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Abstract—Runtime testing is emerging as the solution for the
integration and assessment of highly dynamic, high availability
software systems where traditional development-time integra-
tion testing cannot be performed. A prerequisite for runtime
testing is the knowledge about to which extent the system
can be tested safely while it is operational, i.e., the system’s
runtime testability. This article evaluates Runtime Testability
Metric (RTM), a cost-based metric for estimating runtime
testability. It is used to assist system engineers in directing the
implementation of remedial measures, by providing an action
plan which considers the trade-off between testability and cost.
We perform a theoretical and empirical validation of RTM,
showing that RTM is indeed a valid, and reasonably accurate
measurement with ratio scale. Two testability case studies are
performed on two different component-based systems, assessing
RTM’s ability to identify runtime testability problems.

Keywords-Runtime testability, runtime testing, measurement,
component-based system.

I. INTRODUCTION

Integration and system-level testing of complex, high-

available systems is becoming increasingly difficult and

costly in a development-time testing environment because

system duplication for testing is not trivial. Such systems

have high availability requirements, and they cannot be

put off-line to perform maintenance operations, e.g., air

traffic control systems, emergency unit systems, banking

applications. Other such systems are dynamic Systems-of-

Systems, or service-oriented systems for which the sub-

components are not even known a priori [2], [3].

Runtime testing [4] is an emerging solution for the

validation and acceptance testing for such dynamic high-

availability systems, and a prerequisite is the knowledge

about which items can be tested safely while the system

is operational. This knowledge can be expressed through

the concept of runtime testability of a system, and it can

be referred to as the relative ease and expense of revealing

software faults.

Figure 1 depicts this fundamental difference between

traditional integration testing and runtime testing. On the

left-hand side, a traditional off-line testing method is used,

where a copy of the system is created, the reconfiguration is

planned, tested separately, and once the testing has finished

the changes are applied to the production system. On the

right-hand side, a runtime testing process where the planning

and testing phases are executed over the production system.

Non-Runtime

Testing

Runtime

Testing

Before

Planning

Testing

After

Figure 1. Non-runtime vs. runtime testing

Testability enhancement techniques have been proposed

either to make a system less prone to hiding faults [5], [6],

[7], or to select the test cases that are more likely to uncover

faults with the lowest cost [8], [9], [10], [11]. However, they

are not suited for the specific challenges posed by runtime

testing, especially the cost that the impact tests will cause

on the running system, which determines the viability of

runtime testing, is not taken into account by those methods.

Features of the system that need tests and whose impact

cost is too high will have to be left untested, increasing the

probability of leaving uncovered faults. Knowledge of the

impact that runtime tests will have on the system will allow

engineers to select and implement the appropriate needed

measures to avoid interference with the system, or with its

environment. As more features can be runtime tested, the

probability of uncovering integration faults in the system

increases.
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This paper evaluates the Runtime Testability Metric

(RTM) introduced in our earlier work [12], [13]. The metric

reflects the trade-off that engineers have to consider, between

the improvement of the runtime testability of the system after

some interferences are addressed, and the cost of the reme-

dial measures that have to be applied. The two main con-

tributions of the paper are (1) the measurement-theoretical

characterisation of RTM and its empirical validation, and

(2) and evaluation of this metric on two industrial systems.

In addition, scalable algorithm is introduced to calculate

the near-optimal action plan, which list by effectiveness the

operations that must become testable to improve the RTM.

The paper is structured as follows. In Section II runtime

testability is defined. In Section III its theoretical character-

isation is performed. An empirical validation of the metric

is presented in Section IV. Section V evaluates the RTM on

two example cases. In Section VI, an approximate, scalable

algorithm is presented for the calculation of the action plan.

Section VII describes an implementation of our metric into

a component framework. Finally, Section IX presents our

conclusions and future plans.

II. RUNTIME TESTABILITY

RTM addresses the question to which extent a system may

be runtime tested without affecting it or its environment.

Following the IEEE definition of testability [14], runtime

testability can be defined as (1) the extent to which a

system or a component facilitates runtime testing without

being extensively affected; (2) the specification of which

tests are allowed to be performed during runtime without

extensively affecting the running system. This considers (1)

the characteristics of the system and the extra infrastructure

needed for runtime testing, and (2) the identification of

which test cases are admissible out of all the possible

ones. An appropriate measurement for (1) provides general

information on the system independent of the nature of

the runtime tests that may be performed, as it is proposed

in [6], [7] for traditional testing. A measurement for (2)

will provide information about the test cases that are going

to be performed, as proposed in [8], [9], [10]. Here, we

concentrate on (1), in the future, we will also consider (2).

Runtime testability is influenced by two characteristics

of the system: test sensitivity, and test isolation [15]. Test

sensitivity characterises features of the system suffering

from test interference, e.g., existence of an internal state in

a component, a component’s internal/external interactions,

resource limitations. Test isolation is applied by engineers

in order to counter the test sensitivity, e.g., state duplication

or component cloning, usage of simulators, resource moni-

toring. Our approach consists in performing an analysis of

which features of the system present test sensitivity, prior to

the application of isolation measures.

