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Abstract—This document presents ongoing work on creating a 

computing system that can run two types of workloads on a 

private cloud computing cluster, namely web servers and batch 

computing jobs, in a way that would maximize utilization of 

the computing infrastructure. To this end, a queue engine 

called Cloud Gunther has been developed. This application 

improves upon current practices of running batch 

computations in the cloud by integrating control of virtual 

machine provisioning within the job scheduler. For managing 

web server workloads, we present ScaleGuru, which has been 

modeled after Amazon Auto Scaler for easier transition from 

public to private cloud. Both these tools are tested to run over 

the Eucalyptus cloud system. Further research has been done 

in the area of Time Series Forecasting, which enables to 

predict the load of a system based on past observations. Due to 

the periodic nature of the interactive load, predictions can be 

made in the horizon of days with reasonable accuracy. Two 

forecasting models (Holt-Winters exponential smoothing and 

Box-Jenkins autoregressive) have been studied and evaluated 

on six server load time series. The autoscaler and queue engine 

are not yet integrated. Meanwhile, the prediction can be used 

to decide how many servers to turn off at night or as an 

internal component for the autoscaling system. 

Keywords - Cloud Computing; Automatic Scaling; Job 

Scheduling; Real-time Infrastucture; Time Series Forecasting. 

I.  INTRODUCTION 

This paper is an extension of conference article [1]. 
According to Gartner [2], private cloud computing is 

currently at the top of the technology hype; but, its 
popularity is bound to fall due to general disillusionment.  

Why? While the theoretical advantages of cloud 
computing are widely known – private clouds build on the 
foundations of virtualization technology and add automation, 
which should result in savings on administration while 
improving availability. They provide elasticity, which means 
that an application deployed to the cloud can dynamically 
change the amount of resources it uses. Another connected 
term is agility, meaning that the infrastructure can be used 
for multiple purposes depending on current needs. Lastly, the 
cloud should provide self-service, so that the customer can 
provision his infrastructure at will, and pay-per-use, so he 
will pay exactly for what he consumed. 

The problem is that not all of these features are present in 
current products that are advertised as private clouds. 

Specifically, this document will deal with the problem of 
infrastructure agility. 

A private cloud can be used for multiple tasks, which all 
draw resources from a common pool. This heterogenous load 
can basically be broken down into two parts, interactive 
processes and batch processes. An example of the first are 
web applications, which are probably the major way of 
interactive remote computer use nowadays, the second could 
be related to scientific computations or, in the corporate 
world, data mining. 

This division was chosen because of different service 
level measures used in both the fields. While web servers 
need to be running all the time and have response times in 
seconds, in batch job scheduling, the task deadlines are 
generally in units ranging from tens of minutes to days. This 
allows a much higher amount of flexibility in allocating 
resources to these kinds of workloads. In other words, while 
resources for interactive workloads need to always be 
provisioned in at least the amount required by the offered 
load, a job scheduler can decide on when and where to run 
tasks that are in its queue. 

 

 
Figure 1.  Daily load graph of an e-business website [3] 

When building a data center, which of course includes 
private clouds, the investor will probably want to ensure that 
it is utilized as much as possible. The private cloud can help 
achieve that, but not when the entire load is interactive. This 
is due to the fact that interactive load depends on user 
activity, which varies throughout the day, as seen in 
Figure 1. 

In our opinion, the only way to increase the utilization of 
a private cloud is to introduce non-interactive tasks that will 
fill in the white parts of the graph, i.e., capacity left unused 
by interactive traffic (which of course needs to have priority 
over batch jobs). 
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HPC (High Performance Computing) tasks are 
traditionally the domain of grid computing. Lately, however, 
they also began to find their way into the cloud. Examples 
may be Google’s data mining efforts in their private cloud or 
Amazon’s Elastic MapReduce public service [4]. The grid 
also has the disadvantage that it is only usable for batch and 
parallel jobs, not interactive use. 

Currently, there is not much support for running of batch 
jobs on private clouds. The well-known scheduling engines 
Condor [5] and SGE (Sun Grid engine) [6] both claim 
Amazon EC2 (Elastic Compute Cloud) [7] compatibility, 
they however cannot control the cloud directly, they only use 
resources provisioned by other means (See Section II.). 
(SGE seems to be able to control cloud instances in a 
commercial fork by Univa, though [8].) 

That is why the Cloud Gunther project was started. It is a 
web application that can run batch parallel and 
pseudoparallel jobs on the Eucalyptus private cloud [9]. The 
program does not only run tasks from its queue; it can also 
manage the VM (virtual machine) instances the tasks are to 
be run on. 

What the application currently lacks is support for 
advanced queuing schemes (only Priority FCFS (First Come 
First Served) has been implemented). Further work will 
include integration of a better queuing discipline, which will 
be capable of maximizing utilization of the cloud computing 
cluster by reordering the tasks as to reduce the likelihood of 
one task waiting for others to complete, while there are 
unused resources in the cluster, effectively creating a 
workflow of tasks (see Section V). 

The goal is that the scheduler will be fed with data about 
the likely amount of free resources left on the cluster by 
interactive processes several hours into the future by a 
predictor. This will ensure that the cluster is always fully 
loaded, but the interactive load is never starved for resources. 

Prediction of load or any other quantity in time is studied 
in a branch of statistics called Time Series Analysis and 
Forecasting. This discipline has also been studied as part of 
this project and first results are presented in this paper. 

This document has five sections. After Section I, 
Introduction, comes Section II, Related Work, which will 
present the state of the art in the area of grid schedulers and 
similar cloud systems. Section III, Cloud Technology, 
summarizes progress done in cloud research at the Dept. of 
Cybernetics, mainly on the ScaleGuru autoscaler and the 
Cloud Gunther job scheduler. Section IV, Time Series, deals 
with the possibilities for load prediction and evaluates two 
forecasting methods on server load data. Section V, Future 
Work, outlines the plans for expansion of the scheduler, 
mainly to accommodate heterogenous load on the cloud 
computing cluster. Section VI, Conclusion, ends the paper. 

II. RELATED WORK 

As already stated, the most notable job control engines in 
use nowadays are probably SGE [6] and Condor [5].  These 
were developed for clusters and thus lack the support of 
dynamic allocation and deallocation of resources in cloud 
environments. 

There are tools that can allocate a complete cluster for 
these engines, for example StarCluster for SGE [10]. The 
drawback of this solution is that the management of the 
cloud is split in two parts – the job scheduler, which 
manages the instances currently made available to it (in an 
optimal fashion, due to the experience in the grid computing 
field), and the tool for provisioning the instances, which is 
mostly manually controlled. 

This is well illustrated in an article on Pandemic 
Influenza Simulation on Condor [11]. The authors have 
written a web application, which would provision computing 
resources from the Amazon cloud and add them to the 
Condor resource pool. The job scheduler could then run 
tasks on them. The decision on the number of instances was 
however left to the users. 

A similar approach is used in the SciCumulus workflow 
management engine, which features adaptive cloud-aware 
scheduling [12]. The scheduler can react to the dynamic 
environment of the cloud, in which instances can be 
randomly terminated or started, but does not regulate their 
count by itself. 

The Cloud Gunther does not have this drawback, as it 
integrates job scheduling with instance provisioning. This 
should guarantee that there is no unused time between the 
provisioning of a compute resource and its utilization by a 
task, and that the instances are terminated immediately when 
they are no longer needed. 

A direct competitor to Cloud Gunther is Cloud Scheduler 
[13]. From the website, it seems to be a plug-in for Condor, 
which can manage VM provisioning for it. Similar to Cloud 
Gunther, it is fairly new and only features FCFS queuing. 

An older project of this sort is Nephele [14], which 
focuses on real-time transfers of data streams between jobs 
that form a workflow. It provisions different-sized instances 
for each phase of the workflow. In this system, the number 
and type of machines in a job are defined upfront and all 
instances involved in a step must run at once, so there is little 
space for optimization in the area of resource availability and 
utilization. 

