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Abstract — Decision-making in adaptive security management
relies on sufficient and credible security evidence gathered
from the system under investigation, expressed and interpreted
in  the  form  of  metrics.  If  security  measurability  is  not  paid
enough attention in advance, the availability and attainability
of security evidence is often a major challenge. We propose
and analyze practical and systematic security-measurability-
enhancing mechanisms and system architectural design choices
that enable and support adaptive and distributed security
monitoring of software-intensive systems. The mechanisms are
discussed in detail in the context of an adaptive, distributed
message-oriented system. Examples of associated security
monitoring techniques implemented in this environment are
given. The study also discusses the feasibility of the proposed
mechanisms. Security-measurability-enhancing mechanisms
are crucial to the wider acceptance of security metrics,
measurements, and associated tools and methods.

Keywords — security monitoring; security metrics; adaptive
security management; security measurability; message-oriented
systems

I. INTRODUCTION

The constantly increasing complexity and connectedness
of telecommunications and software-intensive systems,
together with the greater number and variety of critical
business applications operating in these systems, have
heightened the need to implement carefully designed security
mechanisms. As security threats and vulnerabilities, context
of use, and protection needs change dynamically, adaptive
security management and monitoring can provide effective
and flexible security solutions. Security metrics can be used
in resilient, self-protective, and self-healing systems to offer
sufficient and credible security evidence for adaptive
decision-making.

The US National Institute of Standards and Technology
(NIST) published a roadmap report on directions in security
metrics research [4]. This report argued that security metrics
are an important factor in making sound decisions about
various aspects of security, ranging from the design of
security architectures and controls to the effectiveness and
efficiency  of  security  operations.  The  NIST report  calls  for
practical and concrete measurement methods and intrinsic
security-measurability-enhancing mechanisms within
systems, motivating the research discussed in this study.
Many security measurement challenges have their origin in

the poor measurability support from the system under
investigation. Security measurability can best be supported
by designing enough support for it into the systems. Some of
the mechanisms discussed in this study can help the
designers with this task.

Adaptive security management should be capable of
adapting to different use environments, contexts, and
dynamic security threats. For instance, there can be different
levels of authentication requirements: in some cases, strong
authentication is needed and in others, multi-factor
authentication mechanisms should be used.

The primary contribution of this study is the analysis of
security-measurability-enhancing mechanisms for a
distributed, adaptive security monitoring system, originally
introduced in earlier work in [1]. Compared with the work in
[1], this study provides more details and examples of the
monitoring approach, and explains the mechanisms in
greater detail. The mechanisms are investigated in the
context of an example system, a distributed messaging
system called Genetic Message Oriented Middleware
(GEMOM) [2][3], which was developed in the European
Commission’s Framework Programme 7 project GEMOM
(2008–2010). The GEMOM project developed a full-
featured message broker, monitoring tool, and adaptive
security management component, and it prototyped an
intelligent fuzzing tool and anomaly detectors. The
prototypes were validated in the following business-critical
applications: banking transaction processing, financial data
delivery, dynamic road management, collaborative business
portal, and a dynamic linked exchange for procurement.

The rest of this paper is organized as follows. Section II
briefly introduces the GEMOM system architecture and its
security monitoring approach, while Section III discusses the
use of security metrics in adaptive security monitoring.
Section IV proposes and discusses novel technical
mechanisms to enhance security measurability, and Section
V analyzes the feasibility of the proposed mechanisms.
Section VI discusses related work, and Section VII offers
some concluding remarks and discusses future work.

II. SECURITY MONITORING APPROACH OF GEMOM
In the following, we discuss briefly the security

monitoring approach of the GEMOM system. Although this
study uses GEMOM as a reference system, the discussed
solutions  can  be  applied  to  many  types  of  system
architectures or communication mechanisms.
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A. GEMOM Architecture
Message Oriented Middleware (MOM) solutions enable

applications and systems to exchange messages with their
communication parties without having to know the actual
platform on which the application resides within the
network. GEMOM is a scalable, robust, and resilient MOM
system, the basic architecture of which is formed with
GEMOM Nodes (G-Nodes) [5]. G-Nodes are either
operational or managerial. Different configurations of G-
Nodes can be used, depending on the current and future
needs of the application or service.

One example GEMOM subnet, an operational system
formed with G-Nodes, is depicted in Figure 1 [1]. The
operational G-Nodes include Brokers, Publish Clients,
Subscribe Clients, and Authentication and Authorization
modules. Managerial G-Nodes include Adaptive Security
Managers, Audit and Logging modules, Anomaly Monitors,
Monitoring Tools (MTs), Security Measurement Managers,
and Quality of Service (QoS) Managers. The managerial G-
Nodes carry out runtime monitoring, control, and decisions
in collaboration with the operational nodes [1]. The actual
GEMOM system can consists of several subnets, or different
types of nodes connected together, depending on the needs
of the application, and resilience and performance issues.

Figure 1. An example GEMOM subnet architecture [1]

Figure 1 also visualizes the connections to and from an
MT  [1].  The  main  entity  responsible  for  adaptive  security
management in GEMOM, the Adaptive Security Manager
node resides in the Overlay Manager and can be used to
manage several subnets. In addition to the different types of
nodes, the MT interfaces directly to platform resources, such
as storage, memory, Input/Output (I/O) devices, and network
interfaces. The Audit and Logging node provides internal
functionality information at method or function level. For

example, failures in methods and function calls, and user
action logging can be monitored using this node.

B. Topics and Namespaces
GEMOM uses a publish/subscribe paradigm for message

communication: authorized nodes can subscribe to topics and
namespaces (see Figure 2) [1]. Publisher and Subscriber
Clients have a core role in the content management approach
of GEMOM. Communication architecture based on the
publish/subscribe principle supports flexibility and
scalability objectives well.

The topic contains published data in key, value  format.
The published data can be delivered to a Subscriber Client or
another authorized G-Node, such as a node used in
monitoring. Namespaces are mainly used for classification,
with a namespace being a prefix for each topic. Namespaces
are a higher level hierarchical construct compared with
topics. For example, a measurement namespace can be
reserved for measurement purposes in monitoring. Similar or
associated topics belong to the same category, represented by
the namespace. A topic can be shared by several Brokers or
assigned to just one [1].

Figure 2. A visualization of topics and namespaces [1]

Figure 3. Communication between the Broker and the Monitoring Tool
[1]

The actual physical locations of namespaces and topics
are transparent to application users. A Subscriber can make a
subscription to a topic or a namespace. The GEMOM
Authentication and Authorization module manages the
access rights to them. Namespace changes to a namespace
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subscribed to by a Subscriber Client, such as deletions, name
changes, or additions, or removals of topics, will continually
be reported by the Broker to it. Topic changes (contents
change, name changes, addition or removal of topic) to a
subscribed topic are also reported [1]. The depth of reporting
can be configured based on needs. Table I shows examples
of namespaces and topics connected to the MT functionality.

TABLE I. EXAMPLES OF NAMESPACES AND TOPICS CONNECTED TO
MT FUNCTIONALITY

Namespace, topic Explanation

/smon/modules,
SecurityMonitor_x

Under the modules namespace,
there  is  a  list  of  topics  that
contains module configurations
for each security monitor.

/smon/alerts/
SecurityMonitor_x,
AnomalyMonitor

Alerts namespace contains
subnamespaces for each monitor.
Subnamespaces contain topics for
alerts sent from each Monitor
module.

/smon/metrics/
SecurityMonitor_x,
Metric_y

Metrics namespace contains
subnamespaces for each monitor.
Under them, there are metric
configurations.

The GEMOM Broker is a core module of the whole
system. It is a functional entity that consists of an application

server, numerous plug-and-play objects, configuration files,
and database objects [5].

