
Characterizing and Fulfilling Traceability Needs in the PREDIQT Method
for Model-based Prediction of System Quality

Aida Omerovic∗ and Ketil Stølen∗†
∗SINTEF ICT, Pb. 124, 0314 Oslo, Norway

†University of Oslo, Department of Informatics, Pb. 1080, 0316 Oslo, Norway
Email: {aida.omerovic,ketil.stolen}@sintef.no

Abstract—Our earlier research indicated the feasibility of
the PREDIQT method for model-based prediction of impacts of
architectural design changes, on the different quality character-
istics of a system. The PREDIQT method develops and makes
use of a multi-layer model structure, called prediction models.
Usefulness of the prediction models requires a structured
documentation of both the relations between the prediction
models and the rationale and assumptions made during the
model development. This structured documentation is what we
refer to as trace-link information. In this paper, we first propose
a traceability scheme for PREDIQT. The traceability scheme
specifies the needs regarding the information that should be
traced and the capabilities of the traceability approach. An
example-driven solution that addresses the needs specified
through the scheme is then presented. Moreover, we propose
an implementation of the solution in the form of a prototype
traceability tool, which can be used to define, document,
search for and represent the trace-links needed. The tool-
supported solution is applied on prediction models from an
earlier PREDIQT-based analysis of a real-life system. Based
on a set of success criteria, we argue that our traceability
approach is useful and practically scalable in the PREDIQT
context.

Keywords-traceability; system quality prediction; modeling;
architectural design; change impact analysis; simulation.

I. INTRODUCTION

ICT systems are involved in environments which are con-
stantly evolving due to changes in technologies, standards,
users, business processes, requirements, or the ways systems
are used. Both the systems and their operational environ-
ments frequently change over time and are shared. The new
needs are often difficult to foresee, as their occurrence and
system life time are insufficiently known prior to system
development. Architectural adaptions are inevitable for ac-
commodating the systems to the new services, processes,
technologies, standards, or users. However, due to criticality
of the systems involved, planning, implementation, testing
and deployment of changes can not involve downtime or
similar degradation of quality of service. Instead, the systems
have to quickly and frequently adapt at runtime, while
maintaining the required quality of service.

Independent of whether the systems undergoing changes
are in the operation or in the development phase, important
architectural design decisions are made often, quickly and

with lack of sufficient information. When adapting the
system architecture, the design alternatives may be many
and the design decisions made may have unknown implica-
tions on the system and its quality characteristics (such as
availability, security, performance or scalability). A change
involving increased security may, for example, compromise
performance or usability of a system.

The challenge is therefore how to achieve the necessary
flexibility and dynamism required by software, while still
preserving the necessary overall quality. Thus, there is a need
for decision-making support which facilitates the analysis of
effects of architectural adaptions, on the overall quality of a
system as a whole.

In order to facilitate decision making in the context of
what-if analyses when attempting to understand the implica-
tions of architectural design changes on quality of a system,
models are a useful means for representing and analyzing the
system architecture. Instead of implementing the potential
architectural changes and testing their effects, model-based
prediction is an alternative. Model-based prediction is based
on abstract models which represent the relevant aspects of
the system. A prediction based on models may address a
desired number of architectural changes, without affecting
the target system. As such, it is a quicker and less costly al-
ternative to traditional implementation and testing performed
in the context of understanding the effects of changes on
system quality.

Important preconditions for model-based prediction are
correctness and proper usage of the prediction models. In
addition, the development and use of the prediction models
has to be properly documented. In practice, traceability
support requires process guidance, tool support, templates
and notations for enabling the user to eventually obtain
sufficiently certain predictions and document the underlying
conditions. Our recent work has addressed this issue by
proposing an approach to traceability handling in model-
based prediction of system quality [1]. This paper provides
refinements and several extensions of the approach, and
elaborates further on the current state of the art with respect
to traceability in the context of model-based prediction of
system quality.

In addressing the above outlined needs and challenges re-

1

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lated to managing architectural changes, we have developed
and tried out the PREDIQT method [2] [3] [4] aimed for
predicting impacts of architectural design changes on system
quality characteristics and their trade-offs. PREDIQT has
been developed to support the planning and analyzing the
architecture of the ICT systems in general, and to facilitate
the reasoning about alternatives for potential improvements,
as well as for the reasoning about existing and potential
weaknesses of architectural design, with respect to individual
quality characteristics and their trade-offs. The predictions
obtained from the models provide propagation paths and the
modified values of the estimates which express the degree of
quality characteristic fulfillment at the different abstraction
levels.

The process of the PREDIQT method guides the develop-
ment and use of the prediction models, but the correctness
of the prediction models and the way they are applied are
also highly dependent on the creative effort of the analyst
and his/her helpers. In order to provide additional help
and guidance to the analyst, we propose in this paper a
traceability approach for documenting and retrieving the
rationale and assumptions made during the model develop-
ment, as well as the dependencies between the elements of
the prediction models. This paper proposes a traceability
solution for PREDIQT to be used for predicting system
quality. To this end, we provide guidance, tool support,
templates and notations for correctly creating and using the
prediction models. The major challenge is to define accurate
and complete trace information while enabling usability and
effectiveness of the approach.

The approach is defined by a traceability scheme, which
is basically a feature diagram specifying capabilities of the
solution and a meta-model for the trace-link information. As
such, the traceability scheme specifies the needs regarding
the information that should be traced and the capabilities of
the traceability approach. The proposed traceability scheme
deals with quality indicators, model versioning, cost and
profit information, as well as the visualization of the impact
on such values of different design choices. An example-
driven solution that addresses the needs specified through
the scheme is then presented.

Moreover, a prototype traceability tool is implemented
in the form of a relational database with user interfaces
which can be employed to define, document, search for and
represent the trace-links needed. The tool-supported solution
is illustrated on prediction models from an earlier PREDIQT-
based analysis conducted on a real-life industrial system [5].
We argue that our approach is, given the success criteria for
traceability in PREDIQT, practically useful and better than
any other traceability approach we are aware of.

This paper is a revised and extended version of a full
technical report [6]. The latter is an extended version of
a paper [1] originally presented at and published in the
proceedings of the SIMUL’11 conference. With respect to

the SIMUL’11 conference paper [1], this paper is extended
with:

1) An outline of the PREDIQT method.
2) Guidelines for application of the prediction models.

The guidelines are used for eliciting the traceability
scheme for our approach.

3) Further extensions and refinements of the traceability
approach in PREDIQT with special focus on specifi-
cation and handling of indicators during development
and use of prediction models; handling of quality
characteristic fulfillment acceptance levels; handling
of timing aspects; versioning of prediction models;
cost-benefit aspects in PREDIQT; and handling of
usage profile in relation to the prediction models.

4) A way of practically visualizing the design decision
alternatives has been proposed and exemplified.

5) Preliminary requirements for integration of the exist-
ing PREDIQT tool with the prototype traceability tool,
have been specified and exemplified.

The paper is organized as follows: Section II provides
background on traceability. An overview of the PREDIQT
method is provided in Section III. Guidelines for application
of both the prediction models and the trace-link information
are provided in Section IV. The challenge of traceability
handling in the context of the PREDIQT method is charac-
terized in Section V. The traceability scheme is presented
in Section VI. Our traceability handling approach is pre-
sented in Section VII. Section VIII illustrates the approach
on an example. Section IX argues for completeness and
practicability of the approach, by evaluating it with respect
to the success criteria. Section X substantiates why our
approach, given the success criteria outlined in Section V,
is preferred among the alternative traceability approaches.
The concluding remarks and future work are presented in
Section XI.

II. BACKGROUND ON TRACEABILITY

Traceability is the ability to determine which documenta-
tion entities of a software system are related to which other
documentation entities according to specific relationships
[7]. IEEE [8] also provides two definitions of traceability:

1) Traceability is the degree to which a relationship
can be established between two or more products of
the development process, especially products having
a predecessor-successor or master-subordinate rela-
tionship to one another; for example, the degree to
which the requirements and design of a given software
component match.

2) Traceability is the degree to which each element in
a software development product establishes its reason
for existing.

Traceability research and practice are most established in
fields such as requirements engineering and model-driven

2

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

engineering (MDE). Knethen and Paech [7] argue: “De-
pendency analysis approaches provide a fine-grained impact
analysis but can not be applied to determine the impact
of a required change on the overall software system. An
imprecise impact analysis results in an imprecise estimate of
costs and increases the effort that is necessary to implement
a required change because precise relationships have to be
identified during changing. This is cost intensive and error
prone because analyzing the software documents requires
detailed understanding of the software documents and the
relationships between them.” Aizenbud-Reshef et al. [9]
furthermore state: “The extent of traceability practice is
viewed as a measure of system quality and process maturity
and is mandated by many standards” and “With complete
traceability, more accurate costs and schedules of changes
can be determined, rather than depending on the programmer
to know all the areas that will be affected by these changes.”

IEEE [8] defines a trace as “A relationship between two
or more products of the development process.” According to
the OED [10], however, a trace is defined more generally as
a “(possibly) non-material indication or evidence showing
what has existed or happened”. As argued by Winkler and
von Pilgrim [11]: “If a developer works on an artifact,
he leaves traces. The software configuration management
system records who has worked on the artifact, when that
person has worked on it, and some systems also record
which parts of the artifacts have been changed. But beyond
this basic information, the changes themselves also reflect
the developer’s thoughts and ideas, the thoughts and ideas
of other stakeholders he may have talked to, information
contained in other artifacts, and the transformation process
that produced the artifact out of these inputs. These influ-
ences can also be considered as traces, even though they are
usually not recorded by software configuration management
systems.”

A traceability link is a relation that is used to interrelate
artifacts (e.g., by causality, content, etc.) [11]. In the context
of requirements traceability, Winkler and von Pilgrim [11]
argue that “a trace can in part be documented as a set of
meta-data of an artifact (such as creation and modification
dates, creator, modifier, and version history), and in part
as relationships documenting the influence of a set of
stakeholders and artifacts on an artifact. Particularly those
relationships are a vital concept of traceability, and they
are often referred to as traceability links. Traceability links
document the various dependencies, influences, causalities,
etc. that exist between the artifacts. A traceability link can
be unidirectional (such as depends-on) or bidirectional (such
as alternative-for). The direction of a link, however, only
serves as an indication of order in time or causality. It does
not constrain its (technical) navigability, so traceability links
can always be followed in both directions”.

In addition to the different definitions, there is no com-
monly agreed basic classification [11], that is, a classification

of traceability links. A taxonomy of the main concepts
within traceability is suggested by Knethen and Paech [7].

An overview of the current state of traceability research
and practice in requirements engineering and model-driven
development is provided by Winkler and von Pilgrim [11],
based on an extensive literature survey. Another survey by
Galvao and Goknil [12] discusses the state-of-the-art in
traceability approaches in MDE and assesses them with
respect to five evaluation criteria: representation, mapping,
scalability, change impact analysis and tool support. More-
over, Spanoudakis and Zisman [13] present a roadmap
of research and practices related to software traceability
and identify issues that are open for further research. The
roadmap is organized according to the main topics that have
been the focus of software traceability research.

Traces can exist between both model- and non-model
artifacts. The means and measures applied for obtaining
traceability are defined by so-called traceability schemes. A
traceability scheme is driven by the planned use of the traces.
The traceability scheme determines for which artifacts and
up to which level of detail traces can be recorded [11]. A
traceability scheme thus defines the constraints needed to
guide the recording of traces, and answers the core ques-
tions: what, who, where, how, when, and why. Additionally,
there is tacit knowledge (such as why), which is difficult to
capture and to document. A traceability scheme helps in this
process of recording traces and making them persistent.