Aside from cluster-oriented tools, desktop grid systems 
are also reaching into the area of clouds. For example, the 
Aneka platform [15] can combine resources from statically 
allocated servers, unused desktop computers and Amazon 
Spot instances. It can provision the cloud instances when 
they are needed to satisfy job deadlines. Certainly, this 
system seems more mature than Cloud Gunther and has 
reached commercial availability. 

None of these systems deals with the issue of resource 
availability in private clouds and fully enjoys the benefits of 
the illusion of infinite supply. To the best of our knowledge, 
no one has yet dealt with the problem of maximizing 
utilization of a cloud environment that is not fully dedicated 
to HPC and where batch jobs would have the status of “filler 
traffic.” 

As to time series forecasting, there are efforts to use it on 
Grids, such as the Network Weather Service (NWS) 
referenced in a paper by Yang, Foster, and Schopf [16], who 
describe a better forecasting method for it. The method 
seems much simpler than the ones being applied in this 
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article. The NWS project seems to be no longer active, 
though. 

The problems on grids are different from those in clouds. 
In clouds, we discuss automatic scaling of web servers on 
identical hardware and data center utilization, whereas in 
grids, the main problems are prediction of task execution 
times on heterogenous machines, as described by Iverson, 
Özgüner, and Potter in [17], and queue wait times and job 
interarrival times, discussed by Li in [18].  

III. CLOUD TECHNOLOGY 

A. Eucalyptus 

Eucalyptus [9] is the cloud platform that is used for 
experiments at the Dept. of Cybernetics. It is an open-source 
implementation of the Amazon EC2 industry standard API 
(Application Programming Interface) [7]. It started as a 
research project at the University of California and evolved 
to a commercial product.  

 
Figure 2.  Eucalyptus architecture [9] 

It is a distributed system consisting of five components. 
Those are the Node Controller (NC), which is responsible of 
running virtual machines from images obtained from the 
Walrus (Amazon S3 (Simple Storage Service) 
implementation). Networking for several NCs is managed by 
a Cluster Controller (CC), and the Cloud Controller (CLC) 
exports all external APIs and manages the cloud’s 
operations. The last component is the Storage Controller 
(SC), which exports network volumes, emulating the 
Amazon EBS (Elastic Block Store) service. The architecture 
can be seen in Figure 2. 

Our Eucalyptus setup consists of a server that hosts the 
CLC, SC and Walrus components and is dedicated to cloud 
experiments. The server manages 20 8-core Xeon 
workstations, which are installed in two labs and 1/4 of their 
capacity can be used for running VM instances through 
Eucalyptus NCs. A second server, which is primarily used to 
provide login and file services to students and is physically 
closer to the labs, is used to host Eucalyptus CC. 

The cloud is used for several research projects at the 
Cloud Computing Center research group [19]. Those are: 

• Automatic deployment to PaaS (Platform as a 
Service), a web application capable of automatic 

deployment of popular CMS (Content Management 
Systems) to PaaS. [20] 

• ScaleGuru, an add-on for private clouds, which adds 
automatic scaling and load balancing support for 
web applications. [21] 

• Cloud Gunther, a web application that manages a 
queue of batch computational jobs and runs them on 
Amazon EC2 compatible clouds. 

Aside from this installation of Eucalyptus, we also have 
experience deploying the system in a corporate environment. 
An evaluation has been carried out in cooperation with the 
Czech company Centrum. The project validated the 
possibility of deploying one of their production applications 
as a machine image and scaling the number of instances of 
this image depending on current demand. A hardware load-
balancer appliance from A10 Networks was used in the 
experiment and the number of instances was controlled 
manually as private infrastructure clouds generally lack the 
autoscaling capabilities of public clouds.  

B. ScaleGuru 

The removal of this shortcoming is the target of the 
ScaleGuru project [21], an autoscaling system that can be 
deployed in a virtual machine in a private IaaS cloud and is 
able to automatically manage instances of other applications 
on it.  

The software is written in Node.JS with the MongoDB 
database. It is closely modeled after Amazon Auto Scaling 
[22], so that users familiar with its structure will easily learn 
to use ScaleGuru. Therefore, its data model contains 
Autoscaling Groups, which place lower and upper limits on 
the number of started instances. Launch Configs then specify 
the image of the managed application and its parameters. 
Load Balancers manage the hostnames of the managed 
services and balanced ports. Lastly, there are Autoscaling 
Policies and Autoscaling Alarms, which together form the 
scaling rules such as: “If the CPU Utilization was over 80% 
for 2 minutes, launch 1 more instance.” Using multiple rules, 
it is possible to create a dynamic response curve. 

The program consists of four parts, which are easily 
replaceable. The Application Core implements the 
autoscaling logic. It uses the Monitoring component to 
provide input. Currently it supports collection of CPU 
utilization, disk and network throughput using an agent on 
the managed instances. This has the advantage that it is not 
hypervisor-dependent, but requires the user’s cloud API key 
so that the agent can be injected. If implemented as a service 
on the private cloud, this is not a problem and has the 
advantage that the user can sign in to the autoscaler using 
these keys.  

The scaling decisions are implemented through the Cloud 
Controller component, which supports Amazon EC2 
compatible clouds and was tested on Eucalyptus. It can track 
the state of launched instances and can retry launching on 
failure. All errors are logged to the web interface. Launched 
instances are added to Nginx configuration through the Load 
Balancer Controller. 
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Figure 3.  ScaleGuru evaluation [21] 

The software was evaluated in a lab setup with 
Wordpress as the managed application. The PHP version of 
RUBiS [23], which is a web application created as a 
benchmarking etalon, was also tried, but it proved to be ill 
suited for a cloud scaling experiment, as the design of the 
system is 10 years old and is, contrary to Wordpress, not 
prepared for horizontal scaling. 

A graph from the benchmarking scenario is on Figure 3. 
In blue is the number of simulated users, who are alternating 
between thinking (0.5 - 2 s) and waiting for server response. 
The peak load was about 100 requests per second. In red is 
the number of instances  single CPU and 512 MB RAM on 
an Intel(R) Core(TM) i3-2100T CPU @ 2.50GHz (2 cores, 4 
threads) machine). In green are the response times at the load 
tester. A drawback of the software load balancer can be seen 
on the failed connection count (black), which spikes for 
several hundred milliseconds every time the balancer 
configuration is reloaded. HAProxy was also tried but had 
the same problem. The x axis is in milliseconds, y in units of 
instances and percents of failed connections. 

The ScaleGuru application has a modern looking web 
interface created using Twitter Bootstrap. The monitoring 
panel, shown on Figure 5, has the number of running 
instances in green, pending in orange and the red line is 
average CPU utilization across the autoscaling group. 
Machine access using a query interface is also possible, it is 
however currently not Amazon-compatible.  

What is important in the context of this paper is that all 
historical performance data on all autoscaling groups are 
saved in the database, which enables later analysis using 
time series methods. 

Therefore, the autoscaler will provide input for further 
experiments on the level of particular applications and will 
create non-static load in the context of the whole private 
cloud. A next version of the system could also use the output 

of the predictor as input for its autoscaling decisions and thus 
be able to provision capacity for a spike (of a predictable 
daily or weekly nature), before an actual overload happens. 

As far as we know, it is the only piece of autoscaling 
software, which is installable on a private cloud and fairly 
universal, and, therefore, suitable for experiments. All other 
solutions we found were either offered as remotely as 
Software as a Service or were simple scripts created for a 
particular project. 

C. Cloud Gunther 

While the ScaleGuru project will also be instrumental for 
further research, the Cloud Gunther and possibilities for its 
further development are the main topic of this article.  
 