Moreover, testability can also be affected by the design

and code quality, which can be measured in terms of

robustness, maintainability, flexibility... Here we do not take

into account these additional factors and concentrate on the

behavioural, and most prevalent, factor for runtime testing:

test interference.

The generic aspect of RTM allows engineers to tailor it

to their specific needs, applying it to any abstraction of the

system for which a coverage criterion can be defined. For

example, at a high granularity level, coverage of function

points (as defined in the system’s functional requirements)

can be used. At a lower granularity level, coverage of the

component’s state machines can be used, for example for

all-states or all-transitions coverage.

In the following, we will precisely define RTM in the

context of component-based systems.

A. Model of the System

Component-based systems are formed by components

bound together by their service interfaces, which can be

either provided (the component offers the service), or re-

quired (the component needs other components to provide

the service). During a test, any service of a component can

be invoked, and the impact that test invocation will have on

the running system or its environment is represented as cost.

This cost can come from multiple sources (computational

cost, time or money, among others).

Operations whose impact (cost) is prohibitive, are desig-

nated as untestable. This means that a substantial additional

investment has to be made to render that particular operation

in the component runtime testable.

In this paper we will abstract from the process of identify-

ing the cost sources, and we will assume that all operations

have already been flagged as testable or untestable. In reality,

this information is derived from an analysis of the system

design and it environment. This latter analysis is performed

by the system engineers, who have the proper domain-

specific knowledge. Future research will address the issue

of deriving this cost information, and of deciding whether a

certain impact cost is acceptable or not.

In order to apply RTM, the system is modelled through

a Component Interaction Graph (CIG) [16]. A CIG is

defined as a directed graph with weighted vertices, CIG =
〈V, V0, E, c〉, where

• V ≡ VP ∪ VR: vertices in the graph, formed by the

union of the sets of provided and required operations

by the components’ interfaces.

• V0 ⊆ V : input operations to the system, i.e., operations

directly accessible to test scripts.

• E ⊆ V × V : edges in the graph, representing de-

pendencies between operations in the system. E.g., if

(v1, v2) ∈ E, v1 depends on v2.

• c : V → R
+: function that maps a specific operation

to the preparation cost that is going to be optimised.

Each vertex vi ∈ V is annotated with a testability flag

τi, meaning whether the cost of traversing such vertex (i.e.,

123

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



invoking that service) when performing runtime testing is

prohibitive or not, as follows:

τi =

{

1 if the vertex can be traversed

0 otherwise
(1)

Edge information from within a component can be obtained

either by static analysis of the source code, or by providing

state or sequence models [16]. Inter-component edges can

be derived from the runtime connections between the com-

ponents. In the case no information is available for a certain

vertex, a conservative approach should be taken, assigning

τi = 0.

Example CIGs are shown in Fig. 6 and Fig. 7. Nodes

or vertices of the CIG represent component operations

annotated with a testability flag, i.e., small black testable,

large red crossed untestable. Edges of the CIG represent (1)

provided services of a component that depend on required

services of that same component (intra-component); and

(2) required services of a component bound to the actual

provider of that service (inter-component).

B. Estimation of RTM

RTM is estimated in terms of impact cost of covering the

features represented in the graph. We do not look at the

concrete penalty of actual test cases, but at the possible cost

of a test case trying to cover each element. Because CIG is

a static model, assumptions have to be made on the actual

behaviour of test cases. In the future, we will enrich the

model with additional dynamic information to relax these

assumptions. Because of lacking control flow information,

there is no knowledge about edges in the CIG that will be

traversed by a test case. In the worst case, the interaction

might propagate through all edges, affecting all reachable

vertices. For the moment, we assume this worst case: assume

that all the vertices reachable from vi, which we will denote

as Pvi
(predecessors set), can be affected.

Following our assumptions, the total preparation cost

needed to involve an operation in a runtime test, taking into

account the individual preparation costs of all the operations

it depends on, is defined as

C(vi) =
∑

vj∈Svi

c(vj) (2)

where vi and vj are operations, and Svi
is the set of

successors of vertex vi, i.e., all the vertices reachable from

vi including vi itself.

Not all operations can be directly tested, only a subset of

possible input vertices V0 can be reached directly. Other op-

erations are reached indirectly, via a sequence of operations,

which necessarily starts with an operation in V0. We model

this by only counting operations that can be reached from a

testable input vertex v0 ∈ V0, i.e., that vi ∈ Sv0
and whose

C(v0) = 0. RTM can be then defined as

RTM =|{vi ∈ V : C(vi) = 0 ∧

∃v0 ∈ V0 : vi ∈ Sv0 ∧ C(v0) = 0}|
(3)

This value can be divided by |V | in order to obtain a

normalised metric rRTM that one can use to compare the

runtime testabilities of systems with different number of ver-

tices. However, such application has important implications

on the theoretical requirements on the metric, as we will

observe in Section III.

