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Abstract—Quantum networks are communication networks
in which adjacent nodes enjoy perfectly secure channels thanks
to quantum key distribution (QKD). While QKD is renowned
for perfect point-to-point security and its eavesdropping detec-
tion capabilities, end-to-end security is nontrivial to achieve.
More importantly, the eavesdropping detection can indeed be
turned against the system itself. It is known that perfect end-
to-end security can be created from point-to-point security by
means of multipath transmission (in fact, there is no other way
to do this, assuming no pre-shared secrets and avoiding public-
key cryptography). However, multipath transmission requires
node-disjoint paths, which in turn are to be assured by the
underlying routing protocol. At this point, an active or passive
adversary may intentionally eavesdrop on the QKD protocol
to temporarily cut a channel and to cause key-buffers running
empty and enforcing local rerouting of packets towards nodes
under his control. Consequently, the multipath transmission
channels might no longer be non-intersecting, thus defeating
the overall security by exploiting QKD’s eavesdropping detec-
tion facilities. Alternatively, an active adversary may as well
insert bogus traff c to cause local congestion, thus even sparing
the effort of eavesdropping on a QKD link. In this work, we
use Markov chains to model a multipath transmission, and we
discuss the extent to which secure multipath transmission is
resilient against local congestions caused by an adversary. We
argue that a protection against an active adversary who uses
bogus traff c to f ddle with the routing, calls for additional
security measures, perhaps even beyond the capabilities of
QKD or multipath transmission. It turns out that robustness
against passive and active adversaries can be retained as long
as no bogus traff c is observed.

Keywords-Quantum Cryptography, Markov-Chain, Secure
Routing, Information-Theoretic Security

I. INTRODUCTION
Quantum key distribution (QKD) is known to provide

perfect point-to-point security by virtue of its capability to
detect passive eavesdropping. Despite considerable progress
and ingenious concepts and results, QKD remains yet mostly
limited to secure point-to-point connections. Although the
theory of quantum repeaters is available in rich detail
[2], these devices have not yet evolved beyond laboratory
demonstrator status. On the classical road, perfect end-to-end
security is achievable by means of multipath transmission.
Remarkably, multiple paths have been proven to be both,

a necessary and suff cient condition for perfect secrecy
along a multihop connection (w.r.t. not assuming quantum
repeater based transmission). The idea and security of such
protocols (e.g., the one proposed by [3]) hinges on the
chosen transmission paths to be pairwise non-intersecting.
However, re-routing due to local congestions or intentionally
caused blockages by the adversary can cause the network
to temporarily allow intersections of paths and thus give
an adversary an advantage when eavesdropping on relay
nodes. More specif cally, if the transmission uses t paths
that are supposed to be disjoint (except for their respective
end-points) then security against an adversary having up to
k nodes under his control is not endangered as long as t > k
and the paths remain disjoint. More specif cally, multipath
transmission pursues the following general construction: to
transmit a message m, the sender f rst puts it through
a threshold secret sharing scheme, e.g., Shamir’s (t, n)-
scheme or plain (n, n)-sharing via the XOR of a sequence
of random values, i.e., m = s1 ⊕ s2 ⊕ · · · ⊕ sn, where
⊕ is the bitwise exclusive or. Each share si then travels
over his own distinct path to the receiver, who reconstructs
the message according to the chosen sharing scheme. In
Shamir’s case, this requires at least t+1 shares and in case
of an XOR-sharing, all n shares are needed to recover m.
In either case, the adversary needs to catch at least t + 1
shares, respectively n shares, in order to learn anything. The
simplest way to enforce a maximal number of corrupted
nodes for that matter is having the paths pairwise non-
intersecting, i.e., node-disjoint. If congestions cause local
redirections such that multiple paths intersect in the same
node, then the security of the transmission is doomed to fail,
since the adversary may learn the required number of shares
while perhaps having a much smaller number of nodes under
his control. We introduce an attack in which the adversary
exploits the eavesdropping detection facility of QKD without
attempting to learn any of the secret key material. Instead,
his only goal is to make the link run dry of key-material,
so as to enforce the local neighborhood nodes to search for
alternative paths over nodes that he controls. We call this an
indirect eavesdropping attack.
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The goal of this work is to investigate the resilience –
in terms of end-to-end security – of quantum networks to
such kind of incidents. We consider both, a passive and
active adversary, being computationally unbounded and only
constrained to have no more than k nodes in the network
under his control. Moreover, we assume the routing to be
under partial control of the sender, so that he can initiate a
multipath transmission, but his chosen paths are potentially
subject to temporary rerouting due to congestions. These
congestions can be actively caused by the adversary, or
coincidentally happen due to other reasons. In the latter
case, we obtain simple suff cient criteria for perfectly secure
communication remaining possible even if the routing is
imperfect. The case of an active adversary causing traff c
redirections is discussed based on these preliminary results.

Organization of the paper: We consider networks em-
ploying QKD for point-to-point- and multipath routing for
end-to-end security, referred to as quantum networks. We
brief y review the use of QKD with multipath transmission
in Section IV. In Section V, we introduce a Markov-
chain model for the path that a data packet takes from the
sender to the receiver, with a particular focus to multipath
transmission. Conditions under which an unreliable routing
regime can yield perfect secrecy are derived in Section
VI. Section VII is devoted to a discussion of active adver-
saries by extending the results from Section VI accordingly.
Under suitable assumptions on his capabilities, we can
retain security even against an active adversary. Dropping
these assumptions, we demonstrate how an active adversary
can indirectly inf uence the routing so as to direct the
information f ow towards his nodes without direct access
to the routing. This form of indirect eavesdropping attack
works even without using the eavesdropping facility of
the underlying QKD protocol. An example supporting the
practicability of our results is found in Section VIII. Final
remarks are given in Section IX.

