oe, bender, lm, real, wn, gaff. In the next paragraph follow
their designations and the result of examinations of the time
plots of their CPU load time series. This series was also
filtered by simple moving average (SMA) with window set
to 1 day to obtain deseasonalized trend. The time plots of the
series along with best forecasts from both methods are
attached in Appendix A.

• oe is a large web shop. It has a clear and predictable
daily curve with one weekday higher and weekend
and holidays lower (incl. Christmas). Trend is
stationary (except Christmas).

• bender is shared PHP webhosting. It has a visible
daily curve with occasional spikes. First month
shows a decreasing trend, and then it stabilizes.

• lm is a discount server. The low user traffic creates a
noisy background load that is dominated by spikes
of periodic updates. Trend alternates irregularly
between two levels; the duration is on the scale of
weeks.

• real is a map overlay service, not much used but
CPU intensive (as one map display operation fetches
many objects in separate requests). The time plot is a
collection of spikes, more frequent during day than
night. There are 2 stationary levels, where the first
month the load was higher, and then the site was
optimized so it went lower.

• wn is PHP hosting of web shops. It has low traffic
with a visible daily curve. There is a slow linear
additive trend after the first month.

• gaff is a web shop aggregator and search engine. Its
daily curve is inverted with users creating
background load in the day and a period of high
activity due to batch imports during the night. Trend
is stationary.

0
5

10
15

20
25

ob
se

rv
ed

4
6

8
10

12

tr
en

d

−
5

0
5

se
as

on
al

−
5

0
5

10

1130 1135 1140 1145 1150 1155

ra
nd

om

Time

Decomposition of ad ditive time series

Figure 7. oe series decomposition, from top to bottom: overall time plot,

trend, seasonal and random compoment

As suggested in the tutorial by Coghlan [38], which also
covers installation of R and packages, as well as Holt-
Winters and ARIMA models, the time series were run
through seasonal decomposition. For oe, bender and wn, the
daily curve was as expected; with gaff, the nightly spike also
showed nicely. lm and real surprisingly also show daily
seasonality as the spikes are apparently due to periodic jobs.
Decomposition of the first month of oe is in Figure 7. We
can clearly see the repeated daily curve and a change in trend
during Christmas.

Another tool to diagnose time series is the seasonal
subseries plot. When applied to the test data, only oe shows
clean seasonal behavior. In the bender series, noise may be
more dominant than seasonality. The lm series seasonal
subseries is also not clearly visible. real clearly shows that
traffic on certain hours is higher. For wn, the upward trend is
visible in each hourly subseries. gaff shows that the duration
of the batch jobs is not always the same so there are large
spikes in the morning hours, mainly at the start of the
measurement interval. This plot is in Figure 8. It contains 96
subseries because of the 15-min frequency, index 0 is
midnight.

155

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ga
ff_

us
er

_t
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

0
10

20
30

40

Figure 8. gaff series seasonal subseries plot

3) Model fitting and evaluation
A modified script from Hyndman and Athanasopoulos

[39] was used for model fitting and validation. The algorithm
first shortens the time series by 3 days at the end and fits a
model on it. Then forecasts are created for 6, 24, and 96 hour
horizons and compared with the withheld validation data.
The result is a table of standard model efficiency measures
for each series and interval (“in” meaning in-sample). One
more measure was defined in accordance with the goal
specified at the beginning of this section – how many
validation data points missed the computed 80% prediction
intervals in the 3-day forecast (that is 288 points in total).

As to the forecast error measures, the following ones are
used: The Mean Error (ME) is a measure of error in absolute
scale; it is signed, so it can be used to see a bias in forecasts,
but cannot be used for comparison of time series with
different scale.

The Root Mean Squared Error (RMSE) measures
squared error and is thus more sensitive to outliers. It is best

used when the scale of errors is significant. The square root
operation returns the dimension to that of the original data.

Mean Absolute Error (MAE) is similar to ME, but
ignores the direction of the error by using absolute values.

Mean Percentage Error (MPE) removes the influence of
scale from ME by dividing error by the value,

Mean Absolute Percentage Error (MAPE) does the same
to MPE. It is probably the best measure for human
evaluation.

The Mean Absolute Scaled Error (MASE) is different
from the others in that it does not compare the error to the
original data, but to the error of the naïve “copy the previous
value” forecast method.

For one-step-ahead forecasts, MASE values below one
indicate that the evaluated method is better. For larger
horizons, this is not true, as the naïve method has more
information than the one under evaluation (i.e., always the
previous data point). Normally, ME, RMSE, and MAE have
the dimension of the original data, MPE and MAPE are in

TABLE I. EVALUATION OF THE HOLT-WINTERS MODEL ON OUT-OF-SAMPLE DATA

 ME RMSE MAE MPE MAPE MASE miss ME RMSE MAE MPE MAPE MASE miss

oe in 0.003 1.109 0.798 2.776 17.91 1.036 rea1 in -0.03 4.836 3.029 -18.2 38.47 0.398
oe 6 0.691 1.110 0.829 6.111 7.623 1.076 rea1 6 -1.54 7.206 4.878 -68.3 86.06 0.641
oe 24 0.500 2.461 1.985 -30.4 62.34 2.575 rea1 24 -0.28 6.843 4.770 -50.2 71.75 0.627
oe 96 1.843 4.238 3.223 -26.1 75.49 4.181 2 rea1 96 -0.31 7.004 4.916 -56.3 77.77 0.646 84
bend in -0.06 1.699 1.176 -7.38 23.45 1.110 rea2 in -0.11 7.515 5.973 -68.4 95.76 0.785
bend 6 0.015 1.280 1.068 -2.11 14.47 1.009 rea2 6 -1.78 6.866 5.485 -105 122.1 0.721
bend 24 -0.36 1.436 1.200 -17.9 27.39 1.133 rea2 24 -0.28 8.304 6.619 -88.9 115.6 0.870
bend 96 -1.33 2.385 1.934 -35.7 41.42 1.826 2 rea2 96 -0.30 8.387 6.713 -95.1 122.0 0.883 44
lm1 in -0.35 5.408 3.832 -10.3 31.63 0.801 wn in -0.01 2.469 1.600 -15.2 43.31 1.047
lm1 6 3.408 4.839 3.713 18.09 20.46 0.777 wn 6 -0.35 1.880 1.553 -11.4 24.44 1.016
lm1 24 -12.9 17.78 14.81 -119 129.4 3.099 wn 24 -1.42 3.617 2.980 -74.8 87.18 1.950
lm1 96 -27.2 32.23 27.86 -248 251.4 5.830 97 wn 96 -1.29 5.151 3.995 -86.4 102.8 2.614 0
lm2 in 0.002 5.638 3.856 -13.5 31.52 0.806 gaff in -0.01 3.562 2.039 -8.90 57.79 1.158
lm2 6 0.639 5.667 4.625 -6.41 28.14 0.967 gaff 6 0.191 7.099 6.449 63.97 465.5 3.663
lm2 24 -1.04 6.939 5.104 -24.7 40.55 1.068 gaff 24 -0.01 6.835 4.308 -8.97 189.3 2.447
lm2 96 -1.04 7.666 5.624 -29.4 45.83 1.176 14 gaff 96 0.622 5.927 4.002 5.364 157.7 2.274 4