As argued by Aizenbud-Reshef et al. [9], the first ap-
proach used to express and maintain traceability was cross-
referencing. This involves embedding phrases like “see
section x” throughout the project documentation. Thereafter,
different techniques have been used to represent traceability
relationships including standard approaches such as ma-
trices, databases, hypertext links, graph-based approaches,
formal methods, and dynamic schemes [9]. Representation,
recording and maintenance of traceability relations are clas-
sified by Spanoudakis and Zisman [13] into five approaches:
single centralized database, software repository, hypermedia,
mark-up, and event-based.

According to Wieringa [14], representations and visual-
izations of traces can be categorized into matrices, cross-
references, and graph-based representations. As elaborated
by Wieringa, the links, the content of the one artifact,
and other information associated with a cross reference,
is usually displayed at the same time. This is, however,
not the case with traceability matrices. So, compared to
traceability matrices, the user is (in the case of cross-
references) shown more local information at the cost of
being shown fewer (global) links. As models are the central
element in MDE, graph-based representations are the norm.
A graph can be transformed to a cross-reference. Regarding
the notation, there is, however, no common agreement or
standard, mostly because the variety and informality of
different artifacts is not suitable for a simple, yet precise

3

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

notation. Requirements traceability graphs are usually just
plain box-and-line diagrams [14].

Knethen and Paech [7] argue that the existing traceability
approaches do not give much process support. They specify
four steps of traceability process: 1) define entities and rela-
tionships, 2) capture traces, 3) extract and represent traces,
and 4) maintain traces. Similarly, Winkler and von Pilgrim
[11] state that traceability and its supporting activities are
currently not standardized. They classify the activities when
working with traces into: 1) planning for traceability, 2)
recording traces, 3) using traces, and 4) maintaining traces.
Traceability activities are generally not dependent on any
particular software process model.

Trace models are usually stored as separate models, and
links to the elements are (technically) unidirectional in
order to keep the connected models or artifacts independent.
Alternatively, models can contain the trace-links themselves
and links can be defined as bidirectional. While embedded
trace-links pollute the models, navigation is much easier
[11]. Thus, we distinguish between external and internal
storage, respectively. Anquetil at al. [15] argue: “Keeping
link information separated from the artifacts is clearly better;
however, it needs to identify uniquely each artifact, even
fined-grained artifacts. Much of the recent research has
focused on finding means to automate the creation and
maintenance of trace information. Text mining, information
retrieval and analysis of trace links techniques have been
successfully applied. An important challenge is to maintain
links consistency while artifacts are evolving. In this case,
the main difficulty comes from the manually created links,
but scalability of automatic solution is also an issue.”

As outlined by Aizenbud-Reshef et al. [9], automated cre-
ation of trace-links may be based on text mining, information
retrieval, analysis of existing relationships to obtain implied
relations, or analysis of change history to automatically
compute links.

Reference models are an abstraction of best practice and
comprise the most important kinds of traceability links.
There is nothing provably correct about reference models,
but they derive their relevance from the slice of practice they
cover. Nevertheless, by formalizing a reference model in an
appropriate framework, a number of elementary desirable
properties can be ensured. A general reference model for
requirements traceability is proposed by Ramesh and Jarke
[16], based on numerous empirical studies.

Various tools are used to set and maintain traces. Surveys
of the tools available are provided by Knethen and Paech [7],
Winkler and von Pilgrim [11], Spanoudakis and Zisman [13],
and Aizenbud-Reshef et al. [9]. Bohner and Arnold [17]
found that the granularity of documentation entities managed
by current traceability tools is typically somewhat coarse for
an accurate impact analysis.

III. AN OVERVIEW OF THE PREDIQT METHOD

PREDIQT is a tool-supported method for model-based
prediction of quality characteristics (performance, scala-
bility, security, etc.). PREDIQT facilitates specification of
quality characteristics and their indicators, aggregation of
the indicators into functions for overall quality characteristic
levels, as well as dependency analysis. The main objective
of a PREDIQT-based analysis is prediction of system quality
by identifying different quality aspects, evaluating each of
these, and composing the results into an overall quality
evaluation. This is useful, for example, for eliciting quality
requirements, evaluating the quality characteristics of a
system, run-time monitoring of quality relevant indicators,
as well as verification of the overall quality characteristic
fulfillment levels.

The PREDIQT method produces and applies a multi-
layer model structure, called prediction models, which rep-
resent system relevant quality concepts (through “Quality
Model”), architectural design (through “Design Model”),
and the dependencies between architectural design and
quality (through “Dependency Views”). The Design Model
diagrams are used to specify the architectural design of the
target system and the changes whose effects on quality are
to be predicted. The Quality Model diagrams are used to
formalize the quality notions and define their interpreta-
tions. The values and the dependencies modeled through
the Dependency Views (DVs) are based on the definitions
provided by the Quality Model. The DVs express the inter-
play between the system architectural design and the quality
characteristics. Once a change is specified on the Design
Model diagrams, the affected parts of the DVs are identified,
and the effects of the change on the quality values are
automatically propagated at the appropriate parts of the DV.
This section briefly outlines the PREDIQT method in terms
of the process and the artifacts.

A. Process and models

The process of the PREDIQT method consists of three
overall phases: Target modeling, Verification of prediction
models, and Application of prediction models. Each phase is
decomposed into sub-phases, as illustrated by Figure 1.

Based on the initial input, the stakeholders involved
deduce a high level characterization of the target system,
its scope and the objectives of the prediction analysis, by
formulating the system boundaries, system context (includ-
ing the usage profile), system lifetime and the extent (nature
and rate) of design changes expected.

As mentioned above, three interrelated sets of models
are developed during the process of the PREDIQT method:
Design Model which specifies system architecture, Quality
Model which specifies the system quality notions, and De-
pendency Views (DVs) which represent the interrelationship
between the system quality and the architectural design.
Quality Model diagrams are created in the form of trees,

4

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Phase 1: Target modeling

Phase 2: Verification of prediction models

Sub‐phase 1.1: Characterization of the target and the objectives

Sub‐phase 1.2: Development of Quality Models

Sub‐phase 1.3: Mapping of Design Models

Sub‐phase 1.4: Development of Dependency Views

Phase 3: Application of prediction models

Sub‐phase 2.1: Evaluation of prediction models

Sub‐phase 2.2: Fitting of prediction models

Sub‐phase 2.3: Approval of the final prediction models

Sub‐phase 3.1: Specification of a change

Sub‐phase 3.2: Application of the change on prediction models

Sub‐phase 3.3: Quality prediction

Figure 1. A simplified overview of the process of the PREDIQT method

Data protection
QCF=0.94

Encryption
QCF=1.00

Authentication
QCF=0.95

Authorization
QCF=0.90

Other
QCF=0.90

EI=0.25EI=0.30 EI=0.30 EI=0.15

Figure 2. Excerpt of an example DV with fictitious values

by defining the quality notions with respect to the target
system. The Quality Model diagrams represent a taxonomy
with interpretations and formal definitions of system quality
notions. The total quality of the system is decomposed
into characteristics, sub-characteristics and quality indica-
tors. The Design Model diagrams represent the architectural
design of the system.

For each quality characteristic defined in the Quality
Model, a quality characteristic specific DV is deduced from
the Design Model diagrams and the Quality Model diagrams
of the system under analysis. This is done by modeling the
dependencies of the architectural design with respect to the
quality characteristic that the DV is dedicated to, in the form
of multiple weighted and directed trees. A DV comprises two
notions of parameters:

1) EI: Estimated degree of Impact between two nodes,
and

2) QCF: estimated degree of Quality Characteristic Ful-
fillment.

Each arc pointing from the node being influenced is an-
notated by a quantitative value of EI, and each node is
annotated by a quantitative value of QCF.

Figure 2 shows an excerpt of an example DV with ficti-
tious values. In the case of the Encryption node of Figure 2,
the QCF value expresses the goodness of encryption with

respect to the quality characteristic in question, e.g., security.
A quality characteristic is defined by the underlying system
specific Quality Model, which may for example be based on
the ISO 9126 product quality standard [18]. A QCF value in
a DV expresses to what degree the node (representing system
part, concern or similar) is realized so that it, within its own
domain, fulfills the quality characteristic. The QCF value is
based on the formal definition of the quality characteristic
(for the system under analysis), provided by the Quality
Model. The EI value on an arc expresses the degree of
impact of a child node (which the arc is directed to) on
the parent node, or to what degree the parent node depends
on the child node, with respect to the quality characteristic
under consideration.

“Initial” or “prior” estimation of a DV involves providing
QCF values to all leaf nodes, and EI values to all arcs.
Input to the DV parameters may come in different forms
(e.g., from domain expert judgments, experience factories,
measurements, monitoring, logs, etc.), during the different
phases of the PREDIQT method. The DV parameters are
assigned by providing the estimates on the arcs and the
leaf nodes, and propagating them according to the general
DV propagation algorithm. Consider for example the Data
protection node in Figure 2 (denoting: DP: Data protection,
E: Encryption, AT: Authentication, AAT: Authorization, and
O:Other):

QCF(DP) = QCF(E) ·EI(DP→E) +QCF(AT) ·EI(DP→AT) +
QCF(AAT) · EI(DP→AAT) +QCF(O) · EI(DP→O) (1)

The DV-based approach constrains the QCF of each node
to range between 0 and 1, representing minimal and maximal
characteristic fulfillment (within the domain of what is repre-
sented by the node), respectively. This constraint is ensured
through the formal definition of the quality characteristic
rating (provided in the Quality Model). The sum of EIs, each
between 0 (no impact) and 1 (maximum impact), assigned to
the arcs pointing to the immediate children must be 1 (for
model completeness purpose). Moreover, all nodes having
a common parent have to be orthogonal (independent).
The dependent nodes are placed at different levels when
structuring the tree, thus ensuring that the needed relations
are shown at the same time as the tree structure is preserved.

The general DV propagation algorithm, exemplified by
(1), is legitimate since each quality characteristic specific
DV is complete, the EIs are normalized and the nodes having
a common parent are orthogonal due to the structure. A
DV is complete if each node which is decomposed, has
children nodes which are independent and which together
fully represent the relevant impacts on the parent node,
with respect to the quality characteristic that the DV is
dedicated to. Two main means can be applied in order to
facilitate that the children nodes fully represent the relevant
impacts. First, in case not all explicit nodes together express
the total impact, an additional node called “other” can

5

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be added to each relevant sub-tree, thus representing the
overall dependencies. Second, once the EI and QCF values
have been assigned within a subtree, a possible lack of
completeness will become more explicit. In such a case,
either the EI estimates have to be modified, or additional
nodes (for the missing dependencies) need to be added either
explicitly, or in the form of an “other” node. In case “other”
is used, it is particularly important to document the rationale
(and other trace-link information) related to it.

The rationale for the orthogonality is that the resulting
DV structure is tree-formed and easy for the domain experts
to relate to. This significantly simplifies the parametrization
and limits the number of estimates required, since the
number of interactions between the nodes is minimized.
Although the orthogonality requirement puts additional de-
mands on the DV structuring, it has shown to represent a
significant advantage during the estimation.

The “Verification of prediction models” is an iterative
phase that aims to validate the prediction models, with
respect to the structure and the individual parameters, before
they are applied. A measurement plan with the necessary
statistical power is developed, describing what should be
evaluated, when and how. Both system-as-is and change
effects should be covered by the measurement plan. Model
fitting is conducted in order to adjust the DV structure and
the parameters to the evaluation results. The objective of
the “Approval of the final prediction models” sub-phase is
to evaluate the prediction models as a whole and validate
that they are complete, correct and mutually consistent after
the fitting. If the deviation between the model and the new
measurements is above the acceptable threshold after the
fitting, the target modeling phase is re-initiated.