 
Figure 4.  Communication scheme in Cloud Gunther [24] 

The application is written in the Ruby on Rails 
framework and offers both interactive and REST 
(Representational State Transfer) access. It depends on 
Apache with mod_passenger, MySQL and RabbitMQ for 
operation. It can control multiple Amazon EC2 [20] 
compatible clouds. The queuing logic resides outside the 
MVC (Model, View, Controller) scheme of Rails, but shares 
database access with it. The communication scheme is on 
Figure 4. 
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Figure 5.  ScaleGuru web interface [21] 

The Scheduler daemon contains the Priority FCFS 
queuing discipline and is responsible for launching instances 
and submitting their job details to the message broker. The 
Agent on the instance then retrieves these messages and 
launches the specified user algorithm with the right 
parameters. It is capable of running multiple jobs of the same 
type from the same user, thus saving the overhead of 
instance setup and teardown. 

The two other daemons are responsible for collecting 
messages from the queue, which are sent by the instances. 
The Instance Service serves to terminate instances, which 
have run out of jobs to execute; the Outputs daemon collects 
standard and error outputs of user programs captured by the 
launching Agent. A Monitoring daemon is yet to be 
implemented. 

The web application itself fulfills the requirement of 
multitenancy by providing standard user login capabilities. 
The users can also be categorized into groups, which have 
different priorities in the scheduler. 

The cloud engine credentials are shared for each cloud 
(for simpler cloud access via API and instance management 
via SSH (Secure Shell)). 

Each cloud engine has associated images for different 
tasks, e.g., image for Ruby algorithms, image for Java, etc. 
The images are available to all users, however when 
launched, each user will get his own instance. 

The users can define their algorithm’s requirements, i.e., 
which image the algorithm runs on and what instance size it 
needs. There is also support for management of different 
versions of the same algorithm. They may only differ in 
command line parameters, or each of them may have a 

binary program attached to it, which will be uploaded to the 
instance before execution. 

Individual computing tasks are then defined on top of the 
algorithms. The task consists of input for the algorithm, 
which is interpolated into its command line with the use of 
macros, as well as the instance index and total count of 
instances requested. These values are used by pseudoparallel 
algorithms to identify the portion of input data to operate on, 
and by parallel algorithms for directing communication in 
message passing systems.  

 
Figure 6.  Cloud Gunther – part of the New Task screen [24] 

As one can see in Figure 6, the system is ready for 
private clouds. It can extract the amount of free resources 
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from Eucalyptus and the scheduler takes it into account when 
launching new instances. 

The Cloud Gunther has been tested on several real 
workloads from other scientists. Those were production 
planning optimization, recognition of patterns in images and 
a multiagent simulation. They represented a parameter sweep 
workflow, a pseudoparallel task and a parallel task, 
respectively. 

VM images for running the tasks were prepared in 
cooperation with the users. Usability was verified by having 
the users set up algorithm descriptions in the web interface. 
The program then successfully provisioned the desired 
number of VM instances, executed the algorithms on them, 
collected the results and terminated the instances. 

The main drawback, from our point of view, is that when 
there are jobs in the queue, the program consumes all 
resources on the cluster.  

This is not a problem in the experimental setting, but in a 
production environment, which would be primarily used for 
interactive traffic and would attempt to exploit the agility of 
cloud infrastructure to run batch jobs as well, this would be 
unacceptable. 

In such a setting, the interactive traffic needs to have 
absolute priority. For example, if there was a need to 
increase the number of web servers due to a spike in 
demand, then in the current state, the capacity would be 
blocked by Cloud Gunther until some of its tasks finished. It 
would be possible to terminate them, but that would cause 
loss of hours of work. A proactive solution to the 
heterogenous load situation is needed. 

IV. TIME SERIES 

The sought solution will deal with estimation of the 
amount of interactive load in time. The interactive traffic 
needs to have priority over the batch jobs. Therefore, the 
autoscaler will record the histogram of the number of 
instances that it is managing. From this histogram, data on 
daily, weekly and monthly usage patterns of the web servers 
may be extracted and used to set the amount of free 
resources for Cloud Gunther.  

A similar problem exists in desktop grids. 
Ramachandran, in article [25], demonstrates the collection of 
availability data from a cluster of desktop machines and 
presents a simulation of predictive scheduling using this 
data. The abstraction of the cloud will shield away the 
availability of particular machines or their groups, the only 
measured quantity will be the amount of available VM slots 
of a certain size. 

With a predictor, instead of seeing only the current 
amount of free resources in the cloud, the batch job 
scheduler could be able to ask: “May I allocate 10 large 
instances to a parallel job for the next 4 hours with 80% 
probability of it not being killed?” 

A solution to this question exists in statistics, in a 
discipline called Time Series Analysis. A good tutorial is 
written by Keogh [26].  It has very wide coverage, mainly on 
filtering, similarity measures, Dynamic Time Warping and 
lower bounds on similarity. However, the solution was found 
elsewhere, although clustering on particular days and 

offering the next day after the best match as forecast is also a 
valid approach and was evaluated as better than the two 
others presented here in the bachelor thesis of Babka [27] on 
photovoltaic power plant output prediction.  

A. Holt-Winters exponential smoothing 

Due to the fact that the ScaleGuru autoscaler was not yet 
tested in a real environment, it was decided to obtain 
experimental data from single servers of a web hosting 
company. These are monitored by Collectd and time series 
data stored in RRDTool’s Round Robin Databases. While 
examining the documentation for export possibilities, a 
function by Brutlag [28] was discovered, which uses Holt-
Winters exponential smoothing to predict the time series one 
step ahead and then raise an alarm if the real value is too 
different from the prediction. This allows to automatically 
detect spikes in server of network activity. 

A good description of exponential smoothing methods 
including mathematical notation is written by Kalekar [29]. 
Simple exponential smoothing is similar to moving average. 
It has a single parameter, α, which controls the weight of the 
current observation versus the historical value and a single 
memory that holds the average. It is good for time series that 
do not exhibit trend or seasonality, and its prediction is a 
straight line in the mean. 

Double or Holt’s exponential smoothing takes trend into 
account. It has 2 parameters, α and β, and a memory of 2, the 
mean and the slope. The slope is calculated as an 
exponentially smoothed difference between the current value 
and predicted mean. Predictions from this model are a 
straight line from the mean under the average slope.  

Lastly, Triple or Holt-Winters exponential smoothing 
takes seasonality into account.  It has 3 parameters, α, β and 
γ and a memory of 2 plus the number of observations per 
period. The seasonal memory array holds the factor or 
addend (depending on whether multiplicative or additive 
seasonality is used) of each observation point in the season 
to the exponentially smoothed value, and is itself updated 
through exponential smoothing. The prediction from this 
model looks like the average season repeated over in time, 
starting at the average value and “stair-stepping” with the 
trend. 

Estimation of the parameters can either be done by hand 
and evaluated using MSE (Mean Squared Error) or MAPE 
(Mean Average Percentage Error) on the training data (a 
quick explanation of their significance is in Hyndman [30]), 
or it can be left to statistics software, which can do fitting by 
least square error. For the experiments in this paper, the R 
statistics package [31] was used, particularly the forecast 
package by Hyndman [32]. The RRDTool implementation is 
not suitable as it only forecasts one point into the future for 
spike detection. 

An introduction to time series in R, including loading of 
data, creating time series objects, extracting subsets, 
performing lags and differences, fitting linear models, and 
using the zoo library is written by Lundholm [33]. A 
summary of all available time series functions is in the time 
series task view [34], while a more mathematical view of the 
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capabilities including citations of the authors of particular 
packages is in McLeod, Yu and Mahdi [35]. 

B. Experiments 

1) Loading of data 
The evaluation of the method was done on six time series 

from servers running different kinds of load. The data was 
first extracted from RRDTool and pushed into MySQL by a 
bash script, which was being run every day to get data at the 
desired resolution. The RRD format automatically 
aggregates data points using maximum, minimum and 
average, after they overflow the configured age boundaries. 
Those were (in files created by Collectd) 10 hours in 30 
second intervals, 24 h in 60 s, 8 days in 8 minutes, 1 month 
in 37 min, and 1 year in 7.3 hours. 