156

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

percent and MASE is dimensionless. Here, all values are
dimensionless as the input data is a time series of CPU load
percentages.

The result can be seen in Table I. For lm, two result sets
are included. The first is from a triple exponential smoothing
model, but as there was a spike at the end of the fitting data,
the function predicted an upward trend while the data was in
fact stationary. Simple exponential smoothing was then tried,
which gave lower error measures and fewer points outside
confidence intervals.

A similar problem existed with real. The spikes predicted
by the seasonal model missed the actual traffic spikes most
of the time. It seems that the series is not seasonal after all,
but rather cyclic. The cause for the spikes is random arrivals
of requests, as per queuing theory. Cyclicity is discussed in
Hyndman [40]. The important outcome is that exponential
smoothing models cannot capture it, while autoregressive
models can.

The second model for real in the table is double
exponential smoothing, which, interestingly, shows higher
error measures, but lower number of missed observations.
The cause is that the confidence intervals are computed
based on the variance of in-sample errors. Therefore, the
closer the error magnitude is between in-sample and out-of
sample measurement, the more accurate the model is in the
“misses” measure.

Automatic model fitting also failed for gaff. The
transition from the nightly spike to daily traffic caused the
predicted values to be below zero. A manual adjustment of
Alpha parameter was necessary. Computed α=0.22, set
α=0.69. The problem probably is that the algorithm
optimizes in-sample squared error (MSE) and thus it
preferred a slower reaction, which mostly missed the spike.
The computed trend from this mean was therefore strongly
negative. A quicker reaction to the change in mean improved
the model, but even then, series with abrupt changes in mean
are not good for the Holt-Winters model.

From Table I., we can see that with the Holt-Winters
method, some series are predicted well even for the 3 day
interval (bender, lm method 2), for some, the forecast is
reasonably accurate for the first 6 hour interval and then
deteriorates (oe, lm method 1, wn), for others it is inaccurate
(real, gaff).

In addition, when the error measures for in-sample data
are worse than for out-of-sample, it is a sign of overtraining -
the validation data set was closer to "average" than the
training data. This is because we were training on a long
period including Christmas and verifying on a normal week.
Perhaps shortening the training window would be
appropriate.

C. Box-Jenkins / ARIMA models

The tutorial [38] suggests using autocorrelation plot on
the residuals of the Holt-Winters model. A significant
autocorrelation of the residuals means that they have a
structure to them and do not follow the character of white
noise. All the models showed significant autocorrelation of
residuals at both low lags and lags near the period. The
Ljung-Box test is a more rigorous proof of randomness of a

time series as its null hypothesis is that a group of
autocorrelations up to a certain lag is non-significant. It can
thus ignore a random spike in the ACF. All the models failed
the test in the first few lags.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series HWF$residuals

Figure 9. Autocorrelogram of residuals of the H-W model on bender

Having seen autocorrelation plots such as in Figure 9, it
was decided to move to better models. ARIMA
(Autoregressive, Integrated, Moving average) models are
intrinsically based on autocorrelation. They seem to be the
state of the art in time series modeling and are a standard in
economic prediction (e.g., [39] is a textbook for business
schools and MBA).

Neural network methods were also studied, but, as
Crone’s presentation, which is also a good source on time
series decomposition and ARIMA [41], suggests, their
forecasting power is equal to ARIMA, only the fitting
method is different. It may be more powerful in that it is
non-linear and adaptive, but has many degrees of freedom in
settings and the result is not interpretable.

As per the NIST Engineering Statistics Handbook [42],
chapter 6.4.4.4, which is a good practical source on all
methods discussed here, the autoregressive and moving
average models were known before, but Box and Jenkins
have combined them together and created a methodology for
their use.

There are three major steps in the methodology: model
selection based on mainly on examination of
autocorrelograms (ACF) and partial autocorrelograms
(PACF), then model estimation, which uses non-linear least
square fitting and/or maximum likelihood and is best left to
statistical software, and lastly model validation, which uses
ACF and PACF of residuals and the Ljung-Box test.

An autoregressive (AR) model computes the next data
point as a linear combination of previous ones, where the
number of lagged values considered is determined by the
order of the model. The parameters are the mean and the
coefficients of each lag. They can be computed by linear
least squares fitting. A model of order greater than one with
some coefficients negative can exhibit cyclic behavior.

A moving average (MA) model works with errors. The
next data point is a linear combination of differences of past
lags from the moving average, where the number of lags
considered is the order of the model. Again, each term has a
parameter that needs to be estimated. The estimation is more
difficult as the errors cannot be known before the model

157

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exists, which calls for an iterative non-linear fitting
procedure.

The I in ARIMA stands for integrated, which represents
the inverse operation to differencing. As the AR and MA
models assume that the time series is stationary, meaning
that it has stable location and variance, the difference
operator can often be used to transform a series to stationary.
The model is fitted to the transformed series and an inverse
transform is used on the resulting forecast.

Other useful transformations are logarithms and power
transforms, which may help if the variance depends on the
level. They are both covered by the Box-Cox transform (see
[39], chapter 2/4).

