147

Media Streaming Observations: Trends in UDP to TCP Ratio

DongJin Lee, Brian E. Carpenter, Nevil Brownlee {dongjin, brian}@cs.auckland.ac.nz, nevil@auckland.ac.nz Department of Computer Science The University of Auckland, New Zealand

Abstract—Widely used protocols (UDP and TCP) are observed for variations of the UDP to TCP ratio, elastic (and inelastic) flow behaviors, and of port number distribution, both over time and between different networks. The purpose of the study was to understand the impact of application trends, especially the growth in media streaming, on traffic characteristics. The results showed substantial variability but little sign of a systematic trend over time, and only wide spreads of port number usage. Despite the large network traces, the ratios appear to be rather dependent on application popularity (and their diversities), and so one cannot extrapolate from usage patterns on one network to those on another without allowing for at least as much variability as we have observed in this work.

Index Terms—network traffic statistics; observation; UDP to TCP ratio; flow; volume; port number; streaming

I. INTRODUCTION

Along with annual bandwidth growth rates reported to be 50% to 60% per year both in the U.S. and worldwide [7], Internet traffic types, characteristics and their distributions are always changing. For example, recent Internet observations [15] [21] find that the majority of traffic and infrastructures have migrated to a small number of very large providers, such as those supporting cloud computing. Also, it has been widely predicted that within a few years, a large majority of network traffic will be audio and video streaming. Cisco's Visual Networking Index [4] has been actively involved in traffic forecasting, e.g., Hyperconnectivity and the Approaching Zettabyte Era [5]. Those reports assert that in 2010 video will exceed p2p in volume, becoming the main source of future IP traffic growth, and over 60% of all consumer Internet traffic will be video by 2013. They also state that video traffic can change the economic equation for service providers, given that video traffic is many times less valuable per bit than other content such as SMS service. Additional to the increased computational resources, increases in monitor screen size and its resolution give rise to larger document sizes (such as more pixels in images and videos), thus generating more traffic than before.

A common expectation in the technical community has been that streaming traffic would naturally be transmitted over UDP, probably using RTP, or perhaps in future over DCCP. Another view is that UDP and TCP might replace IP as the lowest common denominator [28] to achieve transparency through NATs and firewalls. Then, if non-TCP congestion control, signaling or other features are needed, a protocol must be layered on top of UDP instead of developing a better transport layer. This, if accompanied by a vast increase in streaming, would change the historic pattern whereby most traffic benefits from TCP's congestion management. Indeed, if the predicted increase in streaming traffic were to remove most flows from any form of congestion control, the consequences would be serious. Therefore, the evolution of the observed UDP to TCP ratio in actual Internet traffic is a subject of interest. Also, observing for trends in network statistics such as distributions of port numbers and flow characteristics are beneficial in network management. This paper is an expanded version of our earlier work on these topics [23].

We note that audio/video 'streaming' is not really a welldefined term, and it covers a variety of technologies. For example, video-on-demand packets are usually transmitted over TCP; streams are downloaded fully, then played from the local copy. This is suitable when the timeliness and bandwidth variability are not crucial. In others such as voiceover-IP solutions, with timeliness a high priority, streams are transmitted over UDP. Also, recent application advances allow streaming concepts to be much more diverse, such as p2pbased streaming and practical use of progressive download on a faster-than-real-time basis [25]. Furthermore, some streaming applications choose dynamically whether to use UDP, raw TCP or HTTP over TCP.

The UDP to TCP ratio has been briefly observed in [1], where UDP flows are often responsible for the largest fraction of traffic. Their summary indeed suggests that the current ratio can change with increasing demand for IPTV and UDP-based real-time applications. We note that both TCP and UDP traffic are useful in distinctive ways. UDP can be advantageous due low overheads especially in an organization's high performing storage systems, such as in SANs and NFS. In other words, traffic statistics can be largely different by the environments and our measurement scope is at Internet scale.

Our expectation was that the growth in streaming traffic would be reflected in a steady growth in the UDP to TCP ratio, or in a systematic change in the relative usage of various port numbers, or both. We conducted a preliminary survey on the basis of readily available data from a variety of measurements, in both commercial and academic networks, between 1998 and 2008. It showed that the UDP to TCP ratio, measured by number of packets, varied between 5% and 20%, but with no consistent pattern over the ten years. A report in [22]

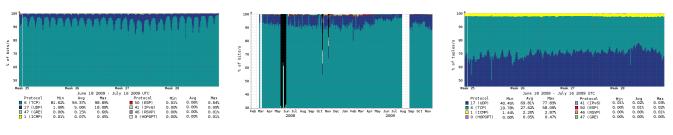


Fig. 1. CAIDA (2008-2009), Left: DirA - 4 weeks (bits), Center: Dir DirA - 20 months (bits), Right: DirB - 4 weeks (flows)

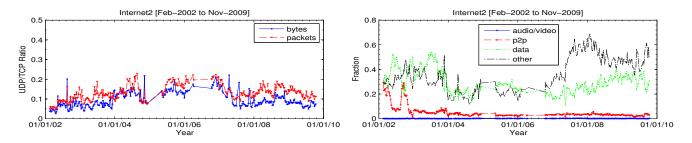


Fig. 2. Internet2 (2002-2009), Left: UDP to TCP ratio, Right: volume fractions of four application types (assigned from the Internet2)

observed an average ratio of 0.07 over the 78 ISPs globally. For Internet2, it was 0.05 in 2002, 0.22 in 2006, and 0.15 in 2008. Similar inconsistencies showed up in partial data from observations in Norway, Sweden [18], Japan, Germany, the UK, and elsewhere. These inconsistencies were surprising, and did not suggest a steady growth in UDP streaming. To better understand these issues, we observe how TCP and UDP traffic have varied over the years, either by number of flows, by their volume/duration, or by their traffic kinds.

We consider this study to be valuable to service providers and network administrators managing their traffic. This includes outlining observed statistical datasets to derive strategies, such as classifying application types, prioritizing specific flow types and provisioning based on usage scenarios. Also, a definite trend in the fraction of non-flow-controlled UDP traffic might affect router design as far as congestion and queue management is concerned. In this paper, we particularly observe two behaviors, 1) variation of UDP to TCP ratio over time, and 2) port numbers and elastic/inelastic flow distributions. As far as is possible from the data, we also observe application trends. We use the term "flow ratio" and "volume ratio" to represent the ratio of $\frac{UDP}{TCP}$ for their flow counts and data volumes respectively.

II. LONGITUDINAL DATA

Long term protocol usage is observed from two locations: the CAIDA [2] and Internet2 [6] traffic¹. CAIDA traffic data is from the OC192 backbone link of a Tier 1 ISP between Chicago and Seattle (direction A and B), reflecting various enduser aggregates. The Internet2 traffic reflects usage patterns by the US research and education community. Both datasets have HTTP and DNS traffic as the most widely used protocols for TCP and UDP respectively, but no particular specific application protocol was used predominantly.

Figure 1 shows plots for the CAIDA data. Although protocols such as ICMP, ESP and GRE are observed as well, TCP and UDP are in general most widely observed. We did not see a noticeable amount of SCTP or DCCP traffic. We observe that both DirA and DirB traffic contained about 95% TCP and 4% UDP bytes, measured daily and monthly (left and right). The volume ratio varied around an average of 0.05; the diurnal variation shows that during the peak time TCP volume (mainly HTTP) contributed as high as 98%, and during the offpeak time UDP volume can increase to 18%. Flow proportions (DirB, right plot) varied greatly as UDP flows are a lot more observed than TCP flows, e.g., on average 70% and as high as 77% of all flows are UDP. ICMP flows are observed stably, contributing about 2%.

The dataset from Internet2 (Figure 2) covers a longer period of measurement, from February 2002 to November 2009. On the left, we observe that the volume ratio has increased from early 2002 to mid 2004, then decreased from late 2006 to mid 2007, and again slight variations are observed from mid 2007 on. The UDP decrease observed in 2006 to 2007 may be due to the University of Oregon switching off a continuous video streaming service [17]. Generally the volume ratio varied between 5% and 20%, showing a higher variation than that of the CAIDA data. Comparing between 2002 and 2009, we find that the ratio of both bytes and packets has increased slightly by about 5%.

In this, there seems to be little evidence of change in

¹Note that the datasets contained some irregular anomalies throughout the period which have been removed from the plots. For example, short but very high peak usage of unidentified protocol, missing-data and inconsistent data values were observed and discussed with the corresponding authors at CAIDA and Internet2. They are presumed to be due to occasional instrumentation errors or, in some cases, to overwhelming bursts of malicious traffic. If included in the analysis, they would dominate the traffic averages and invalidate overall protocol trends. The original data including these anomalous peaks are available at the cited web sites.

1	Λ	q

			bennin	KI OI IVI										
		Date,				Vol	ume				Nun	nber of I	Flows	
Trace	Network	[Starting time],	Average Rate	Bytes	TCP	UDP	ICMP	Other	$\frac{UDP}{TCP}$	Flows	TCP	UDP	ICMP	$\frac{UDP}{TCP}$
Name	Туре	Duration (hours)	(Mb/s)	(GB)	(%)	(%)	(%)	(%)	Ratio	(M)	(%)	(%)	(%)	Ratio
AUCK-99	UNIV	1999-Nov-29, [13:42], 24.00	1.39	14.96	94.26	5.51	0.19	0.04	0.06	2.63	82.52	15.32	2.17	0.19
AUCK-03	UNIV	2003-Dec-04, [00:00], 24.00	6.32	68.23	93.25	6.14	0.24	0.34	0.07	19.49	75.53	21.85	2.63	0.29
AUCK-07	UNIV	2007-Nov-01, [16:00], 24.00	60.41	652.41	94.70	4.72	0.43	0.15	0.05	73.62	44.44	52.73	2.82	1.19
AUCK-09	UNIV	2009-Aug-03, [09:00], 11.00	375.93	1860.85	93.77	6.12	0.02	0.08	0.07	93.84	59.65	39.45	0.90	0.66
BELL-I-02	ENT	2002-May-20, [00:00], 96.00	1.78	76.79	90.70	8.58	0.05	0.66	0.09	6.42	94.39	3.68	1.98	0.04
CAIDA-DirA-02	BB	2002-Aug-14, [09:00], 3.00	363.14	490.24	94.91	3.83	0.09	1.17	0.04	45.95	84.86	12.73	2.4	0.15
CAIDA-DirB-03	BB	2003-Apr-24, [00:00], 1.00	117.93	53.07	94.86	4.66	0.10	0.38	0.05	11.49	78.59	19.28	2.13	0.24
CAIDA-DirA-09	BB	2009-Mar-31, [05:59], 1.03	1250.83	579.76	96.69	2.74	0.48	0.09	0.03	46.96	43.16	54.46	2.38	1.26
CAIDA-DirB-09	BB	2009-Mar-31, [05:59], 1.03	3687.70	1709.25	91.17	8.11	0.06	0.66	0.09	61.03	32.50	65.06	2.44	2.00
ISP-A-99	COMML	1999-Nov-02, [14:04], 28.28	0.36	4.60	98.16	1.75	0.08	0.01	0.02	0.78	61.63	37.03	1.34	0.60
ISP-A-00	COMML	2000-Jan-04, [09:47], 32.80	0.37	5.44	94.37	5.44	0.08	0.12	0.06	0.94	57.86	40.68	1.46	0.70
ISP-B-05	COMML	2005-Jun-09, [07:00], 24.00	275.16	2971.74	92.26	6.93	0.22	0.59	0.08	513.76	62.88	33.79	3.32	0.54
ISP-B-07	COMML	2007-Feb-08, [00:00], 24.00	341.66	3689.90	94.43	5.05	0.12	0.40	0.05	500.56	49.61	46.35	4.05	0.93
LEIP-II-03	UNIV	2003-Mar-21, [21:00], 24.00	25.30	273.26	88.75	9.40	0.15	1.70	0.11	54.99	60.15	35.58	4.28	0.59
NZIX-II-00	IX	2000-Jul-06, [00:00], 96.00	3.50	151.38	87.35	9.23	3.39	0.03	0.11	55.28	47.18	29.88	22.94	0.63
SITE-I-03	ENT	2003-Aug-20, [04:20], 24.00	24.86	268.44	98.50	0.61	0.81	0.08	0.01	30.72	36.41	5.46	58.13	0.15
SITE-II-06	ENT	2006-May-11, [15:30], 33.90	76.52	1167.32	98.96	0.76	0.01	0.26	0.01	21.76	79.37	19.32	1.62	0.24
SITE-III-04	COMML	2004-Jan-21, [06:00], 24.30	110.15	1204.52	94.26	5.24	0.21	0.25	0.06	156.69	67.80	24.11	8.10	0.36
WITS-04	UNIV	2004-Mar-01, [00:00], 24.00	3.45	37.29	93.29	5.45	0.42	0.83	0.06	15.68	41.76	54.77	3.50	1.31
WITS-05	UNIV	2005-May-12, [00:00], 24.00	5.41	58.40	97.22	2.19	0.14	0.45	0.02	18.33	56.76	42.12	1.12	0.74
WITS-06	UNIV	2006-Oct-30, [00:00], 24.00	7.34	79.25	95.83	3.42	0.29	0.45	0.04	27.75	33.43	65.03	1.54	1.95

TABLE I SUMMARY OF NETWORK TRACES

protocol ratio, as most are diurnal variations with no particular increasing or decreasing patterns. On the right, both "audio/video" and "p2p" traffic are little utilized over the period, whereas "data" (consisting mainly of HTTP traffic) and "other" (using ephemeral port numbers) traffic have increased. For example, audio/video traffic contributes to about 0.3% and p2p traffic decreased from about 20% to only about 2%. This could indicate that audio/video streaming and file sharing have genuinely decreased as compared to typical HTTP traffic, or that there are emerging applications using arbitrary port numbers or 'hiding' such traffic inside HTTP (e.g., [19]). Indeed, since about beginning of 2007, both the data and other traffic have increased substantially, from about 20% to more than 50%.

III. NETWORK STATISTICS

We next report observations from various networks² covering different network types in different years. Table I shows a summary of measured traces. In total, our traffic meter measured 21 traces ranging from the university, backbone, commercial, exchange and enterprise. Average rate varied from 0.4Mb/s to 3.7Gb/s, contributing from 5GB to 3.7TB (counting IP payloads only). A flow is identified by a series of packets with the same 5-tuple fields (source/destination IP address, source/destination port number, and protocol) and terminated by the fixed-timeout of 30 seconds. Since a flow is unidirectional, flow's source port number is used for observations.

Volume ratio varied between 0.02 and 0.11, showing that the TCP volume contributed the most traffic (avg: 0.06 and std: 0.03 across the networks). The UDP volume contributed about 1% to 9%, marginally small compared to TCP. In particular, the NZIX-II-00 and LEIP-II-03 networks had the highest ratio (about 9% UDP percentages), but they showed quite different port number usages. For example, NZIX-II-00 had the most UDP volume on port 53 (DNS)

²CAIDA [2], NLANR PMA [8] and WAND [12]

and 123 (NTP) while LEIP-II-03 had the most p2p UDP volume – port 4672 (eD2k) and 6257 (WinMX).