C. Improving the System’s RTM

Systems with a high number of runtime untestable fea-

tures (i.e., low runtime testability) can be improved by

applying isolation techniques to specific vertices, to bring

their impact cost down to an acceptable level. However, not

all interventions have the same cost, nor do they provide

the same gain. Ideally, the system tester would plot the

improvement of runtime testability versus the cost of the

fixes applied, in order to get full information on the trade-off

between the improvement of the system’s runtime testability

and the cost of such improvement. This cost depends on the

isolation technique employed: adaptation cost of a compo-

nent, development cost of a simulator, cost of shutting down

a part of the system, addition of new hardware, etc. Some

of those costs will be very small because they correspond

to trivial fixes. However, there can be extremely high costs

that will make providing a fix for that specific component

prohibitive. For example, a test of an update of the software

of a ship that can only be performed at the shipyard has a

huge cost, because the ship has to completely abandon its

normal mission to return to dry dock. Even though these

costs involve diverse magnitudes (namely time and money),

for this paper we will assume that they can be reduced to a

single numeric value: ci.

III. THEORETICAL VALIDATION

In this section, we establish the characteristics of the RTM

measurement from a measurement-theoretical point of view.

It allows us to identify what statements and mathematical

operations involving the metric and the systems it measures

are meaningful and consistent. We will concentrate (1) on

RTM’s fundamental properties, and (2) on its type of scale.

A. Fundamental Properties

In this section, we will study the properties required for

any measurement. These properties determine whether RTM

fulfils the minimal requirements of any measurement, i.e.,

whether it actually creates a mapping between the desired

empirical property and the characteristics of the system, that

can be used to classify and compare systems. The properties

were described by Shepperd and Ince in [17] through an

axiomatic approach.

124

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Axiom 1: It must be possible to describe the rules gov-

erning the measurement.

This is satisfied by the formal definition of RTM and the

CIG.

Axiom 2: The measure must generate at least two equiv-

alence classes.

∃p, q ∈ CIG : RTM(p) 6= RTM(q)

In Figure 2 are assigned two different RTM values,

therefore proving this axiom. A node marked with a ×
represents an operation where c(v) > 0.

RTM = 0 RTM = 2 
Figure 2. Two equivalence classes for RTM

Axiom 3: An equality relation is required.

This axiom is satisfied given that our measurement is

based on natural numbers, for which an equality relation

is defined.

Axiom 4: There must exist two or more structures that

will be assigned the same equivalence class.

∃p, q ∈ CIG : RTM(p) = RTM(q)

Figure 3 shows a collection of systems belonging to the

same equivalence class, proving this axiom.

RTM = 2 RTM = 2 
Figure 3. Equivalent CIGs for RTM

Axiom 5: The metric must preserve the order created by

the empirical property it intends to measure. This axiom is

also known as the Representation Theorem.

∀p, q ∈ CIG : p �
rt

q ⇔ RTM(p) ≥ RTM(q)

where �
rt

represents the empirical relation ‘more runtime

testable than’.

This last axiom means that for any two systems, the order-

ing produced by the empirical property “runtime testability”

has to be preserved by RTM. It is possible to find systems

for which this axiom does not hold for RTM, because of

the assumptions that had to be made (see Section II-A).

However, we can empirically assess the effect of these

assumptions on the consistency and accuracy of RTM. An

empirical study about the accuracy of RTM is presented in

Section IV.

B. Type of Scale

The theoretical characterisation of the metric’s scale type

(i.e., ordinal, interval, ratio, absolute) determines which

mathematical and statistical operations are meaningful. This

is important, because certain optimisation algorithms require

specific mathematical operations that might not be meaning-

ful for RTM, for example for defining heuristics as we will

see in Section VI.

Assuming RTM satisfies Axiom 5, i.e., it preserves the

empirical ordering of runtime testability, then, by definition,

RTM defines a homomorphism from runtime testability to

the Natural numbers. Therefore, by the ordered nature of

Natural numbers, we can assert that RTM can be used as an

ordinal scale of measurement. In practice this is true only

for systems in which our assumptions about control flow and

dependencies hold.

In order to be able to use RTM as a ratio scale mea-

surement, in addition to the requirements for the ordinal

type of scale being satisfied, a concatenation operation with

an additive combination rule [18] must exist. A meaningful

concatenation operation is creating the union of both systems

by disjoint union of their CIG models. This operation,

∪ : CIG × CIG → CIG, can be defined as A ∪ B =
〈V, V0, E, c〉, where

• V ≡ VA ∪ VB

• V0 ≡ V0A ∪ V0B

• E ≡ EA ∪ EB

• c(v) =

{

cA(v) if v ∈ VA

cB(v) if v ∈ VB

For this concatenation rule, the additive combination rule

RTM(A ∪B) = RTM(A) +RTM(B) (4)

can be used. Therefore, RTM can be used as a ratio scale

with extensive structure (e.g., like mass or length), with

respect to the disjoint union operation.

C. Relative Values

If we divide the values of RTM by the total number of

operations, |V |, we can obtain the relative runtime testability

(rRTM ), to compare systems in relative terms. This trans-

forms the measurement from a count into a ratio. Ratios,

as percentages have an absolute scale [18] and cannot be

combined additively.

For the runtime testability ratio and disjoint union con-

catenation operator, we can define the combination rule

rRTM(A∪B) = α ·rRTM(A)+(1−α) ·rRTM(B) (5)

where α = |VA|
|VA|+|VB | .

This combination rule is not additive, in order to state

the effect of a combination of two systems we need more

information than RTM, namely the size relation α.

