The Two-dimensional Superscalar GAP Processor
Architecture

Sascha Uhrig, Basher Shehan, Ralf Jahr, Theo Ungerer
Department of Computer Science
University of Augsburg
86159 Augsburg, Germany
{uhrig, shehan, jahr, ungerer } @informatik.uni-augsburg.de

Abstract—In this paper we evaluate the new Grid Alu Proces-
sor architecture that is optimized for the execution of sequential
instruction streams. The Grid Alu Processor architecture com-
prises an in-order superscalar pipeline front-end enhanced by
a configuration unit able to dynamically issue dependent and
independent standard machine instructions simultaneously to the
functional units, which are organized in a two-dimensional array.
In contrast to well-known coarse-grained reconfigurable architec-
tures no special synthesis tools are required and no configuration
overhead occurs. Simulations of the Grid Alu Processor showed
a maximum speedup of 2.56 measured in instructions per cycle
compared to the results of a comparable configured SimpleScalar
processor simulator. Further improvements introduced in this
paper lead to a top speedup of about 4.65 for one benchmark.
Our evaluations show that with restricted hardware resources,
the performance is only slightly reduced. The gain of the proposed
processor architecture is obtained by the asynchronous execution
of most instructions, the possibility to issue multiple depending
instructions at the same cycle and the acceleration of loops.

Keywords-High Performance Processors, Reconfigurable Archi-
tecture, Instruction Level Parallelism

I. INTRODUCTION

Current processor research focuses especially on multi-core
architectures. Unfortunately, these architectures perform only
well with parallel applications but they cannot increase the
performance of sequential programs. The Grid Alu Processor
(GAP) presented in [23] is designed to improve the execution
of sequential instruction streams.

In general, control flow based applications contain small
data-driven code sequences that can be accelerated by special
hardware. Because of the differing demands of the applica-
tions, a general accelerator for all requirements cannot be
found.

Application specific ~ processors together with
hardware/software codesign methodologies [17] contain
at least one functional unit or functional block, which can
be adapted to a concrete application. Mostly, these functional
blocks are generated at the hardware-design phase i.e., the
special demands of the application’s software need to be
known statically. Generally, the special functions consist
of very simple operations like a single MAC operation or
something similar.

Dynamically reconfigurable systems [6] comprise an array
of functional units that can be reconfigured during runtime.

However, the configuration of the array has special demands
on the development tool chain and reconfiguration is time
consuming. Hence, replacement of the operation should be
well scheduled, otherwise the replacement overhead exceeds
the gain in execution time.

Another issue is the global clock synchronous execution,
which hampers the execution of simple instructions, because
the working frequency depends on the most complex operation
performed in any pipeline stage therefore decelerating simple
and fast instructions. Our approach applies asynchronous tim-
ing between functional units, which allows the execution of
simple operations in less than a cycle.

The GAP Architecture mixes the advantages of a super-
scalar processor and those of a coarse-grained dynamically
reconfigurable system. A special configuration unit issues syn-
chronously instructions to the processor back-end, consisting
of an array of Functional Units (FUs), a branch unit, and
several load/store units. Thereby even very small dataflow
oriented instruction sequences benefit from the reconfigurable
system-like architecture of the GAP. Instructions are executed
within a combination of an asynchronous array of FUs and
synchronous memory access and branch units. Due to the
design of the array it is possible to issue independent as well as
dependent instructions in the same clock cycle. Additionally to
the improved issue and execution behavior, instructions issued
to the array automatically form dataflow structures similar to
the accelerator blocks within an application specific processor.

The contributions of this paper are a detailed description of
the GAP architecture. Additionally, several optimizations are
presented and evaluated that further improve the performance
and, in parallel, decrease the hardware requirements of the
GAP.

The next section provides a summary of coarse-grained
reconfigurable systems, which are closest to the GAP architec-
ture. An overview of the GAP is given in Section III together
with an example of its functionality. Section IV describes the
GAP architecture in detail and presents several optimizations
of the basic architecture. A performance evaluation is shown
in Section V. Section VI concludes the paper and identifies
future work.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

71

II. RELATED WORK

Most reconfigurable architectures are attached to a master
processor as an additional unit like a coprocessor. The master
processor has to fulfill three tasks:

1) It has to provide configuration data to the reconfigurable
system.

It has to take care about the activities of the reconfig-
urable system.

It executes the program parts that cannot be directed to
the reconfigurable system.

2)

3)

Additionally, the presence and the architecture of the re-
configurable part must be taken into account at the software
development phase. Example architectures with reconfigurable
parts as coprocessor are the MOLEN [24], [25], [22], the
GARP [10], and the MorphoSys [11] architectures. In con-
trast, the XTENSA chip from Tensilica, the CHIMAERA [9]
project, and the PRISC processor [14] use reconfigurable
functional units within the processor pipeline, see [6] for a
more detailed overview.