Considering the number of flows, the flow ratio varied between 0.04 and 2.00 (avg: 0.7 and std: 0.56 across the networks showing higher variation than the volume). For example, AUCK networks have the ratio increased from 0.19 (1999) to 1.19 (2007), then decreased to 0.66 (2009). Over time the WITS and CAIDA networks also have the ratio increased up to 1.95 (2006) and 2.00 (2009) respectively. Other networks are similar, though not systematic. Compared with volume, it shows that UDP flows in general are more frequently observed than TCP, but are mainly smaller in bytes. As far as total contributions are concerned, there is no observed trend to longer, fatter UDP flows as we might expect from streaming.

One reason why the flow ratios might fluctuate a lot, even for the same network, is that UDP seems to be used a lot for malicious transmission. A port scan, for example, generates many flows containing only a single packet by enumerating a large range of port numbers. Another reason might likely be due to small-sized signaling flows, which are often used by emerging applications. The flow ratio has been observed to be as high as 3.00 in other networks [1].

A. Elastic and Inelastic traffic flows

Although the UDP to TCP ratios observed previously do not appear to indicate a potential growth in media streaming, protocols such as RTSP and NMSP can be carried by TCP and UDP. If elastic traffic (e.g., FTP) has similar flow characteristics to inelastic traffic (e.g., RTSP) such as durations, volume or packet delays, then we might be seeing behaviors whereby the traffic kinds may no longer stand out, making it much harder to even distinguish between elastic and inelastic traffic. In this, examining for the behavior differences between elastic and inelastic traffic kinds in actual Internet traffic is also a subject of interest.

Table II shows traffic volumes by three categories (elastic1,

1	FO	
	511	

Trace		elastia	1 (%)			elastic	2 (%)			inelas	tic (%)	
Name	>1	>10	>50	>100	>1	>10	>50	>100	>1	>10	>50	>100
AUCK-99	62.94	53.62	28.64	21.09	13.13	12.99	11.34	10.89	3.29	3.28	3.25	3.24
AUCK-03	73.44	65.81	42.96	31.17	9.77	9.60	8.01	7.59	1.88	1.86	1.85	1.85
AUCK-07	55.56	52.32	43.76	38.50	5.2	5.03	4.55	4.33	1.71	1.71	1.71	1.71
AUCK-09	75.02	73.72	66.06	61.38	1.69	1.69	1.55	1.48	3.34	3.34	3.34	3.33
BELL-I-02	29.80	26.17	16.39	12.75	5.71	5.69	4.80	4.55	2.85	2.84	2.83	2.83
CAIDA-DirA-02	58.90	52.87	39.83	33.89	2.17	2.12	1.73	1.66	3.41	3.40	3.39	3.38
CAIDA-DirB-03	65.44	56.63	40.37	33.38	1.29	1.21	0.84	0.79	0.89	0.86	0.85	0.85
CAIDA-DirA-09	38.51	36.45	32.64	30.66	38.05	37.71	37.48	37.45	0.35	0.34	0.34	0.34
CAIDA-DirB-09	54.29	51.91	47.25	43.05	0.90	0.86	0.69	0.65	1.24	1.22	1.22	1.22
ISP-A-99	37.79	32.79	19.22	13.33	21.60	21.37	18.91	17.94	0.13	0.13	0.12	0.12
ISP-A-00	46.38	41.07	25.93	20.12	10.80	10.59	8.72	8.25	0.76	0.75	0.74	0.72
ISP-B-05	17.71	16.07	11.96	9.82	3.63	3.58	3.16	2.92	1.58	1.55	1.52	1.49
ISP-B-07	33.67	32.10	28.47	26.47	1.34	1.31	1.14	1.07	1.69	1.65	1.62	1.59
LEIP-II-03	22.74	20.55	15.37	12.98	1.77	1.74	1.58	1.52	2.37	2.35	2.34	2.33
NZIX-II-00	53.64	45.76	23.92	16.95	19.38	19.13	17.65	16.98	1.13	1.13	1.11	1.11
SITE-I-03	16.38	15.06	11.70	10.15	47.12	47.09	46.88	46.54	0.74	0.74	0.73	0.73
SITE-II-06	15.35	14.51	12.01	10.72	25.24	25.23	25.16	25.09	0.57	0.56	0.56	0.56
SITE-III-04	39.74	36.57	26.71	22.88	4.92	4.90	4.5	4.41	4.85	4.84	4.83	4.82
WITS-04	70.73	61.85	37.16	26.90	7.38	7.23	5.38	4.97	2.06	2.05	2.05	2.05
WITS-05	77.51	65.80	42.57	32.72	10.23	9.97	7.53	6.76	0.94	0.94	0.93	0.93
WITS-06	75.58	68.97	49.64	40.56	9.44	8.96	5.98	5.40	0.44	0.43	0.42	0.42

TABLE II Statistics of Elastic and Inelastic Flow Kinds

elastic2 and inelastic flows)³. Each category of the flow kinds is then observed by packet counts; ≥ 1 , ≥ 10 , ≥ 50 and ≥ 100 . Generally, elastic traffic contributed most of the traffic volume and varied more than the inelastic traffic. The elastic1 (HTTP/S) traffic flows particularly contributed the highest volumes (as high as 77.5% WITS-05). When the number of packets per flow are ranked by percentile, we see a noticeable decrease in the values, e.g., 75% with ≥ 1 packet down to 61.4% with ≥ 100 packets (AUCK-09), 33.7% to 26.5% (ISP-B-07), and 70.7% to 26.9% (WITS-04). This shows that elastic flows tend to carry a small number of packets. The elastic2 traffic is similiar but the percentiles decrease much less.

Conversely, it seems particularly noticeable that inelastic traffic shows almost no percentile decrease, even considering their relatively small proportions. For example, we observe 1.24% with \geq 1 packet down to just 1.22% with \geq 100 packets (CAIDA-DirB-09). With such small percentile decreases, the inelastic flows by themselves generally seem to carry larger volumes, and are perhaps longer lived. Inelastic traffic *volume* varied between 0.13% and 4.85%, however it shows no particular sign of increasing or decreasing. This also applied to the same network in different years.

We measured two flow characteristics in detail; flow lifetime and flow inter-packet variance. We particularly observed flows with at least 50 packets, since the flows carrying small numbers of packets do not represent appropriate user data transmission. Two flow characteristic distributions are shown in Figure 3 and Figure 4 in the Appendix. Both Figures show

³We use port number assignments from [9], [11] to group the flows by three categories. We also exclude control/signaling port numbers, e.g., port 21 (FTP), 2979 (H.263), 5005 (RTP).

- *elastic1*: port 80 (HTTP) and 443 (HTTPS)
- elastic2: port 20 (FTP), 22 (SSH), 25 (SMTP), 110 (POP3) and 143 (IMAP)
- inelastic: port 322 (RTSPS), 537 (NMSP), 554 (RTSP), 1257 (Shock-wave2), 1755 (MMS), 1790 (NMSP), 1935 (RTMP), 5004 (RTP), 6801 (Net2Phone), 6970-7170 (RealAudio), 7070 (RTSP), 8554 (RTSP-ALT) and 16384-16403 (iChat)

the flows with at least 50 packets; flows with at least 100 packets are observed to be similar (and generally log-normal distributed).

For lifetime plots, we observe that in nearly all of the networks, the distributions of the inelastic flows clearly stand out by lasting a lot longer compared to the elastic ones. For example, CAIDA-DirB-09 has about 40% of the inelastic flows lasting up to one minute while 90% of the elastic ones last up to one minute. Similarly, SITE-I-03 has about 50% of the inelastic flows lasting for more than ten minutes while virtually no elastic flows lasts for more than ten minutes.

To further observe streaming-like behaviors, we measure inter-packet arrival times in individual flows so as to observe their variations. In general, inelastic flows should have approximately constant inter-packet arrival times (low variance). To compare between the two traffic kinds, the coefficient of variation (CoV) for each flow's packet variances are computed (Figure 4). We observe that the inelastic flows have a significantly lower CoV than the elastic flows – representing the constant packet rates – as would expected from their streaming behaviors. For example, WITS-04 has about 40% of inelastic flows having up to CoV one. Similiarly, SITE-III-04 has about 60% of inelastic flows having up to CoV two, but only about 20% of elastic flows having up to CoV two.

Some networks mainly have those inelastic flows with low CoVs (e.g., AUCK-03, SITE-III-04). However, in more recent networks, the elastic2 flows have CoVs as low as the inelastic ones (e.g., AUCK-09, ISP-B-07, CAIDA-DirA-09). We also observe that the elastic1 flows have the largest CoV ranges.

These observations show some flow behaviors that seem to resemble streaming, and such traffic can be distinguished by our two measurements. However as far as the overall proportions are concerned, no trend of longer-lived or packet variances are observed between the different networks or between the years.

B. Port Numbers

The rest of the plots in the Appendix show our observed port numbers. For example, each page shows three networks; Table III shows top10 most used port numbers, ranked according to their proportions for flows, volume and duration. It also shows a cumulated percentage of these top10 and top20 ports. In the middle (Figure 5), the port rank distributions are displayed as log-log plots. The left plots are the AUCK-99, center plots are the AUCK-03, and right plots are the AUCK-07 networks. The bottom (Figure 6) shows the cumulative distribution function (CDF) plot – the top two plots are for TCP, showing port numbers on a linear and a log scale respectively, and the bottom two plots are for UDP. The rest of the plots follow the same arrangement for other networks.

Overall, the top10 flows together contributed about 18% (ISP-B-05) to 60% (CAIDA-DirA-09) for TCP, and 9% (CAIDA-DirB-09) to 76% (SITE-I-03) for UDP. The ranges for the top10 volumes were greater, i.e., 33% (ISP-B-05) to 88% (AUCK-09) for TCP, and 11% (CAIDA-DirB-09) to 86% (BELL-I-02) for UDP. Using CoV metric across the networks, we find that TCP volume/flows and UDP volume/flows varied in ratio 0.22/0.25 and 0.45/0.42 respectively; UDP traffic is clearly more fluctuating. Again, we find little systematic trend for both TCP and UDP; those variabilities show that the traffic can either be heavily dominated by a few port numbers, or diversely dispersed. Various other well-known port numbers (up to 1023) also contributed to the top10. The individual port usages are less significantly contributed for higher ranks, e.g., top20 increases total percentages only slightly.

For TCP, we observe that HTTP/S traffic contributed the most and often appeared in the top rank. We also observe that generally recent networks have more high-end port numbers compared to the older networks. For UDP, DNS traffic were the most common, although rank distributions appear similar between the networks, we observe that the distributions are less skewed over the years, given that their volumes are already marginally small. Volumes on the port numbers are more diversely spread over the years, e.g., top10 volumes have reduced from 77% to 53% (WITS-04 to WITS-06), and only less than 17% of UDP volumes (CAIDA-DirA-09, CAIDA-DirB-09, ISP-B-07) are observed. These changes show that there are more applications using different port numbers in recent years. None of these ports however indicate any plausible evidence of incremental streaming traffic.

We observe how the port numbers are distributed by their attributes – number of flows and volume/duration. Measuring the volume for a particular port number is the same as measuring an aggregated flow size on that port number. Similarly, duration measures the total aggregated flow lifetimes of a given port number.

Here, we find that often up to 70% to 90% of port numbers used are below 10,000. The rest of the port usage appears quite uniformly distributed, although not strictly linear. A step in the CDF for one particular port number shows that this port is heavily used in the network being studied, e.g., FTP/SMTP and HTTP/S traffic, which is to be expected for well-known ports or registered ports. The registered ports are those from 1024 to 49151, so steps in the CDF are to be expected throughout this range. We do see this in several plots, for both UDP and TCP. We also see a roughly linear CDF for ports in the dynamic range above 49151, which is to be expected if they are chosen pseudo-randomly, as good security practice requires. The situation between 1024 and 49151 is somewhat confused, because many TCP/IP implementations appear to use arbitrary ranges between 1024 and 65535 for dynamic ports (often referred to as "ephemeral" ports, which is not a term defined in the TCP or UDP standards or in the IANA port allocations). It appears different Operating Systems, as well as their different versions, use a different range by default [10].

Both volume and duration distributions appear similar to the flow distribution, i.e., increase in the number of flows also increases total volume and durations. Some port numbers do not correlate equally with flows, volume and duration. For example, BELL-I-02 contained almost no flows on port 7331, but those flows carried more than 70% of volume and duration. Similarly, SITE-I-03 contained 0.4% of FTP data flows, but those contributed more than 43% of volume.

For older traces, a majority of protocols are low numbered, e.g., ISP-A-99 have more than 90% of traffic flows and volumes contributed to port number below 10,000, for both TCP and UDP. Conversely, recent traces have only up to about 50% (ISP-B-07). UDP traffic is a lot more linearly distributed across the port range, e.g., both CAIDA-DirB-09 and ISP-B-07. Also, DNS traffic volumes are no longer significant, e.g., contributing from 42% (ISP-A-99) to less than 2% (ISP-B-07). These changes appear to be the major differences between the older and newer traces, given that the volume ratios hardly changed.

IV. DISCUSSION

The UDP to TCP ratio does not seem to show any systematic trend; there are variations over time and between networks, but nothing we can identify as characteristic. In particular, there is nothing in the data to suggest a sustained growth in the share of UDP traffic caused by growth in audio and video streaming. Within TCP, we have seen some indication of streaming by well-known ports, e.g., those flows generally last much longer and have distinctly low variance of interpacket arrival times.

Although we have observed a diversity of port numbers increasing over time, recent (2009) traffic volume appears to be aggregated on HTTP/S, and thus a prediction of increasing web traffic could be reasonable (e.g., [5]). It appears that a large number of application developers are taking advantage of and utilizing web traffic to increase interoperability through NATs and firewalls, mitigating deployment and operation issues [21], and in some cases to benefit from HTTP caching. From this, we may again observe the top port ranks contributing a lot more HTTP/S traffic, making the volume distributions similar to older network traffic. It also appears that DNS traffic that was once a main contributor of UDP volume no longer stands out; instead UDP port numbers are more spread, presumably due to application diversities, possibly including streaming traffic. In fact, superficial evidence suggests that popular streaming solutions are at least as likely to use TCP (with or without HTTP) as they are to use UDP (with or without RTP). Our observations cannot directly detect this, but it is certain that we are not seeing a significant volume shift from TCP to UDP. Since streaming traffic is believed to be increasing, we must have an increase in the amount of TCP traffic for which TCP's response to congestion and loss (slowing down and retransmitting) is counter-productive.

