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Abstract—Visual representation is essential to share ideas,
interpret previous achievements or formulate new algorithms
quickly and intuitively. Fractal representations of multi-qubit
systems can visualize individual qubits even in case of
entanglement. The proposed representation can be used to
easily determine measurement probabilities. Connections with
density matrices for pure and mixed states are also discussed.
Finally, we visualize the effects of several single-qubit gates
and controlled gates.
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I. INTRODUCTION

Quantum computing and communications already
promises applications that outperform classical solutions,
e.g. Shor’s prime factorization [2], the unconditional security
of quantum cryptography [3], or practical realization of
quantum communication [4]. It is also likely that this
discipline will become even more important during the up-
coming years. However, quantum mechanics is well-known
for its counterintuitive nature that is hard to visualize thus
making it problematic to quickly share ideas, interpret
previous achievements, or formulate new algorithms quickly
and intuitively.

In order to be able to solve these issues, a visual
representation could be useful. The Bloch-sphere sufficiently
represents one qubit [5] [6], or more qubits that are
separable, but entanglement—one of the most important
phenomena in quantum informatics—eludes this type of
visualization.

Another possible approach is to use objects that have
enough degree of freedom to represent the whole system.
However, this method usually conceals the inner structure,
and does not give us an idea of what happens if we measure
the state of few qubits instead of the whole system—a
method used in many algorithms and protocols. This
approach does not handle well those cases where the addition
of more qubits is decided or when dividing the system into
smaller parts.

There are existing methods to generalize the Bloch-
sphere e.g. through a mathematical structure called Hopf-
Fibrations [7], but the arising geometrical structures are
vastly complex and hard to read, thus making the method
useless as a visualization technique.

An ideal visualization scheme would preserve the
mathematical structure of a multi-qubit system in a way that
is easy to interpret by the naked eye using compact and two
dimensional images. The ideal solution should also give at
least some insight to the states of single qubits, would work
for any finite number of qubits, as well as it should show
entanglement. Our work aims to examine the properties of
such a scheme based on fractals with emphasis on the effect
of measurement and logic gates [1].

This paper is organized as follows: Section II, III present
the new proposed approach using fractals in single and
multi-qubit states while and IV generalizes to non-binary
multipartite quantum systems. Section V discusses the
measurement, while Section VI explores the question of
changing the order of qubits. Section VII and VIII focus on
the connection with density matrices and possible
representation of mixed states. Section IX and X discuss the
effect of single-qubit and controlled gates in terms of the
fractal representation. Finally we conclude the paper in
Section XI.

II. REPRESENTATION OF A SINGLE QUBIT

For the sake of clarity, we begin with the single-qubit
representation and the case of multiple qubits will be derived
from these results.

The general form of a single qubit can be formulated by
means of complex-valued probability amplitudes in
exponential form and orthogonal basis vectors as:

     1exp0exp  βiBαiA  

 122  BA  

Where A B  and  are real numbers. Let us draw a
horizontal bar shown in Fig 1. Using a vertical gray line let
us divide it into a black and a white side with respective
lengths of A2 and B2 where the total length of the stripe is
considered 1. This should give the probabilities of a
measurement on the qubit producing the value 0 or 1. To
avoid ambiguity, the black part of the bar corresponding to
the measurement yielding 0 should always be placed first,
and the white part corresponding to the measurement value 1
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should placed second, thus representing them in ascending
order.

A gray frame is added to the bar so that the white part
can be easily seen in front of a white background. If the
phase angle is zero or equivalent to zero due to 2
periodicity the horizontal line representing the phase
information is considered to be behind the grey frame and is
not visible.

A is proportional to the z coordinate of the Bloch vector
and the difference  is proportional to the azimuth angle
of the Bloch vector. As these values are close to each other
for close quantum states in the Bloch representation, the
closeness of widths of the bars and heights of the lines
representing the phase indicate fidelity.

Figure 1. Representation of a single qubit. The respective lengths A2

and B2 of the black and white sides of the bar correspond to the probability
of a measurement on the qubit yielding the bit value 0 or 1.

