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Abstract—Our earlier research indicated the feasibility of
applying the PREDIQT method for model-based prediction
of impacts of architectural design changes on system quality.
The PREDIQT method develops and makes use of so called
prediction models, a central part of which are the “Dependency
Views” (DVs) – weighted trees representing the relationships
between architectural design and the quality characteristics of
a target system. The values assigned to the DV parameters
originate from domain expert judgements and measurements
on the system. However fine grained, the DVs contain a
certain degree of uncertainty due to lack and inaccuracy
of empirical input. This paper proposes an approach to the
representation, propagation and analysis of uncertainties in
DVs. Such an approach is essential to facilitate model fitting
(that is, adjustment of models during verification), identify the
kinds of architectural design changes which can be handled
by the prediction models, and indicate the value of added
information. Based on a set of criteria, we argue analytically
and empirically, that our uncertainty handling approach is
comprehensible, sound, practically useful and better than
any other approach we are aware of. Moreover, based on
experiences from PREDIQT-based analyses through industrial
case studies on real-life systems, we also provide guidelines for
use of the approach in practice. The guidelines address the
ways of obtaining empirical estimates as well as the means
and measures for reducing uncertainty of the estimates.

Keywords-uncertainty, system quality prediction, modeling,
architectural design, change impact analysis, simulation.

I. INTRODUCTION

An important aspect of quantitative prediction of system
quality lies in the appropriate representation, propagation
and interpretation of uncertainty. Our earlier work has ad-
dressed this issue by proposing an interval-based approach
to uncertainty handling in model-based prediction of system
quality [1]. This paper extends the interval-based approach
to uncertainty handling with two major tightly related issues:
• uncertainty analysis, and
• practical guidelines for use of the interval-based ap-

proach, addressing both the uncertainty handling and
the estimate acquisition.

We have developed and tried out the PREDIQT method
[2], [3] for model-based prediction of impacts of architec-
tural design changes on system quality characteristics and
their trade-offs. Examples of quality characteristics include

availability, scalability, security and reliability. Among the
main artifacts of the PREDIQT method are the Dependency
Views (DVs). The DVs currently rely on sharp parameter
values which are based on empirical input. As such, the
parameters assigned to the DVs are not very reliable, thus
providing predictions of unspecified certainty.

Since the input to the DVs is based on both measurement-
based data acquisition (measurements, logs, monitoring,
historical data, or similar) and expert judgements, the rep-
resentation of the uncertain input should be intuitive, as
exact as possible and provide a well defined (complete and
sound) inferring mechanism. In a real-life setting, finding the
right balance between accuracy and practical feasibility is
the main challenge when selecting the appropriate approach
to uncertainty handling in prediction models. We propose
an approach to deal with uncertainty which, as we will
argue, is both formally sound and practically applicable in
the PREDIQT context. Our approach is based on intervals
with associated confidence level, and allows representation,
propagation and analysis of all the parameters associated
with uncertainty.

Input acquisition is in this context concerned with how the
DV estimates and their uncertainty measures are obtained in
practice. An overview of the practical means and measures
for 1) acquiring the input and 2) achieving a specified
minimum level of uncertainty, is clearly a prerequisite for
applicability of the uncertainty handling approach. There-
fore, we also provide guidelines for practical use of our
solution, covering both the issues of estimate acquisition
and uncertainty handling. The guidelines build on the ex-
periences from the empirical evaluations of the PREDIQT
method.

The paper is organized as follows: The challenge of
uncertainty handling in the context of the PREDIQT method
is characterized in Section II. We define the frame within
which the approach should be applicable, by providing an
overview of the PREDIQT method and in particular the DVs,
introducing the notion of uncertainty, and outlining a set of
success criteria. The interval-based approach to uncertainty
handling is presented in Section III. Section IV argues for
the usefulness and practical applicability of the approach by
evaluating it with respect to the success criteria. An extensive
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Figure 1. The overall PREDIQT process

Figure 2. Target modeling phase

number of the candidate methods for uncertainty handling
have been systematically reviewed prior to the proposal of
our approach. Section V substantiates why our approach,
given the criteria outlined in Section II, is preferred among
the alternative ones. Practical guidelines for use of our
solution, based on lessons learned from PREDIQT-based
analyses on real-life systems, are provided in Section VI.
The concluding remarks and the future work prospects are
given in Section VII.

II. THE CHALLENGE

Our earlier work indicates the feasibility of applying the
PREDIQT method for model-based prediction of impacts
of architectural design changes, on the different quality
characteristics of a system. The PREDIQT method produces
and applies a multi-layer model structure, called prediction
models. The PREDIQT method is outlined in the next
subsection. Uncertainty and the evaluation criteria for the
uncertainty handling approach are thereafter presented in
dedicated subsections.

A. Overview of the PREDIQT method

The PREDIQT method defines a process and a structure
of prediction models. These two perspectives are presented
in the following.

1) The process of the PREDIQT method: The process of
the PREDIQT method consists of three overall phases as
illustrated by Figure 1. Each of these phases is decomposed
into sub-phases.

Figure 3. Verification of models – phase

The sub-phases within the “Target modeling” phase are
depicted in Figure 2. Based on the initial input, the stake-
holders involved deduce a high-level characterization of the
target system, its scope and the objectives of the prediction
analysis, by formulating the system boundaries, system
context (including the usage profile), system lifetime and
the extent (nature and rate) of design changes expected.
Quality Model diagrams are created in the form of a
tree, by decomposing total quality into the system specific
quality characteristics, their respective sub-characteristics
and indicators. The Quality Model diagrams represent a
taxonomy with interpretations and formal definitions of
system quality notions. The initially obtained Design Models
are customized so that (1) only their relevant parts are
selected for use in further analysis; and (2) a mapping
within and across high-level design and low-level Design
Models (if available), is made. The mapped models result
in a class diagram, which includes the relevant elements
and their relations only. A conceptual model (a tree-formed
class diagram) in which classes represent elements from the
underlying Design Models and Quality Models, relations
represent the ownership, and the class attributes represent
the dependencies or the properties, is created.

For each quality characteristic defined by the Quality
Model, a quality characteristic specific DV is created via
the instantiation of the conceptual model. A DV is basically
a weighted dependency tree which models the relationships
among quality characteristics and the design of the system.
The instantiation of the conceptual model into a DV is
performed by selecting the elements and relationships which
are relevant to the quality characteristic being addressed
by the DV. Each set of nodes having a common parent is
supplemented with an additional node called “Other” for
completeness purpose. The DV parameters are assigned by
providing the estimates on the arcs and the leaf nodes,
and propagating them according to a pre-defined inference
algorithm.

The sub-phases within the “Verification of prediction
models” phase are depicted in Figure 3. This phase aims to
validate the prediction models, with respect to the structure
and the individual parameters, before they are applied. A
measurement plan with the necessary statistical power is
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Application of prediction models

Figure 4. Application of models – phase

developed, describing what should be evaluated, when and
how. Both system-as-is and change effects should be covered
by the measurement plan. Model fitting is conducted in
order to adjust the DV structure and the parameters to
the evaluation results. The objective of the “Approval of
the final prediction models” sub-phase is to evaluate the
prediction models as a whole and validate that they are
complete, correct and mutually consistent after the fitting. If
the deviation between the model and the new measurements
is above the acceptable threshold after the fitting, the target
modeling phase is re-initiated.