The “Application of the change on prediction models”
phase involves applying the specified architectural design
change on the prediction models. During this phase, a
specified change is applied to the Design Model diagrams
and the DVs, and its effects on the quality characteristics at
the various abstraction levels are simulated on the respective
DVs. When an architectural design change is applied on the
Design Model diagrams, it is according to the definitions
in the Quality Model, reflected to the relevant parts of
the DV. Thereafter, the DV provides propagation paths and
quantitative predictions of the new quality characteristic
values, by propagating the change throughout the rest of
each one of the modified DVs, based on the general DV
propagation algorithm.

We have earlier developed tool support [5] based on
Microsoft Excel for development of the DVs, as well as
automatic simulation and sensitivity analysis in the context
of the DVs. This tool was originally developed in order
to serve as an early version providing a “proof-of-concept”
and supporting the case studies on PREDIQT. Based on the
PREDIQT method specification, and the early tool support, a
new and enriched version of the PREDIQT tool has been de-

veloped, as presented in [19]. The former tool was developed
on proprietary software, since MS Excel provided a rather
simple and sufficient environment for quick prototyping. The
last version of the tool, is however developed in the form of
an Eclipse Modeling Framework (EMF) plugin. Both tools
have recently been applied in full scale realistic industrial
case studies. The existing PREDIQT tool support will in the
following be referred to as the “PREDIQT tool.”

B. Structure of the prediction models

Figure 3 provides an overview of the elements of the
prediction models, expressed as a UML [20] class diagram.
A Quality Model is a set of tree-like structures, which clearly
specify the system-relevant quality notions, by defining and
decomposing the meaning of the system-relevant quality
terminology. Each tree is dedicated to a target system-
relevant quality characteristic. Each quality characteristic
may be decomposed into quality sub-characteristics, which
in turn may be decomposed into a set of quality indica-
tors. As indicated by the relationship of type aggregation,
specific sub-characteristics and indicators can appear in
several Quality Model trees dedicated to the different quality
characteristics. Each element of a Quality Model is assigned
a quantitative normalized metric and an interpretation (qual-
itative meaning of the element), both specific for the target
system. A Design Model represents the relevant aspects of
the system architecture, such as for example process, data
flow, structure, and rules.

A DV is a weighted dependency tree dedicated to a
specific quality characteristic defined through the Quality
Model. As indicated by the attributes of the Class Node, the
nodes of a DV are assigned a name and a QCF. A QCF
(Quality Characteristic Fulfillment) is, as explained above,
the value of the degree of fulfillment of the quality char-
acteristic, with respect to what is represented by the node.
The degree of fulfillment is defined by the metric (of the
quality characteristic) provided in the Quality Model. Thus,
a complete prediction model has as many DVs as the quality
characteristics defined in the Quality Model. Additionally, as
indicated by the Semantic dependency relationship, seman-
tics of both the structure and the weights of a DV are given
by the definitions of the quality characteristics, as specified
in the Quality Model. A DV node may be based on a Design
Model element, as indicated by the Based on dependency
relationship. As indicated by the self-reference on the Node
class, one node may be decomposed into children nodes.
Directed arcs express dependency with respect to quality
characteristic by relating each parent node to its immediate
children nodes, thus forming a tree structure. Each arc in
a DV is assigned an EI (Estimated Impact), which is a
normalized value of degree of dependence of a parent node,
on the immediate child node. Thus, there is a quantified
dependency relationship from each parent node, to its im-
mediate children. The values on the nodes and the arcs are

6

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Dependency
View

Design Model

StructureDataflow Rule

Quality
characteristic

Quality model

Element

Prediction
model

Based on

1 1 1

1..*

1

1..*

11 1 1

-name: String
-QCF: Float
-(PropagationFunction)

Node

Quality
Sub-characteristic

Quality Indicator

Interpretation

Metric

-EI:NormalizedFloat

Dependency 1*

1 1

Process

*

*

Semantic

1

*
Decomposed

into

Figure 3. An overview of the elements of the prediction models, expressed as a UML class diagram

referred to as parameter estimates. We distinguish between
prior and inferred parameter estimates. The former ones are,
in the form of empirical input, provided on leaf nodes and
all arcs, while the latter ones are deduced using the above
presented DV propagation model for PREDIQT. For further
details on PREDIQT, see Omerovic et al. [2], Omerovic and
Stølen [21], Omerovic et al. [22], and Omerovic [4].

IV. GUIDELINES FOR APPLICATION OF PREDICTION
MODELS

In order to facilitate quality and correct use of prediction
models, this section provides guidelines for application of
the prediction models and the trace-link information, with
the analyst as the starting point. Thus, unless otherwise
specified, all the guidelines are directed towards the ana-
lyst. Overall guidelines for the “Application of prediction
models” – phase (i.e., Phase 3 of the PREDIQT process,
see Figure 1) are presented first, followed by detailed
guidelines for each one of its sub-phases: “Specification of a
change”, “Application of the change on prediction models”
and “Quality prediction”, respectively. The guidelines for
each phase and sub-phase follow a standard structure:

• objective – specifies the goals of the phase
• prerequisites – specifies the conditions for initiating the

phase
• how conducted – presents the detailed instructions for

performing the steps that have to be undergone
• input documentation – lists the documentation that is

assumed to be ready and available upon the initializa-
tion of the phase

• output documentation – lists the documentation that is
assumed to be available upon the completion of the
(sub)phase

• modeling guideline – lists the sequence of steps needed
to be undergone in the context of modifying or applying
the relevant prediction models.

The guidelines are based on the authors’ experiences
from industrial trials of PREDIQT [5] [3]. As such, the
guidelines are not exhaustive but serve as an aid towards
a more structured process of applying the prediction models
and accommodating the trace information during the model
development, based on the needs of the “Application of
prediction models”-phase.

It should be noted that the guidelines presented in this
section only cover Phase 3 of the PREDIQT process. This
is considered as the essential phase for obtaining the predic-
tions in a structured manner with as little individual influence
of the analyst as possible. It would of course be desirable
to provide corresponding guidelines for the first two phases
of the PREDIQT process as well. For our current purpose,
however, Phase 3 is essential and critical, while the guidance
for carrying out phases 1 and 2 currently relies on the
presentation of PREDIQT [4] and documentation of the case
studies [2] [3].

It should also be noted that in the guidelines presented
in this section, sub-phase 2 (“Application of the change
on prediction models”) is the most extensive one. In this
phase, the specified change is first applied on the Design
Model. Then, the dependencies within the Design Model
are identified. Thereafter, the change is, based on the spec-
ification and the modified Design Model, reflected on the
DVs. Once the DVs are modified, the modifications are
verified. The modifications of both the Design Model and
the DVs strongly depends on the semantics of the Quality
Model which is actively used (but not modified) throughout
the sub-phase. As such, the sub-phase involves modification
of the Design Model and the DVs, based on the change
specification and the Quality Model. Rather that splitting
this sub-phase into two separate ones, we believe that it
is beneficial to include all tasks related to application of a
change on the prediction models in one (although extensive,
yet) coherent sub-phase.

7

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Guidelines for the “Application of prediction models” –
phase

Objective
During this phase, a specified change is applied to the

prediction models, and its effects on the quality character-
istics at the various abstraction levels are simulated on the
respective Dependency Views (DVs). The simulation reveals
which design parts and aspects are affected by the change
and the degree of impact (in terms of the quality notions
defined by the Quality Model).

Prerequisites
• The fitted prediction models are approved.
• The changes applied are assumed to be independent

relative to each other.
• The “Quality prediction” sub-phase presupposes that

the change specified during the “Specification of a
change” sub-phase can be fully applied on the predic-
tion models, during the “Application of the change on
prediction models” sub-phase.

How conducted
This phase consists of the three sub-phases:
1) Specification of a change
2) Application of the change on prediction models
3) Quality prediction
Input documentation
• Prediction models: Design Model diagrams, Quality

Model diagrams, and Dependency Views
• Trace-links
Output documentation
• Change specification
• Pre- and post-change Design Model diagrams
• DVs.
People that should participate
• Analysis leader (Required). Analysis leader is also

referred to as analyst.
• Analysis secretary (Optional)
• Representatives of the customer:

– Decision makers (Optional)
– Domain experts (Required)
– System architects or other potential users of

PREDIQT (Required)
Modeling guideline
1) Textually specify the architectural design change of

the system.
2) Modify the Design Model diagrams with respect to the

change proposed. Modify the structure and the values
of the prior parameters, on the affected parts of the
DVs.

3) Run the simulation and display the changes on the
Design Model diagrams and the DVs, relative to their
original (pre-change) structure and values.

B. Guidelines for the “Specification of a change” sub-phase

Objective
The change specification should clearly state all deploy-

ment relevant facts necessary for applying the change on
the prediction models. The specification should include the
current and the new state and characteristics of the design
elements/properties being changed, the rationale and the
assumptions made.

Prerequisites
The fitted prediction models are approved.
How conducted
Specify the change by describing type of change, the

rationale, who should perform it, when, how and in which
sequence of events. In the case that the change specification
addresses modifications of specific elements of the Design
Model diagrams or the DVs, the quality characteristics of the
elements before and after the change have to be specified,
based on the definitions provided by the Quality Model.
The change specification has to be at the abstraction level
corresponding to the abstraction level of a sufficient subset
of the Design Model diagrams or DVs.

Input documentation
• Prediction models
• Design Model
• Quality Model
• Dependency Views.
Output documentation
Textual specification of a change.
Modeling guideline
1) Textually specify an architectural design change of the

system represented by the approved prediction models.
2) Specify the rationale and the process related to the

change deployment.

C. Guidelines for the “Application of the change on predic-
tion models” sub-phase

Objective
This sub-phase involves applying the specified change on

the prediction models.
Prerequisites
• The change is specified.
• The specified change is, by the analyst and the domain

experts, agreed upon and a common understanding is
reached.

How conducted
Detailed instructions for performing the six steps specified

in “Modeling guideline,” are provided here.
1) This first step of relating the change to the Design

Model diagram(s) and their elements is a manual
effort. The analyst and the domain experts confirm
that a common understanding of the specification has
been reached. Then, they retrieve the diagrams and
the respective elements of the Design Model and

8

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

identify which elements are potentially affected by
the change, with respect to the system quality in
general. The identified elements are marked, and their
post-change status specified. The status may be of
three types: update, delete or add. The update may
involve change of a property related to design or a
quality characteristic. In the case of delete, the diagram
element is marked and its new status is visible. In the
case of add, a new diagram element is introduced.

2) The trace-links between diagrams and diagram ele-
ments are (during the “Target modeling” phase) doc-
umented in the form of a database, which they can
be retrieved from. Each one of the above identified
Design Model diagrams and diagram elements (except
the added ones) is searched in the existing trace-
link database (created during the model development).
The result displays those searched items which have
the role of the origin or the target element, and all
the elements that depend on them or that they are
dependent on, respectively. The result also displays
overall meta-data, e.g., the kinds of the trace-links
and their rationale. The domain experts and the an-
alyst identify those retrieved (linked) elements that
are affected by the specified change. Depending on
the nature of the change and the trace-link type and
rationale, each diagram or element which, according
to the search results is linked to the elements identified
in the previous step, may be irrelevant, deleted or
updated. The updated and the deleted elements are,
within the diagrams, assigned the new (post-change)
status and meta-data.

3) The trace-link database is searched for all the above
identified elements which have been updated or
deleted. The trace-links between those elements and
the DV model elements are then retrieved. Then, the
overall DV model elements that may be affected by
the change are manually identified. The rationale for
the DV structure and the node semantics regarding
all the retrieved and manually identified DV model
elements, are retrieved from the trace-link database.
It is considered whether the added design element
models require new DV nodes. The DV structure is
manually verified, based on the retrieved trace-link
information.

4) The domain experts and the analyst manually verify
the updated structure (completeness, orthogonality,
and correctness) of each DVs, with respect to the
i) quality characteristic definitions provided by the
Quality Model and ii) the modified Design Model.