The reconfigurable functional units within these processors
are additional units besides the standard functional units of a
superscalar processor. The additional units have to be accessed
explicitly by the software. In contrast, the GAP features a
homogeneous array of reconfigurable units that are transparent
to the software.

A processor using a small reconfigurable architecture to
accelerate statically determined parts of a program is presented
by Clark et al. [4]. More flexible is the VEAL system [5]
where the VEAL virtual machine is responsible to deal with
the configuration of the loop accelerator online. Hence, an
overhead for the dynamic compilation occurs. The PACT XPP
architecture [13] contains several small VLIW processor cores
located besides the reconfigurable array. These processors
are responsible for the control driven parts of an application
while the array offers high-throughput data operations. The
WARP processor presented by Lysecky et al. [12] contains
a FPGA-like accelerator, an on-chip profiler, and an on-chip
CAD module (a separate CPU). The profiler identifies critical
parts of the software and they are translated into a FPGA
configuration online by the CAD module. Santos et al. [15]
presented the 2D-VLIW processor. It comprises a pipelined
two-dimensional array of functional units, which are config-
ured by VLIW instructions containing as many operations
as FUs are available. A similar approach is the ADRES
reconfigurable processor [1], [26]. It comprises a VLIW front-
end with a subordinated coarse grained reconfigurable array.

The RAW microprocessor [18], [19] and the EDGE ar-
chitecture [3] implemented by the TRIPS microprocessor
seem to be comparable at first glance because of their tiled
architectures. However, the EDGE architecture introduces a
new type of instruction set architecture (ISA) as one of its
core concepts. Instructions in this ISA also include information
about how to map operations on the tiles. This placement
has to be calculated statically by the tool-chain in advance.
Hence, a special compiler is required and normal instruction

streams cannot be executed. The RAW microprocessor focuses
on scalability of the number of used tiles (and therefore the
used number of transistors) and wire delays. But if more than
one tile shall be used by a program, again a special compiler
is needed to map the application. This architecture therefore
has some properties of many-core systems but cannot speed
up single threaded applications without a special compilation
technique.

None of the above mentioned architectures is able to directly
execute a complete conventional sequential instruction stream
within a two-dimensional array of reconfigurable functional
units without any additional tool. The presented GAP archi-
tecture [21] exactly provides this feature.

III. BASIC ARCHITECTURE OF THE GAP

This section describes the basic idea of the GAP architecture
and demonstrates the execution of a sample code fragment. A
more detailed description of the different parts of the GAP are
given in the next section.

A. Architectural Overview

The basic aim of the GAP architecture is that execution of
normal programs shall profit from reconfigurable architectures.
The GAP architecture combines the two dimensional arrange-
ment of functional units (FUs) from reconfigurable systems
together with the instruction fetching and decoding logic of a
general purpose processor leading to the architecture shown in
figure 1. Together with some additional components for branch
execution and memory accesses (at the west side and the east
side of the array), the GAP is able to execute conventional
program binaries within its two dimensional array of FUs.
Small loops will be mapped into the array and profit from
the special architecture. All other non-loop-based program
sequences are executed also within the array, and thus, they
can likewise profit from the asynchronous execution.

In contrast to conventional superscalar processors, the GAP
is able to issue also data-dependent instructions to the corre-
sponding FUs within the same clock cycle. As consequence,
GAP as in-order issue processor, reaches an issuing throughput
similar to that of an out-of-order processor but does not
require any out-of-order logic like issuing buffers, reorder
and commit stages, as well as register renaming. However,
execution of instructions is more like data driven processing
within a reconfigurable architecture. Additionally, instruction
execution is not done in a simple clocked way, rather it
is possible to execute several dependent operations in one
machine clock cycle. Instruction execution and timing is
described in Section I'V-D.

The array is arranged in rows and columns of FUs (see
Figure 2) that are described in Section IV-C in detail. At
the basic GAP architecture each column is attached to an
architectural register of the processor’s instructions set. We
chose the PISA (Portable Instruction Set Architecture) instruc-
tion set known from the SimpleScalar simulation tool set [2].
Hence, the basic array contains 32 columns of FUs for the
general purpose registers and an additional special column

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

72

! Processor front-end

5 Instruction fetch unit ‘
8 :
S vV VYV
@
C
IR N Decodeand
: configuration unit :
Memory
access
= unit
o
2 Memory 2
g) access 2
c Array of reconfigurable FUs unit ©
S z
§ Memory [a)
< access [
o0 unit
Fig. 1. Block diagram of the GAP core
Top registers Configuration busses
Memory
- access
S unit
©
E Memory
9 access
< unit
o
C
o
I Memory
access
unit
| ALU array
Reconfigurable Backward Forward Horizontal

FUs connections connections connections

Fig. 2. General organization of the ALU array

for the multiply/divide registers (hi/lo) with the corresponding
FUs (one multiply/divide unit per row). The number of rows
depends on the maximum length of loop bodies that should
be accelerated. An evaluation of the required number of rows
is given in Section V.