125

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Summary and Implications

Because we proved that RTM fulfils the minimal proper-

ties of any measurement, RTM can be used to discriminate

and equalise systems. Therefore, the statements ‘system A

has a different runtime testability than B’, and ‘systems A

and B have the same runtime testability’, are meaningful.

Moreover, as we proved RTM has an ordinal scale type,

RTM can be used to rank systems. The statement ‘system

A has more runtime testable operations than B’ becomes

meaningful, and this enables us to calculate the median

of a sample of systems, and Spearman’s rank correlation

coefficient.

Furthermore, by proving the ratio scale for RTM, it can

also be used to rate systems, making the statement ‘system

A has X times more runtime testable operations than B’ a

meaningful one. This allows performing a broad range of

statistic operations meaningfully, including mean, variance,

and Pearson’s correlation coefficient.

RTM can also be used alone to reason about the compo-

sition of two systems. Due to its additive combination rule,

‘systems A and B composed, will be RTM(A)+RTM(B)
runtime testable’ is a meaningful statement, provided that A
and B are disjoint. This is not true for the relative rRTM ,

as additional information about the relationship between the

systems (α, the size relation between the systems) is needed.

In order to support the theory, we are presenting an

empirical validation with comparison with other metrics.

IV. EMPIRICAL VALIDATION

In this section we conduct a number of experiments in

order to empirically determine how accurate RTM is with

respect to the empirical property of “runtime testability”

(ERT).

A. Experimental Setup

To obtain the value of RTM, vertices are first classified

into testable and untestable by means of C(v) (see Eq. 2).

Our goal is to assess the influence of the assumptions made

when defining RTM, in the number of false positives and

false negatives of this classification, and in the final value

of RTM.

In order to have a baseline for comparison, the naive

approach of just counting directly testable operations was

used, defined as:

NTES = |{vi ∈ V : c(vi) = 0}| (6)

We also use a previous proposition of RTM [15], which

we name RTMold and is defined as:

RTMold = |{vi ∈ V : C(vi) = 0}| (7)

Two systems were used in the experiment: AISPlot and

WifiLounge, which are detailed in Section V. For the ex-

periment, 500 variations of each system with different RTM

values were generated by choosing the untestable vertices

by randomly sampling in groups of increasing size from 2

to 30 untestable vertices.

The value of ERT to perform the comparison was obtained

by creating and executing an exhaustive test suite in terms of

vertices and execution paths. The set of operations covered

when executing each test case was recorded. If a test

case used any untestable operation, none of the operations

covered by the test were counted. The test cases covered both

systems completely, and redundantly, by exercising every

possible path in the CIG from every input operation of the

system. This way it was ensured that if an operation was

not covered, it was not because a test case was missing, but

because there was no test case that could cover it without

requiring also an untestable operation.

B. Results

From each system and metric pair in this experiment, we

recorded the following data:

• Mset: Set of operations classified as testable.

• Cov: Set of operations covered.

• fp = (|Mset − Cov|)/|Mset|: false positive rate, i.e.,

operations wrongly classified as testable.

• fn = (|Cov −Mset|)/|Cov|: false negative rate, i.e.,

operations wrongly classified as untestable.

• ē = ||Mset| − |Cov||: absolute error between the

predicted and empirical runtime testabilities.

System fp fn ē

NTES AISPlot 0.942 0.000 83.487

WifiLounge 0.713 0.000 57.093

RTMold AISPlot 0.882 0.107 15.012

WifiLounge 0.577 0.079 27.664

RTM AISPlot 0.411 0.111 2.418

WifiLounge 0.306 0.128 9.101

Table I
FALSE POSITIVE/NEGATIVE RATE, AND ERROR

Table I shows the rates of false positives and false

negatives, along with the absolute error, averaged over 500

runs. The deviation between the predicted testability and the

actual covered operations for each sample can be seen in

the three plots in Figure 4. The dashed line represents the

ideal target. Any point above it, constitutes an overestimation

error, and below it, an underestimation error.

NTES: It can be seen that NTES has an extremely high

error caused by its high false positive rate (94% and 71%).

NTES has no false negatives as it classifies as untestable

only the vertices that are directly untestable, disregarding

dependencies.

RTMold: By taking control flow dependencies into ac-

count, the false positive rate of RTMold is lower than NTES,

at the price of introducing a number of false negatives. False

negatives appear because in some cases where the control

flow does not propagate to all of the operations’ dependen-

cies, as we had assumed. Still, because of the assumptions
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Figure 4. Accuracy of NTES, RTMold and RTM

that test interactions can start in any vertex, and that the

test paths are independent, the number of false positives is

considerable. The number of input vertices in WifiLounge is

proportionally higher than for AISPlot. Hence, the number

of false positives caused by this assumption is lower.

RTM: By taking input vertices into account, the amount

of overestimation decreases dramatically for both systems.

Still, the false positive rate is significant. Therefore, we

conclude that assuming that paths are not dependent is not

very reasonable and needs to be addressed in future work.

The increase of false negatives makes more apparent the

consequences of the assumption that control flow is always

being transmitted to dependencies. The error caused by this

assumption is augmented by the fact that it also applies

to the input paths to reach the vertex being considered.