5) The estimates of the prior parameters have to be
updated due to the modifications of the Design Model
and the DV structure. Due do the structural DV
modification in the previous step, previously internal
nodes may have become prior nodes, and the EIs on

the arcs may now be invalid. New nodes and arcs may
have been introduced. All the earlier leaf nodes which
have become internal nodes, and all new internal nodes
are assumed to automatically be assigned the function
for the propagation model, by the PREDIQT tool. All
the new or modified arcs and leaf nodes have to be
marked so that the values of their parameters can be
evaluated. The overall unmodified arcs and the leaf
nodes whose values may have been affected by the
change, are manually identified. In the case of the
modified arcs and leaf nodes, trace-links are used to
retrieve the previously documented rationale for the
estimation of the prior parameter values and node
semantics. The parameter values on the new and the
modified arcs and leaf nodes are estimated based on
the Quality Model.
The leaf node QCFs of a sub-tree are estimated
before estimating the related EIs. The rationale is to
fully understand the semantics of the nodes, through
reasoning about their QCFs first. In estimating a QCF,
two steps have to be undergone:

a) interpretation of the node in question – its con-
tents, scope, rationale and relationship with the
Design Model, and

b) identification of the relevant metrics from the
Quality Model of the quality characteristic that
the DV is addressing, as well as evaluation of
the metrics identified.

When estimating a QCF the following question is
posed (to the domain experts): “To what degree is
the quality characteristic fulfilled, given the contents
and the scope of the node?” The definition of the
rating should be recalled, along with the fact that
zero estimate value denotes no fulfillment, while one
denotes maximum fulfillment.
In estimating an EI, two steps have to be undergone:

a) interpretation of the two nodes in question, and
b) determination of the degree of impact of the child

node, on the parent node. The value is assigned
relative to the overall EIs related to the same par-
ent node, and with a consistent unit of measure,
prior to being normalized. The normalized EIs
on the arcs from the same parent node have to
sum up to one, due to the requirement of model
completeness.

When estimating an EI the following question is posed
(to the domain experts): “To what degree does the
child node impact the parent node, or how dependent
is the parent node on child node, with respect to the
quality characteristic that the DV is dedicated to?”
The definition of the quality characteristic provided
by its Quality Model, should be recalled and the
estimate is provided relative to the impact of the

9

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overall children nodes of the parent node in question.
Alternatively, an impact value is assigned using the
same unit of measure on all arcs of the sub-tree, and
normalized thereafter.
Once one of the above specified questions is posed,
depending on the kind of the DV parameter, the
domain expert panel is asked to provide the estimate
with an interval so that the correct value is within
the interval with a probability given by the confidence
level [23].

6) Manually verify the updated prior parameter values,
so that the relative QCF values are consistent to each
other and the rest of the estimates, and so that EIs on
the arcs from a common parent sum up to one.

If the specified change can be fully applied, it is within
the scope of the prediction models, which is a prerequisite
for proceeding to the next sub-phase. Otherwise, the modifi-
cations are canceled and the change deemed not predictable
by the models as such.

Input documentation
• Prediction models: Design Model, Quality Model, De-

pendency Views
• Specification of the change
• The trace-links.
Output documentation
• Design Model
• DVs modified with respect to the change.
Modeling guideline
1) Relate the specified change to manually identifiable

Design Model diagram(s) and their elements.
2) Use the trace-links to identify the affected parts (di-

agrams and diagram elements) of the Design Model.
Apply the change by modifying (updating, deleting
or adding) the identified affected parts of the Design
Model.

3) Use the trace-links to identify the affected parts (nodes
and dependency links) of each DV, by retrieving the
traces from the modified and the deleted parts of the
Design Model to the DVs, as well as the rationale for
the DV structure and the node semantics. Modify the
structure of the affected parts of the DVs.

4) Manually verify the updated structure (completeness,
orthogonality, and correctness) of the DVs, with re-
spect to the Quality Model and the modified Design
Model.

5) Use trace-links to identify the documented rationale
for the estimation of the prior parameter values. Man-
ually identify the overall prior parameters that have
been affected by the change. Use Quality Model to
modify the values of the affected prior parameters (i.e.,
EIs and leaf node QCFs).

6) Manually verify the updated prior parameter values
(that QCFs are consistent relative to each other and

that EIs on the arcs from a common parent sum up to
one).

D. Guidelines for the “Quality prediction” sub-phase

Objective
The propagation of the change throughout the rest of each

one of the modified DVs, is performed. The propagation
paths and the modified parameter values are obtained.

Prerequisites
The specified change is within the scope of and fully

applied on the prediction models.
How conducted
Use the PREDIQT tool support to propagate the change.

The tool explicitly displays the propagation paths and the
modified parameter values, as well as the degrees of pa-
rameter value change. Obtain the predictions, in terms of
the propagation paths and the parameter value modification.
The result must explicitly express the changes with respect
to the pre-change values. The propagation of the change
throughout each one of the modified DVs, is performed
based on the general DV propagation model, according to
which the QCF value of each parent node is recursively
calculated by first multiplying the QCF and EI value for
each closest child and then summing up these products.
Such a model is legitimate since each quality characteristic
DV is complete, the EIs are normalized and the nodes
having a common parent are orthogonal (with respect to
the quality characteristic that the DV is dedicated to) due
to the structure. The root node QCF values on the quality
characteristic specific DVs represent the system-level rating
value of the quality characteristic that the DV is dedicated to.
If the predicted parameter values are beyond a pre-defined
uncertainty threshold, the modifications are canceled and the
change deemed not predictable by the input data and the
models as such.

Input documentation
DVs.
Output documentation
• The change is propagated throughout the DVs, based

on the DV propagation model.
• Propagation paths and parameter value changes (rela-

tive to the original ones) are displayed.

Modeling guideline
1) Run the simulation on the PREDIQT tool, in order to

obtain the change propagation paths and the modified
QCF values of the affected non-leaf nodes of the DVs.

2) Display the changes performed on the Design Model
and the DVs (structure and the prior parameter values).

V. THE CHALLENGE

This section motivates and specifies the success criteria
for the traceability handling approach in PREDIQT.

10

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Balancing the needs
Trace-link information can be overly detailed and ex-

tensive while the solution needed in a PREDIQT context
has to be applicable in a practical real-life setting within
the limited resources allocated for a PREDIQT-based anal-
ysis. Therefore, the traceability approach should provide
sufficient breadth and accuracy for documenting, retrieving
and representing of the trace-links, while at the same time
being practically applicable in terms of comprehensibility
and scalability. The right balance between the completeness
and accuracy of the trace information on the one side,
and practical usability of the approach on the other side,
is what characterizes the main challenge in proposing the
appropriate solution for traceability handling in PREDIQT.
Therefore, the trace-link creation efforts have to be concen-
trated on the traces necessary during the application of the
prediction models.

It is, as argued by Winkler and von Pilgrim [11], an open
issue to match trace usage and traceability schemes, and
to provide guidance to limit and fit traceability schemes
in a such way that they match a projects required usage
scenarios for traces. One of the most urgent questions
is: what requirements a single scenario imposes on the
other activities (in particular planning and recording) in the
traceability process.

Moreover, it is argued by Aizenbud-Reshef et al. [9] that
the lack of guidance as to what link information should
be produced and the fact that those who use traceability
are commonly not those producing it, also diminishes the
motivation of those who create and maintain traceability in-
formation. In order to avoid this trap, we used the PREDIQT
guidelines (as documented in Section IV) for the analyst as a
starting point, for deriving the specific needs for traceability
support.

B. Success criteria
The specific needs for traceability support in PREDIQT

are summarized below:
1) There is need for the following kinds of trace-links:

• Links between the Design Model elements to
support identification of dependencies among the
elements of the Design Model.

• Links from the Design Model elements to DV
elements to support identification of DV nodes
which are based on specific elements of the De-
sign Model.

• Links from DV elements to Quality Model ele-
ments to support acquisition of traces from the
prior estimates of the DV to the relevant quality
indicators.

• Links to external information sources (documents,
cost information, profit information, usage profile,
indicator definitions, indicator values, measure-
ments, domain expert judgments) used during the

development of DV structure and estimation of
the parameters to support documenting the traces
from the DV to the more detailed information
sources available outside the prediction models.

• Links to rationale and assumptions for:
– Design Model elements
– the semantics of the DV elements
– the structure of the DVs
– prior parameter estimates of the DVs
The objective of these links is to support docu-
menting the relevant aspects of the development of
the prediction models, particularly the understand-
ing and interpretations that the models are based
on. Part of rationale and assumptions are also
specifications of the acceptable values of quality
characteristic fulfillment (also called quality char-
acteristic fulfillment acceptance criteria/levels) as
well as validity of input and models w.r.t. time
(timing validity applies to Design Model and the
DVs).

2) The traceability approach should have facilities for
both searching with model types and model elements
as input parameters, as well as for reporting linked
elements and the link properties

3) The traceability approach should be flexible with re-
spect to granularity of trace information

4) The traceability approach should be practically appli-
cable on real-life applications of PREDIQT

These needs are in the sequel referred to as the success
criteria for the traceability approach in PREDIQT.

VI. TRACEABILITY SCHEME

We propose a traceability scheme in the form of a meta-
model for trace-link information and a feature diagram for
capabilities of the solution. The traceability scheme specifies
the needs regarding the information that should be traced
and the capabilities of the traceability approach. Thus, our
traceability scheme is based on the guidelines for application
of the prediction models and the success criteria for the
traceability approach specified in the two previous respective
sections.

The types of the trace-links and the types of the traceable
elements are directly extracted from Success Criterion 1 and
represented through a meta-model shown by Figure 4. The
Element abstract class represents a generalization of a trace-
able element. The Element abstract class is specialized into
the five kinds of traceable elements: Design Model Element,
DV Element, Quality Model Element, External Information
Source, and Rationale and Assumptions. Similarly, the Trace
Link abstract class represents a generalization of a trace-link
and may be assigned a rationale for the trace-link. The Trace
Link abstract class is specialized into the six kinds of trace-
links.

11

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Element

Rationale for Trace Link

Trace Link

Design Model
Element

Dependency
View Element

Quality Model
Element

External
Information

Source

Rationale and
Assumptions

Design Model Element
to Design Model

Element

Design Model Element
to Dependency View

Element

Dependency View
Element to Quality

Model Element

Design Model Element to
Rationale and Assumptions

Structure, Parameter or
Semantics of Dependency View
Element documented through
Rationale and Assumptions

Structure or Parameter of
Dependency View Element

documented through External
Information Source

Target

Origin

*

*

Target

Origin

*

*

Origin *

Target *

Origin

Target

*

*

Origin

Target

*

*

Origin

Target

*

*

Origin

Target

*

*

Figure 4. A meta model for trace-link information, expressed as a UML
class diagram

Pairs of certain kinds of traceable elements form binary
relations in the form of unidirectional trace-links. Such
relations are represented by the UML-specific notations
called association classes (a class connected by a dotted
line to a link which connects two classes). For example,
trace-links of type Design Model Element to Design Model
Element may be formed from a Design Model Element to
a Dependency View Element. The link is annotated by the
origin (the traceable element that the trace-link goes from)
and the target (the traceable element that the trace-link goes
to) in order to indicate the direction. Since only distinct pairs
(single instances) of the traceable elements (of the kinds
involved in the respective trace-links defined in Figure 4) can
be involved in the associated specific kinds of trace-links,
uniqueness (property of UML association classes) is present
in the defined trace-links. Due to the binary relations (arity
of value 2) in the defined trace-links between the traceable
elements, only two elements can be involved in any trace-
link. Furthermore, multiplicity of all the traceable elements

involved in the trace-links defined is of type “many,” since
an element can participate in multiple associations (given
they are defined by the meta-model and unique).