III. REPRESENTATION  OF TENSOR PRODUCTS AND
MULTI-QUBIT SYSTEMS

Distributivity allows more than one way to
mathematically formulate certain multi-qubit states, as it is
illustrated in Equation 3.

   1000010 bcaccba   

The left hand side of the equation will be referred as
separated, the right hand side as expanded form of the tensor
product. Each formulation can be visually represented in a
different way. In the following section, an introduction is
given to both representation, and the connection between
them will be clarified.

A. Representing Expanded Tensor Products
In case the state of the multi-qubit system is given in the

form of an expanded tensor product, the probability
amplitudes can be written in exponential form. The system
can be represented as series of columns, each column
consisting of black or white bars stuck upon each other as
shown in Fig. 2. The colors of the bars represent the qubit
values from top to bottom, the width of the column the
probability of the state corresponding to those values, and a
horizontal line dividing the lowermost bar of the column the
phase. This means we associate only one phase to every bit
value combination. As in the single qubit case if the phase
angle is 0°, the horizontal line is not visible.

The quantum system as a whole can be represented by
placing these columns next to each other in ascending bit
value order and merge those neighboring bars that has the
same bit value and phase. This merging step produces one
bar with black and white parts for the first qubit, two bars for
the second etc. because of the ascending order of qubits.
Since the lowermost bars are the most likely to have
differently colored neighbors they are the most logical place
for the lines indicating the phase.

Figure 2. Representation of a multi-qubit system. Columns of black
and white bars corresponding to the expanded tensor product describing the

system. Probability amplitudes are written in Eulerian form, the width of
each column is given by the square of the Eulerian amplitude and

horizontal lines added to the lowermost bars to indicate the phase. The
color of the bars in the columns will be determined by the bit values, from

top to bottom black corresponding to 0 and white corresponding to 1.

B. Representing Separated Tensor Products
In order to represent separated tensor product of single

qubits, the scaled down version of the bar representing the
qubits should be copied under each black and white halves of
the previous qubits as shown in Figure 3 [1]. This can be
useful when the tensor product of known single qubit states
have to be calculated.

If the system can be described as a separated tensor
product of groups of inseparable qubits, then instead of
single bars the representation of expanded tensor products
should be copied under each other.

C. Connection Between the Representation of Expanded
and Separated Tendor Products
The representations of separated tensor products are very

similar to the expanded tensor products the only difference
being the position of the lines indicating the phase. This
follows from the definition of the two representations and the
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properties of the tensor product. Thus the representation of
the separated tensor product can be transformed to the
representation of expanded tensor product by copying the
horizontal lines to the lowermost bars and adding their
heights taking 2 periodicity into consideration practically
adding the phase angles of the qubits.

If the lowermost bars inherit the phase information,
properties of the system as a whole can be read from the
representation, while the non inheriting form makes it easy to
make conclusions regarding the phase of the subsystems.

The representation of expanded tensor products can be
transformed to the non inheriting representation of separated
tensor products by reversing the process. This should be
done by ensuring that the bars or groups of bars having the
same phase are exact copies of each other as described in
Section III B. If this step cannot be done that is an indication
of the qubits being inseparable. Finally, in both cases the
resulting structures are statistically self similar with the bars
serving as unit fractal objects.

Figure 3. Fractal representation of a multi-qubit system and the
separable qubits that serve as its building blocks. Note that after copying
the phase information to the lowermost bars and adding their heights the

same picture arises as from the representation of the expanded tensor
product described in Section III A.

IV. GENERALIZATION FOR MULTIPARTITE SYSTEM

In case of a multipartite quantum system whose parts are
not qubits, but quantum systems with a small number of
states, the representation can be generalized to describe this
non-binary system. For example: three particles each with
four excitation state and a ground state.

To represent the extra states, more bars with different
colors should be added to the representation. These bars are
packed above each other to create columns whose width
represents the probability of a measurement finding the
system in a certain state, while horizontal lines in the
lowermost bars with complementary color [8] to the color of
the bar represent the phase of the state.