In many cases, there are correlations of our three attributes, e.g., port 80 with a high proportion of flows is also likely to have a high proportion of both volume and duration. Similarly, an unpopular port number is likely to have low values for flows, volume and duration. However, certain ports with a low number of flows could contribute a high volume of traffic. Port usage trends are obviously dependent on application trends. As we have seen, these vary between networks, so local observations are the only valid guide. This could be significant if a service provider is planning to use any kind of address sharing by restricting the port range per subscriber [26]. There seems to be no general rule about which ports are popular, except for the few very well-known service ports.

Our observations of port usage also shows considerable but not systematic variation between networks. This is somewhat surprising; all the networks are large enough that we would expect usage patterns to average out and be similar in all cases. We can speculate that the demographics of the various user populations (e.g., students and academics versus general population) cause them to use rather different sets of operating systems and applications. However, the main lesson is that one cannot extrapolate from usage patterns on one network to those on another without allowing for at least as much variability as we have observed in this study.

From this, our observations also suggest several guidelines for potential measurements on operational networks. First, variation in the number of flows may indicate network instabilities and abnormal behaviors. The observed variability implies that one needs to be flexible when configuring the measurement parameters, e.g., the traffic meter's flow table size, perhaps adjusting the flow timeout differently for each port number. Second, the volume and duration of flows indicate potential network improvements based on port usages; in the port and rank distribution, the slopes indicate how the port numbers are concentrated in small or large ranges. This information can be considered for purposes such as prioritizing specific applications of interest, or new strategy in load balancing and accounting/billing. Flow-based routing (for example, [27]) has the ability to resolve integrity of inelastic (including VoIP and p2p) traffic by keeping track of flows for faster routing, though little evidence of applications has been reported.

V. RELATED WORK

Our observations share a similar view with measurement done in [1], i.e., a high UDP flow count and potential signaling flows. However, we detailed each network's traffic statistics, observed for per-flow behaviors of wide variabilities of the port number ranges, covering wider network traces. Our study extends the work in [23]; we included elastic and inelastic flow behaviors to observe potential streaming traffic, and all network summaries are detailed in this work. We note that port-based observations can give inaccurate protocol identification; however studies have shown (e.g., [20], [21]) that port numbers still give reasonable insights into applications and trends. Faber [14] suggested that IP hosts producing UDP flows could be characterized by weight functions, e.g., between p2p and scans. Also, McNutt and De Shon [24] have computed correlations in the usage of ephemeral ports to identify potential malicious traffic patterns. Wang et al. [29] reported on a short term study of the distribution of ephemeral port usage; they consider any port above 1024 to be ephemeral, not distinguishing between the registered and dynamic ports. Ephemeral port number cycling can be visualized so as to detect hidden services [16]. Allman [13] suggested different ways to select ephemeral ports that are more diverse and robust against security threats. Much interest in the choice of ephemeral port numbers was aroused by the DNS vulnerability publicized in 2008 [3]. It is to be expected that as developers learn the lesson of this vulnerability, randomization of port numbers may become more prevalent.

VI. CONCLUSION

In this paper, we have have observed the two widely used protocols (UDP and TCP) to measure how their UDP to TCP ratio varied. Particularly we observed that there is no clear evidence that the ratio is increasing or decreasing. The ratio is rather dependent on application popularity and, consequently, on user choices. The volume ratio had subtle variations – the majority of volume is dominated by TCP, with a diurnal pattern. The flow ratio had larger variations – many flows are UDP but with very small volume.

Although the ratio does not vary systematically among the networks, each had quite different port number distributions. For example, data from recent years of ISP networks contained a large amount of p2p traffic, while enterprise networks contained a large amount of FTP traffic. Again, user choices are at work. Well-known streaming flows such as RTP, NMSP, and RTMP are visible especially in recent years, however there are no particular signs of incremental use of them.

As we note that emerging applications use arbitrary port numbers, identifying applications solely based on port numbers alone could lead to inaccurate assumptions; deep packet inspection may be the only approach in practice to determine the streaming traffic, provided that the packets are not encrypted. It could continue to be, on the other hand, that the streaming methods may simply further be evolved or integrated into elastic data traffic, provided that over-provisioning is widely practiced. Nevertheless, the trend towards more

153

streaming traffic seems undeniable. However, contrary to what might naively be expected, there is no evidence of a resulting trend to relatively more use of UDP to carry it. In fact, the evidence is of widespread variability in the fraction of UDP traffic. Similarly, there is no clear trend in port usage, only evidence of widespread variability.

We had hoped to derive some general guidelines about the likely trend in traffic patterns, particularly concerning the fraction of non-congestion-controlled flows and the distribution of port usage. There appear to be no such guidelines in the available data. We consider that router and switch designers, as well as network operators, should be well aware of high variability in these basic characteristics, and design and provision their systems accordingly. In particular, one cannot extrapolate from measurements of one user population to the likely traffic patterns of another. It seems that all network operators need to measure their own protocol and port usage profiles.

ACKNOWLEDGMENTS

Preliminary data on UDP to TCP ratios was kindly supplied by Arnold Nipper, Toshinori Ishii, Kjetil Olsen, Mike Hughes and Arne Oslebo. We are grateful to Ryan Koga of CAIDA and to Stanislav Shalunov, formerly of Internet2, for information about their respective datasets.

REFERENCES

- "Analyzing UDP usage in Internet traffic," http://www.caida.org/ research/traffic-analysis/tcpudpratio/, [Online; accessed 01-Aug-2009].
- [2] "CAIDA Internet Data Realtime Monitors," http://www.caida.org/data/ realtime/index.xml, [Online; accessed 30-Oct-2009].
- [3] "CERT Vulnerability Note VU#800113," http://www.kb.cert.org/vuls/id/ 800113/, [Online; accessed 10-Jun-2009].
- [4] "Cisco Visual Networking Index: Usage Study," http://www.cisco. com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/Cisco_VNI_ Usage_WP.pdf, [Online; accessed 20-August-2009].
- [5] "Hyperconnectivity and the Approaching Zettabyte Era," http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ ns705/ns827/VNI_Hyperconnectivity_WP.pdf, [Online; accessed 20-August-2009].
- [6] "Internet2 NetFlow: Weekly Reports," http://netflow.internet2.edu/ weekly/, [Online; accessed 30-Oct-2009].
- [7] "Minnesota Internet Traffic Studies (MINTS)," http://www.dtc.umn.edu/ mints/home.php, [Online; accessed 20-August-2009].
- [8] "Passive Measurement and Analysis (PMA)," http://pma.nlanr.net/, [Online; accessed 01-Nov-2008].
- [9] "Port Numbers," http://www.iana.org/assignments/port-numbers, [Online; accessed 30-October-2009].

- [10] "The Ephemeral Port Range," http://www.ncftp.com/ncftpd/doc/misc/ ephemeral_ports.html, [Online; accessed 30-October-2009].
- [11] """Well Known" TCP and UDP ports used by Apple software products," http://support.apple.com/kb/ts1629.
- [12] "WITS: Waikato Internet Traffic Storage," http://www.wand.net.nz/wits/, [Online; accessed 01-Nov-2008].
- [13] M. Allman, "Comments on selecting ephemeral ports," SIGCOMM Comput. Commun. Rev., vol. 39, no. 2, pp. 13–19, 2009.
- [14] S. Faber, "Is there any value in bulk network traces?" FloCon, 2009.
- [15] P. Gill, M. F. Arlitt, Z. Li, and A. Mahanti, "The flattening internet topology: Natural evolution, unsightly barnacles or contrived collapse?" in *PAM*, 2008, pp. 1–10.
- [16] J. Janies, "Existence plots: A low-resolution time series for port behavior analysis," in VizSec '08: Proceedings of the 5th international workshop on Visualization for Computer Security. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 161–168.
- [17] Joe St Sauver, University of Oregon, "Personal communication," 2008.
- [18] W. John and S. Tafvelin, "Analysis of internet backbone traffic and header anomalies observed," in *IMC '07: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement*. New York, NY, USA: ACM, 2007, pp. 111–116.
- [19] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos, "Is p2p dying or just hiding?" in *Global Telecommunications Conference*, 2004. GLOBECOM '04. IEEE, 2004, pp. 1532–1538.
- [20] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, "Internet traffic classification demystified: myths, caveats, and the best practices," in *CONEXT '08: Proceedings of the 2008 ACM CONEXT Conference*. New York, NY, USA: ACM, 2008, pp. 1–12.
- [21] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, and M. Karir, "2009 Internet Observatory Report," http://www.nanog.org/meetings/nanog47/presentations/Monday/ Labovitz_ObserveReport_N47_Mon.pdf, 2009.
- [22] C. Labovitz, D. McPherson, S. Iekel-Johnson, and M. Hollyman, "Internet Traffic Trends," http://www.nanog.org/meetings/nanog43/ presentations/Labovitz_internetstats_N43.pdf, 2008.
- [23] D. Lee, B. E. Carpenter, and N. Brownlee, "Observations of UDP to TCP Ratio and Port Numbers," in *Fifth International Conference on Internet Monitoring and Protection (ICIMP)*. IEEE, 2010, pp. 99–104.
- [24] J. McNutt and M. D. Shon, "Correlations between quiescent ports in network flows," *FloCon*, 2005.
- [25] A. Odlyzko, "The Delusions of Net Neutrality," in *Telecommunications* Policy Research Conference, 2008.
- [26] R. Bush (ed.), "The A+P Approach to the IPv4 Address Shortage (work in progress)," http://tools.ietf.org/id/draft-ymbk-aplusp, 2009.
- [27] L. Roberts, "A radical new router," *Spectrum, IEEE*, vol. 46, no. 7, pp. 34–39, July 2009.
- [28] J. Rosenberg, "UDP and TCP as the New Waist of the Internet Hourglass," http://tools.ietf.org/id/ draft-rosenberg-internet-waist-hourglass-00.txt.
- [29] H. Wang, R. Zhou, and Y. He, "An Information Acquisition Method Based on NetFlow for Network Situation Awareness," *Advanced Software Engineering and Its Applications*, pp. 23–26, 2008.

APPENDIX

PLOTS

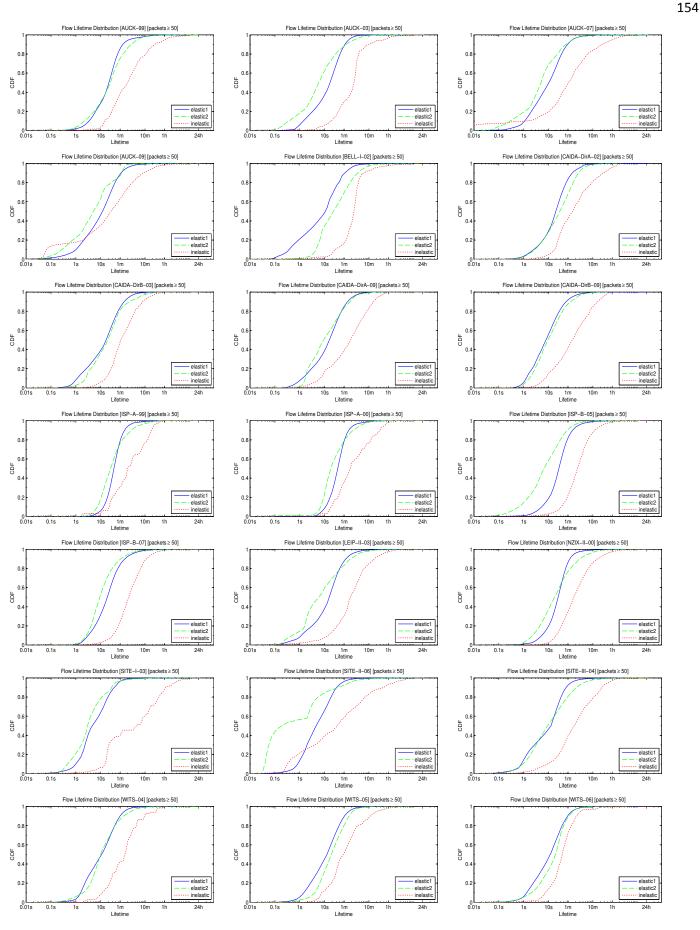


Fig. 3. Flow Lifetime Distribution - showing three flow kinds carrying at least 50 packets

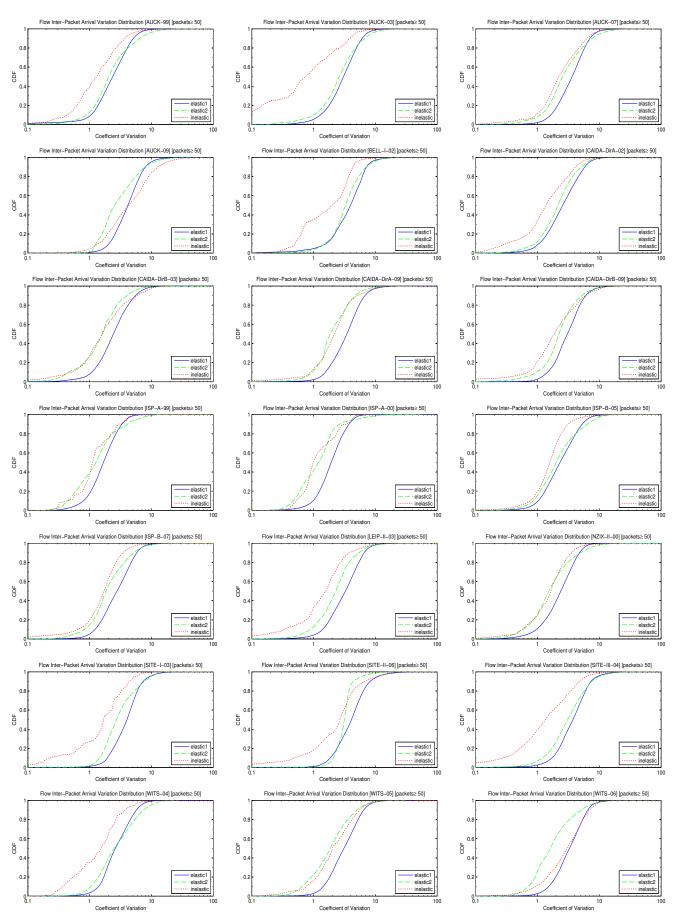


Fig. 4. Flow Inter Packet Arrival Variation Distribution - showing three flow kinds carrying at least 50 packets