The main capabilities needed are represented through a
feature diagram [11] shown by Figure 5. Storage of trace-
links may be internal or external, relative to the prediction
models. A traceable element may be of type prediction
model element (see Figure 3) or non-model element. Report-
ing and searching functionality has to be supported. Trace-
link info has to include link direction, link meta-data (e.g.,
date, creator, strength) and cardinality (note that all links are
binary, but a single element can be origin or target for more
than one trace-link). Typing at the origin and the target ends
of a trace-link, as well as documenting the rationale for the
trace-link, are optional.

VII. EXAMPLE-DRIVEN SOLUTION

This section presents the main aspects of our traceability
approach for PREDIQT. We focus particularly on traceabil-
ity of indicators by elaborating on the role of indicators in
the Quality Model and the DVs and proposing a template
for specification of indicators. Moreover, we elaborate on
how to specify quality characteristic fulfillment acceptance
criteria within the traceability approach. This is followed by
a proposal for how to handle validity of models w.r.t time
in the form of model versions. Furthermore, traceability of
cost and profit information is discussed. Our traceability
approach also includes handling of usage profile in the
prediction models. The usage profile handling is presented
before proposing how to visualize the impacts of the dif-
ferent the decision alternatives on quality characteristics,
cost and profit. Additionally, a prototype traceability tool
for trace-link management, implementing the needs specified
through the traceability scheme, is presented. Finally, we
propose the preliminary steps for integration of the prototype
traceability tool with the existing PREDIQT tool.

A. Traceability of indicators

As stated above in relation to Success Criterion 1, links to
external information sources include definitions and values
of indicators. In PREDIQT, indicators are used as a part of
the Quality Model in order to define the quality notions for
the system being considered. The Quality Model, however,
only defines the meaning of the terminology (i.e., quantita-
tive and qualitative aspects of the quality notions specific to
the target of analysis). Therefore, in addition to the Quality
Model, indicator definitions and values are also associated
with the DVs, through the traceability information. The
indicators defined in relation to the DVs may be the same or
additional w.r.t. the ones defined in the Quality Model. The
reason for this is the fact that the DVs are an instantiation
of the architectural dependency specific to the system in
question. Hence, indicators may be attached to both QCFs
and EIs at any part of the DVs. Most common use of an

12

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tracing in PREDIQT

Traceable element

Link meta-data

Typed Untyped

Link direction Cardinality 0..*Typing

Trace-link infoStorage

Internal External Non-model elementModel element

Reporting Searching

Legend
mandatory
optional

alternative

Rationale AssumptionsExternal information source

Rationale for trace link

Figure 5. Main capabilities of the traceability approach, expressed as a feature diagram

indicator in the DV context is in relation to a leaf node
QCF, where the indicator serves as a partial evaluator of
the QCF value. The indicator value may be subject to
dynamic change. The relationship between the indicator and
the QCF may be linear or non-linear, and a mapping function
should be defined. There may also be exceptions concerning
the impact of the indicator value on the QCF which the
indicator is related to. Moreover, one indicator may be
related to several DV parameters. The dynamics of the
indicators, their measurability in terms of empirical input,
the loose relationship with the DV parameters, their possible
relationship with several DV parameters simultaneously, and
possible deviation of the mapping function from the general
DV propagation model, distinguish the indicators from the
regular DV parameters.

In order to make the indicator specification and evaluation
as precise and streamlined as possible, we propose a tem-
plate for specification of indicators, as well as a template
for documenting the indicator measurement results. Table I
provides a template for the specification of an indicator.
The first column lists the names of the attributes relevant
for the specification, while the second column provides the
explanation and the guidelines regarding the input needed.
Not all the attributes will be as relevant in a practical
context. For example, the ISO 9126 product quality standard
[18] defines a set of quality characteristic metrics using
a similar but smaller set of attributes. The precision of
the specification will also depend on how automatized the
acquisition of the indicator values is, as well as how often
the indicator values have to be retrieved. For example, a
real-time monitoring environment automatically collecting
dynamic indicators in order to capture irregularities in mea-
surement patterns, will depend on a more precise definition
of an indicator than a static value being evaluated between
long intervals. Importance of the indicator also depends on
the impact of its value (and the related DV parameter) on the
rest of the model, acceptance values for the quality levels
propagated, as well as the effect of the uncertainty on the
rest of the model.

Table II provides a template for documenting the revision
history concerning an indicator specification (defined in
Table I). The relevant information regarding the revision of

a specification is included here. The first column lists the
names of the attributes relevant for the revision history, while
the second column provides the explanation and guidelines
regarding the input needed.

Table III provides a template for documenting the mea-
surement history of an indicator (specified through the
template in Table I). Each measurement is documented, and
the value in the first attribute represents the instantiation of
the indicator according to its latest specification.

Both the specification and the instantiation of an indicator
has to be documented by a traceability approach. The
process of identifying the relevant indicators and specifying
them is a part of the development of the Quality Model
and the DVs. The measurement of the indicator values is
however only relevant in the context of the development,
validation and application of the DVs. Therefore, Table I
and Table II may be used in relation to both the Quality
Model and the DVs, while Table III will only be used in the
DV context.

B. Traceability of quality characteristic fulfillment accep-
tance levels

As mentioned in relation to Success Criterion 1, a part
of the trace-link information regarding the rationale and
assumptions are also specifications of the acceptable values
of quality characteristic fulfillment. This basically means
that for each quality characteristic defined in the Quality
Model and instantiated through a DV, the acceptance levels
for the QCF of the DV root node should be defined. As the
acceptance level may vary at the different levels of a DV,
it may also be defined w.r.t. other nodes than the root. The
intervals between the acceptance levels depend on the risk
attitude and the utility function of the decision maker, as well
as on the predefined goals of the organization/stakeholders.

The advantage of defining the acceptance levels at the
different nodes of a DV, is that early symptoms of irregular-
ities or weaknesses can be captured by the model (as a part
of, for example, run-time monitoring where indicator values
are mapped to the DV-parameters), instead of waiting until
a significant deviation has been propagated on the root node
and then detected in relation to a higher abstraction level. In
practice, this means that the acceptance scale can be even

13

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
TEMPLATE FOR SPECIFICATION OF AN INDICATOR

Specification attributes for the indicator Explanation of the specification attributes
Unique indicator id Give each indicator a unique identifier.
Name of the indicator State a concise, result-oriented name for the indicator. The name should reflect what the indicator

expresses.
Definition Specify the qualitative and the quantitative definition of the indicator. The definition should

include the qualitative and the quantitative definitions of the variables.
Created by Specify the name and the affiliation of the person that the indicator has been specified by.
Date created Specify the date for the specification of the indicator.
Purpose of the indicator Specify the purpose of the indicator, i.e., what it will be used for.
Assumptions Specify any assumptions made for the indicator specification and its values.
Measurement guidelines Specify how to obtain the indicator values and who is responsible for that.
Data source Specify where the indicator values are stored, or where they are to be retrieved or measured

from.
Measurement frequency Specify how often the indicator values should be retrieved.
Trigger for measurement Identify the events, states or values that initiate a new measurement of this indicator.
Preconditions List any activities that must take place, or any conditions that must be true, before the indicator

can be measured. Number each precondition sequentially.
Postconditions Describe the state of the system at the conclusion of the indicator measurement. Number each

postcondition sequentially.
Expected change frequency Specify how often the value of the indicator is expected to change, i.e., the dynamics of the

indicator.
Unit of measure Specify the unit of measure of the indicator.
Interpretation of the value measured Specify which indicator values are: preferred, realistic, extreme, within the normal range, and

on the border to the unacceptable.
Scale Provide the scale that should be used for the indicator measurement. (Scale types: nominal,

ordinal, interval, or ratio).
Uncertainty Specify degree of uncertainty and sources of uncertainty. Express uncertainty in the form of

interval, confidence level, variance or similar.
How related to the relevant diagram parameters
(function and instantiation coefficients)

Specify which diagrams and parameters of the diagrams the indicator is related to. Specify
the mapping function, any exceptions and what values the possible coefficients of the indicator
function should be instantiated with.

Notes and issues Specify any additional notes or issues.

Table II
TEMPLATE FOR DOCUMENTING REVISION HISTORY CONCERNING AN INDICATOR SPECIFICATION

Revision attributes Explanation of the revision attributes
Specification last updated by Provide the name of the person who was the last one to update the specification.
Specification last updated date Provide the date when the specification was last updated.
Reason for changes Provide the reason to the update.
Version Provide a version number of the specification.

Table III
TEMPLATE FOR DOCUMENTING MEASUREMENT HISTORY CONCERNING AN INDICATOR

Measurement attributes Explanation of the measurement attributes
Measured value Provide the indicator value from the latest measurement.
Measured by Provide the name of the person/service that the measurement was performed by.
Date of measurement Provide the date/time of the measurement.
Remarks Provide and any additional info if appropriate.

more fine grained and more context specific, when mapped
to several abstraction levels of a DV.

Note that the length of the intervals between the different
acceptance levels may very significantly. Note also that the
interpretation of a certain value of a quality characteristic (as
defined through the Quality Model) is constant, while what
is the acceptable value may vary, depending on which DV
node a QCF is related to. Therefore, acceptance level and
interpretation of a QCF value are two different notions. It is
up to the stakeholders (mainly the decision makers) how

fine or coarse grained the acceptance scale for a quality
characteristic fulfillment (at the selected parts of a DV)
should be. An example of a specification of the acceptance
levels for root node QCF (always ranging between 0 and 1)
of a DV representing quality characteristic availability is:

• 0.999≤QCF – Very good
• 0.990≤QCF<0.999 – Acceptable and compliant with

the SLA goals
• 0.90≤QCF<0.990 – According to the sector standards,

but not sufficiently high for all services

14

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• QCF<0.90 – Not acceptable
Consolidated traceability information regarding interval

specification, interval measurement and the acceptance lev-
els, allows for relating the interval values to the acceptance
levels of the QCFs. Therefore, the sensitivity and dynamics
(i.e., the frequency of change) of the indicator value, as
well as the granularity of the acceptance level of the related
QCF, will be among the factors influencing how often the
indicator value should be measured in order to capture the
irregular patterns and generally achieve the observability of
the system and its aimed quality fulfillment level.

C. Traceability of model versions

As mentioned in relation to Success Criterion 1, a part
of the trace-link information regarding the rationale and
assumptions is also an explicit specification of validity of
the input and the models w.r.t. time. The objective is to
document when and for how long a model version of ele-
ments/parameters of a model are valid. The timing validity
in the PREDIQT context applies to the Design Model and
the DVs; the Quality Model is assumed to be static.

In order to address the timing aspect in the prediction
models, we introduce the model versioning. A model or
a trace-link information which has time-dependent validity
is annotated with the versions which are valid at specified
intervals of time. As such, versioning of both the Design
Model and the DVs as well as versioning of the traceability
info, is a tool for mapping the states of the system to the
time.

The degree of the variation of models over time provides
understanding of the needs for scalability as well as the
overhead related to maintenance of an architecture. The
reason is that an architecture which seems to be optimal at a
certain point of time, may not represent the generally optimal
solution, due to the changes expected in the long term.
Therefore, in order to accommodate the long-term needs for
scaling and adoptions, the relevant prediction models should
be specified in terms of their time-dependent versions.

To support versioning, a set of attributes should be added
to a trace-link or a model. Table IV presents the attributes
needed and provides a template for specification of timing
validity of models and trace-links. Not all the attributes
specified will be as relevant in a practical context, but
among the mandatory fields should be: “applies to trace-
link element”, “version number”, and at least one of the
following: “valid from”, “valid until”, “precondition for
validity”, “postcondition for validity.”