In the example of the three particles with the five states
each, the color black should be assigned to the ground state,
white to the first excitation state, red green and blue to the
second third and fourth excitation state. In this case a column
whose colors from top to bottom are green, black and blue,
with one half width and an orange horizontal line in the
middle of the blue bar, means 50% probability of a
measurement on the whole system finding the first particle in

second excitation state, the second particle in ground state
and the third particle in fourth excitation state while the
phase of the total system is -1.

Since the color grey is it is own complementary color it
should not be used for bars, only for the frame around the
bars.

V. CONDITIONAL PROBABLILITIES

Probabilities of a measurement performed on the system
as a whole yielding certain bit values can be read from the
width of bars. However if measurements are performed on
individual qubits, conditional probabilities can be read from
the representation and changes introduced by the
measurement can be anticipated. For this the qubits should
be ordered from top to bottom in the order of the
measurement.

Using the column vector formalism an n-qubit state has
writes as:



 
 

 



















nn iγC

iγC
iγC

exp

exp
exp

22

11


  

and the state of the system after the measurement is
shown in (5).
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If the first qubit is measured and the measurement
corresponds to one of the states used as the basis than the
matrix of the measurement on the whole system can be
written in the form of Equation 6 and 7.

 


























10
01

10
01

0
0

1

0 
m

m
M  































1

1

0

0

0

0

m

m
m

m

M





 

Qbit #1:
2

10 

Qbit #2:
2

10 

Qbit #3: 1
5
10

5
4i 

3

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. The effect of the measurements on single qubits. If we
measure the first qubit in the system described by the fractal representation

in part (a) of the figure and the measurement yields a zero then after the
measurement the half under the black part of the first row shown in part (b)

will describe the system. If the second qubit is measured and the
measurement yields a one, then after the second measurement the system

will be described by the half under the black part of the second row shown
in part (c) of the figure. Thus the same width compared to the width of the
different fractals in (a) (b) and (c) that are all considered unit length will
give us the conditional probabilities of measurements on the rest of the

system after the first few qubit was measured and found in certain states.
The white arrows connect individual steps.

where either m0 is 1 and m1 is 0 or m0 is 0 and m1 is 1
depending on which basis vector was detected. Since the
vector elements from top to bottom correspond to the
columns of the representation from left to right, and
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this means if the measurement on the first qubit yields a zero,
the half under the black part of the uppermost bar have to be
examined. If the measurement yields a one, then the half

under the white part will be significant as shown in Fig. 4.
Taking the self similarity of the representation into
consideration these halves also describe single or multi-qubit
systems that will correspond to the rest of the system after
the measurement is performed on the first qubit. To give the
correct probabilities for these subsystems, their widths
should be considered unit length according to the
denominator in Equation 5. The width of individual columns
will represent the conditional probability of the measurement
on the rest of the system yielding the values represented by
the colors of the bars.

After the measurement, the first qubit, which is now in a
classical state, can be separated from the system and this
logic can be recursively applied to the following qubits to get
the conditional probabilities for the rest of the system after
the first n qubit was measured.

VI. CHANGING THE ORDER OF QUBITS AND RECOGNIZING
INTERCHANGEABLE QUBITS

In some cases the question ‘whether two qubits are in the
same state or not’ can be interesting. If the system is
represented in a way corresponding to the separated tensor
product, then two qubits can be determined to be in the same
state if the bars representing them are the scaled versions of
the same single qubit as shown in Fig. 5.

Figure 5. Since the second and third rows corresponding to the
second and third qubits are consisting of scaled copies of the same single

qubit representation, they are interchangeable.

If the representation is as described in Section III A, two
qubits can be determined to be interchangeable if after
changing the bit order the same fractal representation arises
as shown in Figure 6.