The general data flow within the array is from the north to
the south. A single 32 bit register is arranged at the top of
each column and is called top register. This register contains
the starting value of the corresponding architectural register of
the column for the next execution phase. Each FU is able to
read the output values of every FU from the previous row as
inputs and its output is available for all FUs in the next row. So

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

there is no data exchange within a single row and no data can
be moved to the rows up. In general, each FU is configured
by exactly one machine instruction or it is configured as route
forward i.e., the FU bypasses the data from the previous FU
in the same column to the next row.

Each array row is accompanied with a memory access unit
that serves as communication interface to the data cache. The
memory access units read the address from the previous row
and forward data to a FU input of the same row in case of a
load. A store receives the address as well as the store value
from the previous row.

The single branch control unit on the west of the array has
connections to all rows. Its task is to determine if conditional
branches have to be taken. For this purpose, it checks the
output value of a given FU against the branch condition. If
the condition is true, the actual execution phase is stopped
and the currently valid values in the corresponding row are
copied from all columns to their top registers.

B. Code Execution Example

The placement of instructions into the array is demonstrated
by the following simple code fragment. The pseudo machine
instructions add fifteen numbers out of subsequent memory
cells followed by negating the result.

1: move RI1, #15 ;15 values

2: move R2, #addr ;start address

3: move R3, #0 ;Register for the sum loop:
4 load R4, [R2] ;load an element

5: add R3,R3,R4 ;add

6: add R2,R2, #4 ;inc address

7 sub R1,R1,#1 ;dec counter

8: jmpnz R1, loop ;jend of loop?

9: sub R3,R1,R3 ;negate the result (R1=0)

i E l E move
move #15 move #0 #address

jmpnz

S n_/

@

Dependency graph of the example instructions.

Fig. 3.

Figure 3 shows the dependency graph of the 9 instructions,
which can be recognized again at the placement of the
instructions within the GAP back-end shown in Figure 4. The
instructions 1 to 3 are placed within the first row of the array.
Instruction 4 (load) depends on R2 that is written in the first
row and therefore, it must be located in the second row. It
reads the address as a result of instruction 2 and forwards the

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data received from the memory into the column R4, which is
the destination register of the load. The instructions 5 to 7 are
placed in an analog way. Instruction 8 is a conditional branch
that could change program flow. To sustain the hardware
simplicity, conditional branches are placed below the lowest
already arranged instruction. In this case, the branch has to
be located after the third row. The last instruction is placed
after the branch in the fourth row. Hence, if the branch is
taken, the GAP takes a snapshot of the register contents at the
corresponding row and copies the data into the top registers.
In this case, instruction 9 is discarded. Otherwise, the sub is
executed without any time loss.

R1 R2 R3 R4
top load/store
register | O | | | O f ——
nop
1 (
?ove #1 ?g:joti\/r(eess ?move #O] [nop]
i ==
)
5 sub#l add #4 nop } load]
Is)
: e
= [nop [nop add (nop
[5) L \
b —F—— u [oo
el a 9
nop | sub | nop |
—

Fig. 4. Placement of the complete example fragment

R1 R2 R3 R4
.00 Ed o ko oadisore
I —{ e]
7 f
?sub#l] ?odd #AJ { nop J C[DIood]
— —
l I | nop |
Ie (3} -
5 l nop nop ? dd] t nop J
9 _ple® (
ANE ?”] l] —
c nop sub nop
g
: - | [&
[HODJ[J[“op][mp]
~—
Fig. 5. Placement of the loop body (instructions 4 to 8) and the subsequent

instruction (instruction 9)

After the first execution of the loop body, the backward
branch to the label loop has to be performed. The branch
target is already mapped into the array but it is placed among
other instructions that must not be executed again. To keep
the hardware simple, the GAP is only able to copy data into
the top registers of the first row. The decoding starts again
with the new address. The newly started decoding maps only
the loop and the following instructions into the array (see
Figure 5). Now, the loop target is the first instruction within
the array, and hence, all subsequent loop iterations can be
executed directly within the array without any additional fetch,
decoding and configuration phases. Due to the placement of

instructions following the loop body, the GAP does not suffer
from any misprediction penalty at loop termination as other
processors using branch prediction would do.

IV. DETAILED GAP DESCRIPTION

A detailed description of the superscalar pipeline front-end,
the back-end architecture, the execution and timing of the
operations, the memory hierarchy, and several optimizations
are presented in this section.