C. Monitoring Tool and Monitor Modules
An MT controls the collection and further processing of

security and QoS evidence and manages associated metrics
and measurement databases. The main functional
components of MT are the Monitor Engine and Monitor
modules. The Monitor Engine implements Monitor Core
software process functionality with the database and
messaging service running in the background. The Monitor
Engine does not carry out any monitoring itself but offers
basic monitoring support services to the Monitor modules.
The Monitor modules can either be pre-configured or added
dynamically during the runtime operation [1].

In a GEMOM subnet, an MT is connected directly to the
GEMOM Broker. The connection between the Monitor
modules and Brokers is arranged via the GEMOM Client
Interface (GCI) (see Figure 3) of the Monitoring Engine.
GCI is a special interface component optimized for the
GEMOM environment. The interface to other modules of the
subnet is arranged differently: other modules use the
GEMOM publish/subscribe mechanism to communicate and
measure, publish and subscribe to relevant topics in a
measurement namespace [5]. MTs use this mechanism to
connect to Authentication and Authorization modules, QoS
Managers, Anomaly Detector modules, and Security

Figure 4.   Configuration of authentication and authorization metrics in the MT
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Measurement Managers, as well as relevant used and free
memory entities, storage (hard disks, memory sticks),
network interfaces, and input/output devices (e.g., keyboard)
[1]. In addition to logs and direct measurement results, the
measurement data can include messages and metadata
relevant for the measurement, as well as reports from
associated security assurance tools.

Figure 5.   Sub-modules of Monitor Engine [1]

The monitoring system allows Monitor tools to be
configured for different purposes, such as security, QoS,
availability, and content monitoring. Only metrics,
interfacing, and measurement spaces differ depending on the
monitoring objectives. In the GEMOM environment, the
QoS Monitor, Security Monitor and Anomaly Monitor tools
have been implemented to be used for monitoring needs.
Figure  4  shows  a  screenshot  from  the  GEMOM  MT,

depicting the configuration management of the
authentication and authorization metrics. The MT is in
master mode. Alerts can be investigated by clicking the
‘Alerts’ tab during monitoring. Graphical visualization of
monitoring results is obtained from the ‘Diagrams’ tab.

The MT Monitor Engine starts its operation as a
Windows service. The sub-modules of the Monitor Engine
and GCI interface are listed in Figure 5. After starting, the
Monitor Engine will run in the background and be ready to
establish a connection to a Broker using the
BrokerCommunication sub-module  by  using  the  GCI
interface. This sub-module also acts as a mediator for all
publish and subscribe calls that originate from the MT [1].

Once the connection has been established, the Master MT
switches to online mode. The first MT in the GEMOM
subnet will obtain Master status. In the case of a machine
crash or reboot, every MT is able to start up automatically
and switch to online mode after the machine is up and
becomes operational again. The MessageHandler sub-
module handles messaging between the Monitor Engine and
Monitor modules. The DatabaseHandler offers database
services for Monitors. The UserInterface sub-module
implements the user interface that is used for the
configuration and management of MTs and the entire
monitoring system. All events, statistics, status,

Figure 6.   Adding a Monitor module to the system
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functionality, and alarms are reported and visualized by the
UserInterface sub-module. In addition, all information is
available in special namespaces and topics [1]. Monitor
modules that communicate with other MTs are connected to
other Brokers and modules can be added to support multi-
point monitoring needs. All distributed MTs have up-to-date
monitoring information at their disposal. The MTs that reside
close to the measurement points gather data from these
points and make them available to other MTs.

D. Addition of New Monitor Modules
Security monitoring is typically carried out in co-

operation with several Monitor modules, as completeness
and meaningfulness of the measurements often require
information from several system components and
stakeholders.

Figure 7.   Adding new monitors is straigthforward in GEMOM. It is
crucial for security-measurability to pay attention to ease of use

Figure 8.   Adding metrics in a Monitor

Adding new Monitors is relatively straightforward; the
main task in this context is to define appropriate decision-
making algorithms and metrics. Figure 6 shows the
functionality of adding a Monitor module to the system and
Figure 7 a dialog box for end-user interaction during this

operation. Once the metrics have been configured from the
User Interface (UI), the Monitor can be saved and started.
The Monitor initializes its own parameters and starts a
thread. After this, it is a shared resource for the whole
monitoring system. The Monitor carries out preliminary
analysis and then receives measured data from the system.
The measured data (‘raw data’) are used by the configured
metrics collection and the metrics results are published for
use by authorized subscribers, such as the Adaptive Security
Manager component. If criteria for anomalies or other
critical situations are met, alarms are raised. After this, all
relevant Monitor metrics are adapted to the current situation.
Adaptation can be carried out by, e.g., tightening selected
requirements and criteria for new alarms, changing the
frequency of measurements, or reducing the processing load.

E. Addition and Configuration of Metrics
Metrics can be added to the GEMOM Monitors with an

easy-to-use user dialog box (see Figure 8). Metrics consist of
logical expressions with either raw input data or results from
other metrics. For each metric, the following parameters
need to be configured: Metric ID, input data, output data,
metric expression formula, threshold values, and timing. The
following configuration presents an example of a Security
Monitor metrics configuration:

fi.vtt.SecurityMonitor Metrics:
  fi.vtt.SecurityMonitor.Subscriptions

Topic@Namespace:130.188.58.43:7891@/_sys/clients
  fi.vtt.SecurityMonitor.Measurements
    Item:nAUTH
  fi.vtt.SecurityMonitor.Security
    MinimumAuthenticationStrength:0.3
    InitialNumber:0.7
    Lowest:0
    Highest:1
    Speed:0.05

According to the above configuration, SecurityMonitor
subscribes to a topic that is updated by a Broker. It measures
nAUTH (normalized authentication strength, AS in Eq. 1). If
nAUTH drops below 0.3, SecurityMonitor will send an
alarm. The following configuration is an example of QoS
monitoring:

fi.vtt.QoSMonitor Metrics:
  fi.vtt.QoSMonitor.Subscriptions

Topic@Namespace:130.188.58.43:7891@/_sys/clients

Topic@Namespace:130.188.58.43:6148@/_sys/clients
  fi.vtt.QoSMonitor.Measurements
    Item:iCPU
    Item:aMEM
    Item:dBR
    Item:pBR
  fi.vtt.QoSMonitor.QoS
    MinimumAvailableMemory:500
    MinimumIdleCPU:50
    MaximumDataRate:1000
    MaximumPublishRate:10

5

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



With this configuration, QoSMonitor subscribes to the
topics that are updated by Broker and GAgent and is able to
read variables from them. It is configured to measure iCPU
(CPU idle time, ITcpu in Table IV), aMEM (available memory
in Megabytes, AM in  Table  IV), dBR (data rate, bytes per
second), and pBR (publication rate, publications per second).
It also has a QoS metric that indicates when values are not
acceptable. If a measured value is not in the acceptable
range, QoSMonitor will  send  an  alarm.  The  above
configuration enables QoSMonitor to plot the measured
values in a diagram.

III. USING SECURITY METRICS FOR ADAPTIVE SECURITY
MONITORING

The following section briefly discusses the security
metrics that form the basis for security monitoring. It also
provides an example of their use in adaptive security
decision-making.