D. Experiments

1) Model selection

a) Differencing order

The prerequisite for ARIMA is that the time series is
stationary. Manually, stationarity can be detected from the
time plot. A stationary time series has constant level and
variance, and may not exhibit trend or seasonality. The two
last effects should be removed for identification of model
order, but are covered by ARIMA models with non-zero
differencing order and SARIMA (Seasonal ARIMA),
respectively. For series with non-linear trend or
multiplicative seasonality, the Box-Cox transform should be

used, but that was not the case with the series studied here.
Additionally, a non-stationary series will have ACF or PACF
plots that do not decay to zero.

The statistical approach to identification of differencing
order is through unit root tests (see Nielsen [43]). The root
referred to here is the root of the polynomial function of the
autoregressive model. If it is near one, any shocks to the
function will permanently change the level and thus the
resulting series will not be stationary. The standard test for
this is Augmented Dickey-Fuller (ADF), which has the null
hypothesis of unit root. A reversed test is Kwiatkowski-
Phillips-Schmidt-Shin (KPSS), where the null hypothesis is
stationarity. There is also a class of seasonal unit root tests
that can help specify the differencing order for SARIMA,
these are Canova-Hansen (CH) and Osborn-Chui-Smith-
Birchenhall (OCSB).

In R, there exist functions ndiffs() and nsdiffs(), which
automatically search for the differencing and seasonal
differencing order, respectively, by repeatedly using these
tests and applying differences until the tests pass (for KPSS
and CH), or stop failing (for ADF and OCSB). The default
confidence level is 5%. The recommended amount of
differencing of the experimental time series obtained from
the tests is in Table II on the next page. Columns lm4 and
real4 will be explained later.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series oe_user_ts

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series diff(diff(oe_user_ts, la g = 96))

Figure 10. ACF of oe without and with differencing

158

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. ORDER OF DIFFERENCING BASED ON UNIT ROOT TESTS

 oe bender lm lm4 real real4 wn gaff

ADF 0 0 0 0 0 0 0 0
KPSS 0 1 1 1 1 1 1 0
OCSB 0 0 0 0 0 0 0 0
CH 0 0 0 1 0 1 0 0

It is evident that the ADF and KPSS tests did not agree

with each other with the exception of oe and gaff. According
to [43], ADF should be considered primary and KPSS
confirmatory. The same is said by Stigler in discussion [44],
adding that unit root tests have lower sensitivity than KPSS.
In the same discussion, Frain says KPSS may be more
relevant as a test concretely for stationarity (there may be
non-stationary series without a unit root), if we do not
assume a unit root based on underlying theory of the time
series. It was also used by Hyndman in the auto.arima()
function for iterative model identification.

According to manual heuristic approaches, such as
presented by Nau [45], an order of seasonal differencing
should always be used if there is a visible seasonal pattern. It
also suggests applying a first difference if the ACF does not
decay to zero. An example of the impact of first and seasonal
differencing on stationarity and thus legibility of an ACF
plot is in Figure 10.

The ACF and PACF functions on the test data were
looked at with and without differencing with the result that
differencing rapidly increases the decay of the ACF function
on all series except real.

Moreover, from the ACF of lm and real, it seems there is
a strong periodicity of 4 hours. These two series will be also
tested with models of this seasonal frequency and will be
denoted as lm4 and real4, as in Table II.

For the purpose of order identification, seasonal and then
first differences have been taken. It was decided to test if the
models fitted with this order of differencing, following the
heuristic approach, are better or worse than those with
differencing order identified by statistical tests.

b) Order identification

Identification of model order was done using heuristic
techniques from [39], [42], [45], and [46]. After seasonal and
first differencing is applied in the necessary amount to make
the time series look stationary to the naked eye, so that its
autocorrelograms converge to zero, the ACF and PACF
functions are looked at. The number of the last lag from the
beginning where PACF is significant specifies the maximum
reasonable order of the AR term, similarly the last significant
lag on ACF specifies the MA order. The order of the
seasonal autoregressive and moving average terms is
obtained likewise, but looking at lags that are multiplies of
the seasonal period.

The observed last significant lags and resulting
maximum model orders are summed in Table III. Model
parameters are denoted as ARIMA(p, d, q)(P, D, Q), where p
is the order of the AR term, d is the amount of differencing
and q is the order of the MA term. The second parenthesis
specifies the seasonal model orders.

TABLE III. LAST SIGNIFICANT LAGS AND MODEL ORDERS

 PACF ACF seas.

PACF

seas.

ACF

estimated maximal

model parameters

oe 5 3 11 1 ARIMA(5,1,3)(11,1,1)
bender 17 4 9 1 ARIMA(17,1,4)(9,1,1)
lm 15 16 8 1 ARIMA(15,1,16)(8,1,1)
lm4 9 2 11 ∞ ARIMA(9,1,2)(11,1,0)
real 1 2 11 1 ARIMA(1,0,2)(11,1,1)
real4 13 2 11 1 ARIMA(13,1,2)(11,1,1)
wn 39 3 10 1 ARIMA(39,1,3)(10,1,1)
gaff 18 2 6 1 ARIMA(18,1,2)(6,1,1)

Looking at the two variants of lm, the expectation is that

the first will perform better, as the non-seasonal part covers
the second period of 4 hours. This is not true for real vs.
real4.
2) Model estimation

When trying to fit models with high seasonal order, a
limitation of the ARIMA implementation in R was found.
The maximal supported lag is 350, which with a period of 96
(24 hours * 4 observation per hour) means that the seasonal
lag is limited to 3.

Furthermore, the memory requirements of seasonal
ARIMA seem to be exponential with the number of data
points. A machine with 1 GB of RAM could not handle the
2.8 months of data with lag 288. This constraint is not
documented. The experiment had to move to a machine with
32 GB RAM, where computing a model with seasonal order
3 took 7.6 GB RAM, more on subsequent runs as R is a
garbage collected language.

For the course of this experiment, the order of the
seasonal components will be limited to three, as it should be
sufficient when forecasting for a horizon of about a day. The
alternatives, which will be examined in further experiments,
are to reduce the resolution to 1 hour, which will enable lags
up to 12 days.

A model of this sort was fitted on oe, and it did not lead
to a better expression of the weekly curve (at least not by
visual inspection). With this resolution, it will be however
possible to use a seasonal period of one week, which should
be able to capture the day-to-day fluctuations. Similarly, we
would reduce resolution is we were trying to capture
monthly or yearly seasonality.