Nevertheless, RTM correlates with the ERT, and did provide

on average the minimal absolute error compared to the two

other metrics.

After the theoretical and empirical validation of RTM, we

will present application examples of it.

V. APPLICATION EXAMPLES

Two studies were performed on two component-based

systems: (1) AISPlot, a system-of-systems taken from the

maritime safety and security domain, and (2) WifiLounge,

an airport’s wireless access-point system. These two systems

are representative of the two typical software architectures:

the first system follows a data-flow organization, while

the second one follows a client-server organization. These

cases show that RTM can identify parts of a system with

prohibitive runtime testing cost, and it can help choose

optimal action points with the goal of improving the system’s

runtime testability. The CIGs were obtained by static anal-

ysis of the code. The inter-component edges were obtained

during runtime by reflection. The runtime testability and fix

cost information ci were derived based on test sensitivity

information obtained from the design of each component,

and the cost of deploying adequate test isolation measures.

In order to keep the number of untestable vertices tractable,

we considered that only operations in components whose

state was too complex to duplicate (such as databases), or

that caused external interactions (output components) would

be considered untestable.

Table II shows the general characteristics for the archi-

tectures and graph models of the two systems used in our

experiments, including number of components, vertices, and

edges of each system.

AISPlot WifiLounge

Total components 31 9
Total vertices 86 159
Total edges 108 141

Table II
CHARACTERISTICS OF THE SYSTEMS

A. Example: AISPlot

In the first experiment we used a vessel tracking sys-

tem taken from our industrial case study. It consists of a

component-based system coming from the maritime safety

and security domain. The architecture of the AISPlot system

is shown in Figure 5. AISPlot is used to track the position of

ships sailing a coastal area, detecting and managing poten-

tial dangerous situations. Messages are broadcast by ships
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World BS
BS
BS

BS
BS

Merger

Monitor

Visual

Figure 5. AISPlot Component Architecture

(represented in our experiment by the World component),

and received by base stations (BS component) spread along

the coast. Each message is relayed to a Merger compo-

nent removing duplicates coming from different stations.

Components interested in receiving status updates of ships,

can subscribe to Merger to receive notifications. A Monitor

component scans all messages looking for inconsistencies in

the ship data, and another component, Vis shows all ships

on a screen. Fig. 6 shows the CIG for AISPlot.

Cost
Proposed fix Testability

v33 v34 v35 v36 v42 RTM rRTM

0 12 0.140

1 × 17 0.198

2 × × 21 0.244

3 × × × 26 0.302

4 × × × × 81 0.942

5 × × × × × 86 1.000

Table III
TESTABILITY ANALYSIS FOR AISPLOT

Five Vis operations have testability issues (manually de-

termined), displaying test ship positions and test warnings

on the screen if not properly isolated. Table III shows that

runtime testability is low. Only 14% of the vertices can be

runtime tested. This poor RTM comes from the architecture

of the system being organised as a pipeline, with the Vis

component at the end, connecting almost all vertices to

the five problematic vertices of the Vis component. We

explored the possible combinations of isolation of any of

these 5 vertices and computed the optimal improvement on

RTM, assuming uniform cost of 1 to isolate an operation.

Table III shows the best combination of isolation for each

possible cost, × denoting the isolation of a vertex, and the

RTM if these isolations were applied. The numbers suggest

little gain in testability, as long as vertices v33, v35, v36

and v42 (corresponding respectively to operations in the

visualiser for: new ships, status updates, disappearing ships,

and warnings) are not made runtime testable together. This

is caused by the topology of the graph: the four vertices

appear at the end of the processing pipeline affecting the

predecessor set of almost every vertex together. They must

be fixed at once for any testability gain, leading to the jump

at cost 4 for AISPlot in Figure 9 (rRTM going from 0.302
to 0.942).

B. Example: WifiLounge

In a second experiment we diagnosed the runtime testa-

bility of a wireless hotspot at an airport lounge [19]. The

component architecture of the system is depicted in Fig-

ure 8. Clients authenticate themselves as either business class

passengers, loyalty program members, or prepaid service

clients.
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CardCenter
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PermanentIPDb

DhcpServer

Figure 8. Wifi Lounge Component Architecture

When a client accesses the wifi network, a DhcpListener

generates an event indicating the assigned IP address. All

communication is blocked until authenticated. Business class

clients are authenticated in the ticket databases of air-

lines. Frequent fliers are authenticated against the program’s

database, and the ticket databases for free access. Prepaid-

clients must create an account in the system, linked to a

credit card entry. After authentication, blocking is disabled

and the connection can be used. Fig. 7 shows the CIG of

WifiLounge.

Thirteen operations are runtime untestable, i.e., state mod-

ification operations of the AccountDatabase, TransientIpDb

and PermanentIpDb components are considered runtime

untestable because they act on databases. A withdraw op-

eration of a CardCenter component is also not runtime

testable because it uses a banking system outside our control.

Firewall operations are also not runtime testable because

this component is a front-end to a hardware element (the

network), impossible to duplicate.