A. Development of Security Metrics in a Hierarchical Way
The term security metrics has become standard when

referring to the security level, security performance, security
indicators or security strength of a system under
investigation – a technical system, product, service, or
organization [6]. The general motivation for security
measurements is the common argument that an activity
cannot be managed well if it cannot be measured [7]. The
above is particularly applicable to adaptive security
management. Security solutions with varying strength levels
are required in distributed networked systems such as
GEMOM so that they can manage security in an adaptive
manner according to the needs of varying situations like the
context and dynamicity of security threats. Security metrics
provide the means with which to score different solutions
during the system’s operation [7]. Measurements provide
single-point-in-time views of specific, discrete factors, while
metrics are derived by comparing two or more measurements
taken over time with a predetermined baseline [8]. Security
metrics can be used for decision support in assessment,
monitoring, and prediction.

Our earlier work [7][9] analyzed the collection of
security metrics heuristics developed to measure the
correctness and effectiveness of the security-enforcing
mechanisms of the GEMOM system. Security metrics have
been developed for adaptive security, authentication,
authorization, confidentiality, integrity, availability, and non-
repudiation mechanisms. Extensive surveys of available
security metrics can be found in [10][11][12]. The earlier
mentioned research [7] introduced an iterative methodology
for security metrics development that has been simplified
here:
1. Carry out prioritized threat and vulnerability analysis of

the system under investigation.
2. Use suitable security metrics taxonomies and/or

ontologies to further plan the measurement objectives
and metrics types.

3. Develop and prioritize security objectives.

4. Identify Basic Measurable Components (BMCs) from
the security requirements using a decomposition
approach. BMCs are leaf components of the
decomposition that clearly manifest a measurable
property of the system. Similarly, decompose the
system architecture into components.

5. Define measurement architecture and evidence
collection. Match the BMCs with the relevant system
components with attainable measurable data.

6. Integrate metrics from other sources and select BMCs
based on feasibility analysis.

7. Develop an appropriate balanced and detailed collection
of metrics from the BMCs.

BMCs are identified by security objective decomposition
[6][7]:
1. Identify successive components from each security

requirement that contribute to its security correctness,
effectiveness and/or efficiency [6], or another security
property in question;

2. Examine the subordinate nodes in order to determine
whether further decomposition is required. If so, repeat
the process with the subordinate nodes as current goals,
breaking them down into their essential components.

3. Terminate the decomposition process when none of the
leaf nodes can be decomposed further or when further
analysis of these components is no longer necessary.

Originally, the idea of security objective decomposition
was proposed by Wang and Wulf [13]. Note that the
mechanism of developing security metrics discussed above is
one example of systematizing this task. There are so many
other possible ways to develop metrics.

Figure 9.   An example of authentication decomposition [13]

TABLE II. BMCS FOR AUTHENTICATION [7]

Symbol Basic Measurable Component

AIU Authentication Identity Uniqueness

AIS Authentication Identity Structure

AII Authentication Identity Integrity

AMR Authentication Mechanism Reliability

AMI Authentication Mechanism Integrity
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B. An Example of Authentication Decomposition
Figure 9 provides an example of high-level

decomposition of main authentication objectives, while
Table II shows the associated BMCs identified from this
decomposition. The identity concept and authentication
mechanism essentially contribute to the security strength of
authentication. A more detailed explanation of the listed
BMCs can be found in [7].

The metrics can be aggregated in the form of a weighted
sum, resulting in Authentication Strength AS [7]:

,AMIwAMRwAIIw

AISwAIUwAS

AMIAMRAII

AISAIU (1)

to quote, “where wx is the weighting factor of component
x and ‘ ’ denotes normalization and uniform scaling of the
component metrics.”

C. An Adaptive Authentication Management Example
The following example illustrates the use of the

authentication metrics of Table II in adaptive security
monitoring.

The GEMOM system requires a minimum
Authentication Strength, min(ASusr), for each user, usr. This
value differs between the normal mode and the mode during
suspicion of a Denial of Service (DoS) attack (‘DoS alarm
mode’). The conditions for min(AS) are [1]

,),,,,min(

:)min(

2

1

usrusrusrusrusr

usrusr

USR

AMIAMRAIIAISAIU
ASAT

AS
(2)

to quote, “where ATusr is an adaptive trust indicator, 1 is
the general Authentication Strength threshold and 2 is the
threshold for each component metric. For instance,
thresholds could be set as follows: during normal operation,

1 = 0.5 and 2 = 0.2, and during DoS alarm mode, 1 = 0.6
and 2 = 0.3.” More details on parameters can be found in
[7].

Below, we show a highly simplified scenario of how the
authentication metrics discussed above can be used in an
adaptive manner in GEMOM. The example consists of seven
steps that represent the GEMOM security monitoring system
in different authentication situations (or ‘steps’) [1]:
1. Authentication of the user usr authenticating

himself/herself for the first time in an office
environment using a smart card.

2. Identification of usr in an office environment using a
user name/password pair. There are several weeks
between Steps 1 and 2, and the value of the trust
indicator has been increased.

3. Availability has dramatically decreased (increased
delay and decreased QoS), possibly due to a DoS
attack.

4. Identification of usr in the office environment using the
user name/password pair. The Authentication Strength
of usr falls under the threshold, causing an alarm.

5. Identification of usr in an office environment using an
X.509 certificate. The Authentication Strength is now
over the required threshold level and the authentication
is successful.

6. Normal mode is resumed after the DoS attack mode.
The adaptive trust indicator has now been increased,
but usr has attempted to read a topic without rights to
do so. Consequently, the adaptive trust indicator must
be decreased by a certain amount.

7. Identification of usr in a home office environment, with
a GEMOM smart card and user name/password pair in
use. The authentication is successful.

TABLE III. STEPS 1–7 OF AN AUTHENTICATION MONITORING
EXAMPLE [1]

Param. St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7
delay 0.2 0.2 0.9 0.9 0.9 0.3 0.2

ATusr 0.5 0.7 0.2 0.2 0.3 0.6 0.4

QoS ind. 0.9 0.9 0.1 0.1 0.1 0.8 0.9

AIUusr 0.7 0.6 0.6 0.6 0.8 0.7 0.6

AISusr 0.7 0.7 0.7 0.7 0.7 0.7 0.7

AIIusr 0.7 0.7 0.7 0.7 0.7 0.7 0.7

AMRusr 0.4 0.2 0.2 0.2 0.4 0.3 0.6

AMIusr 0.4 0.2 0.2 0.2 0.4 0.3 0.6

Figure 10 [1] shows a screenshot of the MT window that
depicts the Authentication Strength in the above-mentioned
steps. Note that the time scale shown in the screenshot does
not correspond to the real timing between the steps. Real
timing from step to step can be days or weeks. The threshold
level is shown as a red line. If the Authentication Strength is
below the threshold, the authentication process – controlled
by the Adaptive Security Manager – will not continue until
the strength moves above the threshold. This can be achieved
using stronger authentication mechanisms, or the system
alarm  mode  is  over.  The  values  of  the  core  metrics
associated with the above steps are shown in Table III. Note
that the values are only informative and are not based on real
measurements. All values have been normalized and scaled
to the interval 0...1. Note that the correlation of different
events, such as publish and subscribe information and meta-
data, is required to distinguish between normal system peak
loads and increased traffic due to a DoS or a Distributed DoS
attack.

In practice, Authentication Strength is affected by a large
number of dimensions that can be depicted by a hierarchy of
sub-metrics for AS. The above example therefore only shows
how, in principle, authentication monitoring based on
metrics can be used. Moreover, all data cannot be obtained
from the administration domain of the metrics users: data
originating from the different stakeholders’ part of the
authentication process, such as Identity Provider, is needed.

7

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



IV. PROPOSED SECURITY-MEASURABILITY-ENHANCING
MECHANISMS

Although systematic and practical approaches to security
monitoring based on metrics are generally desired, they are
quite rare. One notable reason for this is that systems do not
support security measurability very well. Measurability
means that the metrics should be capable of having the
dimensions, quantity, or capacity ascertained [14] in their
measurement approaches [1].