The sub-phases within the “Application of prediction
models” phase are depicted in Figure 4. This phase involves
applying the specified architectural design change on the
prediction models and obtaining the predictions. The phase
presupposes that the prediction models are approved. During
this phase, a specified change is applied on the Design
Models and the DVs, and its effects on the quality char-
acteristics at the various abstraction levels are simulated
on the respective DVs. The change specification should
clearly state all deployment relevant facts necessary for
applying the change. The “Apply the change on prediction
models” sub-phase involves applying the specified archi-
tectural design change on the prediction models. When an
architectural design change is applied on the Design Models,
it is according to the definitions in the Quality Model,
reflected to the relevant parts of the DVs. Thereafter, the
DVs provide propagation paths and quantitative predictions
of the new quality characteristic values, by propagating the
change throughout the rest of each one of the modified DVs,
based on the general DV propagation algorithm. We have
earlier developed tool support [2] based on MS Excel [4]
for simulation and sensitivity analysis of DVs.

The intended application of the prediction models does
not include implementation of change on the target system,
but only simulation of effects of the independent architec-
tural design changes on quality of the target system (in its
currently modelled state). Hence, maintenance of prediction
models is beyond the scope of PREDIQT.

2) The prediction models: The PREDIQT method pro-
duces and applies a multi-layer model structure, called
prediction models, which represent system relevant quality

Data protection
QCF=0.94

Encryption
QCF=1.00

Authentication
QCF=0.95

Authorization
QCF=0.90

Other
QCF=0.90

EI=0.25EI=0.30 EI=0.30 EI=0.15

Figure 5. Excerpt of an example DV with fictitious values

concepts (through “Quality Models”) and architectural de-
sign (through “Design Models”).

The Design Models represent the architectural design of
the target system. The models include the parts and the
detail level characterized (during the first sub-phase of the
PREDIQT process) as a part of the objective of the analysis.
Typically, Design Models include diagrams representing the
process, the system structure, the dataflow and the rules for
system use and operation. The Design Model diagrams are
used to specify the target system and the changes whose
effects on quality are to be predicted.

A Quality Model is a tree-like structure whose nodes
(that is, quality notions at the different levels) are defined
qualitatively and formally, with respect to the target system.
The total quality of the system is decomposed into charac-
teristics, sub-characteristics and quality indicators. Each of
them is, by the Quality Model, defined in terms of a metric
and an interpretation with respect to the target system. The
definitions of the quality notions may for example be based
on ISO 9126 product quality standard [5].

In addition, the prediction models comprise DVs, which
are deduced from the Design Models and the Quality Models
of the system under analysis. As explained above, the DVs
model the dependencies of the architectural design with
respect to the quality characteristic that the DV is dedicated
to, in the form of multiple weighted and directed trees. The
values and the dependencies modeled through the DVs are
based on the quality characteristic definition provided by the
Quality Model. A DV comprises two notions of parameters:

1) EI: Estimated degree of Impact between two nodes,
and

2) QCF: estimated degree of Quality Characteristic Ful-
fillment.

Each arc pointing from the node being influenced is an-
notated by a quantitative value of EI, and each node is
annotated by a quantitative value of QCF.

Figure 5 shows an excerpt of an example DV with ficti-
tious values. In the case of the Encryption node of Figure 5,
the QCF value expresses the goodness of encryption with
respect to the quality characteristic in question, e.g., security.
A QCF value on a DV expresses to what degree the node
(representing system part, concern or similar) is realized so
that it, within its own domain, fulfills the quality charac-
teristic. The QCF value is based on the formal definition
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of the quality characteristic (for the system under analysis),
provided by the Quality Models. The EI value on an arc
expresses the degree of impact of a child node (which the
arc is directed to) on the parent node, or to what degree
the parent node depends on the child node. The EI of an
arc captures the impact of the child node on its parent node,
with respect to the quality characteristic under consideration.

Input to the DV parameters may come in different forms
(e.g., from domain expert judgements, experience factories,
measurements, monitoring, logs, etc.), during the different
phases of the PREDIQT method. Once the initial parameter
values are assigned, the QCF value of each non-leaf node is
recursively (starting from leaf nodes and moving upwards in
the tree) propagated by multiplying the QCF and EI value for
each immediate child and summing up these products for all
the immediate children. This is referred to as the general DV
propagation algorithm. For example, with respect to Data
protection node in Figure 5 (denoting: DP: Data protection,
E: Encryption, AT: Authentication, AAT: Authorization, and
O:Other):

QCF(DP ) = QCF(E) · EI(DP→E) +QCF(AT ) · EI(DP→AT ) +
QCF(AAT ) · EI(DP→AAT ) +QCF(O) · EI(DP→O) (1)

The DV-based approach constrains the QCF of each node
to range between 0 and 1, representing minimal and maximal
characteristic fulfillment (within the domain of what is repre-
sented by the node), respectively. This constraint is ensured
through the normalized definition of the quality character-
istic metric. The sum of EIs, each between 0 (no impact)
and 1 (maximum impact), assigned to the arcs pointing to
the immediate children must be 1 (for model completeness
purpose). Moreover, all nodes having a common parent have
to be orthogonal (independent). The dependent nodes are
placed at different levels when structuring the tree, thus
ensuring that the needed relations are shown at the same
time as the tree structure is preserved. The overall concerns
are covered by the nodes denoted Other, which are included
in each set of nodes having a common parent, thus making
the DV complete.

The general DV propagation algorithm, exemplified by
Eq. 1, is legitimate since each quality characteristic DV
is complete, the EIs are normalized and the nodes having
a common parent are orthogonal due to the structure. A
DV is complete if each node which is decomposed, has
children nodes which are independent and which together
fully represent the relevant impacts on the parent node, with
respect to the quality characteristic that the DV is dedicated
to.

The rationale for the orthogonality is that the resulting DV
structure is tree-formed and easy for the domain experts to
relate to. This significantly simplifies the parameterization
and limits the number of estimates required, since the
number of interactions between the nodes is minimized.
Although the orthogonality requirement puts additional de-

mands on the DV structuring, it has been shown to represent
a significant advantage during the estimation.

Figure 6 provides an overview of the prediction models,
expressed as a UML [6] class diagram. A prediction model
is decomposed into a Design Model, a Quality Model and
a DV. A Quality Model is a set of tree-like structures.
Each tree is dedicated to a target system-relevant quality
characteristic. Each quality characteristic may be decom-
posed into quality sub-characteristics, which in turn may
be decomposed into a set of quality indicators. As indi-
cated by the relationship of type aggregation, specific sub-
characteristics and indicators can appear in several Quality
Model trees dedicated to the different quality characteristics.
Each element of a Quality Model is assigned a quantitative
normalized metric and an interpretation (qualitative meaning
of the element), both specific for the target system. A
Design Model represents the relevant aspects of the system
architecture, such as for example process, dataflow, structure
and rules. A DV is a weighted dependency tree dedicated to
a specific quality characteristic defined through the Quality
Model. As indicated by the attributes of the Class Node, the
nodes of a DV are assigned a name and a QCF (that is, value
of the degree of fulfillment of the quality characteristic, with
respect to what is represented by the node). As indicated
by the Semantic dependency relationship, semantics of both
the structure and the weights of a DV are given by the
definitions of the quality characteristics, as specified in the
Quality Model. A DV node may be based on a Design
Model element, as indicated by the Based on dependency
relationship. As indicated by the self-reference on the Class
Node, one node may be decomposed into children nodes.
Directed arcs express dependency with respect to quality
characteristic by relating each parent node to its immediate
children nodes, thus forming a tree structure. Each arc in
a DV is assigned an EI, which is a normalized value of
degree of dependence of a parent node, on the immediate
child node. The values on the nodes and the arcs are referred
to as parameter estimates. We distinguish between prior (or
initial) and inferred parameter estimates. The former ones
are, in the form of empirical input, provided on leaf nodes
and all arcs, while the latter ones are deduced using the
DV propagation model for PREDIQT exemplified above.
For further details on the PREDIQT method, see [2], [3],
[7], [1].