155

-	_	-
1	E	6
т	Э	Ο

 TABLE III

 TOP10 PORT USAGE – LEFT:AUCK-99, CENTER:AUCK-03, RIGHT:AUCK-07

		AUCK-9						AUCK-C						AUCK-0			
Flo		Volu		Lifet		Flo		Volu		Life		Flo		Volu		Life	
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
80	38.57	80	60.06	80	30.53	80	18.83	80	59.26	80	21.50	80	29.80	80	54.02	80	26.76
113	2.16	83	2.52	25	3.21	25	4.18	443	10.26	443	6.41	443	7.49	443	4.35	25	6.92
25	2.10	20	1.03	83	2.89	443	3.77	119	3.21	9050	3.09	25	6.33	554	1.21	443	4.11
83	1.14	40221	0.88	119	1.46	2703	0.88	20	0.62	25	2.90	2703	1.21	873	1.21	1863	0.86
443	0.67	40220	0.87	22	1.07	1863	0.87	1755	0.59	7000	1.02	1863	0.69	20	0.51	5222	0.39
8080	0.62	40219	0.86	6665	0.62	9050	0.37	25	0.45	1863	0.89	6000	0.49	3355	0.46	5190	0.33
110	0.40	52179	0.71	443	0.56	1080	0.32	873	0.38	5190	0.67	993	0.35	3389	0.38	993	0.21
22	0.27	52180	0.71	21	0.48	7000	0.27	993	0.34	13130	0.49	1080	0.20	3202	0.35	61	0.20
21	0.19	52178	0.70	20	0.48	20349	0.26	8000	0.30	119	0.43	21	0.12	25	0.33	554	0.20
8001	0.18	2013	0.68	23	0.47	1025	0.23	22	0.27	2703	0.26	143	0.08	1935	0.29	2848	0.17
Top10	46.29	Top10	69.03	Top10	41.78	Top10	29.98	Top10	75.69	Top10	37.65	Top10	46.75	Top10	63.11	Top10	40.18
Top20	47.35	Top20	72.63	Top20	44.74	Top20	31.21	Top20	77.35	Top20	39.09	Top20	47.30	Top20	64.75	Top20	41.23
		AUCK-9						AUCK-C						AUCK-0			
Flo		Volu		Dura		Flo		Volu		Dura		Flo		Volu		Dura	
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
53	36.00	27532	16.96	443	16.70	53	34.70	53	20.34	53	38.73	53	43.43	53	20.27	53	27.58
1099	16.06	2926	15.69	53	14.77	32769	10.95	49188	6.92	32769	30.05	24051	1.96	35026	9.77	32776	11.76
123	7.96	3130	12.12	3130	13.10	6277	3.02	49212	5.57	50524	4.36	32776	1.27	60264	6.24	32782	11.04
4000	4.66	53	11.96	40657	4.08	1026	2.71	5004	5.19	35546	4.03	32782	1.23	60010	5.90	24051	4.77
1024	3.52	16232	3.99	2809	2.46	1025	2.66	32769	3.88	32786	2.34	24405	0.68	46015	5.25	46015	3.37
40657	1.26	5010	2.22	36497	1.66	50524	2.43	49180	2.61	12345	1.79	123	0.18	60018	4.72	123	2.28
3130	1.21	16187	2.00	4000	1.51	35546	2.32	49210	2.33	12371	1.78	2976	0.15	51452	2.66	6277	1.59
137	0.79	17106	1.81	1024	1.40	1027	2.17	49186	2.31	50342	0.96	13326	0.12	59004	2.23	443	1.13
443	0.48	1363	1.81	6980	1.19	1028	2.03	49204	2.28	51024	0.90	1096	0.12	1996	1.72	11113	1.04
36497	0.40	14684	1.67	6978	1.16	1029	1.54	10000	1.91	51835	0.88	17200	0.11	10000	1.62	24405	0.78
Top10	72.35	Top10	70.24	Top10	58.03	Top10	64.55	Top10	53.35	Top10	85.83	Top10	49.24	Top10	60.39	Top10	65.34
Top20	75.24	Top20	80.21	Top20	66.79	Top20	73.98	Top20	67.76	Top20	90.63	Top20	50.08	Top20	67.38	Top20	71.12
												1					

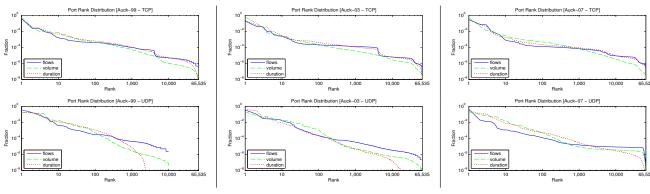
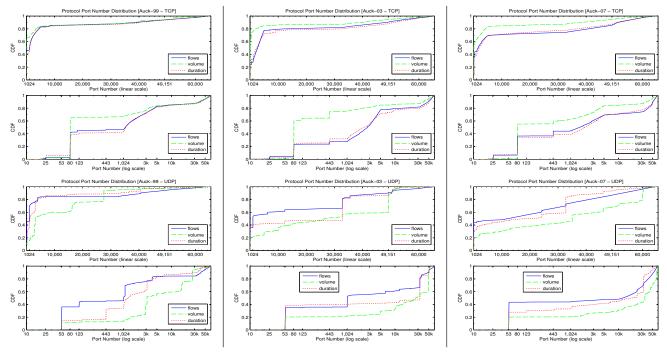
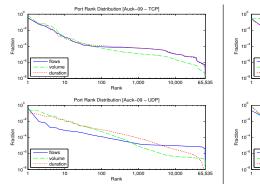


Fig. 5. Port Rank Distribution - Left:AUCK-99, Center:AUCK-03, Right:AUCK-07




Fig. 6. Port Number Distribution - Left: AUCK-99, Center: AUCK-03, Right: AUCK-07

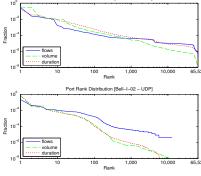

1	с	7
т	.Э	1

 TABLE IV

 TOP10 PORT USAGE - LEFT: AUCK-09, CENTER: BELL-I-02, RIGHT:CAIDA-DirA-02

		AUCK-0	Q-TCD		1	1		BELL-I-	02_TCD			1	C7	IDA-Dir	- <u>N</u> _02_T	CD	
Flo			ume	Dura	tion	Flo		Volu		Dura	tion	Flo		Volu		Dura	tion
Port#	ws %	Port#	ume %	Port#	1001 %	Port#	% %	Port#	me %	Port#	//////////////////////////////////////	Port#	% %	Port#	me %	Port#	111011 %
	-		-				28.35		32.28		17.88		39.23			80	33.92
80	34.89	80	70.41	80	28.19	80	28.35	119 80		80	3.37	80		80	65.27	25	
443	5.32	3131	5.99 4.13	443	7.43 6.34	2000			28.12	711		25	2.68	1755	3.02 2.37		2.40
3128	3.14	443		3128	6.34 1.95	443	2.04 1.57	6677	2.59	22 25	3.31	21	2.65	4662		4662	1.73
3131	1.38	3128	3.86	3131		25		564	2.45			8080	0.59	1214	1.90	8010	1.69
25	1.03	554	2.02	25	1.02	5190	1.34	10986	1.41	564	1.36	4662	0.42	6699	1.27	1214	1.62
1863	0.45	1935	1.08	1863	0.42	21	1.31	22	1.29	21	1.25	53	0.30	2189	0.63	6699	1.43
6000	0.37	993	0.31	10000	0.15	22	0.99	554	1.20	6346	1.20	1214	0.29	6346	0.60	6667	1.17
2703	0.20	873	0.30	554	0.15	711	0.89	443	1.20	11021	1.17	110	0.29	2401	0.47	1755	0.83
9050	0.20	22	0.17	5222	0.15	1863	0.32	1755	1.02	443	1.07	1863	0.27	8080	0.41	21	0.76
993	0.13	8002	0.11	993	0.11	5050	0.16	55418	0.98	5190	0.86	6667	0.21	119	0.33	8080	0.54
Top10	47.11	Top10	88.38	Top10	45.91	Top10	39.35	Top10	72.55	Top10	33.24	Top10	46.93	Top10	76.28	Top10	46.09
Top20	47.77	Top20	89.19	Top20	46.41	Top20	40.23	Top20	79.05	Top20	38.52	Top20	47.96	Top20	78.73	Top20	48.78
			09-UDP					BELL-I-						IDA-Di			
Flo		Volu	ume	Dura		Flo		Volu	ime	Dura		Flo	ws	Volu	ime	Dura	
Port#	%		ume %	Port#	%	Port#	ws %	Volu Port#	ime %	Dura Port#	%	Port#	ws %	Volu Port#	ime %	Dura Port#	%
Port#	% 43.76	Volu Port# 33001	ume % 24.69	Port# 1513	% 11.84	Port# 137	% 21.41	Volu Port# 7331	ime % 72.10	Dura Port# 7331	% 70.43	Port# 53	ws % 37.76	Volu Port# 1052	ime % 16.02	Dura Port# 53	% 32.43
Port#	%	Volu Port#	ume %	Port#	% 11.84 7.13	Port# 137 53	%	Volu Port#	1000 me % 72.10 2.79	Dura Port# 7331 55	%	Port#	ws %	Volu Port#	ime %	Dura Port#	%
Port# 53 1513 123	% 43.76 0.92 0.63	Volu Port# 33001 33670 38168	ume % 24.69 19.91 7.91	Port# 1513 49153 10002	% 11.84 7.13 4.25	Port# 137 53 123	% 21.41 3.87 3.33	Volu Port# 7331 33264 161	1000 me % 72.10 2.79 2.57	Dura Port# 7331 55 53	% 70.43 4.39 3.86	Port# 53 6257 1214	% 37.76 18.13 4.02	Volu Port# 1052 1047 53	16.02 15.67 6.07	Dura Port# 53 6257 28800	% 32.43 5.83 5.32
Port# 53 1513	% 43.76 0.92	Volu Port# 33001 33670	ume % 24.69 19.91	Port# 1513 49153	% 11.84 7.13 4.25 4.12	Port# 137 53	% 21.41 3.87	Volu Port# 7331 33264	1000 me % 72.10 2.79	Dura Port# 7331 55	% 70.43 4.39	Port# 53 6257	% 37.76 18.13	Volu Port# 1052 1047	16.02 15.67	Dura Port# 53 6257	% 32.43 5.83
Port# 53 1513 123	% 43.76 0.92 0.63	Volu Port# 33001 33670 38168	24.69 19.91 7.91 5.34 4.58	Port# 1513 49153 10002	% 11.84 7.13 4.25 4.12 3.35	Port# 137 53 123	% 21.41 3.87 3.33 2.37 1.35	Volu Port# 7331 33264 161 24716 53	me % 72.10 2.79 2.57 2.22 1.59	Dura Port# 7331 55 53	% 70.43 4.39 3.86 3.35 1.18	Port# 53 6257 1214	% 37.76 18.13 4.02	Volu Port# 1052 1047 53 6257 1716	16.02 15.67 6.07	Dura Port# 53 6257 28800 5555 27243	% 32.43 5.83 5.32
Port# 53 1513 123 14398	% 43.76 0.92 0.63 0.17	Volt Port# 33001 33670 38168 59002	24.69 19.91 7.91 5.34	Port# 1513 49153 10002 10003	% 11.84 7.13 4.25 4.12	Port# 137 53 123 32532	% 21.41 3.87 3.33 2.37	Volu Port# 7331 33264 161 24716	me % 72.10 2.79 2.57 2.22	Dura Port# 7331 55 53 137	% 70.43 4.39 3.86 3.35 1.18 1.11	Port# 53 6257 1214 27243	% 37.76 18.13 4.02 2.12	Volu Port# 1052 1047 53 6257	16.02 15.67 6.07 4.47	Dura Port# 53 6257 28800 5555	% 32.43 5.83 5.32 4.22
Port# 53 1513 123 14398 17822	% 43.76 0.92 0.63 0.17 0.16	Volt Port# 33001 33670 38168 59002 16402	24.69 19.91 7.91 5.34 4.58	Port# 1513 49153 10002 10003 53	% 11.84 7.13 4.25 4.12 3.35	Port# 137 53 123 32532 500	% 21.41 3.87 3.33 2.37 1.35	Volu Port# 7331 33264 161 24716 53	me % 72.10 2.79 2.57 2.22 1.59	Dura Port# 7331 55 53 137 8482	% 70.43 4.39 3.86 3.35 1.18	Port# 53 6257 1214 27243 123	⁵⁰⁰⁰ % 37.76 18.13 4.02 2.12 1.28	Volu Port# 1052 1047 53 6257 1716	16.02 15.67 6.07 4.47 2.64	Dura Port# 53 6257 28800 5555 27243	% 32.43 5.83 5.32 4.22 3.42
Port# 53 1513 123 14398 17822 10306	% 43.76 0.92 0.63 0.17 0.16 0.15	Volu Port# 33001 33670 38168 59002 16402 53	24.69 19.91 7.91 5.34 4.58 3.55	Port# 1513 49153 10002 10003 53 49154	% 11.84 7.13 4.25 4.12 3.35 2.07	Port# 137 53 123 32532 500 24503	% 21.41 3.87 3.33 2.37 1.35 1.31	Volu Port# 7331 33264 161 24716 53 24504	me % 72.10 2.79 2.57 2.22 1.59 1.17	Dura Port# 7331 55 53 137 8482 6899	% 70.43 4.39 3.86 3.35 1.18 1.11	Port# 53 6257 1214 27243 123 5555	⁵⁰⁰⁰ % 37.76 18.13 4.02 2.12 1.28 0.90	Volu Port# 1052 1047 53 6257 1716 12203	16.02 15.67 6.07 4.47 2.64 2.01	Dura Port# 53 6257 28800 5555 27243 2002	% 32.43 5.83 5.32 4.22 3.42 1.86
Port# 53 1513 123 14398 17822 10306 36589	% 43.76 0.92 0.63 0.17 0.16 0.15 0.10	Volu Port# 33001 33670 38168 59002 16402 53 59004	24.69 19.91 7.91 5.34 4.58 3.55 1.96	Port# 1513 49153 10002 10003 53 49154 46015	% 11.84 7.13 4.25 4.12 3.35 2.07 1.97	Port# 137 53 123 32532 500 24503 27732	% 21.41 3.87 3.33 2.37 1.35 1.31 1.18	Volu Port# 7331 33264 161 24716 53 24504 22888	me % 72.10 2.79 2.57 2.22 1.59 1.17 1.06	Dura Port# 7331 55 53 137 8482 6899 24503	% 70.43 4.39 3.86 3.35 1.18 1.11 0.79	Port# 53 6257 1214 27243 123 5555 137	% 37.76 18.13 4.02 2.12 1.28 0.90 0.88	Volu Port# 1052 1047 53 6257 1716 12203 27015	16.02 15.67 6.07 4.47 2.64 2.01 1.43	Dura Port# 53 6257 28800 5555 27243 2002 137	% 32.43 5.83 5.32 4.22 3.42 1.86 1.59
Port# 53 1513 123 14398 17822 10306 36589 51504	% 43.76 0.92 0.63 0.17 0.16 0.15 0.10 0.10	Volu Port# 33001 33670 38168 59002 16402 53 59004 5442	24.69 19.91 7.91 5.34 4.58 3.55 1.96 1.89	Port# 1513 49153 10002 10003 53 49154 46015 443	% 11.84 7.13 4.25 4.12 3.35 2.07 1.97 1.76	Port# 137 53 123 32532 500 24503 27732 6899	% 21.41 3.87 3.33 2.37 1.35 1.31 1.18 1.18	Volu Port# 7331 33264 161 24716 53 24504 22888 6899	me % 72.10 2.79 2.57 2.22 1.59 1.17 1.06 1.01	Dura Port# 7331 55 53 137 8482 6899 24503 14137	% 70.43 4.39 3.86 3.35 1.18 1.11 0.79 0.73	Port# 53 6257 1214 27243 123 5555 137 27005	% 37.76 18.13 4.02 2.12 1.28 0.90 0.88 0.86	Volu Port# 1052 1047 53 6257 1716 12203 27015 6112	me % 16.02 15.67 6.07 4.47 2.64 2.01 1.43 0.84	Dura Port# 53 6257 28800 5555 27243 2002 137 1214	% 32.43 5.83 5.32 4.22 3.42 1.86 1.59 1.55
Port# 53 1513 123 14398 17822 10306 36589 51504 2535	% 43.76 0.92 0.63 0.17 0.16 0.15 0.10 0.10 0.08	Volu Port# 33001 33670 38168 59002 53 59004 5442 65321	24.69 19.91 7.91 5.34 4.58 3.55 1.96 1.89 1.58	Port# 1513 49153 10002 10003 53 49154 46015 443 1684	% 11.84 7.13 4.25 4.12 3.35 2.07 1.97 1.76 1.68	Port# 137 53 123 32532 500 24503 27732 6899 55	% 21.41 3.87 3.33 2.37 1.35 1.31 1.18 1.18 1.14	Volu Port# 7331 33264 161 24716 53 24504 22888 6899 7170	me % 72.10 2.79 2.57 2.22 1.59 1.17 1.06 1.01 0.85	Dura Port# 7331 55 53 137 8482 6899 24503 14137 24721	% 70.43 4.39 3.86 3.35 1.18 1.11 0.79 0.73 0.63	Port# 53 6257 1214 27243 123 5555 137 27005 27015	% 37.76 18.13 4.02 2.12 1.28 0.90 0.88 0.86 0.86	Volu Port# 1052 1047 53 6257 1716 12203 27015 6112 4708	ime % 16.02 15.67 6.07 4.47 2.64 2.01 1.43 0.84 0.79	Dura Port# 53 6257 28800 5555 27243 2002 137 1214 12345	% 32.43 5.83 5.32 4.22 3.42 1.86 1.59 1.55 1.41
Port# 53 1513 123 14398 17822 10306 36589 51504 2535 41048	% 43.76 0.92 0.63 0.17 0.16 0.15 0.10 0.10 0.10 0.08 0.08	Volu Port# 33001 33670 38168 59002 16402 53 59004 5442 65321 1044	24.69 19.91 7.91 5.34 4.58 3.55 1.96 1.89 1.58 1.00	Port# 1513 49153 10002 10003 53 49154 46015 443 1684 3128	% 11.84 7.13 4.25 4.12 3.35 2.07 1.97 1.76 1.68 1.44	Port# 137 53 123 32532 500 24503 27732 6899 55 28753	% 21.41 3.87 3.33 2.37 1.35 1.31 1.18 1.18 1.18 1.14 1.02	Volu Port# 7331 33264 161 24716 53 24504 22888 6899 7170 137	me % 72.10 2.79 2.57 2.22 1.59 1.17 1.06 1.01 0.85 0.81	Dura Port# 7331 55 53 137 8482 6899 24503 14137 24721 27161	% 70.43 4.39 3.86 3.35 1.18 1.11 0.79 0.73 0.63 0.63	Port# 53 6257 1214 27243 123 5555 137 27005 27015 1717	% 37.76 18.13 4.02 2.12 1.28 0.90 0.88 0.86 0.86 0.64	Volu Port# 1052 1047 53 6257 1716 12203 27015 6112 4708 49606	ime % 16.02 15.67 6.07 4.47 2.64 2.01 1.43 0.84 0.79 0.62	Dura Port# 53 6257 28800 5555 27243 2002 137 1214 12345 6112	% 32.43 5.83 5.32 4.22 3.42 1.86 1.59 1.55 1.41 1.24