The following section analyzes security-measurability-
enhancing mechanisms that can be used to enable systematic
and practical security monitoring in telecommunications and
software-intensive systems. The mechanisms were
introduced in our earlier work [1]. The mechanisms have
been implemented in the research prototype of the GEMOM
system [1].

A. Flexible Communication Mechanism and/or Probing
GEMOM nodes use the publish/subscribe mechanism to

report their status and desired measurements to certain topics
reserved for that purpose, while other authorized nodes can
subscribe to this information. This mechanism is flexible,
scalable, and increases the effectiveness of security
measurements in the system. An example of how this
mechanism can be used is presented in Figure 11 [1].

The performance of the actual system functions and
communication can be measured and used for monitoring the
design. For instance, a Broker can publish statistics of
publish/subscribe activity, such as messages per second or
kilobytes per second, or the delay between different nodes.
An authorized node can subscribe to the associated topic or
namespace. The monitoring system obtains measurement
data from other nodes using the publish/subscribe
mechanism. An indicator of monitoring delay, the relational
‘distance’ value of an MT part of the monitoring system, can
be measured by comparing the delay data from Brokers.  The
delay data can be used for self-protection and resiliency
management: if a Master MT crashes, an MT with the next
highest priority automatically becomes a new Master MT.
The prioritization can be partially based on the delay values
of each MT.

If the publish/subscribe mechanism is not used,
specialized measurement probes can be used to deliver
measured data from the system components to the
monitoring  system.  Different  types  of  probes  can  be
available or not available at different time instants and can be
managed in a dynamic way. The probes should have a
standardized language, yet be abstract, not related to any
specific model. During monitoring, the measurement
requirements have to be matched dynamically to the
available and attainable probes that can deliver the required

Figure 10.   A screenshot of the GEMOM Monitoring Tool  window depicting the seven steps of the authentication monitoring example [1]
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measurement results [15]. The probes in use can reside in
different parts of the system and in clients and servers.

The communication mechanism cannot fully solve the
needs for gathering evidence from the platform resources,
such as storage, memory, Input/Output (I/O) devices and
network interfaces. Special measurement probes should be
developed to manage this kind of evidence gathering.

Figure 11.   An example of using the publish/subscribe communication
mechanism [1]

Figure 12.   An example set-up of Monitoring Tools in an multi-point
GEMOM monitoring environment [1]

It must be noted that the aggregation of individual
security metrics results and measurements can be
troublesome. Practical experience among industrial

practitioners on aggregation has shown that the higher the
abstraction level, the ‘greener’ the results tend to be,
assuming a traffic lights approach (‘red’ meaning low level
of security assurance or level, ‘yellow’ mediocre, and ‘green’
good) [15].

B. Security Measurement Mirroring and Data Redundancy
In general, GEMOM uses redundancy techniques to

secure continued, uninterrupted operation in case of failures,
overload, or a Denial-of-Service (DoS) attack [2]. As part of
GEMOM’s resilience management, redundant functionality,
message feeds, and delivery paths will be maintained in the
system in order to support switch-over to them in the event
of a failure without information loss. Measurement data are
also part of the redundancy functionality, and in addition to
the nodes in operation, the measurement data reside in mirror
nodes [1].

If a Broker crashes, valuable measured data about the
failure event are available from its redundant counterpart, the
Mirror Broker [1].  A  Mirror  Broker  can  be  accessed
separately for collection of data about the failure. Mirroring
in security monitoring can be used for system security
development purposes and learning from the ‘what went
wrong’ evidence. A Mirror Broker and associated mirrored
measurement data should use resources with no or only
minor dependencies to the main Broker and measurements.
If there are too many dependencies between the brokers, a
failure in the main Broker can affect the Mirror Broker.

The effectiveness of mirroring can be increased by
adding more than one Mirror Broker and/or mirrored data
resources. In general, if the system contains N copies of the
data, the resulting redundancy level is N – 1. The more
mirrored functionality and data, the more processing
resources are needed to carry out copying functionality
associated with the mirroring procedure. Resources can be
saved if smart mirroring procedures are used. For instance,
mirroring can be done in a prioritized way in which most of
the essential functionalities and/or data are kept up-to-date
more frequently than less essential ones. Moreover,
snapshots, raw presentations of the data, can be used.

C. Multi-Point Monitoring
A GEMOM subnet includes an Overlay Manager, n

Brokers, and k MTs. An MT can monitor up to n Brokers
(see Figure 12 [1]), which enables multi-point monitoring. In
this subnet, one MT acts as a master and the other MTs act as
slaves. The Master MT is responsible for synchronizing
communication and data exchange between different MTs.
While the status information of each MT is available for
every MT, only the Master MT is allowed to manage others
[1].

Figure  13  shows  a  GEMOM  MT  screenshot  of  the
management of a Master and a Slave Monitor.
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In security-related measurements, multi-point monitoring
is needed in most cases. Security issues in different parts of
the overall system under investigation (e.g., a technical
system, service, product) contribute to the overall security
performance. Moreover, security evidence from stakeholders
residing outside the administration scope of the system can
be needed. For instance, the Identity Provider’s identity
establishment and management processes, and the client-
server authentication protocols interfacing to it affect the
Authentication Strength. Measured evidence is not always
available and attainable from outside the scope of the system
administration. In these cases, available or assessed evidence
information can be configured directly to the Monitor
modules. Such evidence is usually relatively static, and does
not need to be updated frequently.

D. Auto-Recovery on Error
The MTs save their state information for later use in the

case of a system crash due to a failure or attack to support
flexible investigation of the situation. When the MT is
rebooted, it activates auto-recovery functionality with the
error mode and automatically initiates connection to the
system. In this kind of situation, the crashed MT will always
operate as a slave, because the error situation should be
investigated before resuming normal operation, even if the
crashed MT was a Master MT before the failure. If a new

Master MT is started, it can easily disable the crashed and
rebooted MT [1].

Auto-recovery functionality can be automated in
different ways: (i) no auto-recovery, (ii) attempt auto-
recovery for N times  or M minutes, or (iii) attempt auto-
recovery indefinitely. From a security monitoring
perspective, the automation depends on the nature of the
failure of the attack. It is important, especially after an attack
situation, to investigate the situation and validate the
monitoring configuration before, during, and after the attack
in order to ensure that every MT plays its role as fairly as
possible. Root-cause analysis techniques can be used to
investigate the attack situation in detail based on the
evidence provided by the MT.

Below is an example of an internal monitoring tool
messaging and synchronization topic structure. The /smon

namespace has two topics: Watchdog and Control. The
Watchdog topic is updated by the Master MT and it is read by
all Slave MTs. They should reply with the watchdog time to
/smon/smt namespace under the Alive topic. If any Slave
MT does not update its watchdog time, it is considered to be
unavailable. The Hierarchy topic shows which monitor is
playing the master role. In case the Master MT crashes, other
monitors decide which will be the new master. The new
master takes over the master role and starts controlling the

Figure 13.   An MT window screenshot displaying a simple monitoring set-up for a Master Monitor with one Slave Monitor
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watchdog timer and the control messaging. Control messages
are sent via the Control topic in the /smon namespace.

The /smon/modules namespace is used to inform other
MTs of the kind of modules that are running in each monitor.
The /smon/metrics namespace shows the actual metric
configuration of all monitor modules.