Another approach, suggested by Hyndman [47], is to
model the seasonality using a Fourier series and to use non-
seasonal ARIMA on the residuals of that model. This should
enable fitting on arbitrarily long seasonal data. This may lead
to overfitting, though, as the character of the time series is
subject to change over longer time periods.

For the actual parameter estimation, the Arima() function
with the model order as parameter can be used. There is
however a way to automate a part of the identification-
estimation-validation cycle and that is the auto.arima()
function. This function repeatedly fits models with different
parameters and then returns the one that has minimal Akaike
Information Criterion (AIC). This criterion prefers models
with lower likelihood function and contains a penalization
for the number of degrees of freedom of the model;
therefore, it should select the model that best fits the data,

159

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but not variations of the same model with superfluous
parameters.

The auto.arima() function has two modes depending on
the “stepwise” parameter (see help(auto.arima) in R). With
this set to TRUE, it does a greedy local search, which selects
the best model from previous step and examines its
neighborhood in the state space given by adding or
subtracting one to each parameter. It continues, until no
model in the neighborhood has lower AIC.

The second mode searches from ARIMA(0,0,0)(0,0,0)
upwards and based on the description, it should search until
the ceiling set for each parameter. The actual behavior
however seems to be that is stops when the last iteration
examined did not bring any gain. Both search modes are thus
prone to getting stuck in a local minimum.

To better specify the models, the auto.arima() function
was used on each time series with three sets of parameters.
In the first run, it was started from zero with
stepwise=FALSE and with ceilings set to the parameters
estimated in Table III. In the second run, stepwise was set to
TRUE and the ceilings were left at the pre-estimated
parameters plus one to account for differencing; the starting
values were set to be the same as the ceilings, as,
theoretically, the parameters in Table III should be the
maximal meaningful numbers, but a model with lower orders
might be better. This was tested in the third run, where the
starting values remained and the ceilings were effectively
removed.

The same procedure was then repeated with the
differencing orders computed by OCSB and KPSS. As it is
difficult to identify model parameters by naked eye without
differencing, the same initial parameters have been used.
Please note that the AIC values of models with unequal
differencing order are not comparable, while goodness-of-fit

test results and prediction errors are.
3) Model validation

As already discussed in Subsection IV/C “Box-Jenkins
models”, the validation entails manual examination of the
autocorrelation plot of residuals and use of the Ljung-Box
goodness-of-fit (GOF) test. Table IV contains the models
that resulted from the three runs of auto.arima() as described,
along with their AIC values, the lag of the first significant
autocorrelation and the lag after which the Ljung-Box test
failed. Left side is for models with differencing order set to
one, right side has differencing set by unit root tests.

The outcome from Table IV is, that is cannot be
conclusively said whether it is better to always use seasonal
differencing or not. Of the six time series, three have the best
fitting model in the left half of the table and three in the right
half. However, it seems that in the cases where the non-
differenced models were better, the gain in the goodness-of-
fit functions was lower than the other way round. It is also
interesting that in two of the three cases (oe and gaff), the
difference is not only in seasonal, but also in first
differencing. It may be a good idea to follow the
recommendation of the KPSS test, but always use seasonal
differencing, but there is not enough data to say it with
certainty.

A more solid fact is that all the best models come from
the third row of the table. Of the three tried here, the best
algorithm for model selection is to use auto.arima() in greedy
mode, starting with parameters identified from ACF and
PACF, and leave it room to adjust the parameters upwards.

E. Comparison of the two model families

The last part of the experiment entailed computing
forecasts based on the fitted ARIMA models and comparing
them with out-of-sample data. The same validation algorithm

TABLE IV. PARAMETERS OF THE ESTIMATED ARIMA MODELS AND THEIR VALIDATION MEASURES
 model AIC sig. ACF fail. GOF model AIC sig. ACF fail. GOF

oe ARIMA(0,1,2)(1,1,2) 23016.97 12 14 oe ARIMA(4,0,3)(2,0,2) 23231.26 22 23
 ARIMA(6,1,1)(1,1,2) 23109.12 12 15 ARIMA(5,0,4)(3,0,2) 23259.8 21 27
 ARIMA(5,1,3)(2,1,3) 23066.43 16 20 ARIMA(5,0,3)(3,0,3) 23220.86 21 27

bend ARIMA(1,1,1)(2,1,1) 28082.19 4 6 bend ARIMA(1,1,1)(3,0,2) 27989.07 22 6
 ARIMA(17,1,5)(3,1,2) 27580.45 52 129 ARIMA(17,1,4)(3,0,2) 27812.25 26 60
 ARIMA(17,1,3)(3,1,3) 27504.15 58 172 ARIMA(14,1,1)(3,0,3) 27801.06 17 58
lm ARIMA(1,1,1)(2,1,1) 47569.93 5 5 lm ARIMA(1,1,3)(1,0,2) 48517.21 5 4
 ARIMA(16,1,17)(2,1,2) 47210.57 94 144 ARIMA(15,1,17)(3,0,1) 48155.89 43 144
 ARIMA(17,1,17)(2,1,3) 47195.88 98 500+ ARIMA(15,1,18)(3,0,1) 48152.6 70 144

lm4 ARIMA(2,1,1)(1,1,1) 49151.84 5 5 lm4 ARIMA(1,1,3)(0,0,2) 50789.93 4 4
 ARIMA(10,1,3)(12,1,1) 48398.45 11 14 ARIMA(10,1,2)(12,0,2) 48570.04 10 28
 ARIMA(11,1,2)(16,1,5) 48138.57 21 30 ARIMA(12,1,2)(15,0,4) 48342.89 21 30

real ARIMA(1,1,1)(2,1,1) 47872.32 4 3 real ARIMA(0,1,2)(3,0,0) 48873.62 4 4
 ARIMA(2,1,3)(2,1,2) 47800.56 1 1 ARIMA(2,1,3)(3,0,2) 48732.74 1 1
 ARIMA(6,1,8)(3,1,3) 46972.94 6 6 ARIMA(10,1,12)(3,0,3) 47344.03 8 9

rea4 ARIMA(2,1,1)(1,1,1) 47574.67 3 3 rea4 ARIMA(1,1,1)(3,0,0) 48897.42 3 3
 ARIMA(1,1,3)(1,1,2) 47612.58 2 2 ARIMA(12,1,2)(11,0,1) 47438.97 21 24