B. Uncertainty

The empirical input is always associated with a degree
of uncertainty. Uncertainty is generally categorized into two
different types: aleatory (due to inherent randomness of the
system or variability of the usage profile) and epistemic (due
to lack of of knowledge or information about the system)
[8]. The aleatory uncertainty is irreducible even by additional
measurements. Aleatory uncertainty is typically represented
by continuous probability distributions and forecasting is
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Figure 6. An overview of the elements of the prediction models, expressed as a UML class diagram

based on stochastic models.
Epistemic uncertainty, on the other hand, is reducible,

non-stochastic and of discrete nature. The epistemic uncer-
tainty is therefore best suited for possibilistic uncertainty
representations. For a detailed classification of the types and
sources of imperfect information, along with a survey of
methods for representing and reasoning with the imperfect
information, see [9]. For a systematic literature review of the
approaches for uncertainty handling in weighted dependency
trees, see [10].

Prediction models, as opposed to for example weather
forecasting models, are characterized by rather discrete, sud-
den, non-stochastic and less frequent changes. The weather
forecasting models are of stochastic and continuous nature
and the aleatory uncertainty is the dominating one (due to
uncontrollable variabilities of many simultaneous factors). In
majority of the system quality prediction models, aleatory
uncertainty is negligible in terms of magnitude and im-
pact, while the epistemic one is crucial. It is therefore the
epistemic uncertainty we focus on when dealing with the
parameters on the DVs.

C. Success criteria

Since expert judgements are a central source of input
during the development of the prediction models, and also
partially during the model verification, it is crucial that
the formal representation of uncertainty is comprehensible
to those who have in-depth system knowledge, but not
necessarily a profound insight into the formal representation.
The representation form of uncertainty estimates should
make them easy for domain experts to provide and interpret.

Simultaneously, each individual parameter estimate
should express the associated uncertainty so that it is as
exact as possible. That is, the parameter and uncertainty
values provided should be as fine grained as possible to
provide, but without restricting comprehensibility. Thus, the

right granularity of the uncertainty representation at the level
of each parameter is needed.

Moreover, the input representation should facilitate com-
bining both expert judgement-based and measurement-based
input at the level of each parameter in a DV.

The DV propagation algorithm has a number of associated
prerequisites (e.g., completeness, independence of the nodes
which have a common parent, and ranges that the EI and
QCF values can be expressed within). Together, they restrict
the inference and the structure of the DVs so that the DVs
become sound and comprehensible. When the parameters
with the uncertainty representation are propagated within
and across the DVs, the inference must still be well-defined
and sound.

When applied on real-life cases, the uncertainty handling
approach should propagate to practically useful predictions,
in the sense that the approach can be applied on realistic
DVs with limited effort and give valuable output.

Statistical and sensitivity analyses are currently performed
in the DVs, during the Fitting of prediction models sub-
phase and the Application of prediction models phase (of the
PREDIQT process), respectively. Therefore, the uncertainty
handling approach should also allow deduction of the central
tendency measures such as mode, median, arithmetic mean,
geometric mean, and variance.

Given the overall objective and context, the main success
criteria for the uncertainty handling approach can, in a
prioritized order, be summarized into:

1) The representation form of each parameter estimate
and its uncertainty should be comprehensible for the
domain experts involved in the development and use
of the prediction models.

2) The representation form of each parameter estimate
and its uncertainty should be as exact as possible, in
terms of expressing both the parameter estimate and
the associated uncertainty.
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3) The approach should facilitate combining both expert
judgement-based and measurement-based input.

4) The approach should correctly propagate the estimates
and their uncertainty.

5) The approach should provide practically useful results.
6) The approach should allow statistical analysis.

III. OUR SOLUTION

This section presents an interval-based approach to rep-
resentation and propagation of uncertainties on the DVs.

A. Uncertainty representation

All prior estimates (the terms “prior estimate” and “initial
estimate” are used interchangeably, and regard the intervals
directly assigned to the EIs and leaf node QCFs, i.e., the
parameters based on the empirical input and assigned before
the non-leaf node QCFs may be inferred) are expressed in
terms of intervals within which the correct parameter values
should lie. The width of the interval is proportional to the
uncertainty of the domain experts or deduced from the stan-
dard deviation of the measurement-based input represented
with probabilistic notions. In the latter case, the standard
deviation indicates the accuracy of the measurements as-
sociated with each initially estimated parameter. Thus, the
interval width may vary between the individual parameters.
The representation of the estimates and their uncertainty
is exemplified through an excerpt of a DV (with fictitious
values) shown in Figure 7.

In addition to the quantifiable uncertainty associated with
each initially estimated parameter, there may exist sources
of uncertainty which are general for the context or the
system itself, but to a lesser degree expressive or measurable.
Examples include the presence of the aleatory uncertainty,
the competence of the domain experts, data quality, statis-
tical significance, etc. Such factors contribute to the overall
uncertainty, but are (due to their weak expressiveness) not
explicitly taken into account within the initially estimated
EIs and the leaf node QCFs. Another reason for not ac-
counting them within the intervals is because they are
unavailable or may be biased at the individual parameter
level. The domain experts may for example be subjective
with respect to the above exemplified factors, or the tools
for data acquisition may be incapable of providing the values
regarding data quality, statistical significance, etc. Therefore,
the context related uncertainty should, from an unpartial
perspective (e.g., by a monitoring system or a panel, and
based on a pre-defined rating), be expressed generally for
all prior estimates.

Hence, we introduce the “confidence level” as a measure
of the expected probability that the correct value lies within
the interval assigned to a prior estimate. The confidence
level is consistent and expresses the overall, uniform, context
or system relevant certainty, in terms of a percentage.
The confidence level regards the prior estimates only. The

confidence level dictates the width of the intervals of the
prior estimates, i.e., the certainty with which the exact
value is within the interval assigned to a prior estimate.
For example, a confidence level of 100% guarantees that
the exact values lie within the intervals assigned to the prior
estimates. Obviously, a requirement for increased confidence
level will result in wider intervals of the prior estimates. In
the case of Figure 7 the prior estimates are assigned with a
confidence level of 90%. Let QCFs and EIs be represented
by intervals of type x:

x = [x;x] = {X ∈ [0; 1] : x ≤ X ≤ x} (2)

where x is the minimum estimated parameter value above
which the exact value should (the term “should” is inten-
tionally used in order to account for the confidence level
of the prior estimates which is below 100%) lie, while x
is the maximum parameter value below which the exact
value should lie. Both x and x are represented by real
numbers. The interval x of a prior estimate is assigned with
the confidence level specified. Due to model completeness,
EIs on the arcs pointing to the nodes with a common parent
must satisfy: (

ΣI
i=1xi

)
≤ 1 ∧

(
ΣI

i=1xi
)
≥ 1 (3)

where i denotes index of an arc, I denotes the total number
of the arcs with outspring from a common parent, and xi
denotes the interval estimate for the EI on arc i. That is,
there must exist at least one subset of scalars from within
each one of the intervals (representing EIs on the arcs to
nodes with a common parent), whose sum is equal to 1.