A. Superscalar Processor Front-end

Instructions are fetched from the instruction fetch unit out
of a normal program binary generated by a standard compiler
e.g., the GCC. A program counter determines the position
of the next instructions to fetch. The current implementation
fetches four instructions in parallel. During decoding, each
instruction is treated in one of the following ways:

« Unconditional direct branches: These instructions are
executed directly within the decode stage i.e., the program
counter is set to the given value and the decoding of the
subsequent instructions is cancelled.

o Arithmetic-logic instructions: All arithmetic and logic
instructions are register-register instructions (a load/store
instruction set architecture like PISA is assumed). All
decoded arithmetic/logic instructions are placed into the
array of FUs. The column in which an operation is placed
is determined by the output register of the instruction and
the row depends on the availability of the input data and
the last read access to the output register. Input data is
available after the last write access to the corresponding
register i.e., the lowermost instruction placed within the
column. Because instructions are only placed and not
executed, it is possible to place independent as well as
dependent instructions into the array at the same cycle.

« Conditional branches and register indirect jumps: The
branch control unit is able to handle one branch or jump
instruction per row of the array. Because both types of
control flow changes (conditional branches and register
indirect jumps) depend on the content of at least one
register, branches/jumps have to be placed below the
row in which the value of the corresponding register
is calculated. Additionally, it is necessary for the loop
acceleration to catch all register values out of a single
row (after one loop iteration) and copy them into the top
registers for the next iteration. Hence, branches/jumps are
placed below the lowest operation of the loop body within
the array.

« Load/store instructions: Memory instructions are ex-
ecuted by the memory access units. Each unit is able
to execute one load or one store instruction. A load
instruction is placed as high in the array as possible
i.e., below the last write access to the address register
and the last read access to the destination column. Store
instructions additionally depend on preceding branches.
All memory operations are equipped with an ordinal

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

74

number that prevents load instructions to be executed
before a foregoing store instruction.

The front-end is active as long as the array is not filled
up to the last row. If the array is full, the back-end is busy
with executing the instructions already placed in the array.
This could happen if some long latency operations like load
instructions have to be executed or if a loop is executed. In
both cases, the front-end can switch into sleep mode to save
energy.

When the execution of the operations inside the array
reaches the last row or when the branch controller signals
a taken branch, the front-end resumes to fetch and decode
instructions. If needed, the program counter is set to the new
value given by the branch controller beforehand.

The processor front-end is connected to the back-end by
several configuration lines. Because four instructions are de-
coded in a single cycle, also up to four operations could be
issued to a column in the array. Hence, the maximum of
four configuration busses per column, including the branch
controller and the memory access units, are required. But, due
to our evaluations we find out that only two busses per column
are sufficient. If more than two instructions (out of four) must
be issued to the same column, an additional cycle is required.
The configuration unit is aware of this circumstance.

The only feedback signals from the back-end to the front-
end are the signals from the branch controller to the fetch unit
(a new program counter and a valid signal) and a finished
signal. The finished signal indicates that the execution has
reached the end of the array.

B. Timing Analysis at the Front-end

Besides the placement of the operations into the array, the
front-end is also responsible to determine the timing. Because
of the asynchronous execution of the operations, the time
at which a valid data word arrives at a particular location
is not known. To synchronize the synchronous units (see
Section IV-C) with the asynchronous execution within the
array, the configuration unit is aware of the timing of each
operation. Therefore, the runtime of each operation is known
by the configuration unit in terms of so-called pico-cycles. We
have chosen one pico-cycle as % of a machine clock cycle. At
each configuration step i.e., the assignment of one operation,
the configuration unit calculates the time at which the FU
output is valid. Inside the configuration unit one pico-cycle
counter is responsible for each architectural register i.e., each
column. The number of pico-cycles required for the current
operation is added to the longest path of the source values.
For the evaluations, we assumed the execution times for the
operations as shown in Table I. These assumptions are based
on the fact that some operations require a carry chain (add,
sub, setlt, setgt), require a shifter (shl, shr), or are flat logic
(and, or, xor, not).

If the resulting pico-cycle counter exceeds one machine
clock cycle, a so-called timing token register inside the FU
is activated (see Section IV-D) and the counter is decreased
by four. Otherwise, the timing token register of the FU is

Operation Pico-cycles

Add, Sub 3

Setlt, Setgt 3

And, Or, Xor, Not 1

Shl, Shr 2
TABLE I

PICO-CYLE TIMES ASSUMED FOR THE EVALUATION

bypassed i.e., the timing token passes immediately. The pico-
cycle counter is implemented as a two bit counter and the
overflow indicates that the token register has to be activated.
Due to the overflow, decreasing the counter is not required
explicitly.

In a real implementation of GAP the longest signal path
depends on the technology and the placement. Hence, the pico-
cycles required for an instruction class are not known at design
time (before synthesis). To address this problem, they can be
stored in an internal look-up table (RAM) that is initialized
with the maximum pico-cycle value (four pico-cycles in this
case) at system reset. A test software determines the actual
value per instruction class and sets the entries in the table
accordingly.

C. Back-end Architecture

The GAP back-end comprises the FU array, the branch
controller, and the memory access units (see Figure 2). The
branch controller and the memory access units are designed as
synchronous units while the FU array is asynchronous (except
for the configuration part and the timing token register). The
three parts are described below.