/smon

  T: Watchdog
  Time=289

  T: Control
  from=SecurityMonitor_xx
  to=ALL|SecurityMonitor_xx
  time=12334214
  cmd=MASTER_MODE
      REQUEST_MASTER_MODE
      RESTART:<delay>
      ENABLE_GUI:true|false
      START_MONITOR:n@@xx.xxx.XxxXxxx
      STOP_MONITOR:m@@xx.xxx.XxxXxxx
      LASTID:xx

/smon/modules

    T: SecurityMonitor_0
    1@@fi.vtt.QoSMonitor=RUNNING
    2@@fi.vtt.AnomalyMonitor=STOPPED
    CurrentConfig=1,2

    T: SecurityMonitor_1
    1@@fi.vtt.ActivityMonitor=RUNNING
    CurrentConfig=1

    T: SecurityMonitor_2

/smon/smt

    T: Alive
    SecurityMonitor_0=289
    SecurityMonitor_1=289
    SecurityMonitor_2=289

    T: Names
    SecurityMonitor_0=Machine in Room E272

    T: Hierarchy
    SecurityMonitor_0=Master
    SecurityMonitor_1=Slave

    T: Latency
    SecurityMonitor_0=14
    SecurityMonitor_1=37

/smon/measurements

    /aMEM

      T: <ip>:<port>
      <timestamp_long>=<aMEM_average>

    /iCPU

      T: <ip>:<port>
      <timestamp_long>=<iCPU_average>

/smon/alerts

    /SecurityMonitor_0

      T: 1@@fi.vtt.QoSMonitor
      From=SecurityMonitor_0
      Discriminator=aMEM
      Status=NEW|OLD|ACK|DEL
      OldStatus=NEW|OLD|ACK
      Time=142412455
      Severity=CRITICAL|MAJOR|MINOR|WARNING
      Text=Something went terribly wrong!

      T: 2@@fi.vtt.ActivityMonitor

    /SecurityMonitor_1

      T: 1@@fi.vtt.QoSMonitor

/smon/metrics

    /SecurityMonitor_0

      T: fi.vtt.QoSMonitor.Broker
      MinimumAvailableMemory=335
      Type=Decimal
      Visibility=Public

E. Integrity, Availability and Configuration Correctness
Checks
The integrity and availability metrics, part of the security

metrics collection of GEMOM, are based on the results from
the integrity and availability check functionality built into
selected critical parts of the system. Integrity and availability
checks are carried out by special program code constructs
and algorithms at run-time and in connection with software
security assurance activities (such as testing and analysis). In
addition to code constructs, tools such as Tripwire [16] can
be used for periodical and triggered integrity checks of files
and data. The reports and potential alarms of integrity checks
carried out by integrity check code constructs and tools are
visible in the MT, and this evidence is used as part of the
integrity metrics.

The integrity and availability checks address typical
software weakness and vulnerability problems. The
following widely known checks increase the security quality
and can be used to support the security measurability [1]:
1. Validation of input data in all relevant interfaces. It is

possible to prevent most injection attacks (such as
Cross-Site Scripting, Structure Query Language SQL
injection, and null injection) with by proper input
validation.

2. Buffer and memory overflow checks
3. Storage and database checks
4. Error recovery, self-protection and resiliency checks

Configuration correctness is one of the main aims of
integrity checks, along with high quality of software and a
lack of critical vulnerabilities. Metrics depicting
configuration correctness are based on design and
implementation requirements, reference standards, and best
practice information. The wrong configuration and
deployment of security controls can result in severe security
problems. Moreover, wrong system configuration in other
parts than those directly linked to security functionalities can
potentially turn into security problems.
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Further checks should be developed, such as focusing on
the issues pointed out by the results of the threat and
vulnerability analysis of the SuI, and available public
vulnerability information, such as OWASP [17]
classifications and applications of them, e.g., [18].

It must be noted that it is possible to develop a wide
collection of integrity and availability metrics, and the
checks can degrade the processing performance greatly.
Prioritization of the results of threat and vulnerability
analysis is therefore important.

F. State of Security Framework
The timing of security-related measurements needs to be

managed carefully. Risk assessment is essentially a
prediction of security risks that can cause problems in the
future. When the security controls that are implemented and
deployed in the system are based on the output from risk
assessment, it is important to handle history information,
current measurements and future predictions separately. The
MTs and the Adaptive Security Management functionality in
the Overlay Manager use the State of Security (SoS)
framework [5] (see Figure 14 [1]). This concept can be seen
as a security-measurability-enhancing mechanism,
implementing a timing framework for security
measurements.

Figure 14.   The high-level State of Security concept in GEMOM [1]

SoS is a time-dependent estimate of the system’s security
level and performance based on an appropriate integrated
and aggregated balanced collection of security metrics. In
short, SoS describes the high-level security health index of
the operational GEMOM system. SoS contains an
aggregated value of individual metrics components. The
estimate  is  initially  offered  by  the  MT  and  whenever  it  is
triggered. Metrics with different time scale properties
(lagging, coincident, or leading) are used depending on the
situation [1].

Note that valuable information is always lost in the

aggregation process of metrics results. A graphical
representation of metrics in the MT can therefore be used
when investigating the SoS in more detail.

There are five different phases in the estimation of SoS
[1]:
1. The initial SoS is calculated based on the collection of

initial values of security metrics (lagging and coincident
metrics). Weights are associated with different
component metrics in order to indicate their relative
importance, based on the results of risk-driven
prioritization. In practice, a ‘close to correct’ weight
assignment  is  used,  as  analytical  results  are  often
unavailable [19]. Moreover, practice has shown that the
aggregated results tend to show results that are too
optimistic compared with reality. The initial weights are
assigned based on up-to-date threat, vulnerability, trust,
and reputation knowledge. The metrics components that
need to be balanced in the collection are adaptive
security, authentication, authorization, confidentiality,
integrity, availability, and non-repudiation.

2. The current SoS is based on a coincident metrics
calculation whenever it is triggered by a timer, an attack
alarm, an anomaly alarm, or a manual request. The
weighting is adjusted based on updated data on threats,
vulnerabilities, the context, or other relevant parameters.

3. Past and current SoSs can be compared in the monitoring
system in order to identify trends and potential fault
situations. Trend analysis is an important application of
security monitoring results.

4. The SoS can be adapted according to decisions made by
the Adaptive Security Management functionality in the
Overlay Manager. The adapted SoS is the result of
actions carried out by the Overlay Manager.

5. The predicted SoS is based on leading metrics to support
proactive estimation. A comparison of past SoS can be
used to identify trends affecting the prediction. The
predicted SoS can be fed as input to the threat and
vulnerability analysis.

Figure 15 depicts the general process from the Current
SoS to the Adapted SoS.  After the process, the old Current
SoS becomes a Past SoS and the Adapted SoS becomes the
Current SoS. The trigger mentioned in the figure can be an
alarm, incident, or some other type of security effectiveness
information. Trends and changes in the security risks affect
the updates of metrics and their calculation.

G. Measurability Support from Building Blocks of Security
The architectural design of the system greatly affects the

Figure 15.   From Current SoS to Adapted SoS.
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security measurability of the system during its operation. It is
important that the various architectural security building
blocks are designed to support seamless co-operation
between the different parts of the operational system and its
connections. In communication architectures, nodes or
modules should be designed in such a way that it is possible
to obtain enough data about their operational state in an
authorized manner. Measurement probe architecture and the
management of probes should be designed hand-in-hand
with the actual system architecture. Stage 5 (design of
measurement architecture), mentioned in the security metrics
development approach discussed above, is tightly connected
to the actual architecture of the system.

Several architectural components in GEMOM have been
built in such a way that they exhibit internal properties and
functionalities that support security measurements: in other
words, they can be considered to incorporate intrinsically
security-measurable [4] or security-measurability-enhancing
constructs. These constructs increase the credibility,
applicability, and sufficiency of monitoring approaches
based on security metrics [1].