D. Traceability of cost and profit information

As stated above in relation to Success Criterion 1, links to
external information sources also include cost information.
Often, the decision making around the architecture design
alternatives has to take into account not only impact of
changes on quality characteristics, but also on cost and profit.

We argue that the traceability approach in the PREDIQT
context can accommodate such a multi-dimensional cost-
benefit analysis.

A prerequisite for including cost in the prediction models,
is a cost model. By cost we mean a monetary amount that
represents the value of resources that have to be used in
relation to a treatment or deployment of a measure. A cost
model should define and decompose the notion of cost for
the architecture in question. As such, the cost model will
have the same role in the context of cost, that the Quality
Model has in the context of quality. An example of a Cost
Model is shown in Figure 6. The rightmost nodes represent
possible indicators, which should be specified using Table I
and Table II. The decomposition of the cost notions is
based on the architecture design models, and particularly
the process models related to the deployment of a measure.

Once the cost notions are defined and decomposed, the
cost information may be added in the form of trace-link
information and attached to the relevant parts of the DVs.
A preferred way of instantiating the cost model, is however
by developing a dedicated DV for cost, according to the
same principles as the ones used for developing quality
characteristic specific DVs. Thus, cost will become a new
explicit and separate concern, treated equally as each qual-
ity characteristic. Consequently, the cost specific DVs will
provide predictions of impact of changes on monetary cost.

However, the profit may also be of monetary kind and
it will not necessarily only be related to improved quality
characteristics. Therefore, the profit should be treated in the
same manner as cost and the respective quality character-
istics, i.e., as a separate concern in the form of a Profit
Model and a dedicated DV. Finally, the benefit of a decision
alternative should be represented as a function of both the
cost and the profit according to a specified utility function.

E. Traceability of usage profile

As mentioned in relation to Success Criterion 1, usage
profile is a part of the trace-link information classified
under the external information sources. Some of the DV
parameters are in fact based on the usage profile. For
example, the expected licensing costs as well as scalability
needs, may be subject to to the usage profile. Moreover, the
uncertainty of the estimates will be based on to what degree
the usage profile is known and relevant for the parameters
under consideration. Most importantly, when considering
the alternative solutions for deployment of an architecture
design, the usage profile information will be crucial, in
order to meet the needs for accommodating the operational
environment to the expected usage. The characteristics of the
usage profile should be specified in terms of for example:

• number of clients
• number of servers
• number of data messages
• number of logons

15

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV
TEMPLATE FOR DOCUMENTING TIMING VALIDITY OF MODELS AND TRACE-LINKS

Validity relevant attributes Explanation of attributes
Applies to trace-link element Specify which trace-link element this version specification applies to.
Version number Provide a unique version number.
Valid from Specify exactly when the trace-link or the model element in question is valid from.
Valid until Specify exactly when the trace-link or the model element in question is valid until.
Precondition for validity List any events or states that must take place, or any conditions that must be true, before this

version can become valid. Number each precondition sequentially.
Postcondition for validity Describe any events or states at the conclusion of the validity of this version. Number each

postcondition sequentially.
Preceding version If appropriate, specify which version should be succeeded by this one.
Version which succeeds this one If appropriate, specify the version that should become valid after this one.
Rationale for the timing limitation Explain and substantiate why the validity of this trace-link element is limited w.r.t. time.
Assumptions for the validity Specify the assumptions for this specification, if any.

Cost

Cost of software

I: Cost of software integration

I: Cost of software development

I: Cost of licencing

Cost of hardware
I: Cost of hardware maintenance

I: Cost of hardware purchase

Cost of operation
I: Cost of service provider

I: Cost of daily usage

Cost of personnel

I: Cost of user training

I: Cost of personnel for requirements specification

I: Cost of personnel for testing and verification

I: Cost of personnel for contracting

I: Cost of internal/external competence

Figure 6. An example of a cost model

• number of users
• number of retrievals per user and per unit of time
• size of messages.

F. Visualization of the decision alternatives

Once the complete prediction models have been devel-
oped with the trace-link information, the application of the
prediction models will result in predictions w.r.t three kinds
of concerns:

• each quality characteristic as defined by the Quality
Model

• cost as defined by the Cost Model
• profit as defined by the Profit Model.
As a result, the impacts of a decision alternative w.r.t.

the current values of these three kinds of concerns may be
difficult to compare. In order to facilitate the comparison,
we propose a tabular visualization of the impacts of the
alternative design decisions on each quality characteristic,
as well as cost and profit. A simplified example of such a
representation is illustrated in Table V. Thus, we distinguish
between alternatives based on:

• value of each quality characteristic (i.e., the root node
QCF of each quality characteristic specific DV)

• cost value (i.e., the root node value of the cost specific
DV)

• profit value (i.e., the root node value of the profit
specific DV).

In order to compare the alternatives with the current solution,
one should take into account the risk attitude and the utility
function of the decision maker. A simple way of doing
this, is by weighting the quality characteristics, cost and
profit with respect to each other. The constraints of the
utility function will be the quality characteristic fulfillment
acceptance levels, proposed in Section VII-B.

G. Prototype traceability tool

We have developed a prototype traceability tool in the
form of a database application with user interfaces, on the
top of Microsoft Access [24]. Similarly as for the first
version of the PREDIQT tool, the proprietary development
environment (Microsoft Access) was found suitable since
it offers a rather simple and sufficient toolbox for quick
prototyping of the proof-of-concept. A later version of the
traceability tool may however use another (open source
or similar) environment. The current prototype traceability
tool includes a structure of tables for organizing the trace

16

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
A POSSIBLE VISUALIZATION OF THE IMPACTS OF THE DIFFERENT ARCHITECTURE DESIGN ALTERNATIVES ON QUALITY, COST AND PROFIT

Architecture design alternative Availability QCF Scalability QCF Usability QCF Cost Profit
Current architecture 0.999 0.90 0.95 85 000 EUR 120 000 EUR
Alternative 1 0.92 0.95 0.80 55 000 EUR 85 000 EUR
Alternative 2 0.90 0.85 0.99 60 000 EUR 90 000 EUR
Alternative 3 0.85 0.99 0.90 95 000 EUR 130 000 EUR

Figure 7. Entity-relationship diagram of the trace-link database of the prototype traceability tool

information, queries for retrieval of the trace info, a menu
for managing work flow, forms for populating trace-link
information, and facilities for reporting trace-links. A screen
shot of the entity-relationship (ER) diagram of the trace-
link database is shown by Figure 7. The ER diagram
is normalized, which means that the data are organized
with minimal needs for repeating the entries in the tables.
Consistency checks are performed on the referenced fields.
The data structure itself (represented by the ER diagram)
does not cover all the constraints imposed by the meta-
model (shown by Figure 4). However, constraints on queries
and forms as well as macros can be added in order to fully
implement the logic, such as for example which element
types can be related to which trace-link types.

The five traceable element types defined by Figure 4
and their properties (name of creator, date, assumption
and comment), are listed in Table TraceableElementType.
Similarly, the six trace-link types defined by Figure 4 and
their properties (scope, date, creator and comment), are listed
in Table TraceLinkType. Table TraceableElement specifies
the concrete instances of the traceable elements, and assigns
properties (such as the pre-defined element type, hyperlink,
creator, date, etc.) to each one of them. Since primary

key attribute in Table TraceableElementType is foreign key
in Table TraceableElement, multiplicity between the two
respective tables is one-to-many.

Most of the properties are optional, and deduced based on:
i) the core questions to be answered by traceability scheme
[11] and ii) the needs for using guidelines for application
of prediction models, specified in Section IV. The three
Tables TargetElements, OriginElements and TraceLink to-
gether specify the concrete instances of trace-links. Each
link is binary, and directed from a concrete pre-defined
traceable element – the origin element specified in Table
OriginElements, to a concrete pre-defined traceable element
– the target element specified in Table TargetElements. The
trace-link itself (between the origin and the target element)
and its properties (such as pre-defined trace-link type)
are specified in Table TraceLink. Attribute TraceLinkName
(associated with a unique TraceLinkId value) connects the
three tables TraceLink, OriginElements and TargetElements
when representing a single trace-link instance, thus forming
a cross-product when relating the three tables. The MS
Access environment performs reference checks on the cross
products, as well as on the values of the foreign key
attributes. Target elements and origin elements participating

17

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. A screen shot of the start menu of the prototype traceability
tool

in a trace-link, are instances of traceable elements defined
in Table TraceableElement. They are connected through the
Attribute ElementId. Note that in the Tables OriginElements
and TargetElements, the Attribute ElementId has the role
of a foreign key and is displayed as ElementName. In
Tables OriginElements and TargetElements, the Element-
Name is through the ElementId retrieved from the Table
TraceableElement and therefore exactly the same as the one
in the table it originates from (i.e., TraceableElement). Thus,
multiplicity between Table TraceableElement and Table Tar-
getElements, as well as between Table TraceableElement
and Table OriginElements, is one-to-many. Similarly, since
primary key attribute in Table TraceLinkType is foreign key
in Table TraceLink, multiplicity between the two respective
tables is one-to-many.

A screen shot of the start menu is shown by Figure 8.
The sequence of the buttons represents a typical sequence
of actions of an end-user (the analyst), in the context
of defining, documenting and using the trace-links. The
basic definition of the types of the traceable elements and
the trace-links are provided first. Then, concrete traceable
elements are documented, before defining specific instances
of the trace-links and their associated specific origin and
target elements, involved in the binary trace-link relations.
Finally, reports can be obtained, based on search parameters
such as for example model types, model elements, or trace-
link types.

H. Integrating the prototype traceability tool with the exist-
ing PREDIQT tool

In order to fully benefit from the traceability approach,
the prototype traceability tool should be integrated with the
existing PREDIQT tool. In addition, the traceability tool
should be extended with the indicator templates and the
above proposed visualization of the impacts. The traceability
tool should moreover guide the user in the PREDIQT
process and verify that the necessary prerequisites for each

phase are fulfilled. The result should be seamless handling of
the trace-link information in the traceability tool during the
simultaneous development and use of DVs in the PREDIQT
tool. Moreover, exchange of the trace-link information be-
tween the traceability tool and the PREDIQT tool, as well
as a consolidated quality-cost-profit visualization of the
decision alternatives in an integrated tool, is needed.

A preliminary result is exemplified in Figure 9, which
shows a screen shot of the existing PREDIQT tool. The
trace-link information is shown on demand. In this partic-
ular illustrative example with fictitious values, the user is
evaluating the benefit of increasing the QCF of the root
node by 0.006 (i.e., from 0.919 to 0.925). To this end, he is
comparing cost of two possible alternatives: increase QCF
of “Message Routing” by 0.04 (i.e., from 0.93 to 0.97), or
increase of “Performance of the related services” by 0.025
(i.e., from 0.80 to 0.825). Both alternatives have the same
impact on the root node QCF, but the cost of the measures
(or treatments) related to achievement of the two alternatives,
is different. Note that the cost information is a part of the
trace-link information and not explicitly displayed on the DV
shown in Figure 9. The integration of the traceability tool
with the existing PREDIQT tool should therefore involve
exchange of standardized messages regarding the trace-
link information, functionality for running queries from the
existing PREDIQT tool, and possibility of retrieving the
prediction model elements (stored in the PREDIQT tool)
from the traceability tool.

VIII. SUMMARY OF EXPERIENCES FROM APPLYING A
PART OF THE SOLUTION ON PREDICTION MODELS FROM

AN INDUSTRIAL CASE STUDY

This section reports on the results from applying our tool-
supported traceability approach on prediction models, which
were originally developed and applied during a PREDIQT-
based analysis [5] on a real-life industrial system. The anal-
ysis targeted a system for managing validation of electronic
certificates and signatures worldwide. The system analyzed
was a so-called “Validation Authority” (VA) for evaluation
of electronic identifiers (certificates and signatures) world-
wide. In that case study, the prediction models were applied
for simulation of impacts of 14 specified architecture design
changes on the VA quality. Each specified architecture
design change was first applied on the affected parts of
the Design Model, followed by the conceptual model and
finally the DVs. Some of the changes (e.g., change 1) ad-
dressed specific architecture design aspects, others referred
to the system in general, while the overall changes (e.g.,
changes 6 through 14) addressed parameter specifications
of the DVs. The specification suggested each change being
independently applied on the approved prediction models.