The bit order can be changed by the following steps.
First, changing the two lines of bars representing the two
qubits, then determining the columns that make up the fractal
representation by cutting the representation up at every point
where two bars meet, copying the phase information to the
lowermost bars, and finally reordering the columns so that
the bit values represented by them are in ascending order and
merging them in a way described in Section III A to form a
new fractal representation.
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Figure 6. To change the order of two qubits, first the order of the
corresponding rows have to be changed as shown in part (a) and (b) of the

picture. After that the columns making up the representation have to be
identified, and the phase information copied in the lowermost bars as
shown by the gray arrwes in part (c). Finally, the columns have to be
rearranged to ascending order as shown by the black arrows and the

neighboring bars with the same color and phase remerged. Since the vector
representations in this example before and after the reordering look

differently, the two qubit was not interchangeable.

VII. CONNECTION WITH THE VECTOR REPRESENTATION
OF COMPLEX NUMBERS AND THE DENSITY MATRIX

In this section, the connections with other representations
will be explained. Although using the absolute value square
of the probability amplitude for the widths has its
advantages, often the complex values of the probability
amplitudes have to be represented in a vector form. The
phase angle and thus the angle in polar coordinates can be

read from the representation however for the length of the
vector the square root of the columns have to be calculated.
In a purely geometrical approach, this can be constructed
using a parabola shown in Fig 7., whose equation is


2xy 

 

Figure 7. Geometric steps to determine the vector representation of
the elements in the density matrix. The widths of the bars in part (a) are

used represent the diagonal elements shown in part (b). A parabola shown
in part (c) can be used to draft the squares square roots and products of
certain lengths. The phase difference shown in part (d) will provide the

angle of the vectors in part (e) corresponding to offdiagonal elements of the
density matrix. The length of the vectors are given by the distance between

the origin and P3 in part (c).

This parabola can also be helpful if product of lengths or
the square root of their product has to be calculated. It is easy
to show that the points P1 P2 and P3 are collinear, whose
Cartesian coordinates are:
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This method can be useful when information regarding
the density matrix is needed. The width of the columns will
correspond to the elements in the main diagonal of the
density matrix, and off-diagonal elements can be calculated
from the difference in the heights of the horizontal lines
representing the phase angles, and the square root of the
product of the columns widths. As mentioned previously,
this can be geometrically achieved by the following steps: 1,
measuring them on the y axis, 2, projecting these heights
onto the parabola, 3, connecting the resulting points with a
line as shown in Figure 7.

From the density matrix of pure states, the fractal
representation can be created using the elements in the main
diagonal as widths of the columns and the negative phase
angles of the first row in the density matrix as heights of the
horizontal lines.

Since the vector representation of the quantum system
cannot always be constructed from the density matrix, the
fractal representation has a one-to-one correspondence only
to the vector representation but not to the density matrix.

VIII. REPRESENTATION OF MIXED STATES

The fractal representation of these pure states can be used
to represent the mixed state, if the mixed state is described
by an ensemble of a small number of differing pure states.

Figure 8. Representation of a mixed state that can be described as an
ensemble of quantum systems in two possible pure states. The widths of the
representations of pure states are scaled down by the factor of their weight

in the ensemble.

The representation can be created by scaling the width of
the fractal representation of each pure state by the factor of
their probability in the ensemble and drawing them next to
each other as shown in Fig. 8. The pure states are separated
by grey lines extending above and below the fractal
representation. For the sake of visibility, a gray triangle is

added above the points where the representations of pure
states meet.

Figure 9. If a measurement is performed on the mixed state as a
whole, the probability of the measurement collapses it into a certain state

equals the sum of all the widths of the columns whose colors correspond to
the state. If measurements are performed on single qubits, the logic

described in Section V has to be applied to all of the representations of pure
states separately, and the conditional probabilities will be given by the

combined widths of all the columns with the corresponding colors. Note
the similarities and differences between Figure 4 and Figure 9.

If a measurement is performed on all the qubits in the
ensemble, the probability of a measurement yielding a string
of zeroes or ones equals the combined widths of all the
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columns whose color corresponds to the bit values in the
string.

If the qubits of the ensemble are measured one by one,
then the logic described in Section V has to be applied to all
the fractal representations of pure states, and the conditional
probability on the ensemble will be given by the combined
widths of all the columns corresponding to the strings of bit
values (see in Fig. 9.).