The chosen initial resolution for experiments was 15 
minutes, as the aim is to forecast a) for IaaS clouds, where 
instance start-up takes about 5 minutes, plus user 
initialization, and accounting is done in hours, and b) for 
batch jobs, where the user will probably give task durations 
in hours or their fractions.  Later, it will be evident that this 
resolution is appropriate for forecasts with the horizon of 
days, which was the goal of the selection. 

The data was then loaded into R (using manual [36]). 
There was a total of 8159 observations or 2.8 months of data. 
Time series objects (ts) were created. Their drawback is that 
observations need to be strictly periodic and the x axis is 
indexed only by numbers. Any missing values have been 
interpolated (there was no larger consecutive missing 
interval). For uneven observation intervals, the “zoo” library 
may be used, which indexes observations with time stamps 
[37]. It was not used here, so for clarification: The 
measurement interval starts with time stamp 1128, which 
was November 28, and then the count increases every day by 
1 irrespective of the calendar as the seasonal frequency was 
set to 1 day. Therefore, the interval contains Christmas at 
about 1/3, and it ends on Thursday. 
2) Time series diagnostics 

The servers included in the experiments have code names 
oe, bender, lm, real, wn, gaff. In the next paragraph follow 
their designations and the result of examinations of the time 
plots of their CPU load time series. This series was also 
filtered by simple moving average (SMA) with window set 
to 1 day to obtain deseasonalized trend. The time plots of the 
series along with best forecasts from both methods are 
attached in Appendix A. 
 

• oe is a large web shop. It has a clear and predictable 
daily curve with one weekday higher and weekend 
and holidays lower (incl. Christmas). Trend is 
stationary (except Christmas). 

• bender is shared PHP webhosting. It has a visible 
daily curve with occasional spikes. First month 
shows a decreasing trend, and then it stabilizes. 

• lm is a discount server. The low user traffic creates a 
noisy background load that is dominated by spikes 
of periodic updates. Trend alternates irregularly 
between two levels; the duration is on the scale of 
weeks. 

• real is a map overlay service, not much used but 
CPU intensive (as one map display operation fetches 
many objects in separate requests). The time plot is a 
collection of spikes, more frequent during day than 
night. There are 2 stationary levels, where the first 
month the load was higher, and then the site was 
optimized so it went lower. 

• wn is PHP hosting of web shops. It has low traffic 
with a visible daily curve. There is a slow linear 
additive trend after the first month. 

• gaff is a web shop aggregator and search engine. Its 
daily curve is inverted with users creating 
background load in the day and a period of high 
activity due to batch imports during the night. Trend 
is stationary. 
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Figure 7.  oe series decomposition, from top to bottom: overall time plot, 

trend, seasonal and random compoment  

As suggested in the tutorial by Coghlan [38], which also 
covers installation of R and packages, as well as Holt-
Winters and ARIMA models, the time series were run 
through seasonal decomposition. For oe, bender and wn, the 
daily curve was as expected; with gaff, the nightly spike also 
showed nicely. lm and real surprisingly also show daily 
seasonality as the spikes are apparently due to periodic jobs. 
Decomposition of the first month of oe is in Figure 7. We 
can clearly see the repeated daily curve and a change in trend 
during Christmas. 

Another tool to diagnose time series is the seasonal 
subseries plot. When applied to the test data, only oe shows 
clean seasonal behavior. In the bender series, noise may be 
more dominant than seasonality. The lm series seasonal 
subseries is also not clearly visible. real clearly shows that 
traffic on certain hours is higher. For wn, the upward trend is 
visible in each hourly subseries. gaff shows that the duration 
of the batch jobs is not always the same so there are large 
spikes in the morning hours, mainly at the start of the 
measurement interval. This plot is in Figure 8. It contains 96 
subseries because of the 15-min frequency, index 0 is 
midnight.  
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Figure 8.  gaff series seasonal subseries plot 

3) Model fitting and evaluation 
A modified script from Hyndman and Athanasopoulos 

[39] was used for model fitting and validation. The algorithm 
first shortens the time series by 3 days at the end and fits a 
model on it. Then forecasts are created for 6, 24, and 96 hour 
horizons and compared with the withheld validation data. 
The result is a table of standard model efficiency measures 
for each series and interval (“in” meaning in-sample). One 
more measure was defined in accordance with the goal 
specified at the beginning of this section – how many 
validation data points missed the computed 80% prediction 
intervals in the 3-day forecast (that is 288 points in total).  

As to the forecast error measures, the following ones are 
used: The Mean Error (ME) is a measure of error in absolute 
scale; it is signed, so it can be used to see a bias in forecasts, 
but cannot be used for comparison of time series with 
different scale. 

The Root Mean Squared Error (RMSE) measures 
squared error and is thus more sensitive to outliers. It is best 

used when the scale of errors is significant. The square root 
operation returns the dimension to that of the original data. 

Mean Absolute Error (MAE) is similar to ME, but 
ignores the direction of the error by using absolute values. 

Mean Percentage Error (MPE) removes the influence of 
scale from ME by dividing error by the value, 

Mean Absolute Percentage Error (MAPE) does the same 
to MPE. It is probably the best measure for human 
evaluation. 

The Mean Absolute Scaled Error (MASE) is different 
from the others in that it does not compare the error to the 
original data, but to the error of the naïve “copy the previous 
value” forecast method. 

For one-step-ahead forecasts, MASE values below one 
indicate that the evaluated method is better. For larger 
horizons, this is not true, as the naïve method has more 
information than the one under evaluation (i.e., always the 
previous data point). Normally, ME, RMSE, and MAE have 
the dimension of the original data, MPE and MAPE are in 

TABLE I.  EVALUATION OF THE HOLT-WINTERS MODEL ON OUT-OF-SAMPLE DATA 

 ME RMSE MAE MPE MAPE MASE miss  ME RMSE MAE MPE MAPE MASE miss 

oe in 0.003 1.109 0.798 2.776 17.91 1.036  rea1 in -0.03 4.836 3.029 -18.2 38.47 0.398  
oe 6 0.691 1.110 0.829 6.111 7.623 1.076  rea1 6 -1.54 7.206 4.878 -68.3 86.06 0.641  
oe 24 0.500 2.461 1.985 -30.4 62.34 2.575  rea1 24 -0.28 6.843 4.770 -50.2 71.75 0.627  
oe 96 1.843 4.238 3.223 -26.1 75.49 4.181 2 rea1 96 -0.31 7.004 4.916 -56.3 77.77 0.646 84 
bend in -0.06 1.699 1.176 -7.38 23.45 1.110  rea2 in -0.11 7.515 5.973 -68.4 95.76 0.785  
bend 6 0.015 1.280 1.068 -2.11 14.47 1.009  rea2 6 -1.78 6.866 5.485 -105 122.1 0.721  
bend 24 -0.36 1.436 1.200 -17.9 27.39 1.133  rea2 24 -0.28 8.304 6.619 -88.9 115.6 0.870  
bend 96 -1.33 2.385 1.934 -35.7 41.42 1.826 2 rea2 96 -0.30 8.387 6.713 -95.1 122.0 0.883 44 
lm1 in -0.35 5.408 3.832 -10.3 31.63 0.801  wn in -0.01 2.469 1.600 -15.2 43.31 1.047  
lm1 6 3.408 4.839 3.713 18.09 20.46 0.777  wn 6 -0.35 1.880 1.553 -11.4 24.44 1.016  
lm1 24 -12.9 17.78 14.81 -119 129.4 3.099  wn 24 -1.42 3.617 2.980 -74.8 87.18 1.950  
lm1 96 -27.2 32.23 27.86 -248 251.4 5.830 97 wn 96 -1.29 5.151 3.995 -86.4 102.8 2.614 0 
lm2 in 0.002 5.638 3.856 -13.5 31.52 0.806  gaff in -0.01 3.562 2.039 -8.90 57.79 1.158  
lm2 6 0.639 5.667 4.625 -6.41 28.14 0.967  gaff 6 0.191 7.099 6.449 63.97 465.5 3.663  
lm2 24 -1.04 6.939 5.104 -24.7 40.55 1.068  gaff 24 -0.01 6.835 4.308 -8.97 189.3 2.447  
lm2 96 -1.04 7.666 5.624 -29.4 45.83 1.176 14 gaff 96 0.622 5.927 4.002 5.364 157.7 2.274 4 
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percent and MASE is dimensionless. Here, all values are 
dimensionless as the input data is a time series of CPU load 
percentages. 