In addition to the architectural building blocks,
systematic and automatic information exchange in GEMOM
has been designed between the different stages of the
security metrics development process: threat and
vulnerability analysis, security requirements definition,
decomposition of requirements, and detailed metrics
definition [1].

H. Use of Shared Metrics and Measurement Repositories
and Enumerations
Enumerations classify fundamental entities and concepts

relevant to security, and repositories allow common,
standardized content to be used and shared. Shared security
metrics and measurement repositories support the
development of credible security metrics and help to focus
and prioritize efforts. In the near future, several novel shared
security metrics and associated data repositories will be
available. Examples of these include the Common
Vulnerability Scoring System (CVSS) [20] and the
associated baseline security data enumeration Common
Vulnerabilities and Exposures (CVE) [21], both of which are
part of the Security Content Automation Protocol (SCAP)
[22]. Martin discussed their use in [23], along with how they
integrate with different stages in the secure system
development life cycle. In addition, the Web Application
Security Consortium (WASC) and the SANS Institute
maintain popular threat and vulnerability classification
collections, found in [24] and [25], respectively [1]. Table IV
recaptures examples of security enumerations, languages,
and repositories [26].

I. Reuse of Available Metrics and Measures Relevant to
Security
In many cases, parameters that were originally developed

for other measurement purposes can be applied, at least
partly, to security measurements. The following section
provides some examples of these. Taking into account
metrics that are readily available in the system is part of the

action to increase security measurability. The available and
attainable metrics relevant to security can be matched with
the needs of security evidence.

TABLE IV. EXAMPLES OF SECURITY ENUMERATIONS AND
REPOSITORIES [26]

Name Explanation
Common Vulnerabilities
and Exposures (CVE)

A standard enumeration of identifiers for
known vulnerabilities

Common Weakness
Enumeration (CWE)

A standard enumeration of identifiers for
software weaknesses

Common Attack Pattern
Enumeration and
Classification (CAPEC)

A standard enumeration for identifiers for
attacks

Common Configuration
Enumeration (CCE)

A standard enumeration for identifiers for
configuration

Common Platform
Enumeration (CPE)

A standard enumeration for platforms,
operating systems, and application
packages

SANS Top-20 Top critical vulnerabilities list by the
SANS Institute

OWASP Top-10 Top critical vulnerabilities list by OWASP
WASC Threat
Classification

Threat classification by the WASC
consortium

U.S. National
Vulnerability Database
(NVD)

A U.S. vulnerability database using, e.g.,
CVE, CCE, SCAP, and US-CERT data

Red Hat Repository Patch definitiions for Red Hat Errata
security advisories

OVAL Repository OVAL vulnerability, compliance,
inventory and patch definitions

Center for Internet
Securtiy (CIS) Security configuration benchmarks

U.S. Department of
Defence Computer
Emergency Response
Team (DoD-CERT)

Information assurance vulnerability alerts
ans security implementation guides

U.S. National Security
Agency (NSA) NSA security guides

TABLE V. MACHINE -RELATED COUNTERS [5]

Symbol Counter

ITcpu, PTcpu CPU idle time, CPU processing time

AM Available memory

PA Paging activity

Butil, Bmax Bandwidth usage, maximum bandwidth

Lm2m, Vm2m Latency, visibility between two machines

TABLE VI. PUBLISH/SUBSCRIBE ACTIVITY-RELATED COUNTERS [5]

Symbol Counter

PPN, PPT Publications per namespace, topic

PPB, PPC Publications per Broker, Client

MPB, MPC Messages per Broker (publications and subscriptions),
Client

DPB, DPC Amount of data per Broker, Client

PBPC Number of protocol breaches per Client

Nns, Ntop Number of namespaces, topics
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TABLE VII. SOURCES OF SECURITY METRICS IN GEMOM [5]

Symbol 1  2  3  4  5  6  7
Countermeasure mechanism
performance metrics (by
requirement decomposition)

×  ×  ×  ×  ×  ×  ×

Metrics based on anomaly and
misuse models (attacker-
oriented weakness metrics)

×  ×

Cryptographic strength metrics × ×  × ×
Availability metrics based on
QoS application performance
metrics

×

Trust metrics ×
Reputation metrics ×
Software quality metrics ×  ×  ×  ×  ×  ×  ×
Vulnerability metrics ×  ×  ×  ×  ×  ×  ×
System endemic security-
relevant metrics ×

QoS evidence can often be used for security-related
availability measurement. Different types of availability
threats usually have a high impact in telecommunication
systems:  the  system,  or  a  core  part  of  it,  is  in  its  most
vulnerable state during availability attacks, such as Denial-
of-Service (DoS) and Distributed Denial-of-Service (DDoS)
attacks. Moreover, the actual execution of the application
often crashes due to these attacks. An attacker can execute
his/her strategy and achieve his/her goals by exploiting the
high vulnerability time window, which can potentially also
cause other security threats. The intruder can even seize the
system using this strategy [27]. Until recently, QoS and
security metrics have lived in separate worlds. Some security
attacks affect application performance, and the most
important objective of QoS management is to ensure
application performance. The GEMOM monitoring approach
uses metrics for security availability and application
performance measurement [6]. Other availability parameters
that can usually be obtained from telecommunication
systems are delay, delay variation, and packet loss rate [27]
[1].

Machine-related and functionality-related counters can be
used in security measurements. Table V [5] lists some
general machine-related counters that are available in the
GEMOM system. Similar counters are available in most
systems. Aggregated information from several counters can
be used to identify system situations that could potentially be
a threat to security. Table VI [5] lists some publish/subscribe
activity-related counters that can be used when monitoring
abnormal situations. Table VII [5] summarizes the origin of
security metrics and other security-relevant metrics in
GEMOM. The numbers in the columns represent the
security-enforcing mechanisms (1 = adaptive security, 2 =
authentication, 3 = authorization, 4 = confidentiality, 5 =
integrity, 6 = availability and 7 = non-repudiation). ‘×’ in the
relevant box indicates the use of the security metrics in
GEMOM [1]. Note that in another types of systems, different
types of security metrics can be used, and their origin can be
different.

J. Secure Coding – Security-Relevant Software Quality
Software quality affects the resulting security level of the

system directly and indirectly. Software quality can be
increased by the application of secure coding principles. In
addition to input validation, secure coding principles include,
for example [28], the defense-in-depth principle, the
principle of least privilege, aiming for the simplest system
possible, default access denial, data sanitization, effective
quality assurance, and use of a secure coding standard (best
practice).

It must be noted that some of the secure coding principles
seem to decrease the security measurability. For example,
default access denial, the principle of least privilege, and
data sanitization may have this kind of effect due to the
reduced amount of available information. Proper
authentication and authorization should be implemented in
order to allow the security measurement activity to obtain all
relevant data.

Security metrics that address the enforcement of security
coding principles are part of the balanced security metrics
collection. Knowledge about the principles used increases
the security measurability of the system.

V. IMPACT ON FEASIBILITY OF SECURITY MONITORING

The feasibility of security measurement and associated
monitoring is at the core of its success. Our earlier work
investigated the criteria for the quality and feasibility of
using security metrics in software-intensive systems [29] and
the core requirements for a secure and adaptive distributed
monitoring approach [30]. The following section discusses
the impact that the mechanisms introduced in this study have
on the feasibility of security monitoring based on security
metrics. The metrics criteria of [28] and the monitoring
requirements of [30] are deployed as feasibility objectives
[1].