II. RELATED WORK

This work extends previous research described in [1].
Although eavesdropping detection in quantum key distri-
bution [4] is quite well researched, only few authors deal
with routing issues and even less consider problems arising
from unreliable routing. Most closely related to ours is the
work of [5], who provide a stochastic routing algorithm
along with probabilistic measures of secrecy in a randomly
compromised network. We improve on this by avoiding the
assumption of some f xed routing algorithm. Instead, we
formulate conditions under which a given routing protocol
can provide perfect secrecy under random compromission.
Consequently, the framework devised here is generic and
requires simulations and empirical evaluation of the routing
scheme at hand in order to be applied. Fortunately, sim-
ulation tools like OmNet++ [6] can rapidly provide such

information. Practical QKD implementations are often sub-
ject to physical distance limitations (cf. [7], [8], [9] to name
a few). Although unlimited distance QKD transmission is
theoretically possible (see [10]), multipath transmission over
disjoint channels remains up to now a practical necessity
for perfect end-to-end security [11]. In particular, [3], [12],
[13], [14] and references therein form the basis for our
work, where our goal is to investigate a hidden assumption
within these results: what happens if the routing is not
fully reliable? Implementations of multipath transmission
within the transmission control protocol (TCP) are currently
under standardization, and many other protocols like stream
control transmission protocol (SCTP [15]) as well facil-
itate concurrent transmission. Similarly as for a recently
proposed extension of the secure socket layer (SSL) by
QKD [16], [17], one could imagine QKD being integrated
in such protocols. Load-balancing, local congestions and
most importantly (adversarial) eavesdropping can all cause
re-routing of packets and therefore make otherwise disjoint
routes intersecting. Our work is an explicit account for
security under such random distortions. To the best of our
knowledge, such indirect eavesdropping attacks have not yet
been considered elsewhere in the literature.

III. PRELIMINARIES AND NOTATION

Let M ∈ {0, 1}
∗ denote a binary string of arbitrary

length. Let |M | be its length (in bits), and let H(M) denote
the Shannon-entropy of a random message source M . A
quantum network is an undirected graph G = (V,E) in
which each pair of adjacent nodes shares a channel that is
secured by means of quantum key distribution. The sets of
nodes and edges in G are denoted by V (G) and E(G),
respectively. An s−r-path in a graph is an ordered sequence
of adjacent nodes starting with s ∈ V and ending in r ∈ V .
We will denote a (general) path by ρ, and its set of nodes
will be written as V (ρ). Two s−r-paths ρ1, ρ2 are said to be
node-disjoint, if V (ρ1) ∩ V (ρ2) = {s, r}, i.e., the paths do
not intersect elsewhere than in their start- and end-nodes.
For any node v ∈ V (G), we denote the collection of its
immediate neighbors as nb(v) := {u ∈ V |(v, u) ∈ E}.

Markov chains: As our routing model will be based
on Markov chains, we brief y review the respective basics
for convenience of the reader. We will straightforwardly
focus on graph models for our introduction: once Alice
has handed over her encrypted payload to the network for
delivery to Bob, the actual journey of the packet can be
considered as a random walk through the network until it
reaches its f nal destination. Though the routing itself is
essentially deterministic, randomness comes into play due to
local congestions and subsequent re-routing. Consequently,
we can consider the packet as describing a trajectory of
a stochastic process, or more specif cally a Markov chain,
whose state space is the set V (G), i.e., the set of all relay
nodes that the packet can possibly visit. For any two nodes

23

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



u, v ∈ V (G), assume that the packet travels from u to v
with probability puv = Pr[u→ v]. Since V (G) is f nite, we
can f x any enumeration V (G) = {1, 2, . . . , n} and write pij
for the chance of the packet traveling from i to j within one
hop. To model this hop-by-hop forwarding, let us introduce
the random variable X(τ) ∈ V (G) for τ = 1, 2, 3, . . .
telling us the node that hosts the data packet at time-step
τ ∈ N. A trajectory is the sequence (X(0), X(1), X(2), . . .)
describing the packet’s trace, starting off at the sender X(0)
until it reaches its f nal destination (the receiver) at some
later point in time. In terms of conditional probability, we
have pij = Pr[X(τ + 1) = j|X(τ) = i] describing the one-
step transition probability. The (one-step) transition matrix
is def ned as the (n× n)-matrix P = (pij)

n
i,j=1.

As we are dealing with multipath transmission in the fol-
lowing, consider t independent copies of a trajectory, named
1, 2, . . . , t. The particular state of the i-th trajectory at time τ
is written as Xi(τ). Let the function πi(τ, v) : N×V →[0, 1]
describe the chance that the i-th trajectory (i = 1, 2, . . . , t) is
within node v at time τ ∈ N, i.e., πi(τ, v) = Pr[Xi(τ) = v].
The whole distribution (supported on the set of nodes V (G))
is denoted as πi(τ), and the whole ensemble of t trajectories
is denoted as π(τ) = (π1(τ), . . . , πt(τ)).

Adversary Model: Our attacker will be a computa-
tionally unbounded active threshold adversary named Eve.
That is, given a network G = (V,E), with a sender s and
receiver r (both in V ), the adversary can compromise up to
k ≤ |V \ {s, r}| nodes in G (thanks to QKD, an activity on
any of the links would be detected anyway). Moreover, Eve
knows all relevant protocol specif cation and the network
topology, and is not bound to follow the protocol. A weaker
notion is assuming her to stick passively to the protocol in
order to extract secret information. We call this behavior
passive, as opposed to an active adversary, as described
previously and ref ned later in Section VII. Throughout the
remainder of this work, the adversary’s threshold will be
denoted as k.

Security Model: Our notion of security is based on the
concepts used in [11]. We need some notation: a general
protocol Π is an interactive process between a sender and
a receiver. In the course of Π, Alice exchanges a set C =
{C1, . . . , Cn} of messages with Bob in order to secretly
transmit a message M ∈ {0, 1}

∗ of entropy H(M). The full
set C is called the protocol’s transcript. A subset adv(M) ⊆
{C1, . . . , Cn} of the transcript obtained by eavesdropping of
the adversary is called his view in the protocol Π (a closely
related equivalent notion is found used in [13]).

Def nition III.1. Let ε > 0, and let Π be a message
transmission protocol. We call a protocol ε-secure, if the
following two conditions are satisf ed:
1) H(M |adv(M)) ∈ {0, H(M)} and
2) Pr[H(M |adv(M)) = 0] ≤ ε,

i.e., the adversary can discloseM with a chance of at most ε.

We call the protocol Π eff cient, if the size of the transcript,
i.e.,

∑n
i=1 |Ci|, is polynomial in the size of the message M ,

the size of underlying network (in terms of nodes), and log 1
ε
.

A protocol that is ε-secure for any ε > 0 is said to enjoy
perfect secrecy.

It is easy to see that if a protocol is ε-secure with ε <
2−|M|, then simply guessing the message is more likely than
breaking the protocol itself.