RTM is intermediate: 62% of the vertices can be runtime

tested. This is much better than AISPlot, because the ar-

chitecture is more “spread out” (compare both CIGs). There

are runtime-untestable features, though they are not as inter-

dependent as in AISPlot. We examined possible solutions

improving RTM, displayed in Table IV, and shown in Fig. 9

(Airport Lounge). The number of vertices that have to be

made runtime testable for a significant increase in RTM is

much lower than for AISPlot. Two vertices (v14 and v18)

cause the “biggest un-testability.” The other vertices are not

so problematic and the value of RTM grows more linearly

with each vertex becoming runtime testable.
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v42: vis.warningReceived

v33: vis.Cnew
v36: vis.Cdisposev35: vis.Cpublish

v34: vis.Creply

Figure 6. AISPlot Component Interaction Graph

v14: AccDB.AdjustAccountPrepaidTime

v2: CardCenter.Withdraw

v14: AccDB.RechargeAccount
v10: AccDB.CreateToken v17: Firewall.DisablePortBlock v12: AccDB.CreateAccount

v18: Firewall.EnablePortBlock

v267: TransientIPDb.Addv268: TransientIPDb.Remove

v272: TransientIPDb.SetExpTime v308: PermanentIPDb.SetExpTime
v303: PermanentIPDb.Add v304: PermanentIPDb.Remove

Figure 7. WifiLounge Component Interaction Graph

C. Discussion

The two cases demonstrate the value of RTM. By identi-

fying operations causing inadmissible effects, we can predict

the runtime untestable features, leading to an optimal action

plan for runtime testable features. These techniques are

applied before running test cases.

Because of the static model, RTM represents a pessimistic

estimate, and we expect improvement by adding dynamic

runtime information in the future, e.g., applying [20]. A high

value, even if underestimated, is, nevertheless, a good indi-

cator that the system is well prepared for runtime testing, and

that the tests cover many system features. In future work, the

value will be refined by providing dynamic information in

the form of traversal probabilities, as proposed in the PPDG

model presented in [20]. The design of the components on

both systems was analysed in an effort to shed light on this

issue. For instance, as we have seen in Section IV, for both

AISPlot and WifiLounge, about 30 to 40% of the test cases

were considered touching untestable operation by the RTM

definition, although in reality they were not. This is due to

the complexity of the control flow. Many exclusive branch

choices are not represented in the static model.

An interesting issue is the relationship between RTM and

defect coverage. Even though the relationship between test

coverage and defect coverage is not clear [21], previous

studies have shown a beneficial effect of test coverage on

reliability [22], [23].

VI. TESTABILITY OPTIMISATION

RTM analysis and action planning corresponds to the

Knapsack problem [24], an NP-hard binary integer program-

ming problem, which can be formulated as

maximise : RTM

subject to :
∑

c(vj) · xj ≤ b, xj ∈ {0, 1}

with b = maximum budget available, and xj = decision

of including vertex vj in the action plan. In this section,
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Figure 9. Optimal improvement of RTM vs. Fix cost

Cost
Proposed fix Testability

v2 v10 v12 v13 v14 v17 v18 v267 v268 v272 v303 v304 v308 RTM rRTM

0 99 0.623

1 × 103 0.648

2 × × 121 0.761

3 × × × 127 0.799

4 × × × × 131 0.824

5 × × × × × 135 0.849

6 × × × × × × 139 0.874

7 × × × × × × × 142 0.893

8 × × × × × × × × 145 0.912

9 × × × × × × × × × 147 0.925

10 × × × × × × × × × × 150 0.943

11 × × × × × × × × × × × 153 0.962

12 × × × × × × × × × × × × 156 0.981

13 × × × × × × × × × × × × × 159 1.000

Table IV
TESTABILITY ANALYSIS OF AIRPORT LOUNGE

we present a way for an approximate action plan using the

greedy heuristic method according to Algorithm 1, in which

CIG is the interaction graph, U is the set of untestable

vertices, and H(v) a heuristic function to be used. For each

pass of the loop, the algorithm selects the vertex in U with

the highest heuristic rank, and removes it from the set of

untestable vertices. The rank is updated on each pass.

Algorithm 1 Greedy Approximate Planning

function FIXACTIONPLAN(CIG, U , H(v))
Sol← ∅ ⊲ List to hold the solution

while U 6= ∅ do

v ← FINDMAX(U , H(v))
APPEND(Sol, v)

REMOVE(U , v)

return Sol

The method relies on heuristics that benefit from partial

knowledge about the structure of the solution space of the

problem. To motivate our heuristic approach, we analyse

the properties of the RTM-cost combination space shown in

Fig. 10. The dot-clouds show the structure and distribution

of all the possible solutions for the vertex and context-

dependence RTM optimisation problems of the WifiLounge

system. On a system where the cost of fixing any vertex

Figure 10. Optimal and heuristic RTM optimisations

is uniform, and all the uncoverable vertices or paths come

from only one untestable vertex, there would be only one

cloud. However, we identified two interesting characteristics

of the inputs affecting the structure of the solution space.