 ARIMA(4,1,5)(1,1,7) 47373.03 8 7 ARIMA(12,1,2)(11,0,1) 47438.97 21 24

wn ARIMA(4,1,2)(2,1,2) 35599.79 9 14 wn ARIMA(2,1,3) with drift 36214.64 10 9
 ARIMA(40,1,2)(2,1,2) 35608.54 55 500+ ARIMA(39,1,4)(1,0,2) 36177.56 59 95
 ARIMA(39,1,1)(2,1,3) 35596.67 55 500+ ARIMA(38,1,5)(1,0,3) 36146.1 64 191

gaff ARIMA(2,1,3)(0,1,2) 21501.92 5 5 gaff ARIMA(3,0,0)(1,0,1) 21847.8 5 5
 ARIMA(19,1,3)(0,1,2) 21387.26 42 52 ARIMA(18,0,3)(1,0,2) 21717.96 43 88

 ARIMA(17,1,4)(0,1,3) 21118.64 42 88 ARIMA(18,0,3)(1,0,2) 21717.96 43 88

160

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

was used as in the case of Holt-Winters models, to facilitate
model comparison. The result is in Table V. To conserve
space, only MAPE (Mean Average Percentage Error) is
shown. The four columns are for in-sample error and
forecast errors in horizons 6, 24, and 96 hours. The ordering
of models is the same as in Table IV.

Fitting of the forecasts was something of a
disappointment, as all of the models with seasonal
differencing (the left half of Table IV) that were selected as
best using the GOF measures have failed to produce
forecasts. The cause was likely the seasonal MA part of the
model that was one or two orders higher that the originally
identified ceiling. That resulted in an overspecified model
where the MA polynomial was not invertible. Invertibility is
a prerequisite for the computation of variances of the
parameters [48], which in turn are needed to compute
confidence intervals for a prediction. Hence, these models
were fitted and had a likelihood function and in-sample
errors, but could not be used for forecasts with confidence
bounds.

When fitting ARIMA models in R, one needs to carefully
observe the output for warnings such as:
In sqrt(z[[2]] * object$sigma2) : NaNs produced

for least-squares fitting, or for maximum likelihood:
Error in optim(init[mask], armafn, method =
optim.method, hessian = TRUE, :

non-finite finite-difference value [1]

In log(s2) : NaNs produced

because then the prediction will produce wrong results or
fail:
In predict.Arima(object, n.ahead = h) :
MA part of model is not invertible

Therefore, if using auto.arima() beyond the ceiling
identified from ACF and PACF, there is a high risk of the
model failing and thus it may not be a good idea for

automatic forecasts. If that happens, lowering the order or
the seasonal MA or MA part should help.

As to the selection of the best model for forecasts, the
selection based on out-of sample forecast errors (mainly
looking at the 24 and 96-hour horizons) corresponds to the
one based on goodness-of-fit criteria. In the case where the
model fails to produce forecasts, the next-best one based on
GOF can be selected. The second row (ceilings from ACF
and PACF adjusted downward by auto.arima()) produced the
best result, except on oe and lm, where, however, the
difference is seems to be small.

As whether to always use seasonal differencing, the
experiment is inconclusive. In the case of oe, there was a
significant gain in accuracy by not using it, in the case of wn
and bender, the opposite is true.

Looking at the “misses” criterion, one could say that
Holt-Winters is better. However, that outcome might be
skewed. The criterion counts the number of data points that
missed the 80% confidence bounds in the 3-day forecast.
That time period contains a total of 288 points, 20% of that is
57.6, and that is the count of data points that are by definition
allowed to miss the bounds.

Therefore, the result of this comparison is that the
confidence bounds on ARIMA are more accurate, or at least
tighter than on Holt-Winters. If this method is to be used as
proposed by this article, the confidence level used has to be
adjusted upwards to 95 or 99%, depending on the overload
sensitivity of the computer infrastructure.

Comparing the two model families using the MAPE error
measure, the outcome is that ARIMA did produce better
forecasts than Holt-Winters, except for the 6-hour forecasts
on oe and bender, and also that simple exponential
smoothing outperformed both seasonal methods on 24 and
96-hour forecasts on lm.

TABLE V. EVALUATION OF THE ARIMA MODELS ON OUT-OF-SAMPLE DATA
 MAPE in MAPE 6 MAPE 24 MAPE 96 miss MAPE in MAPE 6 MAPE 24 MAPE 96 miss

oe 13.43 7.12 75.27 94.99 8 oe 13.40 8.13 37.52 53.16 22
 13.39 7.13 77.74 98.23 7 13.22 8.71 33.96 48.88 22
 failed 13.16 8.85 31.41 46.35 24

bend 19.32 14.56 22.18 22.21 25 bend 18.28 15.34 45.21 41.32 13

 18.51 15.51 20.58 21.3 42 18.79 21.42 36.53 34.38 87
 failed failed
lm 24.93 19.14 19.70 22.34 17 lm 25.49 17.23 19.80 23.22 19
 23.94 14.79 20.10 25.15 20 23.98 15.74 21.01 26.91 21
 failed 23.97 15.98 21.11 27.02 21

lm4 25.50 13.22 23.36 28.93 8 lm4 28.77 26.94 44.30 51.17 7

 24.73 11.66 22.19 30.21 24 24.61 12.93 21.81 29.02 21
 24.16 15.57 20.29 23.45 19 24.47 12.51 19.88 25.73 21

real 36.26 85.66 73.58 80.20 85 real 38.18 72.49 62.91 64.49 59
 37.13 88.91 76.86 83.95 94 38.18 87.33 74.95 81.07 81
 failed 37.56 69.18 52.74 58.08 39

rea4 37.67 58.08 48.30 54.23 59 rea4 40.83 53.41 47.86 70.73 43
 37.99 53.44 43.22 45.75 40 36.10 50.40 41.59 46.06 49
 37.03 55.33 43.54 46.34 61 36.10 50.40 41.59 46.06 49

wn failed wn 42.03 24.30 78.80 82.33 102
 37.68 36.26 51.12 50.25 59 38.92 24.36 64.94 71.68 79
 failed 38.96 26.33 64.16 70.09 78

gaff 37.62 160.67 128.23 112.77 61 gaff 37.65 170.08 136.91 124.57 59

 38.19 165.29 125.89 109.42 60 38.26 165.48 133.85 119.44 59

 38.56 187.57 129.88 110.55 61 38.26 165.48 133.85 119.44 59

161

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. FUTURE WORK

Future work planned on the Cloud Gunther can be split
into two categories. First and more important is the
consideration of interactive load also present on the cluster,
which will require a rewrite of the queue engine to utilize the
output of the predictor. Second is integration of better
queuing disciplines to bring it up to par with existing cluster
management tools. Two ideas for that are presented in
Subsections A and B. Section C discusses the problem of
resource sharing on modern computers.