IV. QKD-BASED MULTIPATH TRANSMISSION

Multipath transmission pursues a simple idea: having t
paths from s to r that are node-disjoint, the sender can
transmit a message m by f rst putting it through a (t′, t)-
secret sharing (Shamir’s for instance), giving the shares
s1, . . . , st and sending each share over its own (distinct) path
to r. The adversary is successful if and only if he catches
at least t′ shares. Obviously, the scheme is unconditionally
secure if t′ > k (where k is the adversary’s threshold),
but in addition, we require full knowledge of the topology,
and assured delivery over the chosen disjoint paths. The
general interplay between network connectivity and uncon-
ditional security has been studied extensively (cf. [14], [13],
[3]). However, common to all these results is the implicit
assumption of secure and reliable routing. That is, most
existing multipath transmission regimes prescribe a f xed
set of chosen node-disjoint paths. These paths are assumed
stable and unchanged over the duration of a transmission; the
adversary might intercept the paths but cannot redirect them.
Hence, our goal in the next section is to f nd out whether or
not unconditional security can be retained if the paths are
not reliably under the sender’s control. In other words, what
happens if the adversary indirectly f ddles with the routing?

V. A MARKOV-CHAIN ROUTING MODEL

To simplify technicalities, let us assume a synchronous
forwarding regime, i.e., the nodes simultaneously forward
their packets at f xed times. This permits us to use a
discrete time variable τ ∈ N. This assumption is not too
restrictive, since even an asynchronous forwarding regime
can be reasonably approximated by choosing a small unit of
time and letting some nodes remain occasionally inactive in
some steps.
Consider an arbitrary but f xed trajectory i among an

ensemble of t independent trajectories in the following.
It is well known from the theory of Markov chains that
the state of the i-th chain at time τ ∈ N is governed
by πi(τ) = P τ · pi(0), where P is the transition matrix.
Our chain has only a single absorbing state, which is
the receiver’s state r (the receiver will surely not pass on
his message any further). Furthermore, it can be assumed
irreducible, because if it were not, then there would be at
least two nodes u, v in the network whose chance of getting a
packet from u to v is zero, so they could never communicate.
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We write HjA for the time (measured in hops) that it takes
a trajectory to get from node j to any of the target nodes in
the set A ⊆ V ,

HjA = min {τ ≥ 0 : X(τ) ∈ A|X(0) = j} .

The probability hjA of the chain ever reaching A from j is
therefore hjA = Pr[HjA < ∞], and the family (hjA; j ∈ V )
is the smallest non-negative solution of the equation system

hjA =
∑

i∈V

pjihiA, (1)

where hjA = 1 for all j ∈ A and pji is the probability of
passing from node j onwards to node i (see [18, p.123] for
details). Writing down this system for, say 5 equations with
A = {1, 3}, we get (after some minor algebra),

−p21 − p23 = (p22 − 1)h2A + p24h4A

−p41 − p43 = p42h2A + (p44 − 1)h4A,

where we additionally substituted hrA = 0, as r is the only
absorbing state of our chains. Let us write (in a slight abuse
of notation) P−R,−C to denote the matrix P with all rows
in R and all columns in C deleted. Similarly, we use the
notation PR,C to denote the matrix P only with the rows in
R and columns in C retained. To ease notation, let us put
Q := P−r,−r, i.e., Q is P without the r-th row and column.
If I is the identity matrix, and 1 is the vector of all 1’s, then
the above equation system takes the compact form

−Q−A,A · 1 = (Q−A,−A − I)hA, (2)

where hA is the family (h1A, h2A, . . . , hrA), excluding
hrA = 0 and hjA = 1 for all j ∈ A. In order to have
the values hj for j 6= r and j /∈ A well-def ned, we ought
to show that (Q−A,−A − I) is invertible. This is our f rst

Lemma V.1. Let P be a stochastic matrix of an irreducible
Markov-chain with the state space V and exactly one
absorbing state r ∈ V . Select any set of states A ⊂ V
with r ∈ A, and let Q = P−A,−A be the submatrix of P
that describes transitions between states outside of A. Then
Q− I is invertible.

Proof: Partition the state set V into V1 = A and V2 =
V \ A, then r ∈ V1 and Q describes transitions within V2.
For each v ∈ V2, write πV2

(τ, v) for the chance of the chain
being in state v after τ steps. From the theory of Markov-
chains, we know that the vector πV2

(τ) = (πV2
(τ, v))v∈V2

is given by πV2
(τ) = QτπV2

(0). As the chain is irreducible,
we will eventually reach r from any state in V2, and since
r is absorbing, this means that Qτ → 0 as τ →∞. Now, put
(Q− I)x = 0. Then Qx = x and on iterating Qτx = x. As
τ →∞, Qτx = x→ 0, so Q− I is invertible.
Lemma V.1 helps constructing a formula giving us the

chance that exactly l trajectories pass through a given area
A ⊆ V that is under the adversary’s control. We can
solve the system (2) for any given set A and see whether

it is passed with certainty. Similarly as for the binomial
distribution, we can ask for the probability of a subset of l
trajectories hitting A within f nite time, with the remaining
ones never reaching A. The probability we are after is the
sum over all subsets of size l. Formally, we have

Proposition V.2. Let a graph G = (V,E) be given, and
assume a random walk of t trajectories starting at nodes
1, 2, . . . , t. For a given A ⊆ V , the chance of l trajectories
passing through A is given by

p(A, l) =
∑

M ⊆ [1 : t]

|M| = l





∏

i∈M

hiA

∏

i∈([1:t]\M)

(1− hiA)



 ,

where the vector (hiA)i∈V is calculated by putting hrA =
0, hjA = 1 for all j ∈ A, and calculating the remaining
probabilities by solving (2). Here, [1 : t] is a shorthand
notation for the set {1, 2, . . . , t}.

VI. SECRECY AGAINST PASSIVE ADVERSARIES

According to Proposition V.2, the adversary will not learn
anything unless he conquers some set A that is passed by
suff ciently many, say l, trajectories. Consequently, his best
strategy is attacking the set with maximum likelihood of
seeing suff ciently many trajectories. It follows that the most
vulnerable subset of nodes in the network is

A∗ = argmax
A⊆V

Pr[l trajectories traverse A] = argmax
A⊆V

p(A, l).

(3)
The following result is an immediate consequence of the

above discussion:

Theorem VI.1. A network with a routing regime described
by a transition matrix P can provide perfect secrecy without
pre-shared end-to-end secrets, if and only if for some integer
l ≥ 1, we have p(A, l) < 1 for all A ⊆ V that the adversary
can compromise.