First, in most systems multiple untestable vertices will

participate in the same uncoverable elements. This is he

case for both examples. If a group of untestable vertices

participates together in many un-coverable features, the
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solution cloud will cast a “shadow” on the RTM axis, i.e.,

any solution that includes those vertices will get a better

testability. Second, vertices with exceptionally high cost will

shift any solution that includes them towards the right in the

cost axis, causing a separate cloud to appear. In this case,

any solution that contains them will get a cost increase, due

to space concerns not shown in the plots. An example of

the first characteristic is in Figure 10, where the upper cloud

corresponds to all the solutions that include vertices v14 and

v18. We used the knowledge about these two situations to

define heuristics to be used in Algorithm 1, based on the

idea that dependent vertices are only useful if they are all

part of the solution and expensive vertices should be avoided

unless necessary.

A. Heuristics

First, we consider a pessimistic heuristic. It ranks higher

the vertices with the highest gain on testability. The count

is divided by the cost to penalise expensive nodes:

hpessimistic(vi) =
1

ci
(RTMvi

−RTM) (8)

with RTMvi = RTM after the cost for vertex vi was spent.

Given the pessimistic nature of this heuristic, we expect

this heuristic to perform well for low budgets, and poorly

for higher ones. It should be noted that we can define this

heuristic because RTM was proven to have ratio scale (cf

Section III).

The second heuristic is optimistic. It ranks higher the

vertices that appear in the highest number of P sets, i.e., the

vertices that will fix the most uncoverable vertices assuming

they only depend on the vertex being ranked. This value is

also divided by the cost to penalise expensive nodes over

cheaper ones:

hoptimistic(vi) =
1

ci
|{vj | vi ∈ Svj

}| (9)

By ignoring the fact that an uncoverable vertex may be

caused by more than one untestable vertex, and that the

vertex may not be reachable through a testable path, this

second heuristic will take very optimistic decisions on the

first passes, affecting the quality of results for proportionally

low budgets, but yields a better performance for higher ones.

Although this heuristic ignores uncoverable elements that

depend on multiple vertices of U , if two vertices appear

together in many Pi sets, their ranks will be similar and

will be chosen one after the other.

Fig. 10 shows the performance for both heuristics (h1 &

h2) for the WifiLounge (compared to the optimal solution

o, obtained by exhaustive search). The steps in the optimal

solution are not incremental and the action plans at each

step could be completely different. The optimistic ranking

skips many low-cost solutions (with curve much lower

than the optimum), while the pessimistic heuristic is more

precise for low cost, but completely misses good solutions

with higher budgets. These shortcoming may be addressed

through combining both heuristic rankings and taking the

best results of both. However, the steps in the solution will

not be incremental if the solutions intersect with each other

(as in Figure 10).

B. Computational Complexity and Error

The time complexity of the action plan function depends

on the complexity of the heuristic in Algorithm 1. As in

each pass there is one less vertex in U , the H function is

evaluated |U |, |U | − 1, . . . , 1 times while searching for the

maximum. In total, it is evaluated
|U |2

2
times. Both heuristics

perform a sum depending on the number of vertices. Hence,

the complexity of the action plan function is O(|V | · |U |2),
i.e., polynomial.

Although polynomial complexity is much more appeal-

ing than the O(2|U |) complexity of the exhaustive search,

the approximation error must be considered. Experiments

were conducted to evaluate the approximation error of our

heuristics. The graph structures of AISPlot and WifiLounge

were used, randomly altering the untestable vertices, and the

preparation cost information (chosen according to a Pareto

distribution). The plot in Figure 11 shows the evolution

of the relative average approximation error of RTM for

our heuristics as a function of the number of untestable

operations |U |. The optimal solution function is obtained

by exhaustive search.
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Figure 11. Performance of the approximate algorithms vs. the optimal

The average error incurred by our heuristics is very low

w.r.t. the processing time for their calculation. It is notable

that the error has an increasing trend, and the pessimistic

and optimistic heuristics are similar. Combining the rank-

ings created by both heuristics, choosing the maximum of

either solution, reduces the error while maintaining the low

computational complexity. This can be seen in the combined
error plot in Figure 11.

VII. IMPLEMENTATION

In order to further validate the applicability of the RTM

in software projects, we have integrated the measurement

of this metric into our component framework Atlas1. For

a component-based system, in order to build the CIG, the

1http://swerl.tudelft.nl/bin/view/Main/Atlas
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graph from which the metric is computed, three types of

information are necessary:

• The external connections between components,

• The internal connections inside a component,

• The list of test-sensitive operations.

Within the Atlas framework, the connection between

component interfaces is explicit, written in the architecture

description file by the developer. In component frame-

works where these connections are implicit and created

dynamically, they can be still be determined at runtime

automatically, as in such infrastructure the framework is

always in charge of the connection of the components.

Per definition, a component is seen by the framework as

a black-box, and therefore the information on the internal

connections cannot be directly determined. In our case,

we have extended the architecture declaration language to

permit encoding such information. The encoding is a simple

list of tuples indicating which input interface might call

which output interface. Nevertheless, this doesn’t mean this

cannot be automated. For instance, for the generation of

this information for the two example systems presented

previously in Section V, static analysis was used to discover

most of the connections. A quick review by the developer

is sufficient to correct the few missing connections. Finally,

the information concerning the test sensitivity is the most

delicate one to obtain. It is best to consider by default every

operation, which is in this context an input interface, as

test-sensitive. Then a review by the developer is necessary

to define one-by-one which of the operation cannot cause

any interference when tested at runtime. In our case, the

architecture description language was extended to contain

this information provided by the developer.