Figure 10. It seems that if a multi-qubit system is divided into two
subsystems the parts that have to be handled as they are part of the same

pure state are determined by color of the other qubits above them. For this
the reordering of the qubits shown in part (b) is necessary for subsystem I

since its qubits are not on the bottom of the representation. The same is not
true to subsystem II.

The density matrix can be easily constructed from the
fractal representation of mixed states. The steps are the
following: 1, creating the density matrices of individual pure
systems as described in Section VII., 2adding up the same
matrix elements weighted by their probability in the
ensemble.

Although we do not have a general proof yet, it seems
that the subsystem of an entangled pure multi-qubit system
can only be represented by copying the bits of the subsystem
in the fractal representation below the rest of the qubits and
handling them as if they would represent different pure states
if the bars above them have the same colors.

It seems that if the pure multi-qubit system has to be
divided into two or more subsystems that are all need to be
examined, then as many copies with reordered rows of the
original version of the fractal representation are needed as
the number of subsystems (see in Fig. 10.).

This means that the usage of these extended grey lines
could indicate more qubits not shown above the fractal

representation whose bars meet where the extended lines
indicate.

Because the density matrix is easily constructed from the
fractal representation, the density matrix of subsystems
seems to be created with this method without actually
calculating the partial traces.

IX. SINGLE QUBIT GATES

In this section, the effects of the most common quantum
gates are discussed in terms of the fractal representation.

A. Pauli X Gate
The Pauli X gate swaps the bit values thus effectively
changing the color of the bars to the opposite. This means the
bars should be rearranged with the purpose of satisfying the
convention of ascending bit value order.

Figure 11. Effect of the Pauli X gate. All the colors of the bars in the
row corresponding to the effected qubit are changed to the opposite. After

the change an additional step of rearranging the columns in ascending order
is required.

If the Pauli X gate affects one qubit in a multi-qubit
system, the color of each bar in the row corresponding to the
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c)

X
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affected qubit has to be changed, followed by the step of
reordering the columns and remerging the neighboring bars
with the same color and phase (Fig. 11.).

B. Pauli Y Gate
The Pauli Y gate acting on a single qubit changes the

color of the bars to the opposite, and shifts upward the
horizontal line indicating the phase in the bar changing from
black to white with three fourths of the bars height while the
in the bar changing from white to black the shift is only one
fourth. During the shifting, the 2 periodicity of the phase
has to be taken into consideration. Since the color is
changed, an additional step of reordering is necessary (see
Fig. 12.).

In case of a multi-qubit system, this color change affects
every bar in the row corresponding to the qubit, while the
phase change affects the lines I the lowermost bars. A step of
reordering and remerging the columns is also necessary.

Figure 12. Effect of the Pauli Y gate. The colors in the row
corresponding to the affected qubit change color and changes in the phase

are introduced depending on the original color of the bars. Under black bars
changing white the horizontal lines indicating the phase shift upward with

three fourth of the bars height while under bars changing form while to
black the shift is only one fourth. If the lines would shift above the bar the

2 periodicity has to be taken into consideration.

C. Pauli Z Gate
The Pauli Z gate does not change the color but shifts the

line indicating the phase in the white colored bar upward
with half the height of the bar. The 2 periodicity has to be
taken into consideration, but reordering is not necessary.

In case of a multi-qubit system, the change will affect all
the lines in the lowermost bars under the white bars in the
row corresponding to the qubit as shown in Fig. 13.

Figure 13. Effect of the Pauli Y gate. The color in the affected row
remains unchanged while the lines representing the phase shif upwards

with half the height of the bars below the white bars in row corresponding
to the affected qubit. Since the colors are unchanged the additional step of
reordering is not necessary but merging or cutting of bars can be necessary

because of the phase changes introduced by the operation.

D. Hadamard Gate
The effect of the Hadamard gate on a single qubit can be

easily calculated using the sum and difference of the
probability amplitudes represented in vector form. This can
be constructed using the method introduced in Section VII.