A. Out-of-order scheduling

Using load predictions to maximize load of course
assumes a scheduler that will be capable of using this
information. Our vision is a queue discipline that internally
constructs a workflow out of disparate tasks. The tasks, each
with an associated estimate of duration, will be reordered so
that the utilization of the cloud is maximized.

For example, when there is a job currently running on 20
out of 40 slots and should finish in 2 hours, and there is a 40
slot job in the queue, it should try to run several smaller 2
hour jobs to fill the free space, but not longer, since that
would delay the large job.

These requirements almost exactly match the definition
of the Multiprocessor scheduling problem (see [49]). Since
this is a NP-hard class problem, solving it for the whole
queue would be costly. The most feasible solution seems to
come from the world of out-of-order microprocessor
architectures, which re-order instructions to fully utilize all
execution units, but only do so with the first several
instructions of the program. The batch job scheduler will be
likewise able to calculate the exact solution with the first
several jobs in the queue, which will otherwise remain
Priority FCFS.

B. Dynamic priorities

The estimation of job duration is a problem all for itself.
At first, the estimate could be done by the user. Later, a
system of dynamic priorities could be built on top of that.

The priorities would act at the level of users, penalizing
them for wrong estimates, or better, suspending allocation of
resources to users whose tasks have been running for longer
time than the scheduler thought.

Inspiration for this idea is taken from the description of
the Multilevel Feedback Queue scheduler used historically in
Linux [50]. However, the scheduler will set priorities for
users, not processes, and allocate VMs to tasks, not jiffies to
threads. It also will not have to be real-time and preemptive,
making the design simpler.

The scheduler’s estimate of process run time could be
based on the user estimates, but also on the previous run time
of processes from the same task or generally those submitted
by the same user for the same environment. That would lead
to another machine learning problem.

C. Resource sharing

When we actually have both kinds of traffic competing
for resources of the cloud, resource-sharing problems may

affect the performance of the system and raise the observed
requirements of the interactive traffic.

The effects of different kinds of algorithms on their
surroundings will have to be benchmarked and evaluated.
We may have to include disk and network bandwidth
requirements in the model of the batch job and decide, which
jobs may and which may not be run in a shared
infrastructure, or ensure their separation through bandwidth
limiting.

Second, even if we set up the private cloud so that CPU
cores and operating memory are not shared, we still have to
count with the problem of shared cache memory. This has
been researched by several groups. Gusev and Ristov [51]
benchmarked this by running multiple instances of a linear
equation solver in a virtualized environment, and Babka,
et.al., [52] measured the problem when concurrently running
several benchmark kernels from SPEC2000.

VI. CONCLUSION

The cloud presents a platform that can join two worlds
that were previously separate – web servers and HPC grids.
The public cloud, which offers the illusion of infinite supply
of computing resources, will accommodate all the average
user’s needs, however, new resource allocation problems
arise in the resource-constrained space of private clouds.

We have experience using private cloud computing
clusters both for running web services and batch scientific
computations. The challenge now is to join these two into a
unified platform.

The ScaleGuru autoscaling system offers an opportunity
to get hand-on experience with automatic scaling, as most
other systems are either very simple or are being developed
in the commercial sector without public access to source
codes.

The Cloud Gunther, although not ready for commercial
deployment, already has some state of the art features, like
the automatic management of cloud computing instances and
a REST-compliant web interface. It also differs from other
similar tools by its orientation towards private cloud
computing clusters.

In the future, it could become a unique system for
managing batch computations in a cloud environment
primarily used for web serving, thus allowing to exploit the
dynamic nature of private cloud infrastructure and to raise its
overall utilization.

This article also presented two methods of time series
forecasting, used otherwise mainly in economic forecasts,
and which could be applied to server load data. These
methods were tested on six time series of CPU load, some of
which are web servers with a well defined daily curve (oe,
bender, wn), and some have a load of more unpredictable
nature (lm, real, gaff).

As it is expected that the cloud will contain mostly load-
balanced web servers as the variable component, we think
that these methods are viable for further research in the
optimization of cloud computing.

162

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENTS

Credit for the implementation of Cloud Gunther, mainly
the user friendly and cleanly written web application goes to
Josef Šín. The ScaleGuru application and all its modules
were written by Karol Danko.

We thank the company Centrum for providing hardware
for our experiments and insights on private clouds from the
business perspective.

This work was supported by the Grant Agency of the
Czech Technical University in Prague, grant no.
SGS13/141/OHK3/2T/13, Application of artificial
intelligence methods to cloud computing problems.

REFERENCES

[1] T. Vondra and J. Šedivý, “Maximizing Utilization in Private IaaS
Clouds with Heterogenous Load,” in CLOUD COMPUTING 2012:
The Third International Conference on Cloud Computing, GRIDs,
and Virtualization, IARIA, 22 July 2012, pp. 169-173.

[2] D. M. Smith, “Hype Cycle for Cloud Computing,” Gartner, 27 July
2011, G00214915.

[3] T. Vondra and J. Šedivý, “Od hostingu ke cloudu,” Research Report
GL 229/11, CTU, Faculty of Electrical Engineering, Gerstner
Laboratory, Prague, 2011, ISSN 1213-3000.

[4] R. Grossman and Y. Gu, “Data mining using high performance data
clouds: experimental studies using sector and sphere,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD '08). ACM, New York, NY, USA,
2008, pp. 920-927, doi: 10.1145/1401890.1402000.

[5] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in 8th International Conference on Distributed
Computing Systems, 1988, pp. 104-111.