The trace-link information was documented in the proto-
type traceability tool, in relation to the model development.
The trace-links were applied during change application,

18

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. An illustrative example (with fictitious values) of displaying the trace-links in the PREDIQT tool

19

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. A screen shot of an extract of a trace-link report from the
prototype traceability tool

according to the guidelines for application of prediction
models, specified in Section IV. We present the experiences
obtained, while the process of documentation of the trace-
links is beyond the scope of this paper.

The prediction models involved are the ones related to
“Split signature verification component into two redundant
components, with load balancing”, corresponding to Change
1 in Omerovic et al. [5]. Three Design Model diagrams
were affected, and one, two and one model element on
each, respectively. We have tried out the prototype trace-
ability tool on the Design Model diagrams involved, as
well as Availability (which was one of the three quality
characteristics analyzed) related Quality Model diagrams
and DV. Documentation of the trace-links involved within
the Availability quality characteristic (as defined by the
Quality Model) scope, took approximately three hours. Most
of the time was spent on actually typing the names of the
traceable elements and the trace-links.

18 instances of traceable elements were registered in the
database during the trial: seven Quality Model elements,
four DV elements, four Design Model elements and three
elements of type “Rationale and Assumptions”. 12 trace-
links were recorded: three trace-links of type “Design Model
Element to Design Model Element”, three trace-links of type
“Design Model Element to DV Element”, one trace-link of
type “Design Model Element to Rationale and Assump-
tions”, three trace-links of type “DV Element to Quality
Model Element”, and two trace-links of type “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions”, were documented.

An extract of a screen shot of a trace-link report (ob-
tained from the prototype traceability tool) is shown by
Figure 10. The report included: three out of three needed
(i.e., actually existing, regardless if they are recorded in
the trace-link database) “Design Model Element to Design
Model Element” links, three out of four needed “Design
Model Element to DV Element” links, one out of one needed
“Design Model Element to Rationale and Assumptions”
link, three out of six needed “DV Element to Quality

Model Element” links and one out of one needed “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions” link.

Best effort was made to document the appropriate trace-
links without taking into consideration any knowledge of
exactly which of them would be used when applying the
change. The use of the trace-links along with the application
of change on the prediction models took totally 20 minutes
and resulted in the same predictions (change propagation
paths and values of QCF estimates on the Availability DV),
as in the original case study [5]. Without the guidelines
and the trace-link report, the change application would have
taken approximately double that time for the same user.

All documented trace-links were relevant and used during
the application of the change, and about 73% of the relevant
trace-links could be retrieved from the prototype traceability
tool. Considering however the importance and the role of
the retrievable trace-links, the percentage should increase
considerably.

Although hyperlinks are included as meta-data in the
user interface for element registration, an improved solu-
tion should include interfaces for automatic import of the
element names from the prediction models, as well as user
interfaces for easy (graphical) trace-link generations between
the existing elements. This would also aid verification of the
element names.

IX. WHY OUR SOLUTION IS A GOOD ONE

This section argues that the approach presented above
fulfills the success criteria specified in Section V.

A. Success Criterion 1

The traceability scheme and the prototype traceability
tool capture the kinds of trace-links and traceable elements,
specified in the Success Criterion 1. The types of trace-
links and traceable elements as well as their properties, are
specified in dedicated tables in the database of the prototype
traceability tool. This allows constraining the types of the
trace-links and the types of the traceable elements to only
the ones defined, or extending their number or definitions,
if needed. The trace-links in the prototype traceability tool
are binary and unidirectional, as required by the traceabil-
ity scheme. Macros and constraints can be added in the
tool, to implement any additional logic regarding trace-
links, traceable elements, or their respective type definitions
and relations. The data properties (e.g., date, hyperlink, or
creator) required by the user interface, allow full traceability
of the data registered in the database of the prototype
traceability tool.

B. Success Criterion 2

Searching based on user input, selectable values from a
list of pre-defined parameters, or comparison of one or more
database fields, are relatively simple and fully supported

20

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based on queries in MS Access. Customized reports can
be produced with results of any query and show any infor-
mation registered in the database. The report, an extract of
which is presented in Section VIII, is based on a query of
all documented trace-links and the related elements.

C. Success Criterion 3

The text-based fields for documenting the concrete in-
stances of the traceable elements and the trace-links, allow
level of detail selectable by the user. Only a subset of fields
is mandatory for providing the necessary trace-link data. The
optional fields in the tables can be used for providing addi-
tional information such as for example rationale, comments,
links to external information sources, attachments, strength
or dependency. There are no restrictions as to what can be
considered as a traceable element, as long at it belongs to one
of the element types defined by Figure 4. Similarly, there are
no restrictions as to what can be considered as a trace-link,
as long at it belongs to one of the trace-link types defined
by Figure 4. The amount of information provided regarding
the naming and the meta-data, are selectable by the user.

D. Success Criterion 4

As argued, the models and the change specification
originate from a real-life industrial case study in which
PREDIQT was entirely applied on a comprehensive sys-
tem for managing validation of electronic certificates and
signatures worldwide (a so-called “Validation Authority”).
Several essential aspects characterize the application of the
approach presented in Section VIII:

• the realism of the prediction models involved in the
example

• the size and complexity of the target system addressed
by the prediction models

• the representativeness of the change applied to the
prediction models

• the simplicity of the prototype traceability tool with
respect to both the user interfaces and the notions
involved

• the time spent on documenting and using the trace-links
Overall, these aspects indicate the applicability of our so-
lution on real-life applications of PREDIQT, with limited
resources and by an average user (in the role of the analyst).

The predictions (change propagation paths and values
of QCF estimates) we obtained during the application of
our solution on the example were the same as the ones
from the original case study [5] (performed in year 2008),
which the models stem from. Although the same analyst
has been involved in both, the results (i.e., the fact that the
same predictions were obtained in both trials in spite of a
rather long time span between them) suggest that other users
should, by following PREDIQT guidelines and applying
the prototype traceability tool, obtain similar results. The
process of application of the models has been documented

in a structured form, so that the outcome of the use of
the prediction models is as little as possible dependent on
the analyst performing the actions. Hence, provided the
fact that the guidelines are followed, the outcome should
be comparable if re-applying the overall changes from the
original case study.

The time spent is to some degree individual and depends
on the understanding of the target system, the models and
the PREDIQT method. It is unknown if the predictions
would have been the same (as in the original case study)
for another user. We do however consider the models and
the change applied during the application of the solution, to
be representative due to their origins from a major real-life
system. Still, practical applicability of our solution will be
subject to future empirical evaluations.

X. WHY OTHER APPROACHES ARE NOT BETTER IN THIS
CONTEXT

This section evaluates the feasibility of other traceability
approaches in the PREDIQT context. Based on our review
of the approach-specific publications and the results of the
evaluation by Galvao and Goknil [12] of a subset of the
below mentioned approaches, we argue why the alternative
traceability approaches do not perform sufficiently on one
or more of the success criteria specified in Section V.
The evaluation by Galvao and Goknil is conducted with
respect to five criteria: 1) structures used for representing
the traceability information; 2) mapping of model elements
at different abstraction levels; 3) scalability for large projects
in terms of process, visualization of trace information, and
application to a large amount of model elements; 4) change
impact analysis on the entire system and across the software
development life cycle; and 5) tool support for visualization
and management of traces, as well as for reasoning on the
trace-link information.

Almeida et al. [25] propose an approach aimed at simpli-
fying the management of relationships between requirements
and various design artifacts. A framework which serves as
a basis for tracing requirements, assessing the quality of
model transformation specifications, meta-models, models
and realizations, is proposed. They use traceability cross-
tables for representing relationships between application
requirements and models. Cross-tables are also applied for
considering different model granularities and identification
of conforming transformation specifications. The approach
does not provide sufficient support for intra-model mapping,
thus failing on our Success Criterion 1. Moreover, possibility
of representing the various types of trace-links and traceable
elements is unclear, although different visualizations on a
cross-table are suggested. Tool support is not available,
which limits applicability of the approach in a practical
setting. Searching and reporting facilities are not available.
Thus, it fails on our Success Criteria 1, 2, and 4.

21

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Event-based Traceability (EBT) is another requirements-
driven traceability approach aimed at automating trace-
link generation and maintenance. Cleland-Huang, Chang
and Christensen [26] present a study which uses EBT for
managing evolutionary change. They link requirements and
other traceable elements, such as design models, through
publish-subscribe relationships. As outlined by Galvao and
Goknil [12], “Instead of establishing direct and tight coupled
links between requirements and dependent entities, links are
established through an event service. First, all artefacts are
registered to the event server by their subscriber manager.
The requirements manager uses its event recognition algo-
rithm to handle the updates in the requirements document
and to publish these changes as event to the event server.
The event server manages some links between the require-
ment and its dependent artefacts by using some information
retrieval algorithms.” The notification of events carries struc-
tural and semantic information concerning a change context.
Scalability in a practical setting is the main issue, due to
performance limitation of the EBT server [12]. Moreover,
the approach does not provide sufficient support for intra-
model mapping. Thus, it fails on our Success Criteria 1 and
4.

Cleland-Huang et al. [27] propose the Goal Centric
Traceability (GCT) approach for managing the impact of
change upon the non-functional requirements of a software
system. A Softgoal Interdependency Graph (SIG) is used to
model non-functional requirements and their dependencies.
Additionally, a traceability matrix is constructed to relate
SIG elements to classes. The main weakness of the approach
is the limited tool support, which requires manual work. This
limits both scalability in a practical setting and searching
support (thus failing on our Success Criteria 4 and 2,
respectively). It is unclear to what degree the granularity
of the approach would meet the needs of PREDIQT.

Cleland-Huang and Schmelzer [28] propose another
requirements-driven traceability approach that builds on
EBT. The approach involves a different process for dynami-
cally tracing non-functional requirements to design patterns.
Although more fine grained than EBT, there is no evidence
that the method can be applied with success in a practical
real-life setting (required through our Success Criterion 4).
Searching and reporting facilities (as required through our
Success Criterion 2) are not provided.

Many traceability approaches address trace maintenance.
Cleland-Huang, Chang, and Ge [29] identify the various
change events that occur during requirements evolution and
describe an algorithm to support their automated recognition
through the monitoring of more primitive actions made by a
user upon a requirements set. Mäder and Gotel [30] propose
an approach to recognize changes to structural UML models
that impact existing traceability relations and, based on that
knowledge, provide a mix of automated and semi-automated
strategies to update the relations. Both approaches focus on

trace maintenance, which is as argued in Section V, not
among the traceability needs in PREDIQT.

Ramesh and Jarke [16] propose another requirements-
driven traceability approach where reference models are
used to represent different levels of traceability information
and links. The granularity of the representation of traces
depends on the expectations of the stakeholders [12]. The
reference models can be implemented in distinct ways
when managing the traceability information. As reported
by Galvao and Goknil [12], “The reference models may
be scalable due to their possible use for traceability activ-
ities in different complexity levels. Therefore, it is unclear
whether this approach lacks scalability with respect to tool
support for large-scale projects or not. The efficiency of the
tools which have implemented these meta-models was not
evaluated and the tools are not the focus of the approach.”
In PREDIQT context, the reference models are too broad,
their focus is on requirements traceability, and tool support
is not sufficient with respect to searching and reporting (our
Success Criterion 2).