Proof: Assume that p(A, l) < 1 for any set A
and choose ε > 0 arbitrarily small. Put the message
through a (n, n) secret sharing scheme, giving the shares
s1, s2, . . . , sn. Send each si over l paths to the receiver. The
adversary is successful if and only if he catches all shares,
but the chance for this to happen decays exponentially fast as
p(A, l)n → 0 as n→∞. It remains to choose n suff ciently
large so as to have p(A, l)n < ε.
Conversely, if p(A, l) = 1 for some set A, then there is

no way to avoid the adversary when transmitting something
over the network. Hence, secret communication is impossi-
ble.
Despite this maximum likelihood optimization problem

being sound, it is yet infeasible to evaluate as the number of
subsets to test is exponential (in the adversary’s threshold).
We shall therefore set out to f nd suff cient criteria that are
easier to test.
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For a 1-passive adversary, we have the following test:

Theorem VI.2. Let t = |nb(s)| ≥ 1 count the sender s’s
neighbors. If, for each v ∈ V , we have

∑t
i=1 hiv < t,

then the network provides perfect secrecy against a 1-passive
adversary.

Proof: Put the secret message through a (t, t)-secret
sharing and let each share take its own individual path
through the network (i.e., do a random walk according to
the transition matrix P ). With the random indicator variable

Ii,j :=

{

1, if hij > 0
0, otherwise,

the number of trajectories passing through a node v ∈ V
is given by Nv :=

∑t
i=1 Ii,v , and its expected value is

E(Nv) = E(
∑t

i=1 Ii,v) =
∑t

i=1 hiv . The assertion now
directly follows from Markov’s inequality, since

Pr[Nv ≥ t] ≤
E(Nv)

t
<

t

t
= 1,

which holds for all v ∈ V . The network thus provides perfect
secrecy by Theorem VI.1.

Theorem VI.3. Let G = (V,E) be a graph, and let the
sender and receiver be s, r ∈ V . Let the adversary be k-
passive, i.e., up to k nodes in G can be compromised. For
perfect secrecy, it is necessary that |nb(s)| > k. In that case,
with V ∗ := V \ {s, r}, if

∀i ∈ nb(s) : hij ≤
1

ek
∀j ∈ V ∗ \ {i} , (4)

then the network provides perfect secrecy.

Proof:Without loss of generality, assume s’s neighbors
to be the nodes {1, 2, . . . , t}, and put the secret message
m through a (t, t)-secret-sharing scheme, transmitting the
i-th share over the i-th neighbor of s (the remaining path of
each is individual and determined by the network’s transition
matrix P ). Observe that the adversary will not learn anything
unless he gathers all t shares.
If t ≤ k, then the adversary can ”cut off” s from the rest

of the network, thus reading all information conveyed by s,
and perfect secrecy is impossible by Theorem VI.1.
Assume t > k henceforth, so there exists at least one

honest neighbor of s in every attack scenario. Let A ⊆ V
with A = {j1, . . . , jk} be a set of compromised nodes. The
(mutually dependent) events T ji

l for i = 1, 2, . . . , k occur
when the trajectory starting off the node l reaches node ji.
For each (starting node) l = 1, 2, . . . , t, we have

Pr
[

T ji
l

]

= hlji ≤ max {hlv|v ∈ V \ {l, s, r}} ≤
1

ek
, (5)

where the last inequality follows from our hypothesis. Since
Pr
[

T ji
l

]

≤ 1
ek
, then Lovász local lemma (symmetric version)

implies

Pr

[

k
⋂

ν=1

T jν
i

]

> 0. (6)

Protocol skeleton for secret and eff cient delivery of a
message over an untrusted network.
Input: Message m, round number n and number t of
shares per round.
Protocol steps for the sender:
1) Put m through a (n, n)-secret sharing, giving the

shares s1, . . . , sn.
2) For i = 1, 2, . . . , n do the following: put the i-th

share si through a (t, t)-secret sharing, where t =
|nb(s)|, and transmit the j-th share of si over the
j-th neighbor of s (cf. Theorem VI.3).

Figure 1. Multi-round multi-path transmission

In other words, the l-th trajectory has a positive chance
of evading the set {j1, . . . , jk}. Since inequality (5) holds
independently of the particular ji’s, (6) is true for all these
sets. If condition (5) holds for all l = 1, 2, . . . , t, then in
every attack scenario there is at least one trajectory with
a positive chance of not passing through the compromised
area in the graph. So, for every A ⊂ V with |A| ≤ k, it
holds that p(A, t) < 1 and the network can provide perfect
security by Theorem VI.1.

Eff ciency
Regarding the bandwidth demand, we require the overall

network traff c (bit complexity) and round complexity to
be polynomial in log 1

ε
for any chosen ε > 0. Assume

the network satisf es the condition for perfect secrecy in
Theorem VI.1.
Fix some ε > 0. We will prove the following transmission

regime to enjoy eff cient bit- and round-complexity, i.e.,
polynomial efforts in log 1

ε
. Let the secret message m be

transmitted from s to r by virtue of the framework protocol
shown in Figure 1. For a passive adversary with a threshold
k, the number of shares t must be larger than k. The number
n of rounds will be determined now.
Obviously, the attacker will not learn anything unless he

gets all the information f owing over the network (due to
the (n, n)- and (t, t)-sharings). Our task is proving n to
be polynomial in log 1

ε
and the size of the network. For

the proof, def ne an indicator variable for each round i =
1, 2, . . . , n via

Ii =

{

1, if the share si was disclosed;
0, otherwise,

so that Ii measures the adversary’s success (in a binary scale)
in the i-th round. By our hypothesis, Theorem VI.1 implies
Pr[Ii = 1] < 1 for all rounds i and all sets of nodes that the
adversary could have conquered (recall that the adversary is
k-passive). Put ρ := maxi=1,2,...,n Pr[Ii = 1], then ρ < 1.
Since 0 ≤ Ii ≤ 1 for all i, the f rst moment E(Ii) exists
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and Ii’s deviation from its mean is bounded by −1 ≤ Ii −
E(Ii) ≤ 1 for all i. Def ne S :=

∑n
i=1 Ii, then since E(Ii) ≤

ρ, we get E(S) =
∑n

i=1 E(Ii) ≤ nρ. Moreover, S−E(S) ≥
S − nρ ≥ τ for some τ to be f xed later. Application of a
variant of Hoeffding’s inequality (with relaxed independence
constraints; see [19]) gives

Pr[S − nρ ≥ τ ] ≤ Pr[S − E(S) ≥ τ ] ≤ exp

(

−
τ2

2n

)

Since 1
n
S ≥ mini Ii, we can choose τ to satisfy τ

n
≤

mini Ii − ρ ≤ 1
n
S − ρ. So we can continue the chain of

inequalities on the left-side as

Pr
[

min
i

Ii − ρ ≥
τ

n

]

≤ Pr[S − nρ ≥ τ ] ≤ exp

(

−
τ2

2n

)

,

and by taking δ := τ
n
we conclude that

p := Pr
[

min
i

Ii ≥ ρ+ δ
]

≤ exp

(

−
nδ2

2

)

for all δ ≥ 0. By construction, the adversary is successful
if and only if Ii = 1 for all rounds i = 1, 2, . . . , n, or
equivalently, mini Ii = 1. Choosing δ := 1 − ρ > 0, the
number n of rounds until Pr[mini Ii ≥ ρ+ δ = 1] < ε is
achieved comes to n ∈ O

(

log 1
ε

)

. The bit-complexity is
n·t·|m|, where |m| is the length of the message, and as such
in O

(

|m| · |nb(s)| · log 1
ε

)

, i.e., polynomial in the network
size and log 1

ε
. Summarizing the discussion, we have proved

Theorem VI.4. If a given network provides perfect secrecy
according to Theorems VI.1, VI.2 or VI.3, then there is an
eff cient protocol achieving this.