-02 -

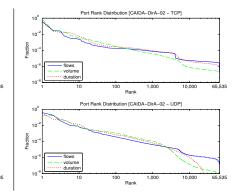


Fig. 7. Port Rank Distribution – Left: AUCK-09, Center:BELL-I-02, Right:CAIDA-DirA-02

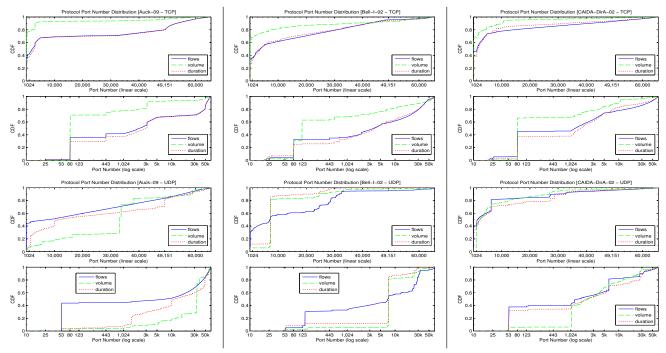


Fig. 8. Port Number Distribution - Left: AUCK-09, Center:BELL-I-02, Right:CAIDA-DirA-02

1	-	o
	5	x

 TABLE V

 TOP10 PORT USAGE - LEFT:CAIDA-DirB-03, CENTER:CAIDA-DirA-09, RIGHT:CAIDA-DirB-09

	~ ~						~ ~					1	~ ~				
		AIDA-Di:		-				AIDA-Di						AIDA-Di:			
Flo		Volu		Dura		Flo		Volu		Dura		Flo		Volu		Dura	
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
80	28.02	80	72.69	80	22.84	80	35.58	20	42.07	80	25.33	80	24.41	80	65.58	80	15.61
1080	2.55	4662	1.39	4662	3.62	25	15.84	80	41.41	25	6.49	25	2.40	443	1.18	9050	5.56
4662	0.96	443	1.12	25	1.39	443	6.38	443	1.87	9050	5.57	9050	2.04	554	0.98	25	1.68
81	0.88	6699	1.01	1080	1.24	9050	1.43	9050	0.63	443	3.96	443	1.19	9050	0.84	443	1.17
25	0.77	81	0.84	6699	0.68	22	0.19	25	0.56	6881	0.32	2710	0.45	81	0.39	6881	0.35
889	0.60	88	0.83	139	0.67	23	0.14	1935	0.14	28805	0.27	445	0.34	1935	0.36	21	0.21
49555	0.37	8080	0.68	6667	0.60	21	0.11	110	0.10	51413	0.17	6667	0.32	35627	0.19	6346	0.20
10002	0.34	1214	0.63	1214	0.59	11762	0.11	6881	0.10	13130	0.16	22	0.22	51413	0.13	2710	0.20
6588	0.34	7675	0.47	81	0.55	445	0.11	554	0.07	45682	0.13	11762	0.19	5001	0.11	51413	0.19
179	0.29	1755	0.41	49555	0.47	1755	0.10	19101	0.06	6346	0.11	21	0.17	52815	0.11	17326	0.19
Top10	35.13	Top10	80.07	Top10	32.64	Top10	60.00	Top10	86.99	Top10	42.52	Top10	31.72	Top10	69.87	Top10	25.37
Top20	36.82	Top20	81.71	Top20	35.28	Top20	60.51	Top20	87.48	Top20	43.18	Top20	32.76	Top20	70.78	Top20	26.17
•						^		· ·		· ·						· ·	
	CA	IDA-Di:	rB-03-t	JDP			CA	AIDA-Di	-A-09-U	JDP			CF	AIDA-Di	-B-09-t	JDP	
Flo	ws	Volu	ıme	Dura	tion	Flo		Volu	ime	Dura	tion	Flo	ws	Volu		Dura	tion
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
22321	21.30	14567	11.76	53	17.62	53	11.61	53	6.70	53	7.40	53	6.88	57722	2.56	57722	11.20
53	11.73	27005	6.98	22321	8.42	123	0.74	25175	1.56	3074	0.71	6881	0.61	53	1.88	53	1.95
7674	11.15	554	6.05	6257	4.36	6881	0.39	161	1.47	6881	0.62	6257	0.30	60096	1.32	6881	0.72
6257	3.21	53	5.37	7674	3.45	50000	0.17	5150	1.15	500	0.48	6346	0.20	3074	1.25	6257	0.58
1026	1.55	27010	3.45	1024	1.41	49152	0.16	22209	1.10	10000	0.40	45682	0.17	15000	1.22	3074	0.38
1027	1.54	1247	2.15	6112	1.26	6346	0.15	3074	0.87	6348	0.36	60001	0.16	49262	0.98	10000	0.30
1025	1.53	6257	2.05	28800	1.25	65535	0.13	64065	0.84	6346	0.32	32768	0.09	5004	0.56	6346	0.27
1029	1.27	12203	1.49	27005	1.04	16001	0.13	15000	0.67	10001	0.24	50000	0.08	18350	0.47	60001	0.24
1028	1.04	27015	1.23	3601	0.95	10000	0.11	60023	0.65	32768	0.22	20129	0.08	4500	0.46	15000	0.22
137	0.87	6112	1.22	5325	0.95	6800	0.11	7566	0.54	123	0.18	60000	0.07	1044	0.46	500	0.16
Top10	55.19	Top10	41.75	Top10	40.73	Top10	13.71	Top10	15.54	Top10	10.91	Top10	8.64	Top10	11.16	Top10	16.02
Top20	60.46	Top20	49.36	Top20	46.65	Top20	14.49	Top20	19.92	Top20	12.11	Top20	9.16	Top20	13.98	Top20	17.02

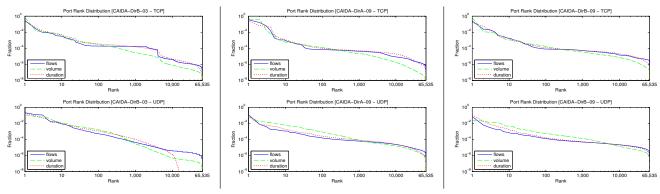


Fig. 9. Port Rank Distribution - Left: CAIDA-DirB-03, Center: CAIDA-DirA-09, Right: CAIDA-DirB-09

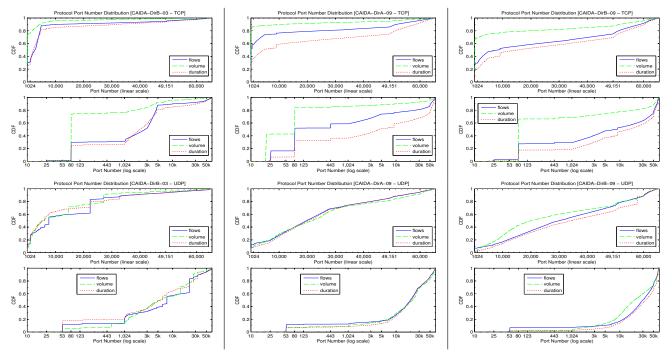
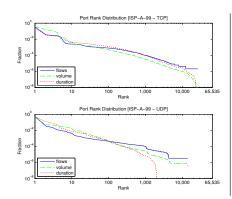


Fig. 10. Port Number Distribution - Left:CAIDA-DirB-03, Center:CAIDA-DirA-09, Right:CAIDA-DirB-09