The criteria in [29] are classified into three levels, each of
which incorporates six criteria. The levels emphasize the
credibility of security metrics, their applicability for use
together with the measurement approach, their sufficiency
for their intended use, and the completeness of the metrics
collection. The criteria were originally developed for security
metrics. The applicability of the security metrics and
measurement approaches, such as monitoring and applying
them to the final use environment, is crucial however.
Security metrics should be designed ‘hand-in-hand’ with the
measurement approach: metrics cannot be used without
measurements, and measurements are useless unless they are
interpreted [29].

Table VIII [1] summarizes the feasibility criteria
discussed in [29] and provides examples of how they are
supported by the security-measurability-enhancing
mechanisms of the GEMOM monitoring approach. In the
table, FC denotes flexible communication, SMM denotes
security measurement mirroring and data redundancy, ARE
indicates auto-recovery on error, MPM is multi-point
monitoring, IAC represents integrity and availability checks,
TF is the timing framework, BBS is the measurability
support of building blocks of security, SMMR is the use of
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shared metrics and measurement repositories, RAM is the
reuse of available metrics and measurements relevant to
security, and SC indicates secure coding. In general, the
development of security metrics is challenging and metrics
that meet all the feasibility criteria are extremely rare [29].

TABLE VIII. FEASIBILITY CRITERIA OF [29] AND DISCUSSED
MECHANISMS SUPPORTING THEM [1]

Criterion Supporting Mechanism(s)
Correctness IAC, SC

Granularity All

Objectivity and unbiasedness TF, SMMR, RAM

Controllability All

Time-dependability MPM, ARE, TF

Comparability FC, MPM, ARE, IAC, SMMR, SC

Measurability All

Attainability, availability,
easiness

All

Reproducibility,
repeatability, scale reliability

All

Cost effectiveness FC, BBS, SMMR, RAM

Scalability and portability FC, SMM, MPM, BBS, RAM, SC

Non-intrusiveness FC, SMM, MPM, ARE, IAC, BBS,
RAM, SC

Meaningfulness MPM, TF, BBS, SMMR, RAM

Effectiveness MPM, ARE, TF, BBS, SMMR, RAM

Efficiency FC, SMM, MPM, BBS, RAM, SC

Representativeness and
contextual specificity

TF, BBS, SMMR, RAM

Clarity and succinctness MPM, IAC, BBS

Ability to show progression TF, SMMR

Completeness FC, TF, BBS, SMMR, RAM

TABLE IX. ADDITIONAL MONITORING REQUIREMENTS OF [30] AND
DISCUSSED MECHANISMS THAT SUPPORT THEM [1]

Requirement Supporting Mechanism(s)
Security All

Runtime adaptation FC, SMM, MPM, ARE, BBS, RAM

The requirements identified in [30] can be classified into
five categories: scalability, runtime adaptation, correctness,
non-intrusiveness, and security. Table IX [1] analyzes how
the proposed mechanisms support the requirements that are
in addition to [29]: security and runtime adaptation.

Scalability is a key property in any distributed
monitoring system. Real applications and systems are often
quite dynamic and the scale of use can change rapidly.
Scalability refers not only to scaling from a small system to a
large one but also to scaling from large to small, and to

scaling in geographic coverage [31]. Scalability goals can
also concern the use of a large number of applications in the
same system. All scalability goals imply the need for
flexibility in terms of how the monitoring tool and ‘measurer
nodes,’ and their communication, are constructed. GEMOM
basic solutions, which comprise the MOM approach and the
inherently encapsulated publish/subscribe communication
mechanism, support scalability well [1]. More effort to
ensure scalability is needed in other kinds of measurement
architectures with complex probe management.

If necessary, the hierarchical architecture of Monitors
and MTs can be created to support a large number of
measurements. It is easy and straightforward to configure
and initiate new Monitors. In principle, the chosen solutions
do not set constraints on the scale of the system, in terms of
the number of nodes or from a geographic coverage
perspective. If high-volume measurements are needed,
however, a special type of measurement channel solution is
required.

The performance of the overall monitoring system is
constrained by the underlying network solutions, typically
the Internet networks in use. Network management is a
problem for all networks as they grow in size. It may also be
challenging to use a huge number of topics or namespaces,
with proper authentication and authorization management.
The number of measurement topics and namespaces can be
kept under control with informed and adaptive planning and
configuration. A large number of overlapping publish and/or
subscribe actions result in a need for sophisticated mutual
exclusion management solutions. Chockler et al. [32]
suggested techniques for scalable solutions for
publish/subscribe activity with many topics [1].

As GEMOM and its applications are run on various
platforms that range from desktop computers to smart mobile
phones, the portability of the monitoring solutions is
important. The underlying MOM middleware solution
enables applications to establish communication and
interaction without having knowledge of the platform on
which the application resides within the network. The
monitoring approach is built using the same communication
approach as the system in general. This means that the
portability of the monitoring approach is good; only
appropriate interfaces between the GEMOM nodes and their
repositories and the services of the platform need to be
implemented [1].

Interoperability of the GEMOM monitoring solution with
other security tools is desirable in order to obtain a more
holistic ‘security picture’ of the environment. The target of
security monitoring can be applications, hosts, and the
network. The GEMOM monitoring solution emphasizes
those applications that operate in the GEMOM system, as
well as host-based performance, resilience, and self-
protection information [1].

Tools that focus on Internet-based traffic include
vulnerability scanners, packet sniffers, various kinds of
traffic analyzer tools, and application-specific scanners. A
variety of these tools is available as commercial and open
products. These tools can be connected to the MT in a
straightforward manner using the publish/subscribe
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mechanism. They often do not support interpretation of the
data or correlation of input or logs from different sources
however. In other words, they concentrate on the raw
measurements. Almost all of the tools in the area of Internet
Protocol (IP) traffic measurement and analysis perform only
a small subset of the functionalities required to capture, file
and classify, store, analyze traffic, and prepare the results for
graphical display or for export into a database or other
framework [33]. Consequently, the seamless integration of
these tools to the GEMOM monitoring approach requires the
development and configuration of specific Monitors that are
capable of interpreting and correlating data produced by the
tools [1].

The Open Web Application Security Project (OWASP)
[17] and Insecure.org [34] list and analyze different security
tools, some of which are potentially useful for
complementing the GEMOM adaptive security management
environment.

VI. RELATED WORK

The US National Institute of Standards and Technology’s
(NIST) security metrics report [4] believes that the
development of security-measurability-enhancing
mechanisms is a promising research direction. Few research
results are available in this new field however. In the
following, we discuss related research that suggests
mechanism for enhancing security measurability.

Martin [23] focused on the issues highlighted in Section
III.H of this paper in his discussion on security-
measurability-enhancing mechanisms based on SCAP
enumerations and scoring systems. He elaborated on the
mechanisms from an organizational perspective and showed
how these mechanisms can be integrated into risk
management, operations security management processes and
enterprise networks. He does not deal with security-
measurability-enhancing mechanisms from a technical
perspective however.

Ciszkowski et al. [35] described an end-to-end quality
and security monitoring approach for a Voice-over-Internet
Protocol (VoIP) service over Peer-to-Peer (P2P) networks,
providing adaptive QoS and DoS/Distributed DoS attack
detection. They also introduced an associated trust and
reputation framework to support routing decisions. The
standalone modules in this architecture include Security,
QoS, Reputation Management, and Intrusion Detection
functionalities, the communication of which is arranged via
channels. These choices do not allow as much flexibility and
scalability as the GEMOM dynamical monitoring.

Jean et al. introduced a distributed and adaptive security
monitoring system based on agent collaboration in [36],
using a special algorithm to classify malicious agents based
on their execution patterns. They also used the notion of an
agent’s security level but did not provide further details of
the parameters of the security level calculation. They also
defined a trust and confidence notion for the hosts of the
agents.