VII. SECRECY AGAINST ACTIVE ADVERSARIES

It is easy to see that the results of Section VI no longer
hold when the adversary becomes active. Picking up our
line of arguments that led to Theorem VI.4, the adversary
can destroy the message simply by f ddling with one of
its shares. Equally obvious is a quick-f x by attaching a
checksum to the message, which lets the receiver detect
(not necessarily correct) this kind of manipulation upon
combining the incoming shares. For later reference, we state
this as remark:

Remark VII.1. One can prove (see [20]) that if error
detection is required reliably with a probability of at least
1− ε for ε > 0, then the size of the share grows by at least
log 1

ε
additional bits. So, attaching an appropriate checksum

to the secret before sharing it is close to optimal in terms
of additional overhead.

To ease technicalities in the following, let us distinguish
two different forms of activity for the adversary:
1) he participates only in the protocol, but is allowed to

actively deviate from it as he wishes,
2) he participates in the protocol and additionally runs

parallel sessions over the network.

A B1 2

3 4

5

regular transmission
bogus traff c
(quantum) link
dishonest node
honest node

Figure 2. Path alteration via bogus traff c

The f rst kind of active adversary is easer to deal with,
since his activity is basically focused on active modif cations
to the messages that he gets to pass his nodes. Modifying
the routing information in order to redirect these messages
differently than intended by Alice will not help him learn
anything (simply because the packet is in his possession
already). On the other hand, he cannot redirect packets that
he does not get to see in order to acquire them. Theorem
VII.2 is concerned with security against such an attacker.
This is the major difference to the second kind of adver-

sary, who can attempt to redirect packets by intentionally
congesting links that he does not directly control. To illus-
trate the problem, consider the simple topology displayed
in Figure 2. In this scenario, Alice wishes to transmit a
message to Bob, which would be possible over the path over
the nodes 1 and 2. However, even though the adversary does
not control this path, he can nevertheless congest the link
from 1 to 2 with bogus traff c so as to enforce re-routing
over node 5 (or node 3), which is under his control.
Testing whether this kind of attack is possible is highly

nontrivial, because we now face an adversary who can
manipulate the graph topology, while only being constrained
by the link capacities. For instance, the adversary could look
for a path cover of the graph G that respects the existing
bandwidth limits. Indeed, even without the bandwidth re-
striction, the problem of f nding a minimal path cover of
this kind on a general graph is NP-complete, but becomes
solvable in linear time for certain classes of graphs (see e.g.,
[21]). On the contrary, the adversary could as well compute a
maximal multi-source multi-sink f ow between his nodes in
order to maximally congest the network. Abusing the Ford-
Fulkerson approach, he could choose the f ow-augmenting
paths in a way so as to use as many links between honest
nodes as possible. However, up to now, this is a mere
heuristic and not yet a provably optimal attack strategy. Even
worse, from the perspective of the honest parties, one would
have to compute such a f ow for all scenarios of attacking,
which again boosts the computational efforts for analysis far
out into infeasibility. The most trivial way of f xing this is
to abandon all kinds of rerouting due to congestions and
designing the relay nodes as mere queues, where messages
are temporarily stored.
It appears that guarding against such kind of attack is
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more a matter of congestion control. Consequently, going
into more detail is thus beyond the scope of this work, as we
did not presume any particular congestion control or routing
scheme here.
However, if an active adversary of the f rst kind is assumed

(i.e., bound to only manipulating, inserting or blocking of
messages), we can reformulate our previous results accord-
ingly to remain valid. The basic trick is to use the following
property of secret-sharing and Reed-Solomon codes. It is
well-known that Shamir’s (t, n) secret sharing corresponds
to a Reed-Solomon code of length n with t information
words (cf. [22]). Consequently, we can recover from up
to ⌊(n − t)/2⌋ modif ed shares by virtue of the Welch-
Berlekamp algorithm [23] (in fact, this technique is standard
in multipath transmission; cf. [3] for instance). From the
error correction capacity of the code and the condition
that the adversary should have less than t shares in his
possession, we easily deduce the (also well known) fact that
secret-sharing is robust against an active adversary with a
threshold less than n/3. Hence, up to a third of the shares
(i.e., paths) can be compromised and packets along them
can be modif ed and the message remains concealed and
intact upon reconstruction. This is the basic fact that yields
to straightforward generalizations of the results in Section
VI stated in the following.
Formally, a (t, n)−secret-sharing scheme is secure against

a k-active adversary as long as its threshold k satisf es k <
n
3 < t In analogy to Theorem VI.2 we get the following
criterion for a 1-active adversary:

Theorem VII.1. Let t = |nb(s)| count the sender s’s
neighbors. If, for each v ∈ V , we have

∑t
i=1 hiv < t

3 ,
then the network provides perfect secrecy against a 1-active
adversary.

Proof: Put the secret message through a (t, t)-secret
sharing and let each share take its own individual path
through the network. With the random indicator variable

Ii,j :=

{

1, if hij > 0
0, otherwise,

the number of trajectories passing through a node v ∈ V
is given by Nv :=

∑t
i=1 Ii,v , and its expected value is

E(Nv) =
∑t

i=1 hiv . An active modif cation is possible if at
least t/3 shares get compromised, so we can use Markov’s
inequality to conclude

Pr[Nv ≥ t/3] ≤
E(Nv)

t/3
<

t/3

t/3
= 1,

which holds for all v ∈ V . The network thus provides perfect
secrecy since the adversary can not intercept enough shares.