2010, Copyright by authors, Published under agreement with IARIA - www.iaria.org

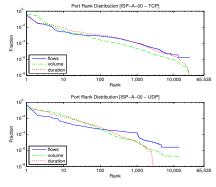

	_	~
1	5	u
-	J	2

 TABLE VI

 TOP10 PORT USAGE - LEFT:ISP-A-99, CENTER:ISP-A-00, RIGHT:ISP-B-05

						1											
			99-TCP					ISP-A-						ISP-B-			
Flo		Volu		Dura		Flo		Volu		Dura		Flo		Volu		Dura	
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
80	33.48	80	38.12	80	25.96	80	36.21	80	44.30	80	24.99	80	6.90	80	16.17	6881	4.73
25	3.57	1040	15.96	25	3.21	110	2.79	1040	27.09	1040	3.52	4662	3.46	4662	4.98	80	4.11
110	2.97	110	10.69	6699	2.74	25	2.42	110	4.07	6699	2.62	6881	2.30	6881	3.22	4662	4.04
113	2.88	6699	7.10	6667	2.34	113	1.63	6699	2.68	6667	2.53	6346	1.43	6346	2.93	6346	3.31
6667	1.91	119	1.11	1040	1.99	6667	1.00	2117	1.25	25	1.86	25	1.18	8000	1.63	16881	1.00
443	0.53	20	1.09	110	1.63	443	0.45	119	0.86	4901	1.16	445	0.84	6699	1.15	6699	0.79
1863	0.28	25	0.64	4901	1.17	23	0.32	6700	0.66	6666	1.14	1863	0.76	119	0.88	6348	0.66
8888	0.27	53358	0.57	2222	0.58	20	0.29	20	0.52	1374	1.09	16881	0.57	110	0.77	6882	0.63
81	0.25	23	0.38	1533	0.53	24554	0.27	81	0.50	110	0.88	110	0.56	6348	0.74	25	0.50
1032	0.25	2660	0.38	1073	0.44	13628	0.27	23	0.36	6668	0.82	135	0.38	16881	0.56	1863	0.48
Top10	46.40	Top10	76.03	Top10	40.57	Top10	45.64	Top10	82.29	Top10	40.61	Top10	18.37	Top10	33.04	Top10	20.25
Top20	48.56	Top20	78.27	Top20	44.20	Top20	47.51	Top20	84.59	Top20	45.10	Top20	20.36	Top20	36.13	Top20	22.90
		-		-		-		-		-		-		-		-	
		ISP-A-	99-UDP					ISP-A-	00-UDP					ISP-B-	05-UDP		
Flo	ws		199-UDP	Dura	ition	Flo	ws	ISP-A- Volu		Dura	tion	Flo		ISP-B- Volu	ime	Dura	tion
Flo Port#	ws %				ition %	Flo Port#	ws %			Dura Port#	tion %	Flo Port#	ws %			Dura Port#	ution %
		Volu	ime	Dura				Volu	ime					Volu	ime		
Port#	%	Volu Port#	ume %	Dura Port#	%	Port#	%	Volu Port#	ime %	Port#	%	Port#	%	Volu Port#	ime %	Port#	%
Port#	% 54.50	Volu Port# 53	ume % 42.05	Dura Port# 53	% 46.89	Port# 53	% 53.74	Volu Port# 28001	ime % 14.24	Port# 53	% 28.32	Port# 4672	% 21.29	Volu Port# 6346	ime % 8.59	Port# 6346	% 19.07
Port# 53 4000	% 54.50 3.30	Volu Port# 53 1533	ume % 42.05 4.86	Dura Port# 53 1646	% 46.89 12.24	Port# 53 4000	% 53.74 2.25	Volu Port# 28001 53	14.24 12.73	Port# 53 138	% 28.32 9.94	Port# 4672 6881	% 21.29 8.14	Volu Port# 6346 6348	11me % 8.59 3.66	Port# 6346 53	% 19.07 5.89
Port# 53 4000 137	% 54.50 3.30 2.27	Volu Port# 53 1533 3328	ume % 42.05 4.86 4.65	Dura Port# 53 1646 4000	% 46.89 12.24 7.95	Port# 53 4000 137	% 53.74 2.25 1.80	Volu Port# 28001 53 1080	14.24 12.73 7.95	Port# 53 138 1646	% 28.32 9.94 7.34	Port# 4672 6881 53	% 21.29 8.14 6.79	Volu Port# 6346 6348 7000	ime % 8.59 3.66 2.51	Port# 6346 53 6881	% 19.07 5.89 3.00
Port# 53 4000 137 1646	% 54.50 3.30 2.27 1.16	Volu Port# 53 1533 3328 3635	ume % 42.05 4.86 4.65 3.97	Dura Port# 53 1646 4000 1645	% 46.89 12.24 7.95 5.08	Port# 53 4000 137 138	% 53.74 2.25 1.80 1.79	Volu Port# 28001 53 1080 7877	14.24 12.73 7.95 7.65	Port# 53 138 1646 4000	% 28.32 9.94 7.34 6.04	Port# 4672 6881 53 6346	% 21.29 8.14 6.79 3.95	Volu Port# 6346 6348 7000 4672	11me % 8.59 3.66 2.51 2.48	Port# 6346 53 6881 4672	% 19.07 5.89 3.00 2.90
Port# 53 4000 137 1646 1645	% 54.50 3.30 2.27 1.16 1.01	Volt Port# 53 1533 3328 3635 3225	42.05 4.86 4.65 3.97 3.19	Dura Port# 53 1646 4000 1645 28800	% 46.89 12.24 7.95 5.08 1.91	Port# 53 4000 137 138 1646	% 53.74 2.25 1.80 1.79 1.15	Volu Port# 28001 53 1080 7877 7777	14.24 12.73 7.95 7.65 5.72	Port# 53 138 1646 4000 6112	% 28.32 9.94 7.34 6.04 3.24	Port# 4672 6881 53 6346 6257	% 21.29 8.14 6.79 3.95 1.46	Volu Port# 6346 6348 7000 4672 53	8.59 3.66 2.51 2.48 2.37	Port# 6346 53 6881 4672 32770	% 19.07 5.89 3.00 2.90 1.81
Port# 53 4000 137 1646 1645 138	% 54.50 3.30 2.27 1.16 1.01 0.82	Volu Port# 53 1533 3328 3635 3225 137	42.05 4.86 4.65 3.97 3.19 2.85	Dura Port# 53 1646 4000 1645 28800 137	% 46.89 12.24 7.95 5.08 1.91 1.76	Port# 53 4000 137 138 1646 7778	% 53.74 2.25 1.80 1.79 1.15 0.94	Volu Port# 28001 53 1080 7877 7777 1037	14.24 12.73 7.95 7.65 5.72 4.38	Port# 53 138 1646 4000 6112 1645	% 28.32 9.94 7.34 6.04 3.24 2.53	Port# 4672 6881 53 6346 6257 123	% 21.29 8.14 6.79 3.95 1.46 0.98	Volu Port# 6346 6348 7000 4672 53 16881	8.59 3.66 2.51 2.48 2.37 2.19	Port# 6346 53 6881 4672 32770 8000	% 19.07 5.89 3.00 2.90 1.81 1.68
Port# 53 4000 137 1646 1645 138 1026	% 54.50 3.30 2.27 1.16 1.01 0.82 0.75	Volu Port# 53 1533 3328 3635 3225 137 6112	42.05 4.86 4.65 3.97 3.19 2.85 2.70	Dura Port# 53 1646 4000 1645 28800 137 6112	% 46.89 12.24 7.95 5.08 1.91 1.76 1.29	Port# 53 4000 137 138 1646 7778 1645	% 53.74 2.25 1.80 1.79 1.15 0.94 0.91	Volu Port# 28001 53 1080 7877 7777 1037 27960	% 14.24 12.73 7.95 7.65 5.72 4.38 4.06	Port# 53 138 1646 4000 6112 1645 1080	% 28.32 9.94 7.34 6.04 3.24 2.53 2.03	Port# 4672 6881 53 6346 6257 123 1083	% 21.29 8.14 6.79 3.95 1.46 0.98 0.71	Volu Port# 6346 6348 7000 4672 53 16881 27005	11me % 8.59 3.66 2.51 2.48 2.37 2.19 1.87	Port# 6346 53 6881 4672 32770 8000 6257	% 19.07 5.89 3.00 2.90 1.81 1.68 1.24
Port# 53 4000 137 1646 1645 138 1026 4936	% 54.50 3.30 2.27 1.16 1.01 0.82 0.75 0.52	Volu Port# 53 1533 3328 3635 3225 137 6112 1646	### % 42.05 4.86 4.65 3.97 3.19 2.85 2.70 2.30	Dura Port# 53 1646 4000 1645 28800 137 6112 1026	% 46.89 12.24 7.95 5.08 1.91 1.76 1.29 0.93	Port# 53 4000 137 138 1646 7778 1645 1026	% 53.74 2.25 1.80 1.79 1.15 0.94 0.91 0.44	Volu Port# 28001 53 1080 7877 7777 1037 27960 6112	me % 14.24 12.73 7.95 7.65 5.72 4.38 4.06 3.48	Port# 53 138 1646 4000 6112 1645 1080 4200	% 28.32 9.94 7.34 6.04 3.24 2.53 2.03 1.99	Port# 4672 6881 53 6346 6257 123 1083 6190	% 21.29 8.14 6.79 3.95 1.46 0.98 0.71 0.70	Volu Port# 6346 6348 7000 4672 53 16881 27005 27016	me % 3.66 2.51 2.48 2.37 2.19 1.87 1.50	Port# 6346 53 6881 4672 32770 8000 6257 123	% 19.07 5.89 3.00 2.90 1.81 1.68 1.24 0.91
Port# 53 4000 137 1646 1645 138 1026 4936 1025 123	% 54.50 3.30 2.27 1.16 1.01 0.82 0.75 0.52 0.49	Volu Port# 53 1533 3328 3635 3225 137 6112 1646 3370	ume % 42.05 4.86 4.65 3.97 3.19 2.85 2.70 2.30 2.26	Dura Port# 53 1646 4000 1645 28800 137 6112 1026 1533	% 46.89 12.24 7.95 5.08 1.91 1.76 1.29 0.93 0.92	Port# 53 4000 137 138 1646 7778 1645 1026 6112	% 53.74 2.25 1.80 1.79 1.15 0.94 0.91 0.44 0.39	Volu Port# 28001 53 1080 7877 7777 1037 27960 6112 49608	me % 14.24 12.73 7.95 7.65 5.72 4.38 4.06 3.48 2.58	Port# 53 138 1646 4000 6112 1645 1080 4200 28001	% 28.32 9.94 7.34 6.04 3.24 2.53 2.03 1.99 1.82	Port# 4672 6881 53 6346 6257 123 1083 6190 32770	% 21.29 8.14 6.79 3.95 1.46 0.98 0.71 0.70 0.68	Volu Port# 6346 6348 7000 4672 53 16881 27005 27016 6881	% 8.59 3.66 2.51 2.48 2.37 2.19 1.87 1.50 1.27	Port# 6346 53 6881 4672 32770 8000 6257 123 28800	% 19.07 5.89 3.00 2.90 1.81 1.68 1.24 0.91 0.82
Port# 53 4000 137 1646 1645 138 1026 4936 1025	% 54.50 3.30 2.27 1.16 1.01 0.82 0.75 0.52 0.49 0.43	Volu Port# 53 1533 3328 3635 3225 137 6112 1646 3370 4000	ume % 42.05 4.86 4.65 3.97 3.19 2.85 2.70 2.30 2.26 1.72	Dura Port# 53 1646 4000 1645 28800 137 6112 1026 1533 1025	% 46.89 12.24 7.95 5.08 1.91 1.76 1.29 0.93 0.92 0.68	Port# 53 4000 137 138 1646 7778 1645 1026 6112 1025	% 53.74 2.25 1.80 1.79 1.15 0.94 0.91 0.44 0.39 0.35	Volu Port# 28001 53 1080 7877 7777 1037 27960 6112 49608 138	me % 14.24 12.73 7.95 7.65 5.72 4.38 4.06 3.48 2.58 2.57	Port# 53 138 1646 4000 6112 1645 1080 4200 28001 1037	% 28.32 9.94 7.34 6.04 3.24 2.53 2.03 1.99 1.82 1.78	Port# 4672 6881 53 6346 6257 123 1083 6190 32770 1087	% 21.29 8.14 6.79 3.95 1.46 0.98 0.71 0.70 0.68 0.52	Volu Port# 6346 6348 7000 4672 53 16881 27005 27016 6881 6257	% 8.59 3.66 2.51 2.48 2.37 2.19 1.87 1.50 1.27 1.13	Port# 6346 53 6881 4672 32770 8000 6257 123 28800 4000	% 19.07 5.89 3.00 2.90 1.81 1.68 1.24 0.91 0.82 0.78

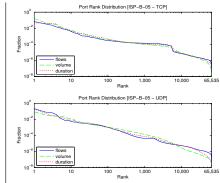
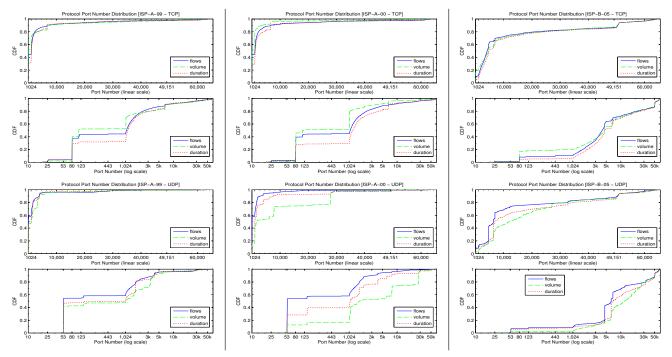
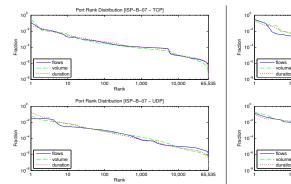


Fig. 11. Port Rank Distribution - Left: ISP-A-99, Center: ISP-A-00, Right: ISP-B-05




Fig. 12. Port Number Distribution - Left: ISP-A-99, Center: ISP-A-00, Right: ISP-B-05