[6] W. Gentzsch, “Sun Grid Engine: towards creating a compute power
grid,” in Proceedings of the first IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2001, pp. 35-36.

[7] “Amazon Elastic Compute Cloud (EC2) Documentation,” Amazon,
<http://aws.amazon.com/documentation/ec2/> 27 May 2012.

[8] T. P. Morgan, “Univa skyhooks grids to clouds: Cloud control freak
meets Grid Engine,” The Register, 3rd June 2011,
<http://www.theregister.co.uk/2011/06/03/univa_grid_engine_cloud/
> 19 March 2012.

[9] “Installing Eucalyptus 2.0,” Eucalyptus,
<http://open.eucalyptus.com/wiki/EucalyptusInstallation_v2.0> 19
March 2012.

[10] “StarCluster,” Massachusetts Institute of Technology, <
http://web.mit.edu/star/cluster/index.html> 11 May 2012.

[11] H. Eriksson, et al., “A Cloud-Based Simulation Architecture for
Pandemic Influenza Simulation,” in AMIA Annu Symp Proc., 2011,
pp. 364–373.

[12] D. de Oliveira, E. Ogasawara, K. Ocaña, F. Baião, and M. Mattoso,
“An adaptive parallel execution strategy for cloud-based scientific
workflows,” Concurrency Computat.: Pract. Exper. (2011), doi:
10.1002/cpe.1880.

[13] “Cloud Scheduler,” University of Victoria,
<http://cloudscheduler.org/> 11 May 2012.

[14] D. Warneke and O. Kao, “Nephele: efficient parallel data processing
in the cloud,” in MTAGS '09: Proceedings of the 2nd Workshop on
Many-Task Computing on Grids and Supercomputers, November
2009, doi: 10.1145/1646468.1646476.

[15] R. N. Calheiros, C. Vecchiola, D. Karunamoorthya, and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds,” Future Generation Computer
Systems 28 (2012), pp. 861-870, doi: 10.1016/j.future.2011.07.005.

[16] L.Yang, I. Foster, and J.M. Schopf, „Homeostatic and Tendency-
based CPU Load Predictions,“ in Proceedings of IPDPS 2003, April
2002, p.9.

[17] M. Iverson, F. Özgüner, and L.C. Potter, “Statistical prediction of
task execution times through analytic benchmarking for scheduling in
a heterogeneous environment,” in Proceedings of Eighth
Heterogeneous Computing Workshop, HCW'99, IEEE, 1999, pp. 99-
111.

[18] H. Li, „Performance evaluation in grid computing: A modeling and
prediction perspective,“ in CCGRID, Seventh IEEE International
Symposium on Cluster Computing and the Grid, 2007, IEEE, pp.
869-874.

[19] J. Šedivý, “3C: Cloud Computing Center,” CTU, Faculty of Electrical
Engineering, dept. of Cybernetics, Prague,
<https://sites.google.com/a/3c.felk.cvut.cz/cloud-computing-center-
preview/> 19 March 2012.

[20] T. Vondra, P. Michalička, and J. Šedivý, „UpCF: Automatic
deployment of PHP applications to Cloud Foundry PaaS,” 2012,
unpublished.

[21] K. Danko, “Automatic Scaling in Private IaaS,” Master's Thesis,
CTU, Faculty of Electrical Engineering, Supervisor T. Vondra,
Prague, 3 January 2013.

[22] “Amazon Auto Scaling Documentation,” Amazon,
<http://aws.amazon.com/documentation/autoscaling/> 12 March 2013

[23] ObjectWeb Consortium, "RUBiS: Rice University Bidding System,"
2003, <http://rubis.ow2.org/> 12 March 2013.

[24] J. Šín, “Production Control Optimization in SaaS,” Master's Thesis,
CTU, Faculty of Electrical Engineering and University in Stavanger,
Department of Electrical and Computer Engineering, Supervisors J.
Šedivý and C. Rong, Prague, 20 December 2011.

[25] K. Ramachandran, H. Lutfiyya, and M. Perry, “Decentralized
approach to resource availability prediction using group availability
in a P2P desktop grid,” Future Generation Computer Systems 28
(2012), pp. 854–860, doi: 10.1109/CCGRID.2010.54.

[26] E. Keogh, “A Decade of Progress in Indexing and Mining Large
Time Series Databases,” in Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment, 14
September 2006.

[27] M. Babka, “Photovoltaic power plant output prediciton,” Bachelor's
Thesis, CTU, Faculty of Electrical Engineering, Supervisor P.
Kordík, Prague, 1 May 2011.

[28] J. Brutlag, “Aberrant behavior detection in time series for network
monitoring,” in Proceedings of the 14th USENIX conference on
System administration, 2000, pp. 139-146.

[29] P.S. Kalekar, “Time series forecasting using Holt-Winters
exponential smoothing,” Kanwal Rekhi School of Information
Technology, 6 December 2004.

[30] R.J. Hyndman, “Hyndsight - Forecast estimation, evaluation and
transformation,” 10 November 2010
<http://robjhyndman.com/hyndsight/forecastmse/> 12 March 2013.

[31] R Development Core Team “R: A language and environment for
statistical computing,” R Foundation for Statistical
Computing,Vienna, Austria, ISBN 3-900051-07-0 (2010),
<http://www.R-project.org> 12 March 2013.

[32] R.J. Hyndman, “forecast: Forecasting functions for time series,” R
package version 4.0, 2011, <http://CRAN.R-
project.org/package=forecast> 12 March 2013.

[33] M. Lundholm, “Introduction to R's time series facilities,” ver. 1.3, 22
September 2011,
<http://people.su.se/~lundh/reproduce/introduction_ts.pdf> 12 March
2013.

[34] R.J. Hyndman, „CRAN Task View: Time Series Analysis,“ 10 March
2013, <http://cran.r-project.org/web/views/TimeSeries.html> 12
March 2013.

163

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] A.I. McLeod, H. Yu, and E. Mahdi, „Time Series Analysis in R,“
Handbook of Statistics, Volume 30, Elsevier, 27 July 2011,
<http://www.stats.uwo.ca/faculty/aim/tsar/tsar.pdf> 12 March 2013.