The result can be seen in Table I.  For lm, two result sets 
are included. The first is from a triple exponential smoothing 
model, but as there was a spike at the end of the fitting data, 
the function predicted an upward trend while the data was in 
fact stationary. Simple exponential smoothing was then tried, 
which gave lower error measures and fewer points outside 
confidence intervals. 

A similar problem existed with real. The spikes predicted 
by the seasonal model missed the actual traffic spikes most 
of the time. It seems that the series is not seasonal after all, 
but rather cyclic. The cause for the spikes is random arrivals 
of requests, as per queuing theory. Cyclicity is discussed in 
Hyndman [40]. The important outcome is that exponential 
smoothing models cannot capture it, while autoregressive 
models can. 

The second model for real in the table is double 
exponential smoothing, which, interestingly, shows higher 
error measures, but lower number of missed observations. 
The cause is that the confidence intervals are computed 
based on the variance of in-sample errors. Therefore, the 
closer the error magnitude is between in-sample and out-of 
sample measurement, the more accurate the model is in the 
“misses” measure. 

Automatic model fitting also failed for gaff. The 
transition from the nightly spike to daily traffic caused the 
predicted values to be below zero. A manual adjustment of 
Alpha parameter was necessary. Computed α=0.22, set 
α=0.69. The problem probably is that the algorithm 
optimizes in-sample squared error (MSE) and thus it 
preferred a slower reaction, which mostly missed the spike. 
The computed trend from this mean was therefore strongly 
negative. A quicker reaction to the change in mean improved 
the model, but even then, series with abrupt changes in mean 
are not good for the Holt-Winters model. 

From Table I., we can see that with the Holt-Winters 
method, some series are predicted well even for the 3 day 
interval (bender, lm method 2), for some, the forecast is 
reasonably accurate for the first 6 hour interval and then 
deteriorates (oe, lm method 1, wn), for others it is inaccurate 
(real, gaff). 

In addition, when the error measures for in-sample data 
are worse than for out-of-sample, it is a sign of overtraining - 
the validation data set was closer to "average" than the 
training data. This is because we were training on a long 
period including Christmas and verifying on a normal week. 
Perhaps shortening the training window would be 
appropriate.  

C. Box-Jenkins / ARIMA models 

The tutorial [38] suggests using autocorrelation plot on 
the residuals of the Holt-Winters model. A significant 
autocorrelation of the residuals means that they have a 
structure to them and do not follow the character of white 
noise. All the models showed significant autocorrelation of 
residuals at both low lags and lags near the period. The 
Ljung-Box test is a more rigorous proof of randomness of a 

time series as its null hypothesis is that a group of 
autocorrelations up to a certain lag is non-significant. It can 
thus ignore a random spike in the ACF. All the models failed 
the test in the first few lags. 
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Figure 9.  Autocorrelogram of residuals of the H-W model on bender 

Having seen autocorrelation plots such as in Figure 9, it 
was decided to move to better models. ARIMA 
(Autoregressive, Integrated, Moving average) models are 
intrinsically based on autocorrelation. They seem to be the 
state of the art in time series modeling and are a standard in 
economic prediction (e.g., [39] is a textbook for business 
schools and MBA).  

Neural network methods were also studied, but, as 
Crone’s presentation, which is also a good source on time 
series decomposition and ARIMA [41], suggests, their 
forecasting power is equal to ARIMA, only the fitting 
method is different. It may be more powerful in that it is 
non-linear and adaptive, but has many degrees of freedom in 
settings and the result is not interpretable. 

As per the NIST Engineering Statistics Handbook [42], 
chapter 6.4.4.4, which is a good practical source on all 
methods discussed here, the autoregressive and moving 
average models were known before, but Box and Jenkins 
have combined them together and created a methodology for 
their use. 

There are three major steps in the methodology: model 
selection based on mainly on examination of 
autocorrelograms (ACF) and partial autocorrelograms 
(PACF), then model estimation, which uses non-linear least 
square fitting and/or maximum likelihood and is best left to 
statistical software, and lastly model validation, which uses 
ACF and PACF of residuals and the Ljung-Box test. 

An autoregressive (AR) model computes the next data 
point as a linear combination of previous ones, where the 
number of lagged values considered is determined by the 
order of the model. The parameters are the mean and the 
coefficients of each lag. They can be computed by linear 
least squares fitting. A model of order greater than one with 
some coefficients negative can exhibit cyclic behavior. 

A moving average (MA) model works with errors. The 
next data point is a linear combination of differences of past 
lags from the moving average, where the number of lags 
considered is the order of the model. Again, each term has a 
parameter that needs to be estimated. The estimation is more 
difficult as the errors cannot be known before the model 

157

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



exists, which calls for an iterative non-linear fitting 
procedure. 

The I in ARIMA stands for integrated, which represents 
the inverse operation to differencing. As the AR and MA 
models assume that the time series is stationary, meaning 
that it has stable location and variance, the difference 
operator can often be used to transform a series to stationary. 
The model is fitted to the transformed series and an inverse 
transform is used on the resulting forecast.  

Other useful transformations are logarithms and power 
transforms, which may help if the variance depends on the 
level.  They are both covered by the Box-Cox transform (see 
[39], chapter 2/4). 

D. Experiments 

1) Model selection 

a) Differencing order 

The prerequisite for ARIMA is that the time series is 
stationary. Manually, stationarity can be detected from the 
time plot. A stationary time series has constant level and 
variance, and may not exhibit trend or seasonality. The two 
last effects should be removed for identification of model 
order, but are covered by ARIMA models with non-zero 
differencing order and SARIMA (Seasonal ARIMA), 
respectively. For series with non-linear trend or 
multiplicative seasonality, the Box-Cox transform should be 

used, but that was not the case with the series studied here. 
Additionally, a non-stationary series will have ACF or PACF 
plots that do not decay to zero. 

The statistical approach to identification of differencing 
order is through unit root tests (see Nielsen [43]). The root 
referred to here is the root of the polynomial function of the 
autoregressive model. If it is near one, any shocks to the 
function will permanently change the level and thus the 
resulting series will not be stationary. The standard test for 
this is Augmented Dickey-Fuller (ADF), which has the null 
hypothesis of unit root. A reversed test is Kwiatkowski-
Phillips-Schmidt-Shin (KPSS), where the null hypothesis is 
stationarity. There is also a class of seasonal unit root tests 
that can help specify the differencing order for SARIMA, 
these are Canova-Hansen (CH) and Osborn-Chui-Smith-
Birchenhall (OCSB). 

In R, there exist functions ndiffs() and nsdiffs(), which 
automatically search for the differencing and seasonal 
differencing order, respectively, by repeatedly using these 
tests and applying differences until the tests pass (for KPSS 
and CH), or stop failing (for ADF and OCSB). The default 
confidence level is 5%. The recommended amount of 
differencing of the experimental time series obtained from 
the tests is in Table II on the next page. Columns lm4 and 
real4 will be explained later. 
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Figure 10.  ACF of oe without and with differencing 

158

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II.  ORDER OF DIFFERENCING BASED ON UNIT ROOT TESTS 

 oe bender lm lm4 real real4 wn gaff 

ADF 0 0 0 0 0 0 0 0 
KPSS 0 1 1 1 1 1 1 0 
OCSB 0 0 0 0 0 0 0 0 
CH 0 0 0 1 0 1 0 0 

 
It is evident that the ADF and KPSS tests did not agree 

with each other with the exception of oe and gaff. According 
to [43], ADF should be considered primary and KPSS 
confirmatory. The same is said by Stigler in discussion [44], 
adding that unit root tests have lower sensitivity than KPSS. 
In the same discussion, Frain says KPSS may be more 
relevant as a test concretely for stationarity (there may be 
non-stationary series without a unit root), if we do not 
assume a unit root based on underlying theory of the time 
series. It was also used by Hyndman in the auto.arima() 
function for iterative model identification. 