B. Uncertainty propagation

The initial estimates are provided in the form of intervals
with respect to a confidence level, as specified above. The
propagation of the initially estimated intervals on the non-
leaf node QCFs is given by the existing DV propagation
algorithm (exemplified by Eq. 1 in Section II), the interval
arithmetics [11], [12], and the algorithms for non-linear
optimization [13], [14]. The result of the propagation is in
the form of intervals of QCF values on the non-leaf nodes.

The confidence level itself is not propagated but only used
in the context of the assignment of the initial estimates.
Therefore, the confidence level is only associated with the
initial estimates and not the inferred ones (non-leaf node
QCFs). The confidence level does however affect the width
of the inferred parameters through the width of the initial es-
timates. That is, since a requirement for a higher confidence
level implies wider intervals of the initial estimates, the
propagation will, as specified below, result in wider intervals
on the non-leaf node parameters.

The only two interval arithmetic operations needed for
propagation in a DV are addition and multiplication. In case
of two intervals denoted by x and y (of the form given by
Eq. 2), addition and multiplication are defined as:
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Figure 7. Excerpt of a DV with intervals and confidence level

x ◦ y = [x ◦ y;x ◦ y] (4)

Where ◦ denotes the operation symbol.
The optimization is necessary for obtaining the extreme

values (the maximum and the minimum) of the interval of a
parent node in the cases when several combinations (within
the propagated intervals) give a sum of the EIs (on the
arcs pointing to the immediate children) equal to 1. The
scalar points (from within the intervals involved), which
provide the extreme values, are identified by the non-linear
optimization algorithms and then inferred to the parent node
QCF in the form of an interval, according to the general DV
propagation algorithm.

For a set of EI intervals whose total sum of the upper
interval values is more than 1, there may be infinitely many
combinations (the number of the combinations depends on
the number of decimal digits, which the scalars from the
intervals are represented with) of scalar points from within
all the intervals, which together sum up to 1. Regardless of
how many EIs (or nodes) there are, finding the min and the
max values of the interval resulting from the propagation
(sum of products of QCF and EI values associated with
respectively the immediate children nodes and the arcs
pointing to them) is a feasible optimization problem [14],
[11]. Since the number of unknowns is equal to the number
of equations involved, the only condition for the feasibility
of the algorithm is the one expressed by Eq. 3.

Let qcf, qcf ∈ [0; 1] denote the interval limits of the
QCFs on the immediate children and let ei, ei ∈ [0; 1]

denote the EIs on their respective interconnecting arcs. We
propose the utility functions for the inferred min and max
for the intervals of the parent node QCFs, which are given
by respectively:

QCF
def
=

min
{

ΣI
i=1qcf i · eii|∀i ∈ I : eii ≤ eii ≤ eii ∧ ΣI

i=1eii = 1
}

(5)

QCF
def
=

max
{

ΣI
i=1qcf i · eii|∀i ∈ I : eii ≤ eii ≤ eii ∧ ΣI

i=1eii = 1
}

(6)

I and i denote the same notions as in Eq. 3. The inference
starts from the lowest internal nodes, and proceeds recur-
sively upwards the tree.

The sensitivity of the inferred interval width of a depen-
dent node, on the interval width of a dependee (node or arc),
can be deduced by:

1) estimating the initial parameters and propagating them
2) obtaining the inferred interval width W of the selected

dependent node
3) removing (or partially reducing) the interval width of

the selected dependee D
4) obtaining the new inferred interval width W ′ of the

dependent node
5) calculating the sensitivity S between the dependent

node W and the dependee parameter D, with respect
to uncertainty.
We define the sensitivity measure SW,D as:

SW,D = (1− W ′

W
) (7)

In the context of predicting the quality characteristic, the
natural choice of the dependent node will be the root node,
which represents the quality characteristic that the DV is
dedicated to, while the dependee will be a leaf node QCF or
an EI. The QCF value on the root node will then represent
the value of the quality characteristic of the system. The
dependee is subject to the initial estimation. Therefore, the
uncertainty of a dependee may be directly adjustable (for
example, by reducing interval width due to added input).
The sensitivity value can be obtained prior to selecting
the candidate parameters for uncertainty reduction through
added input. The obtained value of sensitivity (defined by
Eq. 7) can in such a case be considered in relation to
the effort needed for acquisition of the additional input.
That is, higher sensitivity justifies putting more effort in
acquiring additional input in order to decrease uncertainty
of the dependee (and thus dependent) node.

C. The uncertainty propagation in practice

Currently, we run the optimization in Matlab, where the
utility function is, based on the DV propagation model
exemplified by Eq. 1, defined as the sum of products of
the QCF and EI intervals related to the immediate children
nodes. The constraints of the utility function are:
• all QCF intervals involved,
• all EI intervals involved, and
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• ΣI
i=1eii = 1 (where i denotes an arc, I is the total

number of the arcs pointing to the nodes with the com-
mon parent under consideration, and eii is a variable
representing the EI value on the arc i). This constraint
ensures the model completeness.

The minimum of the inferred interval is obtained from the
utility function, while the maximum of the inferred interval
is obtained by inverting the sign on the left hand side of the
utility function and re-running the non-linear optimization
algorithm. The Target interfaces and Target system nodes in
Figure 7 are examples where such an algorithm had to be
run in order to obtain the propagated intervals. In the case of
Target interfaces, the utility function is specified in Matlab
as:

function f = objfun(x,y)
f = x(1)*x(2)+x(3)*x(4)+x(5)*x(6);

Where x(1), x(3) and x(5) represent the EI values on the
arcs pointing to the Authentication, Provisioning and Other
nodes, respectively; while x(2), x(4) and x(6) represent the
QCF values on the Authentication, Provisioning and Other
nodes, respectively.

The related nonlinear inequality constraints representing
the max and the min interval values of each respective
variable specified above are defined in Matlab as:

c = [-x(1) + 0.2; x(1) - 0.4; -x(2) + 0.7; x(2) - 0.9;
-x(3) + 0.3; x(3) - 0.5; -x(4) + 0.6; x(4) - 0.8;
-x(5) + 0.2; x(5) - 0.5; -x(6) + 0.8; x(6) - 1.0];

The nonlinear equality constraint specifying that the sum of
the EIs has to equal to 1, is defined in Matlab as:

ceq = [x(1) + x(3) + x(5) - 1];

The optimization algorithm is run by the following command
in Matlab:

x0 = [0,0,0,0,0,0]; % Make a starting guess at the solution
options = optimset(’LargeScale’,’on’);
[x, fval] = ...
fmincon(@objfun,x0,[],[],[],[],[],[],@confuneq,options)

Providing the following result, where the values in the vector
x specify the scalar points within the intervals x(1)-x(6),
which yield the min value 0.67 of the utility function:

x = 0.3000 0.7000 0.5000 0.6000 0.2000 0.8000
fval = 0.6700

The max of the inferred interval is specified in Matlab by
changing the sign of the above shown utility function to:

f = -(x(1)*x(2)+x(3)*x(4)+x(5)*x(6));

and re-running the command from above. The output ob-
tained is:

x = 0.2000 0.9000 0.3000 0.8000 0.5000 1.0000
fval = 0.9200

where the values in the vector x specify the scalar points
within the intervals x(1)-x(6), which yield the max value of
the utility function, namely 0.92.