Unfortunately, Theorem VI.3 no longer holds for active
adversaries. Still, we can use it to guard a transmission

against an active adversary as well, yet we need some
additional requirements on the network.
In fact, multipath transmission protocols usually hinge

on the sender’s ability to choose the paths in a way that
he likes. This assumption is rarely stated explicitly (as for
instance, it is used in [3] or [13]), but nevertheless of crucial
importance. By specif cation [24, p.19], the internet protocol
(IP) provides the following feature: the sender of a message
can prescribe the list and order of intermediate nodes over
which the packet must be forwarded until it reaches the
receiver. The Session Initiation Protocol (SIP), specif ed in
[25], def nes a functional strict source routing mechanism,
meaning that the sender can choose his relay nodes and
no other nodes must be visited during a transmission. For
our purposes, a weaker notion is suff cient, namely the
symmetric answer property, which is introduced here:

Def nition VII.1 (Symmetric Answer Property (SAP)). Let a
message transmission be over the relay nodes v1, v2, . . . , vn.
If each relay node keeps the so-def ned channel open for a
subsequent response (e.g., an acknowledge message), i.e.,
the receiver can respond over the path vn, vn−1, . . . , v2, v1,
then the network is said to satisfy the symmetric answer
property.

In fact, it is this particular feature that is implicitly used in
recent work on multipath transmission such as [3] or [13],
although it is not explicitly stated there (usually, it is im-
plicitly assumed in a sloppy form as saying that ”the sender
responds over the same channel over which he received the
information”). Here, we will explicitly use this to construct
a communication protocol that enjoys robustness against an
active adversary. In the light of the previous discussion,
this appears to be a mild and reasonable assumption, as
it is included and supported by the common technological
standards for data transmission, as referenced above.

Theorem VII.2. Let G = (V,E) be a graph, and let the
sender and receiver be s, r ∈ V . Let the adversary be k-
active, i.e., up to k nodes in G can be compromised. For
perfect secrecy, it is necessary that t = |nb(s)| > 3k. If
the network satisf es condition (4) and the symmetric answer
property (SAP), then it permits perfect secrecy and resilience
against an active adversary of the f rst kind.

Notice that only the necessary condition has changed, but
the suff cient condition was only augmented by assuming the
SAP, since the line of arguments in the proof of Theorem
VI.3 can no longer be used to prove that the adversary
gets to see at most a third of the trajectories (as would
be required). Nevertheless, we can use Theorem VI.3 to
construct a protocol that guards us against active adversaries
too.
The proof of Theorem VII.2 will partially rely on the

robustness of secret sharing against modif cation of shares.
The required result along these lines is summarized as
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follows:

Lemma VII.3. Let a general (u, v)-secret-sharing be given,
and assume that the adversary has modif ed up to k shares.
Then,

• if 0 ≤ k < v/3 < u then there is no harm; all errors
can be corrected.

• if v/3 ≤ k < u, then the message cannot be disclosed
by the attacker, but he can still thwart a correct
reconstruction.

• if u ≤ k, then the attacker can disclose the message
without notice.

This fact is quite well-known (cf. [26]), yet proofs can be
found in [27].

Proof of Theorem VII.2: Without loss of generality,
assume s’s neighbors to be the nodes {1, 2, . . . , t}, and
put the message m through a (t, t)-secret-sharing scheme,
transmitting the i-th share over the i-th neighbor of s.
If t ≤ 3k, then the adversary can gain enough information

to know and perhaps modify (replace) the message already
after one transmission, hence t > 3k is necessary for perfect
security.
In the following, suppose that the sender transmits a

messagem along with a checksumH(m) over node-disjoint
channels to the receiver. The checksum (e.g., a cryptographic
CRC; cf. [28]) will provide an additional mean of detecting
manipulations once the error correction (and detection)
capabilities of the encoding failed (cf. Remark VII.1).
Once the transmission has started, the proof of Theorem

VI.3 ultimately concludes that at least one trajectory will
bypass the adversary on its way from the sender to the
receiver. The active adversary can either modify or not
modify the shares that he intercepts. Not modifying anything
literally means a passive adversary, which has been covered
in the course of Theorem VI.3, hence we consider an active
attacker in the following.
The protocol described now establishes a shared end-to-

end secret between a sender and receiver. First, we transmit
a (random) messagem along with a cryptographic checksum
H(m) via a (t, t)-secret-sharing and (hopefully) disjoint
paths over the network, and act as if the adversary were
passive. This transmission process is repeated for several
rounds, each of which yields a partial key Ki (for the i-th
round) that we can use (e.g., concatenate and hash) to distill
the f nal key for communication (e.g., to be used as a one-
time pad over a classical, perhaps insecure, channel).
We have two mechanisms of error detection: the inherent

error correction that comes with the secret-sharing (via the
Welch-Berlekamp-Algorithm in case of Shamir’s polynomial
secret sharing), and the cryptographic checksum after the
reconstruction. Let us abbreviate the error-correction as EC
and the checksum verif cation as CV hereafter. Each of these
can (independently) yield a positive or negative outcome,
giving us four cases to distinguish in the i-th round:

1) EC points out no errors and the CV conf rms the
checksum: in that case, the adversary (with high prob-
ability) has either learnt nothing or everything, since
the only case in which no error is determined by the
error correction algorithm occurs when the adversary
managed to replace all shares. If that happens, it is
easy to replace the hidden secret by something else
along with a matching checksum (hence the CV can
be expected to return positive).
Anyway, since there is a positive chance that the ad-
versary has indeed discovered the secret, the receiver
will discard any results in this case.

2) EC points out no errors but the CV fails: in that
case, the adversary managed to replace all the shares,
but has used a secret that is inconsistent with the
reconstructed checksum. This would technically point
out a manipulation while the adversary would have
been capable of avoiding this detection. So, there is
no point in acting like this, and this case is to be treated
equally as case 1.

3) EC points out errors, but the CV conf rms the check-
sum: in this case, the adversary must have managed
to replace suff ciently many shares (cf. Lemma VII.3)
to trick the error correction into wrongly indicating
correct shares as malicious. Yet at least one original
share has not been intercepted, because the error
correction pointed out at least one error. Since we do
not know which share is the correct one, but know that
there must be at least one, we take the protocols output
as the bitwise exclusive-or of all shares s1, . . . , st, that
is we create

Ki := s1 ⊕ s2 ⊕ · · · ⊕ st,

knowing that the partial key Ki is entirely unknown
to the adversary since at least one share in it acts like
a one-time pad encryption key.

4) EC points out errors and the CV fails: in this case and
by Lemma VII.3, at least t/3 but less than t shares
must have been manipulated, since the adversary was
unable to replace the secret consistently. In that case,
as before, we use the bitwise XOR of all shares to
distill the partial key Ki as the output of round i.