« Functional unit array: The array consists of a two-
dimensional arrangement of identical FUs. Each FU
contains an ALU that is able to perform the following
operations: +, -, shl, shr, and, or, xor, not, neg, setlt, setgt.
Besides each ALU, a configuration register including a
constant value, two input multiplexers, and the token logic
for the timing is present. Moreover, a bypass multiplexer
is available that allows the route-forward operation i.e.,
the output value of the previous FU in the same column is
routed to the next row. The block diagram of a complete
FU is shown in Figure 6. The input multiplexers are able
to select the output of each FU in the row above or the
top registers, respectively. Because of the asynchronous
execution inside the array, no registers are located in the
data path of the FU. In contrast, the configuration network
is fully synchronous and the register for the timing token
can be enabled by configuration.

o Branch controller: The branch controller comprises a
configuration register, two input selectors, and a compare-
to-zero comparator per row of the array. Additionally, the
branch controller offers a bus for the new program counter
(for taken branches) to the processor front-end together
with a valid-signal. Besides controlling branches, this unit
enables the top registers to store the values delivered by
the feedback network. It is also aware of the time when all
operations in the array are finished i.e., when all timing

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

75

tokens arrived at the last row. Furthermore, the branch
controller manages the loop acceleration i.e., if the branch
target is the first instruction that is already configured in
the array, the configuration is left unmodified. Only the
new data is copied into the top registers in this case and
the timing tokens are activated at the top row.

¢« Memory access units: The memory access units are
synchronous units. They are responsible for read and
write operations of the array to the main memory. A read
or write operation occurs if the software executes a load
or store instruction, respectively. To reduce the access
time, small local caches containing a single cache line are
present in each memory access unit (see Section IV-E).
Each memory access unit contains a configuration reg-
ister, two input selectors, and an output bus. The input
selectors can choose any of the FUs’ output of the
upper row as address and write data input. The output
bus directs the read data to any FU of the same row.
An operation of the memory access unit is triggered at
the time the required timing tokens are available. The
output token is synchronously generated if the operation
is performed.

Synchronous Asynchronous
configuration data inputs
inputs
Configuration Data Dar:/if;fl?
Busses Clk A B P row
rrrrrrrrrrrrrrrrrrrrrrrrrr !,|,|,|, ih.)l.tjkl - {rlrlrlr"r\'/i'tj)r(lr S
nput nput .
| 321 321 :
5 Constant value 3 3
k v
‘T 1
g » ‘mux/
<FIBRE Ny
ket o 32
i B ﬁ/wr v
> 3 2
12 3, Operation
Spperation
c
L|o
O
. Bypass
: . . MUX /" multiplexer -
- Functional unit . :

Fig. 6. Block diagram of a functional unit comprising an ALU, input
selectors, bypass network, and a configuration register set by one of the two
configuration busses

The units of the back-end are configured by different
synchronous configuration busses. These busses range from
the configuration unit of the front-end to the last row of the
array. Because of a high number of rows, these busses could be
comparatively long and, hence, have a negative impact on the
maximum clock rate. To overcome this problem, a register can
be integrated to pipeline the transportation of the configuration
data and to shorten the maximum delay.

A much more interesting issue is the wire length of the
horizontal connections. If the value of register zero (R0) is

required at the memory access unit or the value of R31 is
required at the branch controller, these values have to pass
from the leftmost FU to the right side of the array or vice-
versa, respectively. To get rid of these long wires together with
the delay, we evaluated different array extensions described
in Section IV-F. For our evaluations, we assumed that the
maximum delay is taken into account by the pico-cycles
required for an operation.

D. Instruction Execution and Timing

The front-end units of the GAP i.e., the instruction fetch,
decode and configuration units, work in a synchronous way
as well as the configuration paths within the array of FUs.
The branch controller and the memory access units are also
synchronous to a global clock signal. In contrast to these
units, execution of the operations within the FUs is performed
asynchronously.

So, the data stored within the top registers move to all FUs
in the first row that are configured to use data out of at least one
of these registers. The output of each FU in the first row moves
to the inputs of the FUs in the second row corresponding to
their configuration and so on.

To align synchronous parts with data from asynchronous
execution, we introduced so-called timing tokens. These tokens
propagate in parallel to each data word through the array. If a
FU is configured for an operation with two registers as source
operands, the FU sends a token if both source tokens are
available. To generate the delay of the tokens, the FUs are
equipped with an additional synchronous single bit register,
which allows to bypass the token signal depending on its
configuration. In general, these registers are in bypass mode.
The idea is that a token moves ahead of the corresponding
data till it reaches an active timing token register. Here, it has
to wait until the next rising clock edge i.e., until the data at
the associated FU is valid. The token registers are activated by
the configuration unit if the longest data path from the current
FU back to the FU with the last active token register or the top
of the array is longer than one machine clock cycle. Hence,
if a synchronous unit receives a token, the data at the input
will be valid not later than the next rising edge of the clock
signal.