According to manual heuristic approaches, such as 
presented by Nau [45], an order of seasonal differencing 
should always be used if there is a visible seasonal pattern. It 
also suggests applying a first difference if the ACF does not 
decay to zero. An example of the impact of first and seasonal 
differencing on stationarity and thus legibility of an ACF 
plot is in Figure 10. 

The ACF and PACF functions on the test data were 
looked at with and without differencing with the result that 
differencing rapidly increases the decay of the ACF function 
on all series except real.  

Moreover, from the ACF of lm and real, it seems there is 
a strong periodicity of 4 hours. These two series will be also 
tested with models of this seasonal frequency and will be 
denoted as lm4 and real4, as in Table II. 

For the purpose of order identification, seasonal and then 
first differences have been taken. It was decided to test if the 
models fitted with this order of differencing, following the 
heuristic approach, are better or worse than those with 
differencing order identified by statistical tests. 

b) Order identification 

Identification of model order was done using heuristic 
techniques from [39], [42], [45], and [46]. After seasonal and 
first differencing is applied in the necessary amount to make 
the time series look stationary to the naked eye, so that its 
autocorrelograms converge to zero, the ACF and PACF 
functions are looked at. The number of the last lag from the 
beginning where PACF is significant specifies the maximum 
reasonable order of the AR term, similarly the last significant 
lag on ACF specifies the MA order. The order of the 
seasonal autoregressive and moving average terms is 
obtained likewise, but looking at lags that are multiplies of 
the seasonal period. 

The observed last significant lags and resulting 
maximum model orders are summed in Table III. Model 
parameters are denoted as ARIMA(p, d, q)(P, D, Q), where p 
is the order of the AR term, d is the amount of differencing 
and q is the order of the MA term. The second parenthesis 
specifies the seasonal model orders.  

TABLE III.  LAST SIGNIFICANT LAGS AND MODEL ORDERS 

 PACF ACF seas. 

PACF 

seas. 

ACF 

estimated maximal 

model parameters 

oe 5 3 11 1 ARIMA(5,1,3)(11,1,1) 
bender 17 4 9 1 ARIMA(17,1,4)(9,1,1) 
lm 15 16 8 1 ARIMA(15,1,16)(8,1,1) 
lm4 9 2 11 ∞ ARIMA(9,1,2)(11,1,0) 
real 1 2 11 1 ARIMA(1,0,2)(11,1,1) 
real4 13 2 11 1 ARIMA(13,1,2)(11,1,1) 
wn 39 3 10 1 ARIMA(39,1,3)(10,1,1) 
gaff 18 2 6 1 ARIMA(18,1,2)(6,1,1) 

 
Looking at the two variants of lm, the expectation is that 

the first will perform better, as the non-seasonal part covers 
the second period of 4 hours. This is not true for real vs. 
real4. 
2) Model estimation 

When trying to fit models with high seasonal order, a 
limitation of the ARIMA implementation in R was found. 
The maximal supported lag is 350, which with a period of 96 
(24 hours * 4 observation per hour) means that the seasonal 
lag is limited to 3. 

Furthermore, the memory requirements of seasonal 
ARIMA seem to be exponential with the number of data 
points. A machine with 1 GB of RAM could not handle the 
2.8 months of data with lag 288. This constraint is not 
documented. The experiment had to move to a machine with 
32 GB RAM, where computing a model with seasonal order 
3 took 7.6 GB RAM, more on subsequent runs as R is a 
garbage collected language. 

For the course of this experiment, the order of the 
seasonal components will be limited to three, as it should be 
sufficient when forecasting for a horizon of about a day. The 
alternatives, which will be examined in further experiments, 
are to reduce the resolution to 1 hour, which will enable lags 
up to 12 days. 

A model of this sort was fitted on oe, and it did not lead 
to a better expression of the weekly curve (at least not by 
visual inspection). With this resolution, it will be however 
possible to use a seasonal period of one week, which should 
be able to capture the day-to-day fluctuations. Similarly, we 
would reduce resolution is we were trying to capture 
monthly or yearly seasonality. 

Another approach, suggested by Hyndman [47], is to 
model the seasonality using a Fourier series and to use non-
seasonal ARIMA on the residuals of that model. This should 
enable fitting on arbitrarily long seasonal data. This may lead 
to overfitting, though, as the character of the time series is 
subject to change over longer time periods. 

For the actual parameter estimation, the Arima() function 
with the model order as parameter can be used. There is 
however a way to automate a part of the identification-
estimation-validation cycle and that is the auto.arima() 
function. This function repeatedly fits models with different 
parameters and then returns the one that has minimal Akaike 
Information Criterion (AIC). This criterion prefers models 
with lower likelihood function and contains a penalization 
for the number of degrees of freedom of the model; 
therefore, it should select the model that best fits the data, 
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but not variations of the same model with superfluous 
parameters. 

The auto.arima() function has two modes depending on 
the “stepwise” parameter (see help(auto.arima) in R). With 
this set to TRUE, it does a greedy local search, which selects 
the best model from previous step and examines its 
neighborhood in the state space given by adding or 
subtracting one to each parameter. It continues, until no 
model in the neighborhood has lower AIC.  

The second mode searches from ARIMA(0,0,0)(0,0,0) 
upwards and based on the description, it should search until 
the ceiling set for each parameter. The actual behavior 
however seems to be that is stops when the last iteration 
examined did not bring any gain. Both search modes are thus 
prone to getting stuck in a local minimum. 

To better specify the models, the auto.arima() function 
was used on each time series with three sets of parameters. 
In the first run, it was started from zero with 
stepwise=FALSE and with ceilings set to the parameters 
estimated in Table III. In the second run, stepwise was set to 
TRUE and the ceilings were left at the pre-estimated 
parameters plus one to account for differencing; the starting 
values were set to be the same as the ceilings, as, 
theoretically, the parameters in Table III should be the 
maximal meaningful numbers, but a model with lower orders 
might be better. This was tested in the third run, where the 
starting values remained and the ceilings were effectively 
removed. 

The same procedure was then repeated with the 
differencing orders computed by OCSB and KPSS. As it is 
difficult to identify model parameters by naked eye without 
differencing, the same initial parameters have been used. 
Please note that the AIC values of models with unequal 
differencing order are not comparable, while goodness-of-fit 

test results and prediction errors are. 
3) Model validation 

As already discussed in Subsection IV/C “Box-Jenkins 
models”, the validation entails manual examination of the 
autocorrelation plot of residuals and use of the Ljung-Box 
goodness-of-fit (GOF) test. Table IV contains the models 
that resulted from the three runs of auto.arima() as described, 
along with their AIC values, the lag of the first significant 
autocorrelation and the lag after which the Ljung-Box test 
failed. Left side is for models with differencing order set to 
one, right side has differencing set by unit root tests. 

The outcome from Table IV is, that is cannot be 
conclusively said whether it is better to always use seasonal 
differencing or not. Of the six time series, three have the best 
fitting model in the left half of the table and three in the right 
half. However, it seems that in the cases where the non-
differenced models were better, the gain in the goodness-of-
fit functions was lower than the other way round. It is also 
interesting that in two of the three cases (oe and gaff), the 
difference is not only in seasonal, but also in first 
differencing. It may be a good idea to follow the 
recommendation of the KPSS test, but always use seasonal 
differencing, but there is not enough data to say it with 
certainty. 