Figure 12 shows a screenshot of our framework after

computation of the RTM. The user interface shows the

components in the system on the left. At the request of the

user, the CIG is displayed in the right pane. On the very

right side, stands the rRTM for the system.

Figure 12. User interface of our component framework displaying the
CIG and rRTM of a system.
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Figure 13. Taxonomy of Testing Costs

A number of research approaches have addressed testa-

bility from different angles. The cost of testing is actually

complex and decomposed into multiple different types of

costs.

Figure 13 presents a taxonomy of testing costs. On the

upper branch of the diagram, costs associated with the prepa-

ration can be found. These costs correspond to testability

improvement efforts which are performed before the tests

are carried out. Test interferences are critical because, in the

worst case, runtime tests will affect the system’s environ-

ment in ways that are unexpected and difficult to control,

or impossible to recover from, e.g., firing a missile while

testing part of a combat system. Therefore the preparation

costs include, for example, the adaptation of the system to

support isolation and state duplication, or the development

of simulators for some components. Preparation costs also

include logistic provisioning, such as increasing the capacity

of the system by using hardware capable of handling the

operational and testing loads simultaneously. Of course, the

development of the tests themselves, under the form of test

cases, is also a large contribution to the preparation costs.

On the lower branch of the diagram costs associated to

the execution of the test case on the system under test.

Consumable costs are used up by executing tests, the most

traditional example being time. Non-consumable costs, on

the other hand, are “on loan” during the execution of the

test, and returned when the test finishes. For example, CPU

load is bounded (to 100%) and will not only depend on the

quantity of tests applied but only on their “concentration”:

the CPU load might decreased simply by spreading tests

over a longer period of time. These non-consumable costs

are the one that can affect the non-functional requirements

of the system when employing runtime testing.

Runtime testability has not been considered in depth so

far. In such context, the system preparation cost for testing

has a strong importance. To the best of our knowledge, our

paper is the first to (1) define a measurement (RTM) in a
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way that is conductive to an estimation of runtime testability,

(2) consider testability improvement planning in terms of a

testability/cost optimisation problem, and (3) to present a

near-optimal, low-cost heuristic algorithm to compute the

testability optimization plan.

Traditionally, test cost minimisation has considered only

execution cost. To reduce the consumable costs test effort

minimisation algorithms have been proposed, both for test

time and coverage [8], [9], [10], [11] or test time and relia-

bility [25], [26]. Test sensitivity and isolation, are introduced

by Brenner et al. [4] to reduce the non-consumable costs,

however no mention to nor relation with the concept of

runtime testability were presented. On the same topic, Suli-

man et al. [27] discuss several test execution and sensitivity

scenarios, for which different isolation strategies are advised.

These two works form the base for our initial approach to

runtime testability, presented in [12], [13], and extended

and more thoroughly evaluated in this paper, which is an

extended version of [1]. The factors that affect runtime

testability cross-cut those in Binder’s Testability [28] model,

as well as those in Gao’s component-based adaptation [29].

Other testability-related approaches have focused on mod-

eling statistically which characteristics of the source code of

the system are more prone to uncovering faults [6], [7] for

amplifying reliability information [5], [30]. Preparation cost,

understood as the compilation time overhead caused by the

number of dependencies needed to test any other component,

was addressed in [31]. They proposes a measurement of

testability from the point of view the static structure of

the system, to assess the maintainability of the system. Our

approach is similar in that runtime testability is influenced

by the structure of the system under consideration.

IX. CONCLUSIONS AND FUTURE WORK

The amount of runtime testing that can be performed on

a system is limited by the characteristics of the system, its

components, and the test cases themselves.

In this paper, we have studied RTM, a cost-based mea-

surement for the runtime testability of a component-based

system, which provides valuable information to test engi-

neers about the system, independently of the actual test

cases that will be run. RTM has been validated from a

theoretical point of view that it conforms to the notion

of measurement, and that it can be used to rate systems.

An empirical validation has shown that it provides with

relatively good accuracy prediction of the actual runtime

testability. Furthermore, we have introduced an approach to

the improvement of the system’s runtime testability in terms

of a testability/cost optimisation problem, which allows

system engineers to elaborate an action plan to direct the

implementation of test isolation techniques with the goal

of increasing the runtime testability of the system in an

optimal way. We have provided a low-cost approximation

algorithm which computes near-optimal improvement plans,

reducing significantly the computation time. This algorithm

is well suited for usage in an interactive tool, enabling

system engineers to receive real-time feedback about the

system they are integrating and testing at runtime.

Future work towards extending the impact cost model

with values in the real domain instead of a boolean flag

will be carried out. This work could benefit from the test

cost estimation and reduction techniques cited in the related

work, and be used to devise a runtime-test generation and

prioritisation algorithm that attempts to achieve the maxi-

mum coverage with the minimum impact for the system.

Moreover, because the RTM as obtained by our method is

a lower bound, further work will encompass an effort to

improve its accuracy, by enriching the model with dynamic

information in the form of edge traversal probabilities.

Finally, additional empirical evaluation using industrial cases

and synthetic systems will be carried out in order to explore

further the relationship between RTM and defect coverage

and reliability.
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