Accordingly, the synchronous branch controller as well as
the memory access units use the timing token of the incoming
data as data valid signal. If it is set at the rising edge of
the clock signal, the corresponding action must be performed.
Additionally, an internal done state must be set to ensure that
the action is done only once. Because of the nature of the
timing token, it is not reset during a single execution iteration
of one configuration. If a configuration is executed multiple
times like a loop body or if the array is reconfigured, the done
state must be reset.

E. Memory Hierarchy

Reaching a high memory throughput is a main requirement
to get a high processor performance. The GAP back-end
comprises one memory access unit per row. Hence, assuming

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

76

FU
bypass
FU P signal latency
= 2 pico-cycles each

actti\Lated oken

o.en register
register

Fig. 7. Three instructions, each requires 2 pico-cycles. The token register

of the upper FUs are bypassed and the one of the lower FU is activated

n rows also n memory accesses can occur simultaneously. To
reduce the concurrency at the memory interface, each memory
access unit contains its own small private cache. Because
of hardware simplicity, the current evaluations assume only
a single cache line within each memory access unit. These
caches serve only for read accesses, writes go directly to
the next memory hierarchy i.e., the data cache. For cache
consistency, writes are also directed to all other memory access
units, which compare the received write address to their own
cache and update it, if necessary.

The memory write sequence is guaranteed by the back-
end by allowing only a single write access in one cycle. This
technique enables the memory access units to distribute writes
through a shared write bus to the other memory access units
and the data cache in parallel. Additionally, writes are executed
in the original program order and take care of preceding taken
branches. Hence, no unintended writes can occur. Between two
consecutive writes all loads that are in the program order in
between these writes can be executed simultaneously.

Memory throughput is increased by the data cache, which is
a non-blocking cache [16]. All read accesses from the memory
access units go to the data cache. If one request cannot be
satisfied it is redirected to the next level cache (which is not
implemented in our current simulator). Meanwhile, requests
from other memory access units can be served by the data
cache.

FE. Architectural Optimizations

A problem of GAP arises from branches that can be resolved
only at the execution time inside the array. These branches
lead to a flush and reconfiguration of the array if they do
not form a loop. Another shortcoming of the basic GAP
architecture is the huge amount of chip area required for the 32
columns for 32 architectural registers. Additionally, the wire
delay is a very important issue in modern chip design and
the long horizontal wires have a big impact on the operating
performance (not the clock frequency because the concerned
parts are asynchronous). The following optimizations of the
GAP architecture consider these drawbacks.

1) Branch Prediction: Like most other processors the GAP
can profit from branch prediction. A taken conditional branch

inside the array that does not implement a loop leads to a flush
of the array and a new configuration phase. For this purpose,
a branch prediction tries to increase the length of the dataflow
graph mapped into the array by predicting the direction of
conditional branches. A misprediction results in an array flush
and starts a new configuration phase. Hence, the number of
speculation levels of the GAP predictor is only limited by the
number of rows because we allow only one branch per row.

In contrast to conventional speculative superscalar proces-
sors, the GAP does not require any commit logic that is aware
of speculative execution. Instead, the register values are taken
out of the row of the mispredicted branch and are copied into
the top registers. Now, they are available for the further correct
execution of the program.

2) Predicated Execution: Another possibility to reduce the
number of flushes is to get rid of some conditional branches.
Therefore, the optimized GAP is able to use predicated execu-
tion. In the case of a predicated instruction, it will be placed
in the array like a normal instruction. An additional logic
inside the FUs allows to use predication for all instructions.
A flag is set in the configuration register of the corresponding
FU, which indicates that the operation is predicated. If the
predicate is true, the operation is executed but if it is false,
the FU switches to route-forward mode. The predicate itself is
determined by the branch control unit i.e., the original branch
preceding the predicated instruction is not executed as a branch
but it sets the corresponding predication signal appropriately.
This technique is only useful for forward branches with very
small jump distances because the predicated instructions have
to be taken into account completely during the calculation of
timing tokens.

3) Horizontal Array Dimension: The horizontal extension
of the basic functional unit array is as high as the number
of architectural registers. Using a standard RISC instruction
set architecture like ARM, PISA, or openRISC (ORBIS32)
requires 16 or 32 columns. The high number of columns leads
to a high wire delay between the leftmost and the rightmost
FUs of the GAP. Additionally, the input selectors of each FU
must be able to select each of the outputs of the previous row
resulting in 33-to-1 33 bit width multiplexers (32 registers plus
one input for the memory access unit * 32 data bits plus the
timing token).

Reducing the number of columns has been reached by
decoupling the architectural registers from the array columns.
The processor front-end supports a technique like the well-
known register renaming [20]. But, in contrast to the standard
register renaming that maps less architectural registers to a
higher number of physical registers, GAP does it vice-versa:
a high number of architectural registers is mapped to a lower
number of physical registers i.e., columns.