The propagation results are displayed in Figure 7. We
see that the scalar points of the optimization output are in
accordance with the Eq. 5 and Eq. 6.

D. Uncertainty analysis

Statistical analysis of measurements performed prior to
model fitting and sensitivity analysis performed in relation
to the application of prediction models, require a toolset
for analysis of the data sets represented by intervals. The
analysis of the central tendency measures of the interval-
based estimates relies on the existing fully defined interval
arithmetics and interval statistics [15]. Both can, in their
existing well-established form, be directly applied in our
context.

Apart from the summation and the multiplication pre-
sented by Eq. 4, the elementary interval arithmetic functions
addition and multiplication (given two intervals denoted by
x and y, both of the form given by Eq. 2) include subtraction
and division:

x− y = [x− y, x− y] (8)

x÷ y = [x, x] · [1/y, 1/y], as long as 0 /∈ y. (9)

Arithmetic mean is given by:[
1
I

ΣI
i=1xi,

1
I

ΣI
i=1xi

]
. (10)

For geometric mean, harmonic mean, weighted mean, and
median, see [15]. Since no two data values are likely to be
the same at infinite precision, mode does not generalize to
a useful summary for data sets containing interval values.
Instead, [15] proposes a substitute statistic, which identifies
the places where most values in the data set overlap.

For problems with large sample sizes, computing variance
of the interval data is an NP-hard problem. The algorithms
for calculating variance presented in [15] solve the issue of
infeasibility and make practical calculations of the needed
interval statistics.

The standard deviation σ of an interval can be computed
immediately from the variance var by taking its square root:

σ = [σ, σ] =
√
var =

[√
var,
√
var
]
. (11)

Interval statistics for interquartile range, skewness, con-
fidence intervals, regression fitting, maximum likelihood
methods, as well as inferential interval statistics are thor-
oughly presented in [15]. In addition, [15] provides guidance
regarding identification of outliers, trade-off between sample
size and precision, handling of measurement uncertainty,
handling of dependencies among the sources of uncertainty
(correlation and covariance) and accounting for incertitude.

IV. WHY OUR SOLUTION IS A GOOD ONE

This section argues that the approach presented above
fulfills the success criteria defined in Section II. Each one
of the six criteria is considered in a dedicated subsection.

A. Criterion 1

The interval-based approach extends the DV parameters
with the notions of interval widths and confidence level.
Both interval width and confidence level are based on
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fairly intuitive and simple definitions. Hence, the approach
should be relatively easy for the domain experts to use
and understand, regardless of the degree of their formal
background. The simplicity also makes it less prone to
unstable over-fitting, as well as bias or inaccuracy of the
estimations.

B. Criterion 2

The interval width can be selected at the individual prior
estimate level, thus allowing adjustment of granularity of the
uncertainty representation. The number of the decimal digits
used in estimation and propagation is unlimited.

C. Criterion 3

The domain expert judgements are provided directly in
terms of intervals with a confidence level. However the
measurement-based input may come in terms of statistical
notions.

Given that the measurement-based input is normally dis-
tributed, the interval end points can be calculated as [16]:

µ± t(1− conf, n− 1)σ
√

1
n

+ 1 (12)

where t(1 − conf, n − 1) is the two-tailed value of the
Student’s t-distribution for the confidence level 1 − conf
and n − 1 degrees of freedom, µ ∈ [0; 1] is the mean
value, σ is the standard deviation of the measurements and
n is the number of measurements. The “1” term inside
the square root describes the spread of the measurement
accuracy, while the “1/n” term describes the spread of
the mean measurement accuracy. When n is high, there
will be almost no uncertainty about the mean measurement
accuracy, but the spread of the measurement accuracy may
still be large. One can express both QCFs and EIs in this
manner (for the relationship between the DV parameters and
the measurements, see [2]), while requiring that Eq. 2 and
Eq. 3 are satisfied. Alternatively, one can represent the QCF
values in this manner, and the EI value of each related arc
as a probability p ∈ [0; 1], while enforcing

∑
p = 1 for all

nodes having a common parent. Thus, both kinds of input
are transformable to intervals, which then can be propagated
as defined in Section III and exemplified below.

D. Criterion 4

A consequence of the inequality and equality constraints
is that all the inferred values will lie within the interval [0;1].
In addition, the normalized quality characteristic metric is
defined so that all possible values always must lie within
this interval. Moreover, the propagation algorithm calculates
both the upper and the lower extreme values. As a result,
the inferred prediction is an interval within which the exact
(factual) value should lie. Two aspects are hindering from
guaranteeing that the factual value lies within the inferred
interval:

Prior estimates 90% conf. level Propagated
QCFs EIs QCFs and EIs QCFs

Count 38 47 85 10
Max 0.05 0.15 0.15 0.0645
Min 0.00 0.00 0.00 0.0141
Avg 0.027 0.02 0.025 0.0366

StDev 0.0199 0.023 0.022 0.014

Table I
SUMMARY OF THE INTERVALS APPLIED ON A REAL DV STRUCTURE

1) the confidence level with which the prior estimates are
provided, and

2) the aleatory uncertainty, which unless accounted for
in the confidence level, is not quantified within the
intervals.

E. Criterion 5

The interval-based approach has also been tested by
providing example values of estimates and their uncertainty
on a real DV structure. The DV structure was originally
used in a feasibility study of the PREDIQT method [2],
performed on an extensive, real system. The uncertainty
estimates were straight-forward to provide by referring to
the definition of the rating of the quality characteristic and
expressing the estimates in terms of intervals. The interval
width was mostly subject to observability of the parameter
and existence of relevant historical input. The DV consisted
of 38 leaf nodes, 9 internal nodes and 1 root node. The
number of EIs on the arcs was 47. Thus, the number of initial
(empirical input-based) estimates was 85, in this case. All
initial estimates were expressed with intervals of reasonable
and varying widths, within 90% confidence level. Once the
initial estimates were in place, the propagation was quick
and straightforward.

Table I summarizes the intervals applied. Each column
lists the number of elements, the maximum interval width,
the minimum interval width, the average interval width and
the standard deviation of the interval width. The first two
columns present the values for the initial estimates of the leaf
node QCFs and all the EIs, respectively. The third column
presents the values for the initial estimates of both the leaf
node QCFs and all the EIs. The last column presents the
results for the propagated QCFs (on the internal nodes and
the root node). The resulting interval width of the root node
QCF was 0.032. Given the attempt to provide as realistic
and as variable interval widths of the initial estimates as
possible, the example should be an indication of the expected
findings in similar settings. Note that, while the interval
widths reflect the expected uncertainty, all values assigned to
parameter estimates are fictitious, due to their confidentiality.
The obtained root node interval width can be considered as
a promising result, since the predictions are still likely to be
associated with limited and acceptable uncertainty.

To test impact of uncertainty elimination on one leaf node
(a child node of the root node) on the above presented DV,
its QCF was changed from [0.90;0.95] to [0.925;0.925]. The
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resulting interval width of the root node QCF became 0.0295
and the value of Eq. 7 became 0.081. Note that these values,
too, are based on fictitious input, due to confidentiality of
the actual initial estimates.

In a real-life setting, not all the estimates will be expressed
with uncertainty, since some of the nodes have no impact
or no uncertainty. The evaluation of the above mentioned
feasibility study showed that the uncertainty of the input
and the deviations between the PREDIQT-based and the
empirical predictions are relatively low. The experience from
the feasibility study is that the interval widths would be
quite small. Most of the nodes of the DVs were placed on
the second or the third level, which considerably limits the
vertical propagation of uncertainties.