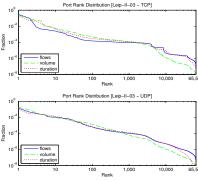

1	~	
	h	
т	U.	J

 TABLE VII

 TOP10 PORT USAGE - LEFT:ISP-B-07, CENTER:LEIP-II-03, RIGHT:NZIX-II-00

	ISP-B-07-TCP LEIP-II-03-TCP																	
						LEIP-II-03-TCP						NZIX-II-00-TCP						
Flo		Volu		Dura		Flows Volume Duration					Flows Volume				Duration			
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	
80	11.78	80	32.40	80	4.66	4662	28.79	80	23.70	4662	18.37	80	24.21	80	44.96	80	17.51	
6881	1.61	6881	1.20	6881	2.30	80	9.79	4662	9.00	80	5.10	443	2.09	20	2.96	25	2.64	
4662	1.42	119	1.02	4662	1.03	4661	0.81	6699	4.91	6346	4.26	25	1.57	443	2.19	6667	2.27	
1863	1.06	4662	0.91	6346	0.95	443	0.46	1214	4.76	6435	2.32	110	1.54	110	1.47	443	1.95	
443	0.82	443	0.71	443	0.63	1214	0.41	2634	0.94	1214	1.45	53	0.61	6699	1.30	119	0.82	
110	0.62	3077	0.69	3077	0.48	6346	0.39	1755	0.90	6699	0.91	3128	0.42	119	0.88	110	0.78	
6346	0.43	110	0.63	1863	0.45	21	0.31	554	0.88	1841	0.83	113	0.39	8080	0.87	2048	0.70	
25	0.39	6346	0.62	3724	0.33	5190	0.30	20	0.58	6369	0.80	2048	0.26	53	0.87	6699	0.65	
20003	0.21	554	0.49	664	0.30	1841	0.26	22	0.56	6667	0.71	20	0.23	4044	0.81	179	0.52	
664	0.19	19101	0.38	32459	0.30	25	0.26	2959	0.45	5190	0.50	37	0.23	2048	0.75	4044	0.48	
Top10	18.52	Top10	39.06	Top10	11.43	Top10	41.77	Top10	46.69	Top10	35.25	Top10	31.54	Top10	57.07	Top10	28.32	
Top20	20.09	Top20	41.06	Top20	13.55	Top20	43.32	Top20	50.20	Top20	37.75	Top20	32.63	Top20	60.01	Top20	30.86	
		-		-				-		-		-		-		-		
ISP-B-07-UDP					LEIP-II-03-UDP													
		ISP-B-	07-UDP				1	LEIP-II	-03-UDE	2			1	II-XIZV	-00-UDH	2		
Flo		Volu	ime	Dura		Flo	ws	Volu	ime	Dura		Flo	ws	Volu	ime	Dura		
Flo Port#	ws %			Dura Port#	%	Port#					tion %	Port#	ws %			Dura Port#	%	
		Volu	ime				ws	Volu	ime	Dura	% 9.64		ws	Volu	ime	Dura		
Port#	%	Volu Port#	ume %	Port#	%	Port# 4672 6257	ws %	Volu Port#	17.59 8.59	Dura Port#	% 9.64 2.72	Port#	ws %	Volu Port# 27500 53	ime %	Dura Port#	%	
Port# 53	% 3.15	Volu Port# 3076	ume % 6.84	Port# 3076	% 18.02	Port# 4672	% 13.63 4.56 3.20	Volu Port# 27015	ime % 17.59	Dura Port# 6257	% 9.64	Port# 53	ws % 32.41	Volu Port# 27500	ime % 15.86	Dura Port# 53	% 39.99	
Port# 53 6881	% 3.15 2.91	Volu Port# 3076 53	ime % 6.84 1.74	Port# 3076 53	% 18.02 4.41	Port# 4672 6257	ws % 13.63 4.56	Volu Port# 27015 27005	17.59 8.59	Dura Port# 6257 1214	% 9.64 2.72	Port# 53 123	ws % 32.41 18.88	Volu Port# 27500 53	ime % 15.86 14.71	Dura Port# 53 28800	% 39.99 7.22	
Port# 53 6881 4672	% 3.15 2.91 2.69	Volu Port# 3076 53 3074	6.84 1.74 1.64	Port# 3076 53 6346	% 18.02 4.41 3.97	Port# 4672 6257 53	^{ws} % 13.63 4.56 3.20 2.38 2.15	Volu Port# 27015 27005 1701	17.59 8.59 3.71 2.39 2.21	Dura Port# 6257 1214 1841	% 9.64 2.72 2.68 2.40 2.20	Port# 53 123 1486	ws % 32.41 18.88 1.47 1.04 1.03	Volu Port# 27500 53 27005	ime % 15.86 14.71 9.46	Dura Port# 53 28800 1486	% 39.99 7.22 2.15	
Port# 53 6881 4672 3076	% 3.15 2.91 2.69 2.19	Volu Port# 3076 53 3074 16567	6.84 6.84 1.74 1.64 1.12	Port# 3076 53 6346 6881	% 18.02 4.41 3.97 1.37	Port# 4672 6257 53 1214	% 13.63 4.56 3.20 2.38	Volu Port# 27015 27005 1701 6257	17.59 8.59 3.71 2.39 2.21 1.52	Dura Port# 6257 1214 1841 28800	% 9.64 2.72 2.68 2.40 2.20 1.86	Port# 53 123 1486 4978	ws % 32.41 18.88 1.47 1.04	Volu Port# 27500 53 27005 27015	ime % 15.86 14.71 9.46 5.59	Dura Port# 53 28800 1486 6112	% 39.99 7.22 2.15 2.11	
Port# 53 6881 4672 3076 6346	% 3.15 2.91 2.69 2.19 0.83	Volu Port# 3076 53 3074 16567 6881	6.84 6.84 1.74 1.64 1.12 0.98	Port# 3076 53 6346 6881 4672	% 18.02 4.41 3.97 1.37 1.14	Port# 4672 6257 53 1214 1841	^{wws} % 13.63 4.56 3.20 2.38 2.15	Volu Port# 27015 27005 1701 6257 27010	17.59 8.59 3.71 2.39 2.21	Dura Port# 6257 1214 1841 28800 53 3600 2857	% 9.64 2.72 2.68 2.40 2.20 1.86 1.73	Port# 53 123 1486 4978 1553	ws % 32.41 18.88 1.47 1.04 1.03	Volu Port# 27500 53 27005 27015 27910	15.86 15.86 14.71 9.46 5.59 4.71	Dura Port# 53 28800 1486 6112 123 443 137	% 39.99 7.22 2.15 2.11 2.03 1.83 1.25	
Port# 53 6881 4672 3076 6346 49152	% 3.15 2.91 2.69 2.19 0.83 0.46	Volt Port# 3076 53 3074 16567 6881 6348	6.84 1.74 1.64 1.12 0.98 0.97	Port# 3076 53 6346 6881 4672 8000	% 18.02 4.41 3.97 1.37 1.14 1.14	Port# 4672 6257 53 1214 1841 2857	ws % 13.63 4.56 3.20 2.38 2.15 1.28	Volu Port# 27015 27005 1701 6257 27010 53	17.59 8.59 3.71 2.39 2.21 1.52	Dura Port# 6257 1214 1841 28800 53 3600	% 9.64 2.72 2.68 2.40 2.20 1.86	Port# 53 123 1486 4978 1553 4888	ws % 32.41 18.88 1.47 1.04 1.03 0.62	Volu Port# 27500 53 27005 27015 27910 6112	15.86 14.71 9.46 5.59 4.71 4.18	Dura Port# 53 28800 1486 6112 123 443	% 39.99 7.22 2.15 2.11 2.03 1.83	
Port# 53 6881 4672 3076 6346 49152 11773	% 3.15 2.91 2.69 2.19 0.83 0.46 0.35	Volu Port# 3076 53 3074 16567 6881 6348 6346	6.84 1.74 1.64 1.12 0.98 0.97 0.91	Port# 3076 53 6346 6881 4672 8000 3072	% 18.02 4.41 3.97 1.37 1.14 1.14 0.88	Port# 4672 6257 53 1214 1841 2857 3407	% % 13.63 4.56 3.20 2.38 2.15 1.28 1.12	Volu Port# 27015 27005 1701 6257 27010 53 14758	17.59 8.59 3.71 2.39 2.21 1.52 1.18	Dura Port# 6257 1214 1841 28800 53 3600 2857	% 9.64 2.72 2.68 2.40 2.20 1.86 1.73	Port# 53 123 1486 4978 1553 4888 137	ws <u>%</u> 32.41 18.88 1.47 1.04 1.03 0.62 0.57	Volu Port# 27500 53 27005 27015 27910 6112 123	15.86 14.71 9.46 5.59 4.71 4.18 1.85	Dura Port# 53 28800 1486 6112 123 443 137	% 39.99 7.22 2.15 2.11 2.03 1.83 1.25	
Port# 53 6881 4672 3076 6346 49152 11773 18870	% 3.15 2.91 2.69 2.19 0.83 0.46 0.35 0.32	Volu Port# 3076 53 3074 16567 6881 6348 6348 6346 5004	me % 6.84 1.74 1.64 1.12 0.98 0.97 0.91 0.87	Port# 3076 53 6346 6881 4672 8000 3072 41170	% 18.02 4.41 3.97 1.37 1.14 1.14 0.88 0.80	Port# 4672 6257 53 1214 1841 2857 3407 3847	% 13.63 4.56 3.20 2.38 2.15 1.28 1.12 1.10	Volu Port# 27015 27005 1701 6257 27010 53 14758 7714	me % 17.59 8.59 3.71 2.39 2.21 1.52 1.18 0.98	Dura Port# 6257 1214 1841 28800 53 3600 2857 3772	% 9.64 2.72 2.68 2.40 2.20 1.86 1.73 1.51	Port# 53 123 1486 4978 1553 4888 137 1646	ws % 32.41 18.88 1.47 1.04 1.03 0.62 0.57 0.54	Volu Port# 27500 53 27005 27015 27910 6112 123 26005	me % 15.86 14.71 9.46 5.59 4.71 4.18 1.85 1.44	Dura Port# 53 28800 1486 6112 123 443 137 1553	% 39.99 7.22 2.15 2.11 2.03 1.83 1.25 1.24	
Port# 53 6881 4672 3076 6346 49152 11773 18870 80	% 3.15 2.91 2.69 2.19 0.83 0.46 0.35 0.32 0.32	Volu Port# 3076 53 3074 16567 6881 6348 6346 5004 7000	mme % 6.84 1.74 1.64 1.12 0.98 0.97 0.91 0.87 0.75	Port# 3076 53 6346 6881 4672 8000 3072 41170 10290	% 18.02 4.41 3.97 1.37 1.14 1.14 0.88 0.80 0.75	Port# 4672 6257 53 1214 1841 2857 3407 3847 4964	% 13.63 4.56 3.20 2.38 2.15 1.28 1.12 1.10 1.09	Volu Port# 27015 27005 1701 6257 27010 53 14758 7714 3281	me % 17.59 8.59 3.71 2.39 2.21 1.52 1.18 0.98 0.91	Dura Port# 6257 1214 1841 28800 53 3600 2857 3772 3407	% 9.64 2.72 2.68 2.40 2.20 1.86 1.73 1.51 1.49	Port# 53 123 1486 4978 1553 4888 137 1646 1024	ws 32.41 18.88 1.47 1.03 0.62 0.57 0.54	Volu Port# 27500 53 27005 27015 27910 6112 123 26005 28001	ime % 15.86 14.71 9.46 5.59 4.71 4.18 1.85 1.44 1.31	Dura Port# 53 28800 1486 6112 123 443 137 1553 27005	% 39.99 7.22 2.15 2.11 2.03 1.83 1.25 1.24 1.20	
Port# 53 6881 4672 3076 6346 49152 11773 18870 80 10986	% 3.15 2.91 2.69 2.19 0.83 0.46 0.35 0.32 0.32 0.32 0.31	Volu Port# 3076 53 3074 16567 6881 6348 6348 6346 5004 7000 13005	mme % 6.84 1.74 1.64 1.12 0.98 0.97 0.91 0.87 0.75 0.70	Port# 3076 53 6346 6881 4672 8000 3072 41170 10290 12288	% 18.02 4.41 3.97 1.37 1.14 1.14 0.88 0.80 0.75 0.74	Port# 4672 6257 53 1214 1841 2857 3407 3847 4964 1027	% 13.63 4.56 3.20 2.38 2.15 1.28 1.12 1.10 1.09 1.08	Volu Port# 27015 27005 1701 6257 27010 53 14758 7714 3281 7777	mme % 17.59 8.59 3.71 2.39 2.21 1.52 1.18 0.98 0.91 0.88	Dura Port# 6257 1214 1841 28800 53 3600 2857 3772 3407 27015	% 9.64 2.72 2.68 2.40 2.20 1.86 1.73 1.51 1.49 1.38	Port# 53 123 1486 4978 1553 4888 137 1646 1024 1025	ws 32.41 18.88 1.47 1.04 0.62 0.57 0.54 0.54 0.42	Volu Port# 27500 53 27005 27015 27910 6112 123 26005 28001 7777	ime % 15.86 14.71 9.46 5.59 4.71 4.18 1.85 1.44 1.31 1.27	Dura Port# 53 28800 1486 6112 123 443 137 1553 27005 520	% 39.99 7.22 2.15 2.11 2.03 1.83 1.25 1.24 1.20 1.14	

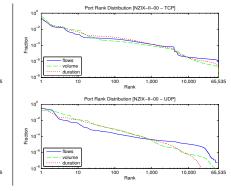
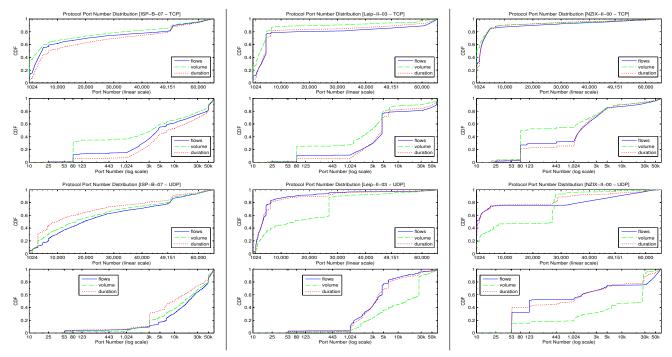
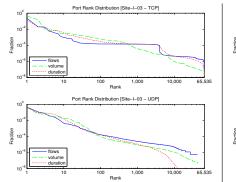


Fig. 13. Port Rank Distribution – Left: ISP-B-07, Center: LEIP-II-03, Right: NZIX-II-00




Fig. 14. Port Number Distribution - Left:SITE-I-03, Center:SITE-II-06, Right:SITE-III-04