This protocol is repeated for several rounds until a suff cient
amount of key-material (partial keys K1, K2, . . .) has been
produced. Notice that the actual information m transmitted
through the secret-sharing is of no real value, and merely
serves to create a redundancy scheme that we can use to
detect a manipulation.
More importantly, observe that if case 1 occurs, then the

adversary can easily make the protocol output to look like
any of the other cases occurred. If this happens, then he
has gained the correct information c that the receiver will
use. However, the proof of Theorem VI.3 implies that with

29

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a positive probability, cases 2, 3 or 4 must occur, hence he
cannot entirely intercept the communication.
It is crucial for the sender to get notif ed in which rounds

the protocol output has been discarded by the receiver. He
does this by telling the sender which of the four cases above
occurred, and sends this information identically back over
all paths over which he received the shares originally. If
the adversary missed one of the shares, then this channel
will safely deliver the notif cation to the sender, thanks
to the symmetric answer property. Hence, upon any two
mismatching notif cations, the sender will automatically be
notif ed of the attack attempt. Even in case 1, if the adversary
managed to intercept all channels, he can either replace the
notif cations or remain passive. In the former case, he would
indicate an attack while he could have convinced the sender
that there was no attack at all, so there is no point in acting
like this. However, if an attack like in case 1 was successful,
then the receiver would discard key-material that the sender
would use, making the two end up using different (and hence
useless) keys.
This kind of person-in-the-middle situation can be de-

tected by letting the sender and receiver sacrif ce some key-
bits for public comparison on a possibly insecure channel.
Suitable protocols for this are well-known from quantum
cryptography and we will therefore not go into further details
here. If the two keys turn out different, then both discard
their key-material and rerun the protocol from scratch.
As far as eff ciency of the transmission in the presence

of an active adversary is concerned, the transmission’s
eff ciency is basically determined by the chance of at least
one trajectory avoiding the adversaries premises. While
there is a positive chance that this will happen eventually
(thanks to Theorem VI.3), the number of repetitions until
this occurs suff ciently often, is diff cult to determine without
knowledge of the precise likelihoods. These can be obtained
from simulations, but in any case, the protocol is to be
repeated until the f nal verif cation indicates a correct and
useable key. Nevertheless, in the next section, we use an
example to show how the number of repetitions can be
computed at least partially.

VIII. APPLICATION TO QUANTUM NETWORKS

It is important to emphasize that Theorems VI.1, VI.2 and
VI.3 should not directly be applied to the communication
network at hand. Instead, we are interested in estimating the
harm that any deviation from a prescribed routing strategy
causes. Going back to multipath transmission, our goal is
using the results from the previous section to classify a
given network as (in)secure under the assumption of random
detours that a packet takes upon local congestions or empty
local quantum-key-buffers.
We illustrate the application of Theorem VI.3 by using a

simple example, which shall demonstrate the general line
of reasoning. Take the network shown in Figure 3, with

1 2 3

4 5 6

7 8

Figure 3. Example multipath transmission from 1 to 8

each link secured by means of QKD. Alice (node 1) per-
forms a multipath communication over three disjoint chan-
nels ρ1 = (1→ 2→ 3→ 8), ρ2 = (1→ 5→ 6→ 8), ρ3 =
(1→ 4→ 7→ 8) (shown bold) to Bob’s node 8. Assume
that each node does the packet forwarding reliably, up
to some chance of α for the packet to def ect from the
prescribed route. Thus, assuming stochastic independence
for the sake of simplicity, with probability 1−αlength(ρi)−2,
the packet will travel over ρi as desired. Notice that any
path is accessible from any other, and that an adversary will
surely not waste resources by attacking anywhere else than
on the chosen paths. Hence, we can create an abstract model
for such a multipath transmission by restricting the focus on
whether the packets travel as desired (likelihood determined
by the reliability of routing, i.e., the probability of the packet
not deviating from its prescribed route), or whether they
take detours (should happen with a small chance only) that
could yield to intersecting paths and disclosure of the secret
message.
For the analysis of a general network G = (V,E) under

a multipath transmission scenario, we therefore consider the
auxiliary graph G′ = (V ′, E′): let ρ1, . . . , ρt be paths in G,
then each of these becomes a node in G′, which is connected
to the sender and receiver, so put V ′ := {ρ1, . . . , ρt}∪{s, r}.
Attacking elsewhere than on the paths ρ1, . . . , ρt is less
paying for the adversary than compromising the paths
themselves, so we may safely disregard any nodes in the
network that are not on a chosen path. Also, assume that a
packet can jump from any path to any other, so the nodes
ρ1, . . . , ρt form a clique. Finally, each path ρi is connected
to the receiver r in a one-way manner, as the receiver
is absorbing and will not pass anything further. Similarly,
the sender is (one-way-)connected to all his chosen paths,
though these transitions are of no further interest, since
an accidental jump from a path back to the sender can
trivially be corrected by the sender putting the packet back
on its correct path. The set of edges therefore comes to
E′ = {ρ1, . . . , ρt}

2
∪ {(ρi, r), (s, ρi)|i = 1, 2, . . . , t}. The

resulting transition graph for the example is depicted in
Figure 4, with arrows indicating possible state transitions.
The topology of the auxiliary graph G′, excluding the

transitions from s to each ρi (for obvious reasons) def nes
the Markov-chain on which we can invoke the results from
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ρ1

ρ2

ρ3 rs

Figure 4. Auxiliary graph G′ describing state transitions

Section VI. For the analysis, it remains to specify the
following likelihoods:

• Pr[ρi→ r]: with the parameter α as above, this is
Pr[ρi→ r] = 1−αlength(ρi)−2. Notice that several events
of node failure are not necessarily independent, and
correlations among these must be considered in a more
accurate (perhaps more realistic) model.

• Pr[ρi→ ρj ]: this quantity depends on the particular
chances of jumping from a node on ρi to any node on
ρj , and must be worked out individually for the network
at hand. For the sake of simplicity and illustration,
we assume an equal likelihood of jumping on any
other path once ρi is left. For the example, we take
Pr[ρi→ ρj ] =

1
t−1 (1− Pr[ρi→ r]).