Reducing the confidence level and conducting further
model fitting (through additional input) are the obvious
counter-measures when the inferred values are too uncertain.
The candidate parameters for reduction of uncertainty can
be identified by using the sensitivity measure proposed in
Section III in relation to the effort needed for the uncertainty
reduction in question. Alternatively, a sensitivity analysis
supported by charts and central tendency measures can be
pursued in order to observe the impact that a reduction of
uncertainty of the individual estimates would have on (the
root node of) the DV.

F. Criterion 6

The analysis of the central tendency measures of the
interval-based estimates relies on the existing fully defined
interval arithmetics and interval statistics [15]. Both can, in
their existing well-established form, be directly applied in
our context. For arithmetic mean, geometric mean, harmonic
mean, weighted mean, median, standard deviation and vari-
ance, see [15]. In addition, [15] provides guidance regarding
identification of outliers, trade-off between sample size and
precision, handling of measurement uncertainty, handling of
dependencies among the sources of uncertainty (correlation
and covariance) and accounting for incertitude.

V. WHY OTHER APPROACHES ARE NOT BETTER IN THIS
CONTEXT

A ratio scale is a measurement scale in which a certain
distance along the scale means the same thing no matter
where on the scale we are, and where “0” on the scale
represents the absence of the thing being measured. Sta-
tistical analysis and arithmetics are supported for the ratio
scale. The ratio scale is in fact used in Section II. We may
for example introduce uncertainty representation by defining
fixed increments on the scale from 0 to 1, and relating their
meaning to the quality characteristic rating. The input would
have to be expressed in the form of the increments defined,
and the uncertainty would per definition range half the way
to the neighboring increments. Obviously, this is a special
case of the interval approach where the increments and their

granularity are frozen at the model (and not parameter) level.
By using a ratio scale in the PREDIQT context, the schema
of the increments would have to apply for the entire model
(in order for the uncertainty propagation to be meaningful)
rather than being adjustable at the parameter level. As a
result, the schema of the increments may be either too
coarse grained or too fine grained in the context of certain
parameters. The variation of uncertainty between parameters
would not be supported, thus violating criterion 2 from
Section II.

The Dempster-Shafer structures [15] offer a way of repre-
senting uncertainty quantified by mass distribution functions.
A mechanism for aggregation of such representation stored
in distributed relational databases, is proposed by [17].
The Dempster-Shafer approach characterizes uncertainties as
intervals with degrees of certainty (that is, sets of values with
weights which add up to 1). It can be seen as a generalization
of both interval analysis and probability theory. Weights
of evidence are put on a collection of intervals and the
structures may overlap. Implementing the Dempster-Shafer
theory in our context would involve solving two issues:
1) sorting the uncertainties in the empirical input into a
priori independent items of evidence, and 2) carrying out
Dempster’s rule computationally. The former one leads to
a structure involving input elements that bear on different
but related concerns. This structure can be used to make
computations based on Dempster’s rule feasible. Our so-
lution is a special case of the Dempster-Shafer approach,
where the intervals of the prior estimates have a general
confidence level, and the structure of the DV allows for
a linear propagation. The additional expressiveness that
the Dempster-Shafer structures offer is not needed in our
context, since the certainty is highly unlikely to vary across
the fractions of the intervals. In fact, such a mechanism
will, due to its complex representation on subsets of the
state space, in the PREDIQT context only compromise
the comprehensibility of the uncertainty representation and
therefore the correctness of the input.

Bayesian networks (BNs) [18], [19] may represent both
model uncertainty and parameter uncertainty. A BN is a
directed acyclic graph in which each node has an associ-
ated probability distribution. Observation of known vari-
ables (nodes) allows inferring the probability of others,
using probability calculus and Bayes theorem throughout
the model (propagation). BNs can represent and propagate
both continuous and discrete uncertainty distributions. BNs
in their general form are however demanding to parameterize
and interpret the parameters of, which violates our first
criterion. This issue has been addressed by [20] where an
analytical method for transforming the DVs to Bayesian
networks is presented. It also shows that DVs, although
easier to relate to in practice, are compatible with BNs.
It is possible to generalize this transformation so that our
interval-based approach is transformed to a BN before
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a further BN-based analysis may be conducted. Such an
extension would introduce several states on the BN nodes,
and assign probabilities to each of them. In that manner, the
extension would resemble the Dempster-Shafer structures.
BNs in their general form do not score sufficiently on our
criteria 1 and 5.

Fuzzy logic provides a simple way to draw definite
conclusions from vague, ambiguous or imprecise informa-
tion, and allows for partial membership in a set. It allows
modeling complex systems using higher levels of abstraction
originating from the analyst’s knowledge and experience
[21]. A fuzzy set is a class of objects with a continuum
of grades of membership. Such a set is characterized by a
membership function, which assigns to each object a grade
of membership ranging between zero and one [22]. Using
the fuzzy membership functions, a parameter in a model can
be represented as a crisp number, a crisp interval, a fuzzy
number or a fuzzy interval. In the fuzzy logic approach the
algebraic operations are easy and straightforward, as argued
and elaborated by [23]. The interval-based approach is a
special case of the fuzzy approach, where only the crisp
intervals are used as membership functions. The additional
expressiveness that the overall types of the membership
functions offer is in fact not needed in the PREDIQT context,
since the increased complexity of the estimate representation
would not contribute to the accuracy of the parameter values,
but rather introduce misinterpretations and incorrectnesses
in the input provision. The interpretation of the member-
ship distributions and their correspondence to the practical
settings in the PREDIQT context would be demanding.

Subjective logic [24] is a framework for reasoning, which
consists of a belief model called opinion and set of opera-
tions for combining opinions. A single opinion π is uniquely
described as a point {b, d, i} in an “Opinion Triangle”,
where b, d and i designate belief, disbelief and ignorance,
respectively. For each opinion, the three notions sum up to
unity. The operations formally defined include: conjunction,
disjunction, negation, consensus, recommendation and or-
dering. The subjective logic is suited for the domain expert
judgements, but how the measurement-based input can be
related to the concepts of the subjective logic, needs to be
defined. Thus, applying the subjective logic in the PREDIQT
context would increase the fulfillment of our second criterion
beyond the needs, while degrading fulfillment of the third
criterion.

Uncertainty representation in software development
effort-estimation [25], [26] is most comparable to ours.
However, they do not have as a strict criterion of propa-
gation, and can therefore introduce different notions to the
uncertainty representation.

It should be pointed out that the interval propagation based
on the extreme values suffers from the so-called overesti-
mation effect, also known as the dependency problem. The
dependency problem is due to the memoryless nature of

interval arithmetic in cases when a parameter occurs multiple
times in an arithmetic expression, since each occurrence of
an interval variable in an expression is treated independently.
Since multiple occurrence of interval parameters cannot al-
ways be avoided, the dependency problem may cause crucial
overestimation of the actual range of an evaluated function.
A way to approach this issue is to use interval splitting
[27], where the input parameter intervals are subdivided and
the arithmetics are preformed on the subintervals. The final
results are then obtained by computing the minimum of
all lower bounds and the maximum of all upper bounds
of the intermediate results. Skelboe [28] has shown that
the results obtained from the interval splitting converge to
the actual range if the width of the subintervals approaches
zero. Our solution does not use interval splitting, as it would
significantly increase complexity of the entire approach, thus
compromising our first criterion.