If a Hadamard operation is performed on one qubit of a
multi-qubit system (shown in Fig. 14.), first the order of the
qubits in the representation has to be changed so that the
qubit affected by the operation becomes the lowermost. To
perform the Hadamard operation, the lowermost bars should
be grouped in way that those under the same colors are in the
same group. Than the operation can be performed on each
group in a way like they are all single qubits. Next the order
of the qubits can be changed again, meaning the line
representing the affected qubit does not have to be the
lowermost.

a)

b)

Z

a)

b)

c)

Y
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Figure 14. The effect of the Hadamard gate on the qubit corresponding
to the lowermost row. The parts of bars in the lowermost row should be

grouped together that are under the columns of bars with the same colors as
shown in part (b). The Hadamard gate affects the bars of the lowermost
row in the same group as if they are single qubits states as shown in part

(c).

E. General Single Qubit Gate
If a generalized single qubit gate is given with the matrix

of
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then the effect of the gate on the last qubit can be
described by the matrix
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Thus the effect on the state vector can be described as the
original U gate affecting numerous single qubits with
probability amplitudes like the neighboring ones in the state
vector. Since only those neighbors are grouped together
whose corresponding bit value only differs in the last digit,
this means that in the fractal representation the gate affecting
the last qubit acts as if it is acting on several single qubits,
who constitute of the lowermost bars of columns whose
color differs in only the color of the lowermost bar. In other
words, the place where any two bars meet except for the
lowermost bars marks the border of a group and the gate acts
as if it is acting on the state described by the lowermost bars
in the same group.

In case of those gates that have nonzero off-diagonal
elements an additional step of reordering and remerging the
columns is necessary. If the gate is acting on any other qubit
than the last one then the operation can be executed by first
changing the bit order and thus the order of the rows
followed by the reordering and remerging of the columns, so
that the qubit in question becomes the last one.

X. CONTROLLED GATES

In this section the effect of controlled quantum gates are
discussed in terms of fractal representation.

A. CNOT Gate
The effect of the Controlled NOT gate is very similar to

the effect on the Pauli X gate but only the color of those
parts of the bars are changed in the row corresponding to the
target bit that are above or below white colored bars of the
row corresponding to the control bit (see in Fig.15.).

a)

c)

b)

9

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 15. Representation of CNOT operation. The first qubit is the
control bit and the second is the target. The effect is very similar to the

effect of the Pauli X gate shown in Figure 11, but the color of the bars in
the row of the target bit only changes in the columns where the color of the
bars corresponding to the control bit is white. This property makes it easy
to visualize how entanglement arises from a CNOT operation. Since the
color of the bars are changing, an additional step of reordering shown in

part (c) is required.

B. General Controlled Gate
A general controlled gate that affects the last qubit if and

only if the value of the control bit is 1. In the fractal
representation the effect will be similar to the uncontrolled
version of the single qubit gate acting on the lowermost row,
but only those parts of the bars will be affected that are under
the white colored bars in the row corresponding to the
control bit.

XI. CONCLUSION

Fractal representations can describe multi-qubits systems
while providing insight to the state of individual qubits. In
this paper, a possible generalization to non-binary

multipartite quantum systems with finite number of discrete
states has been presented.

By examining the effect of measurements on the whole
system and on individual qubits, we concluded that
conditional probabilities regarding measurements on one part
of the system yielding certain qubit values after the rest of
the qubits have been measured can be read by comparing the
widths of the corresponding columns to the appropriate parts
of the representation. The state of the system after the
measurement yielding the given values is described by these
parts.

We explained that the representations of the pure states
can be used to represent the mixed state and measurements
and operations act on the representation as if they are acting
on separate pure states.

The effects of reordering the qubits and the connection
with vector representation of complex numbers were
discussed and used in examining the effects of certain logic
gates. It has been concluded that single qubit operations on
the qubit corresponding to the lowermost row act on the
representation as if they are acting on single qubits described
by a special grouping of the bars in the lowermost row.
Controlled gates affect the qubit corresponding to the
lowermost bar similarly but only those groups will change
that are under white bars in the row corresponding to the
control bit.
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