Since the jumps from the sender to each of his chosen paths
are uninteresting, we do not need to model the corresponding
transition probabilities, nor must these appear in the transi-
tion matrix of the Markov-chain. These links are merely
included to have G′ consistent with our criteria, and are
therefore shown dashed.
With α = 0.01, we end up f nding the transition matrix:

P =









ρ1 ρ2 ρ3 r

ρ1 0 0.01 0.01 0.98
ρ2 0.01 0 0.01 0.98
ρ3 0.01 0.01 0 0.98
r 0 0 0 1









Now, we can use Theorem VI.3 on this matrix to see that the
network is indeed secure against a 2-passive adversary: with
V ∗ = {1, 2, 3} and by solving (2) for A = {1} , {2} , {3},
we f nd hij = 1

99 < 1
2e ≈ 0.184, for each i, j ∈ V ∗, j 6=

j. It follows that the network remains secure even under
much less reliable routing. Indeed, we can tolerate up to
α ≈ 0.155, i.e., a more than 15% chance of the packets
becoming re-routed via indirect eavesdropping or congestion
control. Finally, Theorem VI.4 tells that resilience against
such incidents can be retained eff ciently.
In order to illustrate Theorem VII.2, let us consider a

network whose auxiliary graph has a similar topology as
shown in Figure 4, but has 7 paths connecting Alice and
Bob. The adversary is 2-active (k = 2), so that the necessary
condition of more than 3k = 6 neighbors is satisf ed.
Moreover, let the reliability of the network transmission be
α = 80%, i.e., there is a chance of roughly 4% for the packet
jumping from one path to another. Then, condition (4) is

satisf ed and the network provides perfect secrecy against
a 2-active adversary by Theorem VII.2. With the concrete
f gures in hand, we can even compute the required number
of protocol repetitions: it is the precise lower bound to the
strictly positive probability (6) for a trajectory to bypass the
adversary’s servants. The sought bound is provided by the
asymmetric version of the Lovasz local lemma from which
the symmetric version of the Lovasz local lemma can be
concluded. We spare the details for brevity, and draw the
bound

Pr

[

k
⋂

ν=1

T jν
i

]

≥

(

1−
1

k + 1

)k

from the asymmetric (general) version of the lemma, where
T jν
i is the event of the l-th trajectory visiting the adversarial

node ν starting from the sender’s neighboring node i. In our
case with k = 2, this bound evaluates to 0.44, so that there
is quite a good chance for the adversary to miss at least one
trajectory. This means that there is a 1 − 0.44 ≈ 55.55%
chance for cases 2, 3 or 4 in the proof of Theorem VII.2 to
occur. Since case 2 will never be observed for a reasonably
acting adversary, we have a chance of p = 0.55 to distill key
material in each round thanks to the remaining cases 3 and 4.
So, the expected amount of key-material comes to ≈ 0.55n
Bit for n rounds, and the required number of repetitions
can be computed from the required amount of key-material.
Still, this does not mean that case 1 is impossible and the
adversary could have tricked the sender and receiver into
thinking that cases 3 or 4 apply in some rounds. So, the
f nal decision whether or not to use the key is up to the
public comparison. The number of repetitions upon failure of
this last step is geometrically distributed, yet the distribution
parameter, namely the required success probability of a
single Bernoulli trial (which is nothing else than a protocol
execution), unfortunately cannot be computed from the given
information.

IX. CONCLUSION

We have obtained simple criteria for protection against
passive and active adversaries, if the activity is constrained
to modif cations and no bogus traff c. In case of coincidental
redirection of packets along alternative routes, we have
shown suff cient criteria for the transmission remaining se-
cure in such cases. Based on these results, we have sketched
how an active adversary can successfully be repelled by
techniques of secret sharing, multipath transmission and
error correction. Roughly speaking, our proposed protocols
extend the purpose of QKD to create point-to-point secrets,
to an application using QKD to establish end-to-end secrets.
Let us brief y review the results in chronological and

condensed form. Our f rst main result is Theorem VI.1,
which states that perfect secrecy is achievable if and only if
the sender has a strictly positive chance to circumvent the
adversary’s corrupted nodes somehow. Theorem VI.2 and
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Theorem VI.3 give suff cient conditions for this to happen,
assuming a passive adversary listening. These conditions are
derived from a Markov-chain model of the transmission.
Basically, the analysis works by solving a linear equation
system (1) for the vector of hitting probabilities hjA (re-
member that hjA is the chance for a packet starting off
node j eventually reaching any node in the set A), where
the hitting probabilities go directly into the criteria for
secure communication. For solving (1), all we need are the
likelihoods pij for a packet to travel to node j from node i.
This is the description of the routing scheme as a Markov
chain model. The model can of course be put to question,
however, judging from the vast variety of routing strategies,
routing table update procedures and possible f ow control
mechanisms, the Markov model appears to be suff ciently
f exible to cover a large number of cases. If any of these
suff cient criteria for perfect secrecy turns out satisf ed, then
Theorem VI.4 assures that the transmission is not only
secure but also eff ciently doable.
Regarding active adversaries, things are much more in-

volved, and Figure 2 sketched a simple rerouting enforce-
ment by inserting bogus traff c and exploiting load balancing
and f ow control. In alignment to our previous results,
Theorem VII.1 transfers the known condition for 1-passive
adversaries to its analogous form for 1-active adversaries.
The transition from a 1-active to a k-active adversary calls
for the additional hypothesis of symmetric answers, that is,
the receiver must be able to reliably respond over the same
channel over which he received a share in the f rst place.
We call this the symmetric answer property, and Theorem
VII.2 states that security against a k-active adversary can
be achieved under roughly the same conditions as for a
k-passive adversary, except for the additional assumption
on symmetric answer channels. Unfortunately, all of these
results refer to adversaries that do not run parallel sessions
and particularly are not congesting links by bogus traff c.
Defending the system against this kind of attack is beyond
the capabilities of the given criteria and up to security
systems linked to the f ow and congestion control system
within the quantum network.
Our results are only indirectly dependent on the quantum

nature of the network, as the attack targets the multipath
transmission regime only by exploiting general QKD prop-
erties. These are, moreover, independent of the particular
QKD-implementation, and equally well apply to discrete or
continuous quantum information encodings. In general, any
successful denial-of-service attack, regardless of whether on
a conventional or quantum line, can be used for indirect
eavesdropping in the described form, as soon as secure
multipath transmission is used.
This work is an explicit account for an adversary who

turns the QKD eavesdropping detection against the network.
If end-to-end security is set up by means of multipath trans-
mission, then ”disconnecting” (by eavesdropping) otherwise

adjacent nodes may enforce local re-routing of packets and
in turn direct the information f ow right into the adversary’s
hands. We presented various suff cient criteria for a network
to retain its security under indirect eavesdropping attacks by
passive and certain active adversaries. Our results provide
suff cient criteria to conclude that a network retains perfect
secrecy under randomly compromised nodes and routes.
Necessary criteria have not been given here, and are subject
of future research.
Another interesting open problem is how to act against

attacks involving bogus traff c in the quantum network.
As has been demonstrated by a simple example scenario,
an adversary can redirect traff c ”remotely” by cleverly
overloading certain links and nodes (passive eavesdropping
might as well yield such effects). Guarding a multipath
transmission against this kind of attack is yet an open
problem, and an interesting challenge of future research.
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