A more solid fact is that all the best models come from 
the third row of the table. Of the three tried here, the best 
algorithm for model selection is to use auto.arima() in greedy 
mode, starting with parameters identified from ACF and 
PACF, and leave it room to adjust the parameters upwards. 

E. Comparison of the two model families 

The last part of the experiment entailed computing 
forecasts based on the fitted ARIMA models and comparing 
them with out-of-sample data. The same validation algorithm 

TABLE IV.  PARAMETERS OF THE ESTIMATED ARIMA MODELS AND THEIR VALIDATION MEASURES 
 model AIC sig. ACF fail. GOF  model AIC sig. ACF fail. GOF 

oe ARIMA(0,1,2)(1,1,2) 23016.97 12 14 oe ARIMA(4,0,3)(2,0,2) 23231.26 22 23 
 ARIMA(6,1,1)(1,1,2) 23109.12 12 15  ARIMA(5,0,4)(3,0,2) 23259.8 21 27 
 ARIMA(5,1,3)(2,1,3) 23066.43 16 20  ARIMA(5,0,3)(3,0,3) 23220.86 21 27 

bend ARIMA(1,1,1)(2,1,1) 28082.19 4 6 bend ARIMA(1,1,1)(3,0,2) 27989.07 22 6 
 ARIMA(17,1,5)(3,1,2) 27580.45 52 129  ARIMA(17,1,4)(3,0,2) 27812.25 26 60 
 ARIMA(17,1,3)(3,1,3) 27504.15 58 172  ARIMA(14,1,1)(3,0,3) 27801.06 17 58 
lm ARIMA(1,1,1)(2,1,1) 47569.93 5 5 lm ARIMA(1,1,3)(1,0,2) 48517.21 5 4 
 ARIMA(16,1,17)(2,1,2) 47210.57 94 144  ARIMA(15,1,17)(3,0,1) 48155.89 43 144 
 ARIMA(17,1,17)(2,1,3) 47195.88 98 500+  ARIMA(15,1,18)(3,0,1) 48152.6 70 144 

lm4 ARIMA(2,1,1)(1,1,1) 49151.84 5 5 lm4 ARIMA(1,1,3)(0,0,2) 50789.93 4 4 
 ARIMA(10,1,3)(12,1,1) 48398.45 11 14  ARIMA(10,1,2)(12,0,2) 48570.04 10 28 
 ARIMA(11,1,2)(16,1,5) 48138.57 21 30  ARIMA(12,1,2)(15,0,4) 48342.89 21 30 

real ARIMA(1,1,1)(2,1,1) 47872.32 4 3 real ARIMA(0,1,2)(3,0,0) 48873.62 4 4 
 ARIMA(2,1,3)(2,1,2) 47800.56 1 1  ARIMA(2,1,3)(3,0,2) 48732.74 1 1 
 ARIMA(6,1,8)(3,1,3) 46972.94 6 6  ARIMA(10,1,12)(3,0,3) 47344.03 8 9 

rea4 ARIMA(2,1,1)(1,1,1) 47574.67 3 3 rea4 ARIMA(1,1,1)(3,0,0) 48897.42 3 3 
 ARIMA(1,1,3)(1,1,2) 47612.58 2 2  ARIMA(12,1,2)(11,0,1) 47438.97 21 24 

 ARIMA(4,1,5)(1,1,7) 47373.03 8 7  ARIMA(12,1,2)(11,0,1) 47438.97 21 24 

wn ARIMA(4,1,2)(2,1,2) 35599.79 9 14 wn ARIMA(2,1,3) with drift 36214.64 10 9 
 ARIMA(40,1,2)(2,1,2) 35608.54 55 500+  ARIMA(39,1,4)(1,0,2) 36177.56 59 95 
 ARIMA(39,1,1)(2,1,3) 35596.67 55 500+  ARIMA(38,1,5)(1,0,3) 36146.1 64 191 

gaff ARIMA(2,1,3)(0,1,2) 21501.92 5 5 gaff ARIMA(3,0,0)(1,0,1) 21847.8 5 5 
 ARIMA(19,1,3)(0,1,2) 21387.26 42 52  ARIMA(18,0,3)(1,0,2) 21717.96 43 88 

 ARIMA(17,1,4)(0,1,3) 21118.64 42 88  ARIMA(18,0,3)(1,0,2) 21717.96 43 88 
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was used as in the case of Holt-Winters models, to facilitate 
model comparison. The result is in Table V. To conserve 
space, only MAPE (Mean Average Percentage Error) is 
shown. The four columns are for in-sample error and 
forecast errors in horizons 6, 24, and 96 hours. The ordering 
of models is the same as in Table IV. 

Fitting of the forecasts was something of a 
disappointment, as all of the models with seasonal 
differencing (the left half of Table IV) that were selected as 
best using the GOF measures have failed to produce 
forecasts. The cause was likely the seasonal MA part of the 
model that was one or two orders higher that the originally 
identified ceiling. That resulted in an overspecified model 
where the MA polynomial was not invertible. Invertibility is 
a prerequisite for the computation of variances of the 
parameters [48], which in turn are needed to compute 
confidence intervals for a prediction. Hence, these models 
were fitted and had a likelihood function and in-sample 
errors, but could not be used for forecasts with confidence 
bounds. 

When fitting ARIMA models in R, one needs to carefully 
observe the output for warnings such as: 
In sqrt(z[[2]] * object$sigma2) : NaNs produced 

for least-squares fitting, or for maximum likelihood: 
Error in optim(init[mask], armafn, method = 
optim.method, hessian = TRUE,  :  

non-finite finite-difference value [1] 

In log(s2) : NaNs produced 

because then the prediction will produce wrong results or 
fail: 
In predict.Arima(object, n.ahead = h) : 
MA part of model is not invertible 

Therefore, if using auto.arima() beyond the ceiling 
identified from ACF and PACF, there is a high risk of the 
model failing and thus it may not be a good idea for 

automatic forecasts. If that happens, lowering the order or 
the seasonal MA or MA part should help. 

As to the selection of the best model for forecasts, the 
selection based on out-of sample forecast errors (mainly 
looking at the 24 and 96-hour horizons) corresponds to the 
one based on goodness-of-fit criteria. In the case where the 
model fails to produce forecasts, the next-best one based on 
GOF can be selected. The second row (ceilings from ACF 
and PACF adjusted downward by auto.arima()) produced the 
best result, except on oe and lm, where, however, the 
difference is seems to be small. 

As whether to always use seasonal differencing, the 
experiment is inconclusive. In the case of oe, there was a 
significant gain in accuracy by not using it, in the case of wn 
and bender, the opposite is true. 

Looking at the “misses” criterion, one could say that 
Holt-Winters is better. However, that outcome might be 
skewed. The criterion counts the number of data points that 
missed the 80% confidence bounds in the 3-day forecast. 
That time period contains a total of 288 points, 20% of that is 
57.6, and that is the count of data points that are by definition 
allowed to miss the bounds.  

Therefore, the result of this comparison is that the 
confidence bounds on ARIMA are more accurate, or at least 
tighter than on Holt-Winters. If this method is to be used as 
proposed by this article, the confidence level used has to be 
adjusted upwards to 95 or 99%, depending on the overload 
sensitivity of the computer infrastructure. 

Comparing the two model families using the MAPE error 
measure, the outcome is that ARIMA did produce better 
forecasts than Holt-Winters, except for the 6-hour forecasts 
on oe and bender, and also that simple exponential 
smoothing outperformed both seasonal methods on 24 and 
96-hour forecasts on lm. 