The epistemic uncertainty is the crucial one in the context
of PREDIQT and therefore given the main attention in our
context. Being of a discrete nature, the epistemic uncertainty
should, as argued in Section II, be handled by a purely
possibilistic approach. The approaches mentioned in the
remainder of this section focus to a high degree on the
stochastic uncertainties, which makes them less suited in
the PREDIQT context.

The ISO approach to handling measurement uncertainty
[29] uses a probabilistic representation with normal distri-
bution, and treats both aleatory and epistemic uncertainty
equally. Such an approach however does not explicitly
account for the notion of ignorance about the estimates, thus
failing to intuitively express it.

A simulation mechanism, which takes into account both
aleatory and epistemic uncertainty in an interval-based ap-
proach, is proposed by [30]. It concentrates on stochastic
simulations as input for the interval estimates when signif-
icant uncertainties exist. Moreover, [15] proposes consid-
ering a hybrid approach comprising both probabilistic and
interval representation, in order to account for both aleatory
and epistemic uncertainty. Neither of these two approaches
would in the the context of PREDIQT increase fulfillment
of our success criteria. In fact, the systematic sources of
uncertainty would not be represented more accurately, while
comprehensibility would degrade.

A hybrid Monte Carlo and possibilistic method for rep-
resentation and propagation of aleatory and epistemic un-
certainty is presented by [31]. The method is applied for
predicting the time to failure of a randomly degrading
component, and illustrated by a case study. The hybrid
representation captures the aleatory variability and epistemic
imprecision of a random fuzzy interval in a parameterized
way through α-cuts and displays extreme pairs of the upper
and lower cumulative distributions. The Monte Carlo and the
possibilistic representations are jointly propagated. The gap
between the upper and the lower cumulative distributions
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represents the imprecision due to epistemic variables. The
possibility distributions are aggregated according to the so
called Ferson method. The interpretation of the results in the
form of limiting cumulative distributions requires the intro-
duction of a degree of confidence directly connected with the
confidence on the value of epistemic parameters. Compared
to this approach, our solution is more comprehensible but
less suited for handling the aleatory uncertainty. However,
given our criteria, the former aspect outranges the latter one.

The approaches to uncertainty handling in other domains,
such as weather forecasting [32], electricity demand fore-
casting [33], correlations between wind power and meteo-
rological conditions [34], power system planning [35] and
supply industry [36] are mainly based on probabilistic rep-
resentations and stochastic simulations. They focus mainly
on the aleatory uncertainty, which in the PREDIQT context
is of secondary relevance.

Hence, given the criteria presented in Section II, the
interval-based approach prevails as the most appropriate one
in the PREDIQT context.

VI. LESSONS LEARNED

This section provides practical guidelines for obtaining
the empirical input and reducing the uncertainty of esti-
mates. Firstly, we elaborate on how the maximum accept-
able uncertainty objective, that is, an acceptable threshold
for uncertainty, can be characterized. Secondly, guidelines
for obtaining the prior estimates are summarized. Lastly,
means and measures for reducing uncertainty are outlined.
The guidelines are based on the authors’ experiences from
industrial trials of PREDIQT on real-life systems [2], [3].
As such, the guidelines are not exhaustive but may serve
as an aid towards a more structured process for uncertainty
handling.

A. Characterizing the maximum acceptable uncertainty ob-
jective

The maximum acceptable uncertainty objective can to a
certain degree be expressed through the confidence level,
which is a measure of the expected probability that the
correct value lies within the interval assigned to a prior
estimate. However, the confidence level is merely concerned
with the prior estimates although it indirectly influences
the inferred DV estimates. Therefore, if the interval width
of a specific non-leaf node is of major concern, it has to
be specified directly as a part of the maximum acceptable
uncertainty objective, by the stakeholders. Note however
that there is still a correlation between the confidence level
of the prior estimates and the inferred QCFs, that is, the
uncertainty of an inferred QCF is expressed through both
width of its interval, as well as the confidence level of the
prior estimates which influence the QCF value of the non-
leaf node in question.

Consequently, in the case of the prior estimates, the
maximum acceptable uncertainty objective can be expressed
through the confidence level, and will in that case give
interval widths depending on the quality of the empirical
input. In the case of the non-leaf node QCF values, the max-
imum acceptable uncertainty objective should be expressed
in terms of both the confidence level of the prior estimates
and the interval width of the parameters in question.

B. Obtaining the prior estimates
We recommend obtaining the leaf node QCFs of a sub-

tree prior to obtaining the related EIs. The rationale for this
is to fully understand the semantics of the nodes, through
reasoning about their QCFs first. In estimating a QCF, two
steps have to be undergone:

1) interpretation of the node in question – its contents,
scope, rationale and relationship with the Design Mod-
els, and

2) identification of the relevant metrics from the Quality
Model of the quality characteristic that the DV is ad-
dressing, as well as evaluation of the metrics identified.

QCF is the degree of fulfillment of a quality characteristic,
with respect to the node in question. Normalization of the
values of the above mentioned metrics and their degree of
influence, results in a QCF value with an uncertainty interval
assigned with respect to the pre-defined confidence level.
Alternatively, rating of the characteristic (as formally defined
by its Quality Model at the root node level) can be estimated
directly with respect to the node under consideration, in
order to provide its QCF value.

In estimating an EI, two steps have to be undergone:
1) interpretation of the two nodes in question, and
2) determination of the degree of impact of the child

node on the parent node, with respect to the quality
characteristic (defined by the Quality Model) that the
DV is addressing. The value is assigned relative to the
overall EIs related to the same parent node, and with a
consistent unit of measure, prior to being normalized
(in order to fulfill Eq. 2). The normalized EIs on the
arcs from the same parent node have to fulfill Eq. 3,
due to the requirement of model completeness.

Hence, EI is the dependency of the parent node on the
child node. Estimation of the EI values between a parent
node and its immediate children, results in intervals with
respect to the pre-defined confidence level.

1) Questions to ask domain experts: The first step in the
interaction between the analyst and the domain experts is to
clarify the meaning of the node(s) under consideration, their
respective rationales and the possible traces to the Design
Models. Secondly, the analyst has to facilitate the estimation
by reminding the domain experts of the quality characteristic
definition – both the qualitative and the formal part of it.

When estimating a QCF the following question is posed:
“To what degree is the quality characteristic fulfilled, given
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the contents and the scope of the node?” The definition
of the quality characteristic (interpretation and the metric)
should be recalled.

When estimating an EI the following question is posed:
“To what degree does the child node impact the parent node,
or how dependent is the parent node on child node, with
respect to the quality characteristic that the DV is dedicated
to?” The definition of the quality characteristic provided by
its Quality Model, should be recalled and the estimate is
provided relative to the impact of the overall children nodes
of this parent. Alternatively, an impact value is assigned
using the same unit of measure on all arcs of the sub-tree,
and normalized thereafter.

Once one of the above specified questions is posed, de-
pending on the kind of the DV parameter, the domain expert
panel is asked to provide the estimate with an interval so that
the correct value is within the interval with a probability
given by the confidence level. For EIs on the nodes having
a common parent, it has to be validated that Eq. 3 is fulfilled.