Mapping is done by a mapping table with one entry per
architectural register and a column counter. At an array flush,
each entry in the mapping table is set to invalid and the counter
is set to zero. Every time the result of an instruction should be
written into an architectural register, the column is determined
by the value in the corresponding entry of the mapping table.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

77

If it is invalid, the content of the counter is written into the
mapping table and the counter is increased. If the counter
reaches the maximum value (the number of columns) no
instructions writing to further architectural registers can be
placed inside the array. The configuration stops at that time.

As a result of the lower number of columns, some configura-
tions have to be split into multiple configurations for execution.
In Section V-C we have evaluated how many configurations
can be satisfied by a smaller array dimension.

V. EVALUATION

The evaluation of the GAP architecture concerns the array
size with different optimization steps. In all evaluations, the
GAP features branch prediction unless otherwise noted. Be-
sides the pure performance, we also evaluated the utilization
of the FU array and the memory access units.

A. Evaluation Methodology

To evaluate the performance of the basic GAP architecture,
we compared it to a superscalar processor simulated by the
SimpleScalar (SS) tool set with the parameters given in
Table II. Therefore, the GAP architecture is implemented
as a cycle accurate simulator written in C++. The pipeline
stages, the FU array, the branch controller, the memory access
units and the cache are modelled in the GAP simulator. Both
simulators execute the identical binary files.

Parameter SimpleScalar | Basic GAP
L1 I-Cache 128:64:1 128:64:1
L1 D-Cache 1024:32:1 1024:32:1
Fetch, decode, and issue width 8-way 4-way
Multipliers 1 1 per row
Integer ALUs 8 31 per row
Branch prediction bimod bimod
Return address stack 8 none
Branch target buffer 512%4 none
Load/store queue 8 entries one L/S unit
per row
Memory latency 24 24
TABLE I

PARAMETERS OF BOTH SIMULATORS

At first glance, it seems not to be fair to compare the
SimpleScalar architecture with 8 ALUs to the GAP with up
to 992 ALUs (31 columns x 32 rows, RO is fixed to 0).
But we first evaluated the IPC rates of the SimpleScalar
configured by the given parameters and with different numbers
of ALUs to identify its peek performance. Therefore, we used
the same benchmarks as for the evaluation of the GAP. The
results presented in figure 8 show only a marginal increase in
average IPC using more than 4 ALUs. The reason is that the
issue unit is not able to find enough independent instructions
to execute in the same cycle. To overcome this bottleneck,
the fetch width and the decode width have to be increased
together with the size of the Register Update Unit (RUU). But
increasing the issue complexity would influence the maximum
frequency dramatically as stated by Cotofana et al. [7]. To be
conservative, we used twice the fetch and decode width for

the SimpleScalar than for the GAP and an RUU size of 128
for the SimpleScalar while the GAP does not need any issue
queue.

1,25

- /
1,15

IPC
l\

1,05 L
= == fetch, decode, issue width = 4
1 =m==fotch, decode, issue width = 8 |
0,95
2 4 6 8
#ALUs
Fig. 8. Average IPC rates of all benchmarks using the SimpleScalar with

different number of ALUs and a fetch/decode width of 4 and 8, respectively.

Several benchmarks out of the MiBench [8] benchmark suite
without floating point operations are selected to determine
the GAP’s performance. As input data, the small data sets
are used. The stringsearch benchmark is an adapted version
of the original benchmark reduced to the central algorithm
without any output. Unless otherwise stated, the identical
binary files are used for the GAP simulation as well as for
the SimpleScalar.

B. Performance of the GAP Architecture With Branch Predic-
tion and Predicated Execution

The first performance evaluation concerns two different
optimization steps of the GAP: the basic architecture with
integrated branch prediction and the basic architecture with
branch prediction and additional predicated execution. The
latter requires a slight modification of the execution binary
because of the predication bits. This modification is done only
by an analysis of the executable and not by compiler options.
As GAP array size we have chosen 4, 8, 16, and 32 rows and
always 31 columns of FUs, one multiplier and one memory
access unit per row.

Figure 9 shows the IPC rates of the benchmarks using the
GAP compared to the SimpleScalar. Using 16 or 32 rows,
the GAP outperforms the SS in all cases, except for bitcount.
The benchmarks adpcm, dijkstra, and stringsearch result in
a higher IPC even with only 4 rows. On average the GAP
with 4 rows reaches a slightly higher IPC than the SS. The
top performance is reached by the SHA benchmark with 32
rows: The IPC is 2.56 times the IPC of the SimpleScalar.

After adapting the executable binary files with predication
bits, we simulated the same benchmarks with enabled predi-
cated execution. Figure 10 shows the results of these measure-
ments. The predicated execution achieves a slightly better IPC
on average with 32 rows. But, in particular the ad pcm obtains
a significantly higher performance in all row configurations

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

78

EGAP 4 rows
B GAP 8 rows
CGAP 16 rows
OGAP 32 rows
@ss

Instructions per cycle (IPC)
o - o
T
db@ *

3 o

& N & NG

S &
N

%
%

4\5‘
%,

Fig. 9. IPC rate of the GAP with branch prediction compared to the
SimpleScalar.