TABLE V.  EVALUATION OF THE  ARIMA MODELS ON OUT-OF-SAMPLE DATA 
 MAPE in MAPE 6 MAPE 24 MAPE 96 miss  MAPE in MAPE 6 MAPE 24 MAPE 96 miss 

oe 13.43 7.12 75.27 94.99 8 oe 13.40 8.13 37.52 53.16 22 
 13.39 7.13 77.74 98.23 7  13.22 8.71 33.96 48.88 22 
     failed  13.16 8.85 31.41 46.35 24 

bend 19.32 14.56 22.18 22.21 25 bend 18.28 15.34 45.21 41.32 13 

 18.51 15.51 20.58 21.3 42  18.79 21.42 36.53 34.38 87 
     failed      failed 
lm 24.93 19.14 19.70 22.34 17 lm 25.49 17.23 19.80 23.22 19 
 23.94 14.79 20.10 25.15 20  23.98 15.74 21.01 26.91 21 
     failed  23.97 15.98 21.11 27.02 21 

lm4 25.50 13.22 23.36 28.93 8 lm4 28.77 26.94 44.30 51.17 7 

 24.73 11.66 22.19 30.21 24  24.61 12.93 21.81 29.02 21 
 24.16 15.57 20.29 23.45 19  24.47 12.51 19.88 25.73 21 

real 36.26 85.66 73.58 80.20 85 real 38.18 72.49 62.91 64.49 59 
 37.13 88.91 76.86 83.95 94  38.18 87.33 74.95 81.07 81 
     failed  37.56 69.18 52.74 58.08 39 

rea4 37.67 58.08 48.30 54.23 59 rea4 40.83 53.41 47.86 70.73 43 
 37.99 53.44 43.22 45.75 40  36.10 50.40 41.59 46.06 49 
 37.03 55.33 43.54 46.34 61  36.10 50.40 41.59 46.06 49 

wn     failed wn 42.03 24.30 78.80 82.33 102 
 37.68 36.26 51.12 50.25 59  38.92 24.36 64.94 71.68 79 
     failed  38.96 26.33 64.16 70.09 78 

gaff 37.62 160.67 128.23 112.77 61 gaff 37.65 170.08 136.91 124.57 59 

 38.19 165.29 125.89 109.42 60  38.26 165.48 133.85 119.44 59 

 38.56 187.57 129.88 110.55 61  38.26 165.48 133.85 119.44 59 

 

161

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



V. FUTURE WORK 

Future work planned on the Cloud Gunther can be split 
into two categories. First and more important is the 
consideration of interactive load also present on the cluster, 
which will require a rewrite of the queue engine to utilize the 
output of the predictor. Second is integration of better 
queuing disciplines to bring it up to par with existing cluster 
management tools. Two ideas for that are presented in 
Subsections A and B. Section C discusses the problem of 
resource sharing on modern computers. 

A. Out-of-order scheduling 

Using load predictions to maximize load of course 
assumes a scheduler that will be capable of using this 
information. Our vision is a queue discipline that internally 
constructs a workflow out of disparate tasks. The tasks, each 
with an associated estimate of duration, will be reordered so 
that the utilization of the cloud is maximized. 

For example, when there is a job currently running on 20 
out of 40 slots and should finish in 2 hours, and there is a 40 
slot job in the queue, it should try to run several smaller 2 
hour jobs to fill the free space, but not longer, since that 
would delay the large job. 

These requirements almost exactly match the definition 
of the Multiprocessor scheduling problem (see [49]). Since 
this is a NP-hard class problem, solving it for the whole 
queue would be costly. The most feasible solution seems to 
come from the world of out-of-order microprocessor 
architectures, which re-order instructions to fully utilize all 
execution units, but only do so with the first several 
instructions of the program.  The batch job scheduler will be 
likewise able to calculate the exact solution with the first 
several jobs in the queue, which will otherwise remain 
Priority FCFS. 

B. Dynamic priorities 

The estimation of job duration is a problem all for itself. 
At first, the estimate could be done by the user. Later, a 
system of dynamic priorities could be built on top of that. 

The priorities would act at the level of users, penalizing 
them for wrong estimates, or better, suspending allocation of 
resources to users whose tasks have been running for longer 
time than the scheduler thought. 

Inspiration for this idea is taken from the description of 
the Multilevel Feedback Queue scheduler used historically in 
Linux [50]. However, the scheduler will set priorities for 
users, not processes, and allocate VMs to tasks, not jiffies to 
threads. It also will not have to be real-time and preemptive, 
making the design simpler. 

The scheduler’s estimate of process run time could be 
based on the user estimates, but also on the previous run time 
of processes from the same task or generally those submitted 
by the same user for the same environment. That would lead 
to another machine learning problem. 

C. Resource sharing 

When we actually have both kinds of traffic competing 
for resources of the cloud, resource-sharing problems may 

affect the performance of the system and raise the observed 
requirements of the interactive traffic. 

The effects of different kinds of algorithms on their 
surroundings will have to be benchmarked and evaluated. 
We may have to include disk and network bandwidth 
requirements in the model of the batch job and decide, which 
jobs may and which may not be run in a shared 
infrastructure, or ensure their separation through bandwidth 
limiting. 

Second, even if we set up the private cloud so that CPU 
cores and operating memory are not shared, we still have to 
count with the problem of shared cache memory. This has 
been researched by several groups. Gusev and Ristov [51] 
benchmarked this by running multiple instances of a linear 
equation solver in a virtualized environment, and Babka, 
et.al., [52] measured the problem when concurrently running 
several benchmark kernels from SPEC2000. 

VI. CONCLUSION 

The cloud presents a platform that can join two worlds 
that were previously separate – web servers and HPC grids. 
The public cloud, which offers the illusion of infinite supply 
of computing resources, will accommodate all the average 
user’s needs, however, new resource allocation problems 
arise in the resource-constrained space of private clouds. 

We have experience using private cloud computing 
clusters both for running web services and batch scientific 
computations. The challenge now is to join these two into a 
unified platform.  

The ScaleGuru autoscaling system offers an opportunity 
to get hand-on experience with automatic scaling, as most 
other systems are either very simple or are being developed 
in the commercial sector without public access to source 
codes. 

The Cloud Gunther, although not ready for commercial 
deployment, already has some state of the art features, like 
the automatic management of cloud computing instances and 
a REST-compliant web interface. It also differs from other 
similar tools by its orientation towards private cloud 
computing clusters. 

In the future, it could become a unique system for 
managing batch computations in a cloud environment 
primarily used for web serving, thus allowing to exploit the 
dynamic nature of private cloud infrastructure and to raise its 
overall utilization. 

This article also presented two methods of time series 
forecasting, used otherwise mainly in economic forecasts, 
and which could be applied to server load data. These 
methods were tested on six time series of CPU load, some of 
which are web servers with a well defined daily curve (oe, 
bender, wn), and some have a load of more unpredictable 
nature (lm, real, gaff). 

As it is expected that the cloud will contain mostly load-
balanced web servers as the variable component, we think 
that these methods are viable for further research in the 
optimization of cloud computing. 
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APPENDIX A – EXPERIMENTAL TIME SERIES AND THEIR 

FORECASTS FROM HOLT-WINTERS AND BOX-JENKINS 

The next page contains the forecasts of each examined 
time series from the best model of exponential smoothing 
and ARIMA methods.  

The exponential smoothing on in the left half of the 
page, ARIMA on the right. The series are, from top to 
bottom: oe, bender, lm, real, wn, gaff.  

The graphs contain the last week of the time series to 
present their character. The blue line then represents the 
point forecasts; the orange area is the 80% confidence 
band and the yellow area the 95% confidence band. 
Overlaid as “o” symbols are the actual data points, which 
were recorded during the forecast horizon. 

It is not important to read the axes of the graphs, the 
scale is 2 days per tick on the x axis and in percent of an 
unspecified CPU on y. The character of the time plot and 
the response of the forecasting algorithms is important. 
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Forecasts fr om HoltWinter s

1166 1168 1170 1172 1174 1176
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Forecasts fr om ARIMA(19,1,2)(0,1,2)[96]                   

1166 1168 1170 1172 1174 1176
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