Spanoudakis et al. [37] introduced a runtime security
monitoring system based on confidentiality, integrity, and
availability patterns. Their architecture contains a

Monitoring Manager that takes requirements as an input and
controls Monitoring Engine. Measurement Agents deliver
the measured data to an Event Catcher, communicating with
the Monitoring Engine. This architecture is interesting
because it can be mapped directly to the more flexible
GEMOM monitoring architecture. A special monitoring
pattern language is used to define the pattern metrics for the
Monitoring Manager. This work is limited to the basic
abstract dimensions of security – confidentiality, integrity,
and availability.

Kanstrén and Savola described five-layer reference
architecture for a secure and adaptive distributed monitoring
framework in [28], as developed in the BUGYO Beyond
Research project. The main approach of this reference
architecture is to increase non-intrusiveness by isolating the
monitoring framework from the observed system. The
architecture uses abstraction layers for the management of
different practical measurement management objectives. In
systems using measurement probes, this kind of architecture
is usual, but for publish/subscribe-based systems like
GEMOM, it can bring too much complexity.

Evesti et al. [38] proposed a preliminary environment for
runtime security management that consists of service
discovery, service adaptation, measurement, and decision-
making functionalities. Vulnerability databases are used as a
basis for measurements. The decision-making functionality
can be seen as carrying out functions that are similar to those
that the Security Measurement Manager and Overlay
Manager perform in GEMOM.

Bejtlich [39] discussed network security monitoring at
length and overviewed some tools and research solutions
used, especially in traffic and packet monitoring. If the
GEMOM environment is used over the Internet Protocol
(IP), these tools can complement the GEMOM security
monitoring environment by offering more details of IP
traffic. Bejtlich claimed that traditional Intrusion Detection
Systems (IDSs) do not deliver the value promised by vendors
and that detection techniques that view the alert as the end
goal are doomed to fail. Like GEMOM’s monitoring and
adaptive security management approaches, Bejtlich views
alert  data as an indicator and as the beginning of the actual
decision-making process. Intrusion Detection and Prevention
Systems (IDS/IPS) must also adapt to changes in the threat
and vulnerability environment.

Bulut et al. present a measurement framework for
security assurance in [40]. The framework collects
information about the security-enforcing mechanisms of the
system under investigation. The framework contains three
different types of components: probe-agents, multiplexing
agents and server-agents. Multiplexing agents are
responsible for multiplexing data over subnet boundaries,
and server-agents handle centralized processing of the
measured data.

Vandelli et al. present a measurement framework for
scientific experiments in [41] that are capable of capturing
massive amounts of data. Standardized architectures and
protocols are used between the measurement components. A
separate data stream is used to pass high-volume data to the
measurement system, and a separate channel is used to pass
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control requests. This kind of high-performance
measurability-enhancing solutions can be used in data
gathering of security-relevant log information. In most
security measurements, high-volume data do not need to be
transferred.

A survey of approaches to adaptive application security
and adaptive middleware can be found in [42] and [43],
respectively.

VII. DISCUSSION

Security is a multi-faceted socio-technical challenge, and
despite the long record of academic research and wide
experience of practical issues, it still suffers from systematic
and widely accepted design and management techniques.
Security measurements introduce systematic thinking to
security issues. However, nowadays, the use of security
metrics and measurements is hard due to the lack of
information and enough support from developed systems. It
is clearly a ‘chicken or egg’ problem: in order to advance the
field of security metrics, you need evidence from the actual
system, and in order to be able to gather that evidence (and
justify the gathering effort), you need metrics. Security-
measurability-enhancing mechanisms aim to make evidence
gathering effective and cost-effective, and they contribute
especially to improved availability and attainability of the
evidence. If these mechanisms become more widely
accepted and applied, the field of security metrics can
definitely  make  big  steps  forward.  The  fact  that
public/subscribe communication was chosen as the
underlying communication paradigm is an important design
choice supporting the measurability goals well. Flexibility in
measurements is needed to ‘pave the path’ for wider
acceptance of the use of security metrics and measurements.

We emphasize that the collection of security-
measurability-enhancing mechanisms discussed in this study
is preliminary. It is obvious that specific security
measurement needs will raise the need for new and different
kinds of mechanisms. In the future, it makes sense to also
carry out standardization efforts in this field; it is easier to
support the wide acceptance of the mechanisms if there are
commonly agreed ways to do so. Recent advances in
information security management system (ISO/IEC 27000
series) standardization have shown that there is interest in
incorporating security metrics and measurements in security
management standards. The current work in a
standardization world regarding security metrics is quite
vague. Nowadays, there are still big gaps between security
management and engineering-oriented standards, the former
concentrating on a top-down approach, and the latter mainly
on bottom-up check-lists. Metrics, with the help of enough
support of security-measurability-enhancing mechanisms,
can play the role of bridging this gap. Wide acceptance of
security metrics and measurement approaches can make
remarkable advances in the whole security field.

VIII. CONCLUSIONS AND FUTURE WORK

We have discussed solutions to enhance the security
measurability of telecommunications and software-intensive
systems. The presented solutions have most value if they are

built into the system under investigation already during the
architectural design of it. The solutions were discussed in the
context of the distributed messaging system GEMOM
incorporating adaptive security management functionality.
Solutions proposed and discussed in this study:

A flexible communication mechanism is crucial to the
security  measurements.  In  GEMOM,  the  use  of  the
publish/subscribe mechanism for measurement reporting
increases the flexibility, scalability, and effectiveness of
security measurements. In other types of communication
architectures, measurement probes should be designed
hand-in-hand with the architectural choices of the
system.
Data and functionality redundancy can help in obtaining
valuable security-relevant data from fault situations.
Redundancy can be implemented by smart maintenance
of Mirror Brokers and mirrored measurement data, as
independently as possible from the main Brokers and
measurement data.
Multi-point measurement support is often needed in
security measurements, as only holistic security
evidence is meaningful and the functionalities and
processes of various system components and
stakeholders contribute to that evidence. Holistic
security measurability can be implemented by deploying
several monitoring tools that are able to communicate
continuously with each other.
Auto-recovery on error mode helps in the investigation
of failure before resuming normal operation. It is a
helpful functionality for deeper analysis of attacks, such
as root-cause analysis.
Configuration correctness, integrity and availability
checks of software constructs and input, buffers,
memory, storage, and databases are integral parts of the
security measurability solution.
State of security framework supports categorization of
the metrics and measurements with respect to time.
Timing of different measurements and metrics is also
important; it is necessary to define the state of security
in order to establish proper time-dependency for the
measured information.
Seamless co-operation of the security building blocks at
system architectural and process level should include a
systematic and automatic information exchange. In
order to ensure enough security measurability support,
these issues should be taken into account already during
the architectural design phase of the system and during
the risk management and security assurance activities.
The use of shared metrics and measurement repositories
and enumerations supports the development of security
metrics and ensures that the monitoring system has up-
to-date threat and vulnerability knowledge. Security
effectiveness metrics, in particular, can be based on
repositories and enumerations.
The use of measures developed for other measurements
can be useful for security measurements. Some
parameters that were originally developed for other
measurement purposes can be applied to security
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measurements. These include QoS, performance
indicators, delay, delay variation, and packet loss rate,
along with other indicators that reflect abnormal
operation. Adequate authentication and authorization
mechanisms ensure that the necessary data are available
from modules for which secure coding principles are
thoroughly enforced.

Our future work includes using the monitoring system for
adaptive security management in experimental GEMOM
system application use case investigations in critical
information systems. This experimentation work will analyze
the feasibility of the monitoring approach, the security
metrics that are used, and the identified security-
measurability-enhancing mechanisms.
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