We could however have tried to use parts of the reference
models by Ramesh and Jarke [16] and provide tool support
based on them. This is done by Mohan and Ramesh [31]
in the context of product and service families. The authors
discuss a knowledge management system, which is based
on the traceability framework by Ramesh and Jarke [16].
The system captures the various design decisions associated
with service family development. The system also traces
commonality and variability in customer requirements to
their corresponding design artifacts. The tool support has
graphical interfaces for documenting decisions. The trace
and design decision capture is illustrated using sample
scenarios from a case study. We have however not been able
to obtain the tool, in order to try it out in our context.

A modeling approach by Egyed [32] represents trace-
ability information in a graph structure called a footprint
graph. Generated traces can relate model elements with other
models, test scenarios or classes [12]. Galvao and Goknil
[12] report on promising scalability of the approach. It is
however unclear to what degree the tool support fulfills our
success criterion regarding searching and reporting, since
semantic information on trace-links and traceable elements
is limited.

Aizenbud-Reshef et al. [33] outline an operational se-
mantics of traceability relationships that capture and rep-
resent traceability information by using a set of semantic
properties, composed of events, conditions and actions [12].
Galvao and Goknil [12] state: the approach does not provide
sufficient support for intra-model mapping; a practical appli-
cation of the approach is not presented; tool support is not
provided; however, it may be scalable since it is associated
with the UML. Hence, it fails on our Success Criteria 1 and
2.

Limon and Garbajosa [34] analyze several traceability

22

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

schemes and propose an initial approach to Traceability
Scheme (TS) specification. The TS is composed of a trace-
ability link dataset, a traceability link type set, a minimal
set of traceability links, and a metrics set for the minimal
set of traceability links [12]. Galvao and Goknil [12] argue
that “The TS is not scalable in its current form. Therefore,
the authors outline a strategy that may contribute to its
scalability: to include in the traceability schema a set of
metrics that can be applied for monitoring and verifying
the correctness of traces and their management.” Hence, it
fails with respect to scalability in a practical setting, that
is, our criterion 4. Moreover, there is no tool support for
the employment of the approach, which fails on our success
criterion regarding searching and reporting.

Some approaches [35] [36] [37] that use model trans-
formations can be considered as a mechanism to generate
trace-links. Tool support with transformation functionalities
is in focus, while empirical evidence of applicability and par-
ticularly comprehensibility of the approaches in a practical
setting, is missing. The publications we have retrieved do not
report sufficiently on whether these approaches would offer
the searching facilities, the granularity of trace information,
and the scalability needed for use in PREDIQT context (that
is, in a practical setting by an end-user (analyst) who is not
an expert in the tools provided).

XI. CONCLUSION AND FUTURE WORK

Our earlier research indicates the feasibility of the
PREDIQT method for model-based prediction of impacts
of architectural design changes on system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system
design, system quality and the interrelationship between the
two.

Based on the success criteria for a traceability approach
in the PREDIQT context, we put forward a traceability
scheme. Based on this, a solution supported by a prototype
traceability tool is developed. The prototype tool can be
used to define, document, search for and represent the trace-
links needed. We have argued that our solution offers a
useful and practically applicable support for traceability
handling in the PREDIQT context. The model application
guidelines provided in Section IV complement the prototype
traceability tool and aim to jointly provide the facilities
needed for a schematic application of prediction models.

Performing an analysis of factors such as cost, risk,
and benefit of the trace-links themselves and following the
paradigm of value-based software engineering, would be
relevant in order to stress the effort on the important trace-
links. As argued by Winkler and von Pilgrim [11], if the
value-based paradigm is applied to traceability, cost, benefit,
and risk will have to be determined separately for each trace
according to if, when, and to what level of detail it will be
needed later. This leads to more important artifacts having

higher-quality traceability. There is a trade-off between the
semantically accurate techniques on the one hand and cost-
efficient but less detailed approaches on the other hand.
Finding an optimal compromise is still a research challenge.
Our solution proposes a feasible approach, while finding the
optimal one is subject to further research.

PREDIQT has only architectural design as the indepen-
dent variable – the Quality Model itself is, once developed,
assumed to remain unchanged. This is of course a simpli-
fication, since quality characteristic definitions may vary in
practice. It would be interesting to support variation of the
Quality Model as well, in PREDIQT.

Development of an experience factory, that is, a repository
of the non-confidential and generalizable experiences and
models from earlier analyses, is another direction for future
work. An experience factory from similar domains and
contexts would allow reuse of parts of the prediction models
and potentially increase model quality as well as reduce the
resources needed for a PREDIQT-based analysis.

Further empirical evaluation of our solution is also nec-
essary to test its feasibility on different analysts as well
as its practical applicability in the various domains which
PREDIQT is applied on. Future work should also include
integration of the PREDIQT tool with the traceability tool.
Particularly important is development of standard interfaces
and procedures for updating the traceable elements from the
prediction models into our prototype traceability tool.

As model application phase of PREDIQT dictates which
trace-link information is needed and how it should be used,
the current PREDIQT guidelines focus on the application
of the prediction models. However, since the group of
recorders and the group of users of traces may be distinct,
structured guidelines for recording the traces during the
model development should also be developed as a part of
the future work.

ACKNOWLEDGMENT

This work has been conducted as a part of the DIGIT
(180052/S10) project funded by the Research Council of
Norway, as well as a part of the NESSoS network of
excellence funded by the European Commission within the
7th Framework Programme.

REFERENCES

[1] A. Omerovic and K. Stølen, “Traceability Handling in Model-
based Prediction of System Quality,” in Proceedings of Third
International Conference on Advances in System Simulation,
SIMUL 2011. IARIA, 2011, pp. 71–80.

[2] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stølen, and J. Ølnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality,” in International Symposium on Engineering Secure
Software and Systems, vol. LNCS 5965. Springer, 2010, pp.
231–240.

23

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] A. Omerovic, B. Solhaug, and K. Stølen, “Evaluation of
Experiences from Applying the PREDIQT Method in an In-
dustrial Case Study,” in Fifth IEEE International Conference
on Secure Software Integration and Reliability Improvement.
IEEE, 2011, pp. 137–146.

[4] A. Omerovic, PREDIQT: A Method for Model-based Predic-
tion of Impacts of Architectural Design Changes on System
Quality. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2012.

[5] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stølen, and J. Ølnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality,” SINTEF, Tech. Rep. A13339, 2010.

[6] A. Omerovic and K. Stølen, “Traceability Handling in Model-
based Prediction of System Quality,” SINTEF, Tech. Rep.
A19348, 2011.

[7] A. Knethen and B. Paech, “A Survey on Tracing Approaches
in Practice and Research,” Frauenhofer IESE, Tech. Rep.
095.01/E, 2002.

[8] “Standard Glossary of Software Engineering Terminology:
IEEE Std.610. 12-1990,” 1990.

[9] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni, “Model Traceability,” IBM Syst. J., vol. 45, no. 3, pp.
515–526, 2006.

[10] J. Simpson and E. Weiner, Oxford English Dictionary.
Clarendon Press, 1989, vol. 18, 2nd edn.

[11] S. Winkler and J. von Pilgrim, “A survey of Traceability in
Requirements Engineering and Model-driven Development,”
Software and Systems Modeling, vol. 9, no. 4, pp. 529–565,
2010.

[12] I. Galvao and A. Goknil, “Survey of Traceability Approaches
in Model-Driven Engineering,” in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007.

[13] G. Spanoudakis and A. Zisman, “Software Traceability: A
Roadmap,” in Handbook of Software Engineering and Knowl-
edge Engineering. World Scientific Publishing, 2004, pp.
395–428.

[14] R. J. Wieringa, “An Introduction to Requirements Traceabil-
ity,” Faculty of Mathematics and Computer Science, Vrije
Universiteit, Tech. Rep. IR-389, 1995.

[15] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa, “A Model-driven Trace-
ability Framework for Software Product Lines,” Software and
Systems Modeling, 2009.

[16] B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 58–93, 2001.

[17] S. Bohner and R. Arnold, Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

[18] “International Organisation for Standardisation: ISO/IEC
9126 - Software Engineering – Product Quality,” 2004.

[19] I. Refsdal, Comparison of GMF and Graphiti Based on
Experiences from the Development of the PREDIQT Tool.
University of Oslo, 2011.

[20] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling
Language Reference Manual. Pearson Higher Education,
2004.

[21] A. Omerovic and K. Stølen, “A Practical Approach to
Uncertainty Handling and Estimate Acquisition in Model-
based Prediction of System Quality,” International Journal
on Advances in Systems and Measurements, vol. 4, no. 1-2,
pp. 55–70, 2011.

[22] A. Omerovic and K. Solhaug, B. Stølen, “Assessing Practical
Usefulness and Performance of the PREDIQT Method: An
Industrial Case Study,” Information and Software Technology,
vol. 54, pp. 1377–1395, 2012.

[23] A. Omerovic and K. Stølen, “Interval-Based Uncertainty
Handling in Model-Based Prediction of System Quality,” in
Proceedings of Second International Conference on Advances
in System Simulation, SIMUL 2010, August 2010, pp. 99–108.

[24] “Access Help and How-to,” accessed: May 19,
2011. [Online]. Available: http://office.microsoft.com/en-us/
access-help/

[25] J. P. Almeida, P. v. Eck, and M.-E. Iacob, “Requirements
Traceability and Transformation Conformance in Model-
Driven Development,” in Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Con-
ference, 2006, pp. 355–366.

[26] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-
Based Traceability for Managing Evolutionary Change,”
IEEE Trans. Softw. Eng., vol. 29, pp. 796–810, 2003.

[27] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhan-
skaya, and S. Christina, “Goal-centric Traceability for Manag-
ing Non-functional Requirements,” in Proceedings of the 27th
International Conference on Software Engineering. ACM,
2005, pp. 362–371.

[28] J. Cleland-Huang and D. Schmelzer, “Dynamically Tracing
Non-Functional Requirements through Design Pattern Invari-
ants,” in Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering.
ACM, 2003.

[29] J. Cleland-Huang, C. K. Chang, and Y. Ge, “Supporting
Event Based Traceability through High-Level Recognition
of Change Events,” in 26th Annual International Computer
Software and Applications Conference. IEEE Computer
Society, 2002, pp. 595–600.

[30] P. Mäder, O. Gotel, and I. Philippow, “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” in Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications.
Springer-Verlag, 2009, pp. 174–189.

24

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] K. Mohan and B. Ramesh, “Managing Variability with Trace-
ability in Product and Service Families.” IEEE Computer
Society, 2002, pp. 1309–1317.

[32] A. Egyed, “A Scenario-Driven Approach to Trace Depen-
dency Analysis,” IEEE Transactions on Software Engineer-
ing, vol. 29, no. 2, pp. 116–132, 2003.

[33] N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-Gafni,
and D. S. Kolovos, “Operational Semantics for Traceability,”
in Proceedings of the ECMDA Traceability Workshop, at
European Conference on Model Driven Architecture, 2005,
pp. 7–14.

[34] A. E. Limon and J. Garbajosa, “The Need for a Unifying
Traceability Scheme,” in 2nd ECMDA-Traceability Workshop,
2005, pp. 47–55.

[35] F. Jouault, “Loosely Coupled Traceability for ATL,” in In
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceability, 2005, pp.
29–37.

[36] D. S. Kolovos, R. F. Paige, and F. Polack, “Merging Models
with the Epsilon Merging Language (EML),” in MoDELS’06,
2006, pp. 215–229.

[37] J. Falleri, M. Huchard, and C. Nebut, “Towards a Traceability
Framework for Model Transformations in Kermeta,” in Pro-
ceedings of the ECMDA Traceability Workshop, at European
Conference on Model Driven Architecture, 2006, pp. 31–40.

25

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