[36] R Development Core Team “R Data Import/Export.” R Foundation
for Statistical Computing,Vienna, Austria, ver. 2.15.3, 1 March 2013,
ISBN 3-900051-10-0, <http://www.R-project.org> 12 March 2013.

[37] G. Grothendieck, “Time series in half hourly intervals- how do i do
it?” R-SIG-Finance news group, 27 Septemper 2010, <
https://stat.ethz.ch/pipermail/r-sig-finance/2010q3/006729.html> 12
March 2013.

[38] A. Coghlan, “Little Book of R for Time Series,” 2010, <http://a-little-
book-of-r-for-time-series.readthedocs.org/en/latest/> 12 March 2013.

[39] R.J. Hyndman and G. Athanasopoulos, “Forecasting: principles and
practice, chapter 8/9 Seasonal ARIMA models,” online textbook,
March 2012, <http://otexts.com/fpp/8/9/> 12 March 2013.

[40] R.J. Hyndman, “Cyclic and seasonal time series,” in Hyndsight, 14
December 2011, <http://robjhyndman.com/hyndsight/cyclicts/> 12
March 2013.

[41] S.F. Crone, “Forecasting with Artificial Neural Networks,” Tutorial
at the 2005 IEEE Summer School in Computational Intelligence
EVIC'05, Santiago, Chile, 15 December 2005, <http://www.neural-
forecasting.com/tutorials.htm> 12 March 2013.

[42] NIST/SEMATECH, „Chapter 6.4. Introduction to Time Series
Analysis,“ in e-Handbook of Statistical Methods, created 1 June
2003, updated 1 April 2012,
<http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm>
12 March 2013.

[43] H.B.Nielsen, „Non-Stationary Time Series and Unit Root Tests,“
Lecture for Econometrics II, Department of Economics, University
of Copenhagen, 2005,
<http://www.econ.ku.dk/metrics/Econometrics2_05_II/Slides/08_unit
roottests_2pp.pdf> 12 March 2013.

[44] K. Bhattach, M. Stigler, and J.C. Frain, “Which one is better?”
Discussion in RMetrics, 1 Janueary 2010,

<http://r.789695.n4.nabble.com/Which-one-is-better-td991742.html>
12 March 2013.

[45] R.F. Nau, „Seasonal ARIMA models,“ Course notes for Decision 411
Forecasting, Fuqua School of Business, Duke University, 16 May
2005, <http://people.duke.edu/~rnau/seasarim.htm> 12 March 2013.

[46] „Chapter 4: Seasonal Models,“ in STAT 510 - Applied Time Series
Analysis, online course at Department of Statistics, Eberly College of
Science, Pennsylvania State University, 2013, <
https://onlinecourses.science.psu.edu/stat510/?q=book/export/html/50
> 12 March 2013.

[47] R.J. Hyndman, “Forecasting with long seasonal periods,” in
Hyndsight, 29 September 2010, <http://robjhyndman.com/hyndsight/
longseasonality/> 12 March 2013.

[48] R Development Core Team “arima0: ARIMA Modelling of Time
Series – Preliminary Version” in R-Documentation, R Foundation for
Statistical Computing,Vienna, Austria, 2010, ISBN 3-900051-07-0,
<http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/arima0.html> 12 March 2013.

[49] “Multiprocessor scheduling,” in Wikipedia: the free encyclopedia,
San Francisco (CA): Wikimedia Foundation, 12 March 2012 ,
<http://en.wikipedia.org/wiki/Multiprocessor_scheduling> 19 March
2012.

[50] T. Groves, J. Knockel, and E. Schulte, “BFS vs. CFS - Scheduler
Comparison,” 11 December 2011 <
http://slimjim.cs.unm.edu/~eschulte/data/bfs-v-cfs_groves-knockel-
schulte.pdf > 11 May 2012.

[51] M. Gusev and S. Ristov, “The Optimal Resource Allocation Among
Virtual Machines in Cloud Computing,” in CLOUD COMPUTING
2012: The Third International Conference on Cloud Computing,
GRIDs, and Virtualization, IARIA, 22 July 2012, pp. 36-42.

[52] V. Babka, P. Libič, T. Martinec, and P.Tůma, “On The Accuracy of
Cache Sharing Models,” in Proceedings of ICPE 2012, Boston, USA,
ACM, April 2012, pp. 21-32, ISBN 978-1-4503-1202-8.

APPENDIX A – EXPERIMENTAL TIME SERIES AND THEIR

FORECASTS FROM HOLT-WINTERS AND BOX-JENKINS

The next page contains the forecasts of each examined
time series from the best model of exponential smoothing
and ARIMA methods.

The exponential smoothing on in the left half of the
page, ARIMA on the right. The series are, from top to
bottom: oe, bender, lm, real, wn, gaff.

The graphs contain the last week of the time series to
present their character. The blue line then represents the
point forecasts; the orange area is the 80% confidence
band and the yellow area the 95% confidence band.
Overlaid as “o” symbols are the actual data points, which
were recorded during the forecast horizon.

It is not important to read the axes of the graphs, the
scale is 2 days per tick on the x axis and in percent of an
unspecified CPU on y. The character of the time plot and
the response of the forecasting algorithms is important.

164

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Forecasts fr om HoltWinter s

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om ARIMA(5,0,3)(3,0,3)[96] with non−z ero mean

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om HoltWinter s

1204 1206 1208 1210 1212

0
5

10
15

20

Forecasts fr om ARIMA(17,1,5)(3,1,2)[96]

1204 1206 1208 1210 1212

0
5

10
15

20

Forecasts fr om HoltWinter s

1204 1206 1208 1210 1212

0
10

20
30

40
50

60

Forecasts fr om ARIMA(1,1,1)(2,1,1)[96]

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om HoltWinter s

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om ARIMA(12,1,2)(11,0,1)[16]

450 460 470 480 490 500 510

0
10

20
30

40

Forecasts fr om HoltWinter s

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om ARIMA(40,1,2)(2,1,2)[96]

1204 1206 1208 1210 1212

0
10

20
30

40

Forecasts fr om HoltWinter s

1166 1168 1170 1172 1174 1176

0
10

20
30

40

Forecasts fr om ARIMA(19,1,2)(0,1,2)[96]

1166 1168 1170 1172 1174 1176

0
10

20
30

40

165

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