Furthermore, discussions among the domain experts
should be encouraged and all the estimates should be
requested during a limited period of time (in the form
of tightly scheduled meetings), in order to ensure relative
consistency of the estimates. Additionally, for the purpose of
the relative consistency of the estimates, the domain expert
group should be diverse and representative. There should be
continuity in a fraction of the group, and limited turnover
between the different meetings. The turnover may however
be advantageous for the purpose of the expertise at the
different stages of the process of PREDIQT.

Apart from the domain expert judgements, the esti-
mates are also based on measurements. When obtaining
measurement-based input, we rely on a measurement plan
which relates the practical measurements to the DV pa-
rameters and the quality notions. The Goal/Question/Metric
[37], [38], [39] approach and the ISO 9126 product quality
standard [5] are particularly useful for deducing such rela-
tionships. The overall literature on software measurement is
extensive [40], [41], [42], [43] and provides useful guide-
lines for obtaining the measurement-based input.

2) Use of Quality Models: Quality Models are used
as a reference in estimation of each prior estimate. The
Quality Models assist the domain experts in selecting and
evaluating the relevant metrics. The metrics also provide
a basis for defining the measurements. The decomposition
of the Quality Models is however only based on indicators
whose overlaps and degrees of impact on the characteristic
may vary. The composition of the degrees of relevance of
the various indicators is therefore left to the analyst or the
domain experts to determine in the case of each estimate.

3) Use of Design Models: Design Models specify the
target of the analysis in terms of scope and the contents.
The Design Models serve as a reference for common under-
standing of the system, prior to and during the estimation.

In addition, the appropriate parts of the DVs are traced to
the elements of the Design Models, making the contents and
the scope of the DV elements more explicit.

4) Determining the uncertainty value: The uncertainty
value of a prior estimate is determined through the interval
width based on the pre-defined confidence level. In the
case of the measurement-based input, the transformation
to an interval is presented in Section IV. In that context,
confidence level will reflect the data quality (that is, the
validity of the measurements).

In the case of the domain expert judgements, however,
the interval width is agreed upon by the domain expert
panel, while the validity of the panel (that is, mainly
representativeness and statistical significance of its composi-
tion) is reflected through the confidence level. This ensures
consistency of the confidence level in the case of the expert
judgements.

In order to also ensure a consistent confidence level in
the case of the measurements (where data quality may
vary among the measurements related to the different DV
estimates), the confidence level can be kept consistent by
compensating for the possible variations through the interval
width. The relationship between the confidence level and the
interval width is however not formalized beyond the fact that
the confidence level denotes the probability of the correct
value of the estimate lying within the interval.

C. Reducing uncertainty

Since we only consider the epistemic uncertainty, there
exist means and measures that can be used to reduce it.
The difficulty of reducing uncertainty lies in addressing the
unknown sources of uncertainty, which are not explicitly
expressed in the estimates. This is however not a major issue
in the case of the epistemic uncertainty.

The rest of this section provides guidelines for uncertainty
reduction from the different perspectives: process, model
granularity, measurement-based input and expert judge-
ments.

1) Process related measures: Among the process related
measures are:
• access to the necessary documentation
• access to measurement facilities
• involvement and composition of the domain expert

panel in all phases of the process
• common understanding of the modeling language and

the terminology
• sufficient understanding of the PREDIQT method, par-

ticularly the models (by the domain experts and the
analyst)

• use of known notations and modeling frameworks
• use of standards where appropriate
• user-friendly tool support with structured process guid-

ance
• reuse of the existing models where appropriate.
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The rationale for these measures is a more structured
process which provides the sufficient input and leads towards
a harmonized understanding of the models. For a more
detailed elaboration of the process related measures, see [3].

2) Granularity of the models: Quality of a model-based
prediction is, once the prediction models are developed, sub-
ject to the granularity of the models. Increased granularity of
all prediction models will potentially decrease uncertainty.

In case of Quality Models, finer granularity can be
achieved by further formalization and decomposition of the
quality characteristics. In case of Design Models, the more
detailed diagrams and traces among them are a means of
addressing granularity.

In the case of the DVs, additional traceability of the ac-
tions and rationale, as well as increased traceability between
DV model elements and the Design Models, will increase the
precision and reduce uncertainty. Particularly, the following
should be documented during the DV development:
• assumptions
• rationale
• relationships or traces to the Design Models
• traces to the relevant quality indicators and contribu-

tions of the relevant quality indicators
• interpretations of the prior estimates
• the supporting information sources (documents, mea-

surement, domain experts) used during the development
of DV structure and estimation of the parameters.

3) Quality of measurement data: Increase of validity of
the measurement data will directly increase the confidence
level. This may be achieved by increasing the statistical
significance of the measurements in terms of relevance and
amount of the measurement-based input.

4) Quality of expert judgements: The expert judgements
are subject to understandability and granularity of the predic-
tion models, composition of the expert panel (representative-
ness, number of participants, their background and interests),
setup and approach to the estimate acquisition. Discussion
should be facilitated and possible interest conflicts should
be addressed.

VII. CONCLUSION AND FUTURE WORK

Our earlier research indicates the feasibility of the
PREDIQT method for model-based prediction of impacts
of architectural design changes on system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system
design, system quality and the interrelationship between
the two. A central part of the prediction models are the
DVs, which are parameterized in terms of fulfillment of
quality characteristics and impacts among the elements, with
respect to the quality characteristics. The DV elements are
representations of architectural design or quality, which are
partially traceable to the underlying Design Models and
Quality Models. Due to its empirical nature, input into

Figure 8. 1: Accuracy; 2: Bias; 3: Precision

the DVs is associated with uncertainty. By handling the
uncertainty in the DVs, quality of the prediction models and
accuracy of the predictions are made explicit, thus indicating
which changes are predictable and whether further model
fitting is needed.

Based on a set of criteria identified with respect to the
PREDIQT method, we have proposed and evaluated an
approach to uncertainty handling in the DVs. The approach
relies on intervals with a confidence level, and covers rep-
resentation, propagation and analysis of the DV parameters
and their respective uncertainty estimates. The interval-based
approach allows comprehensible representation of uncer-
tainty on all kinds of parameters, with the needed accuracy.
Estimation, propagation and analysis in the interval-based
approach are scalable and efficient. The interval arithmetics,
the algorithms for non-linear optimization, and the statistical
analysis of intervals are already fully established and can be
applied in the PREDIQT context in their existing forms. The
evaluation argues for the correctness and practical usefulness
of our approach, as well as its outranging appropriateness
relative to the alternative uncertainty handling approaches.

The approach is entirely compliant with the existing
version of the PREDIQT method. Based on empirical trials
of PREDIQT, we have provided guidelines for use of the
uncertainty handling approach in practice. The guidelines
address the ways of obtaining the empirical estimates as
well as the means and measures for reducing uncertainty of
the estimates.

Further work will address analysis of the prediction accu-
racy, that is the deviation between the predicted and the ac-
tual quality characteristic values. The notions of magnitude
of average deviation AD [2], balanced relative error BRE
[44] and hit rate (i.e., the percentage of the correct values
lying within the predicted intervals) can be used as measures
of prediction accuracy. For an accurate prediction model, the
hit rate should be consistent with the confidence level. The
BRE allows analysis of bias and precision (see Figure 8) of
the predictions. Thus, systematic and random variance of the
prediction accuracy can be distinguished in a meta analysis
of our uncertainty handling approach. The prospects of
further work also include additional empirical evaluations of
practical usefulness and accuracy of the approach. Moreover,
identifying and categorizing the variables that impact the
uncertainty of the estimates, is important for improving
uncertainty management.
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