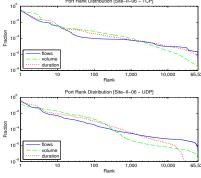

	~	4
1	h	
т	υ	-

 TABLE VIII

 TOP10 PORT USAGE - LEFT:SITE-I-03, CENTER:SITE-II-06, RIGHT:SITE-III-04

SITE-I-03-TCP SITE-II-06-TCP										1	1	0	T	0.4 mg	D		
											SITE-III-04-TCP Flows Volume Duration						
Flo		Volu		Dura									Volume		Duration		
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
80	22.72	20	43.73	80	14.61	80	34.37	20	24.89	80	23.96	80	20.97	80	38.71	80	10.69
6667	1.98	80	15.14	25	2.14	6662	4.20	80	13.99	3306	5.46	3531	6.33	6881	3.50	3531	7.52
25	1.84	3306	1.03	20	1.98	3306	1.59	3306	9.55	20	2.43	1863	3.34	6882	1.85	1863	3.00
135	0.58	119	0.72	21	1.02	443	1.02	443	0.98	25	1.95	220	3.26	20	1.53	6881	2.36
20	0.43	1854	0.71	22	0.71	21	0.90	2518	0.91	443	1.75	25	0.81	554	1.50	6346	1.36
443	0.33	48611	0.71	6346	0.67	25	0.82	1642	0.91	22	1.50	443	0.72	22	1.38	6882	1.09
21	0.28	49200	0.63	119	0.62	20	0.48	1749	0.84	119	1.47	5190	0.44	1214	1.28	5190	0.96
113	0.14	50014	0.32	4662	0.53	6944	0.43	1197	0.61	21	1.12	4662	0.39	1755	1.02	5757	0.84
2234	0.11	40458	0.30	3306	0.45	22	0.38	3371	0.33	6881	0.57	2703	0.36	6346	1.00	6667	0.79
143	0.09	24961	0.29	6699	0.34	1863	0.36	4967	0.33	554	0.54	6346	0.32	3155	0.84	4662	0.73
Top10	28.51	Top10	63.60	Top10	23.08	Top10	44.55	Top10	53.33	Top10	40.75	Top10	36.93	Top10	52.62	Top10	29.34
Top20	29.12	Top20	66.25	Top20	24.91	Top20	46.17	Top20	55.56	Top20	42.44	Top20	38.54	Top20	56.50	Top20	34.43
		SITE-I-				SITE-II-06-UDP						SITE-III-04-UDP					
Flo	Flows Volume Durat		tion	Flo	1110	Volume I		D	tion	Flows		Volume		Duration			
110	WS	VOII	ıme	Dura	non	- FIO	ws	von	ime	Dura	uon	F10		voit	ime	Dura	ition
Port#	ws %	Voli Port#	ume %	Port#	//////////////////////////////////////	Port#	% %	Port#	me %	Port#	%	Port#	ws %	Port#	ime %	Port#	%
			% 41.57			Port# 53		Port# 5004					% 12.67				% 7.89
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%
Port#	% 44.71	Port# 53	% 41.57	Port# 53	% 40.61 9.00 8.20	Port# 53	% 37.56	Port# 5004	% 12.72 5.99 3.79	Port# 53	% 21.89 12.60 7.31	Port# 53	% 12.67	Port# 53	% 4.44	Port# 53	% 7.89
Port# 53 123	% 44.71 11.09	Port# 53 36682	% 41.57 6.53	Port# 53 2568	% 40.61 9.00	Port# 53 62375	% 37.56 5.81	Port# 5004 53	% 12.72 5.99	Port# 53 63395	% 21.89 12.60	Port# 53 1630	% 12.67 2.25	Port# 53 1028	% 4.44 3.38	Port# 53 6660	% 7.89 3.98
Port# 53 123 33129	% 44.71 11.09 7.47	Port# 53 36682 8164	% 41.57 6.53 5.94	Port# 53 2568 4772	% 40.61 9.00 8.20	Port# 53 62375 63395	% 37.56 5.81 4.99	Port# 5004 53 49200	% 12.72 5.99 3.79	Port# 53 63395 62375	% 21.89 12.60 7.31	Port# 53 1630 32769	% 12.67 2.25 2.08	Port# 53 1028 17479	% 4.44 3.38 2.30	Port# 53 6660 6346	% 7.89 3.98 3.24
Port# 53 123 33129 2568	% 44.71 11.09 7.47 3.55	Port# 53 36682 8164 33129	% 41.57 6.53 5.94 4.40	Port# 53 2568 4772 2131	% 40.61 9.00 8.20 7.52	Port# 53 62375 63395 0	% 37.56 5.81 4.99 1.59	Port# 5004 53 49200 1455	% 12.72 5.99 3.79 3.57	Port# 53 63395 62375 1027	% 21.89 12.60 7.31 2.57	Port# 53 1630 32769 32774	% 12.67 2.25 2.08 2.02	Port# 53 1028 17479 7000	% 4.44 3.38 2.30 0.94	Port# 53 6660 6346 3531	% 7.89 3.98 3.24 3.07
Port# 53 123 33129 2568 4772	% 44.71 11.09 7.47 3.55 3.10	Port# 53 36682 8164 33129 4772	% 41.57 6.53 5.94 4.40 3.07	Port# 53 2568 4772 2131 33129	% 40.61 9.00 8.20 7.52 6.11	Port# 53 62375 63395 0 4665	% 37.56 5.81 4.99 1.59 0.95	Port# 5004 53 49200 1455 10000	% 12.72 5.99 3.79 3.57 3.53	Port# 53 63395 62375 1027 34075	% 21.89 12.60 7.31 2.57 1.42	Port# 53 1630 32769 32774 3531	% 12.67 2.25 2.08 2.02 1.94	Port# 53 1028 17479 7000 6660	% 4.44 3.38 2.30 0.94 0.92	Port# 53 6660 6346 3531 32774	% 7.89 3.98 3.24 3.07 2.92
Port# 53 123 33129 2568 4772 2131	% 44.71 11.09 7.47 3.55 3.10 2.14	Port# 53 36682 8164 33129 4772 36644	% 41.57 6.53 5.94 4.40 3.07 3.03	Port# 53 2568 4772 2131 33129 28784	% 40.61 9.00 8.20 7.52 6.11 5.48	Port# 53 62375 63395 0 4665 6881	% 37.56 5.81 4.99 1.59 0.95 0.77	Port# 5004 53 49200 1455 10000 54041	% 12.72 5.99 3.79 3.57 3.53 2.72	Port# 53 63395 62375 1027 34075 6970	% 21.89 12.60 7.31 2.57 1.42 1.41	Port# 53 1630 32769 32774 3531 3680	% 12.67 2.25 2.08 2.02 1.94 1.84	Port# 53 1028 17479 7000 6660 32774	% 4.44 3.38 2.30 0.94 0.92 0.90	Port# 53 6660 6346 3531 32774 4121	% 7.89 3.98 3.24 3.07 2.92 2.81
Port# 53 123 33129 2568 4772 2131 29812	% 44.71 11.09 7.47 3.55 3.10 2.14 1.46	Port# 53 36682 8164 33129 4772 36644 2568	% 41.57 6.53 5.94 4.40 3.07 3.03 2.74	Port# 53 2568 4772 2131 33129 28784 36644	% 40.61 9.00 8.20 7.52 6.11 5.48 3.66	Port# 53 62375 63395 0 4665 6881 34075	% 37.56 5.81 4.99 1.59 0.95 0.77 0.73	Port# 5004 53 49200 1455 10000 54041 2746	% 12.72 5.99 3.79 3.57 3.53 2.72 2.52	Port# 53 63395 62375 1027 34075 6970 1028	% 21.89 12.60 7.31 2.57 1.42 1.41 1.25	Port# 53 1630 32769 32774 3531 3680 1721	% 12.67 2.25 2.08 2.02 1.94 1.84 1.69	Port# 53 1028 17479 7000 6660 32774 32773	% 4.44 3.38 2.30 0.94 0.92 0.90 0.73	Port# 53 6660 6346 3531 32774 4121 1630	% 7.89 3.98 3.24 3.07 2.92 2.81 2.11
Port# 53 123 33129 2568 4772 2131 29812 36644	% 44.71 11.09 7.47 3.55 3.10 2.14 1.46 0.96	Port# 53 36682 8164 33129 4772 36644 2568 2131	% 41.57 6.53 5.94 4.40 3.07 3.03 2.74 2.74	Port# 53 2568 4772 2131 33129 28784 36644 45566	% 40.61 9.00 8.20 7.52 6.11 5.48 3.66 2.13	Port# 53 62375 63395 0 4665 6881 34075 123	% 37.56 5.81 4.99 1.59 0.95 0.77 0.73 0.61	Port# 5004 53 49200 1455 10000 54041 2746 2328	% 12.72 5.99 3.79 3.57 3.53 2.72 2.52 2.30	Port# 53 63395 62375 1027 34075 6970 1028 5004	% 21.89 12.60 7.31 2.57 1.42 1.41 1.25 0.95	Port# 53 1630 32769 32774 3531 3680 1721 1906	% 12.67 2.25 2.08 2.02 1.94 1.84 1.69 1.65	Port# 53 1028 17479 7000 6660 32774 32773 16384	% 4.44 3.38 2.30 0.94 0.92 0.90 0.73 0.65	Port# 53 6660 6346 3531 32774 4121 1630 32769	% 7.89 3.98 3.24 3.07 2.92 2.81 2.11 2.01
Port# 53 123 33129 2568 4772 2131 29812 36644 1028 1025	% 44.71 11.09 7.47 3.55 3.10 2.14 1.46 0.96 0.60	Port# 53 36682 8164 33129 4772 36644 2568 2131 123	% 41.57 6.53 5.94 4.40 3.07 3.03 2.74 2.74 1.99	Port# 53 2568 4772 2131 33129 28784 36644 45566 1029	% 40.61 9.00 8.20 7.52 6.11 5.48 3.66 2.13 1.66	Port# 53 62375 63395 0 4665 6881 34075 123 54811	% 37.56 5.81 4.99 1.59 0.95 0.77 0.73 0.61 0.57	Port# 5004 53 49200 1455 10000 54041 2746 2328 31189	% 12.72 5.99 3.79 3.57 3.53 2.72 2.52 2.30 2.15	Port# 53 63395 62375 1027 34075 6970 1028 5004 27014	% 21.89 12.60 7.31 2.57 1.42 1.41 1.25 0.95 0.88	Port# 53 1630 32769 32774 3531 3680 1721 1906 1272	% 12.67 2.25 2.08 2.02 1.94 1.84 1.69 1.65 1.59	Port# 53 1028 17479 7000 6660 32774 32773 16384 13992	% 4.44 3.38 2.30 0.94 0.92 0.90 0.73 0.65 0.59	Port# 53 6660 6346 3531 32774 4121 1630 32769 3680	% 7.89 3.98 3.24 3.07 2.92 2.81 2.11 2.01 1.89
Port# 53 123 33129 2568 4772 2131 29812 36644 1028	% 44.71 11.09 7.47 3.55 3.10 2.14 1.46 0.96 0.60 0.45	Port# 53 36682 8164 33129 4772 36644 2568 2131 123 20020	% 41.57 6.53 5.94 4.40 3.07 3.03 2.74 2.74 1.99 1.84	Port# 53 2568 4772 2131 33129 28784 36644 45566 1029 3685	% 40.61 9.00 8.20 7.52 6.11 5.48 3.66 2.13 1.66 1.56	Port# 53 62375 63395 0 4665 6881 34075 123 54811 54045	% 37.56 5.81 4.99 1.59 0.95 0.77 0.73 0.61 0.57 0.56	Port# 5004 53 49200 1455 10000 54041 2746 2328 31189 14634	% 12.72 5.99 3.59 3.57 3.53 2.72 2.52 2.30 2.15 1.82	Port# 53 63395 62375 1027 34075 6970 1028 5004 27014 54041	% 21.89 12.60 7.31 2.57 1.42 1.41 1.25 0.95 0.88 0.84	Port# 53 1630 32769 32774 3531 3680 1721 1906 1272 37755	% 12.67 2.25 2.08 2.02 1.94 1.84 1.69 1.65 1.59 1.48	Port# 53 1028 17479 7000 6660 32774 32773 16384 13992 5004	% 4.44 3.38 2.30 0.94 0.92 0.90 0.73 0.65 0.59 0.57	Port# 53 6660 6346 3531 32774 4121 1630 32769 3680 1272	% 7.89 3.98 3.24 3.07 2.92 2.81 2.11 2.01 1.89 1.79

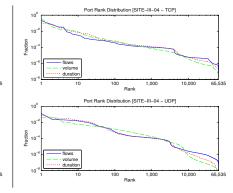
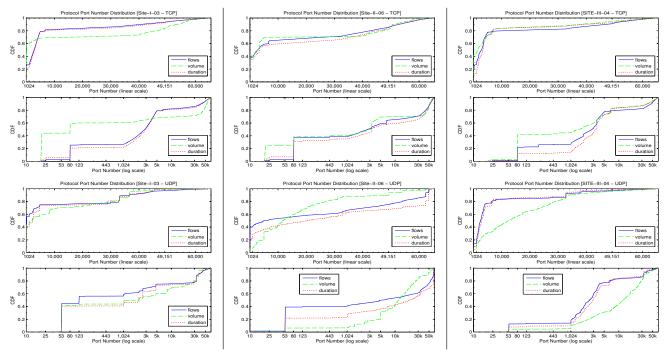
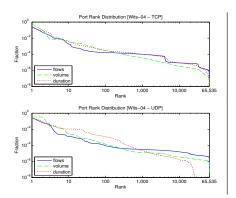


Fig. 15. Port Rank Distribution - Left:SITE-I-03, Center:SITE-II-06, Right:SITE-III-04




Fig. 16. Port Number Distribution - Left:SITE-I-03, Center:SITE-II-06, Right:SITE-III-04

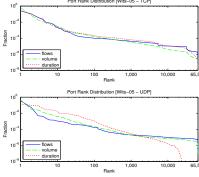

4	r	2
Т	b	2

 TABLE IX

 TOP10 PORT USAGE - LEFT:WITS-04, CENTER:WITS-05, RIGHT:WITS-06

		WITS-0				WITS-05-TCP						WITS-06-TCP						
Flo		Volu		Dura		Flo		Volume		Dura		Flows		Volume		Duration		
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	
80	26.75	80	56.38	80	19.44	80	25.84	80	61.12	80	23.84	80	28.56	80	61.05	80	22.80	
443	4.98	443	9.63	443	8.00	443	10.12	443	6.21	25	9.53	25	7.42	443	9.01	25	11.69	
25	2.25	10000	0.74	25	4.20	25	3.59	2048	1.87	443	4.08	443	5.30	2048	0.90	443	6.73	
22002	0.96	44329	0.74	6667	1.35	2703	2.44	8080	1.08	1863	1.85	2703	2.69	25	0.90	1863	0.99	
113	0.85	119	0.69	1863	1.20	2048	0.83	10000	0.92	2048	0.71	1863	0.57	8080	0.59	10000	0.54	
220	0.78	2048	0.69	6881	0.80	1863	0.83	554	0.84	3389	0.67	2048	0.56	10000	0.50	8810	0.52	
1863	0.71	6881	0.68	6882	0.54	113	0.62	25	0.71	2703	0.39	8810	0.17	22	0.37	2703	0.44	
2048	0.36	2508	0.57	10000	0.47	3001	0.50	873	0.61	10000	0.35	26547	0.17	110	0.36	6667	0.38	
1025	0.24	25	0.49	22	0.42	6000	0.23	3389	0.36	22	0.35	8080	0.15	1748	0.32	22	0.29	
1438	0.18	6882	0.41	6883	0.41	8080	0.23	2034	0.30	8080	0.26	143	0.13	4556	0.24	5222	0.26	
Top10	37.89	Top10	70.62	Top10	36.42	Top10	44.99	Top10	73.71	Top10	41.77	Top10	45.60	Top10	74.00	Top10	44.37	
Top20	38.76	Top20	73.51	Top20	38.54	Top20	46.13	Top20	75.32	Top20	43.10	Top20	46.38	Top20	75.77	Top20	45.92	
		_				_				_		_		_				
			04-UDP			WITS-05-UDP						WITS-06-UDP						
Flo		Volu		Dura		Flo		Volu		Dura		Flo		Volu		Duration		
Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	Port#	%	
53	27.23	53	33.63	53	27.73	53	36.21	53	45.84	53	13.82	53	35.43	53	43.24	53	15.52	
123	6.22	16384	33.20	123	9.08	123	4.66	123	2.85	1194	9.78	17940	2.13	17940	3.07	123	9.47	
1026	4.35	27960	2.38	10000	3.12	1038	0.48	12294	2.57	123	9.09	123	1.17	15607	2.50	17940	8.04	
137	0.58	123	2.25	10003	3.08	32768	0.42	27960	1.36	1038	4.35	15282	1.16	123	0.83	15282	5.28	
1025	0.25	1701	1.65	137	1.64	6277	0.22	24794	0.93	10023	2.68	6277	0.16	1406	0.78	6277	4.26	
1027	0.23	1026	1.45	32774	1.20	1026	0.15	1194	0.79	10897	2.60	33625	0.12	10984	0.66	22361	3.16	
32768	0.21	16386	1.20	32768	1.07	32769	0.14	6277	0.65	22391	2.59	13364	0.11	33522	0.63	14201	3.11	
1028	0.20	137	0.62	49157	1.07	1025	0.14	32768	0.47	10008	2.13	4672	0.11	5002	0.58	33625	1.26	
1029	0.14	1027	0.32	1030	1.06	1027	0.12	1038	0.46	32768	1.89	32768	0.10	15282	0.54	5011	1.06	
1030	0.13	161	0.28	952	1.06	24441	0.11	161	0.37	6277	1.76	1036	0.07	54045	0.51	33089	1.05	
Top10	39.54	Top10	76.97	Top10	50.11	Top10	42.65	Top10	56.30	Top10	50.70	Top10	40.57	Top10	53.35	Top10	52.21	
Top20	40.46	Top20	78.69	Top20	60.19	Top20	43.43	Top20	58.75	Top20	59.48	Top20	41.00	Top20	56.36	Top20	60.73	

TCF

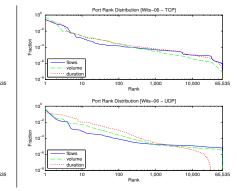


Fig. 17. Port Rank Distribution - Left:WITS-04, Center:WITS-05, Right:WITS-06

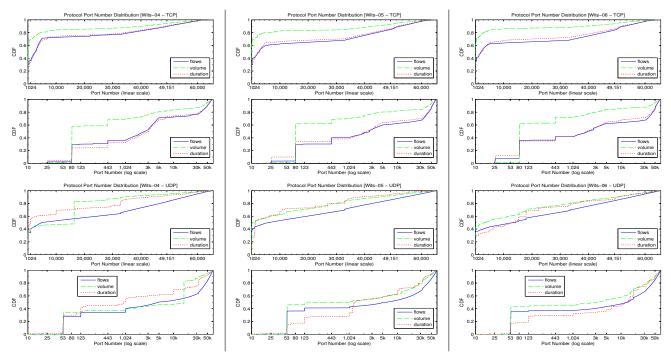


Fig. 18. Port Number Distribution - Left:WITS-04, Center:WITS-05, Right:WITS-06