EGAP 4 rows
EGAP 8 rows
6 CIGAP 16 rows
OGAP 32 rows
mss

Instructions per cycle (IPC)

Fig. 10. IPC rate of the GAP with branch prediction and predicated execution
compared to the SimpleScalar.

(nearly 2-fold with 4 rows up to 4.65-fold with 32 rows) while
dijkstra and rijndael show a performance loss. The bitcount
demonstrates an unexpected behavior: The performance of the
4-row version is decreased while the configurations with 8, 16,
and 32 rows show a performance gain. All other benchmarks
reach at least the same performance with enabled predicated
execution than without.

The performance loss of some configurations/benchmarks
can be explained by the timing of the execution inside the
array. If a short forward branch, which is mostly taken, is
substituted by predicated execution, the predicated instructions
increase the longest path inside the array without being exe-
cuted. Hence, the time to execute a complete configuration is
also increased, which in turn reduces the IPC. In the case of the
dramatic performance increase of the adpcm, which reaches
with 32 rows an IPC of 4.65 times the IPC of the SS, the
predicated execution shows its positive aspects: branches that
are resolved by predicated execution are hard to predict, which
leads to a better performance by using predicated execution.
The following evaluations are performed only with branch
prediction without predicated execution.

C. Utilization of the GAP Back-end

The basic architecture of the GAP consists of one column
per architectural register and one memory access unit per row.
At the maximum configuration evaluated in Section V-B this
results in 992 FUs, 32 multiplier/dividers, and 32 memory
access units. The second evaluation step concerns the number
of FUs and memory access units that are really required
to reach the performance mentioned above. Because of the
direct relationship of the destination register as well as the
dependencies of an instruction to its placement inside the array,
we expect a very low utilization of the FUs.

100 mGAP4rows WGAP 8 rows [GAP 18 rows OGAP32rows |
90 — 1
80 — 1 — — —
FLp — u H
3
3 60— H
s
- — H
£
£ 40 H
= 30 ml
20 ml
10 H
0 . L
g N
Q“@ 5 o »@\@ s 'QQ'Q & £ & &
& & N & & &
<
2
Fig. 11. Maximum number of used FUs per configuration with branch
prediction.

Figure 11 shows the amount of FUs, which are used for
real operations (not as route forward) with enabled branch
prediction. The average overall utilization using 32 rows is
about 81 FUs. That means, the utilization with 32 rows ranges
from 6.7% up to 8.2%. Using only four rows, the GAP
needs just 15 FUs on average i.e., 12% of its overall FUs.
Although more than 64 FUs are used by the configuration
with 32 rows in every benchmark, a maximum array with
64 FUs is reasonable. This is because the presented values
show the maximum utilization by the benchmarks; the average
utilization is much lower.

The number of allocated memory access units is shown in
Figure 12. In the four and eight row configurations, every
benchmark requires all available memory access units. At
the 16 row version, crc uses only 14 and jpeg as well as
rijndael and dijkstra all 16 memory access units. The other
benchmarks allocate 15 memory access units. A saturation
of memory access units is reached at the 32 row version of
GAP: The maximum number of memory access units (31) is
allocated by jpeg while stringsearch requires only 23.

These measurements indicate that a high number of memory
access units seems to be required to get a good performance
result. But, the presented values are only the maximum number
of allocated memory access units i.e., they do not figure
out if this particular configuration is relevant for the overall
performance.

To clarify this question, the maximum number of rows that
are used to accelerate loops is presented in Figure 13. Because

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

79

35 «‘ EIGAP 4 rows B GAP 8 rows CIGAP 16 rows CIGAP 32 rows
30 M
25 M i
2 r . .
) !
3
éis L
§
g
g
£
i |
=
5 L
0 T T T T T]
X O > o
& & & &0 & .QQ»Q’ & <® ,b\é\)
X +© N @ S o & &
L N S S 9 Q
D & ¥
XS
>
Fig. 12. Maximum number of used load/store units per configuration with

branch prediction.

the GAP architecture supports only one memory access per
row, the number of memory access units required for loop
acceleration cannot be higher than the number of used rows.
Hence, with only 17 memory access units most benchmarks
would perform well if 32 rows are available. With less rows
only 3, 6, resp. 12 units are required on average.

5] mcAP4rows HGAP 8 rows CIGAP 16 rows 0GAP32rows |

&
5

S
=

]
5]

=

Maximum number of rows in a loop
3

.

N o
I R S
&S < oF § & & &
9 $ & v
5
Fig. 13. Maximum number of used rows at loop acceleration with branch
prediction.

Another area consuming resource is the multiply/divide unit.
Although each row of the array contains a multiply/divide unit,
the evaluations show a clear result: only one multiply/divide
unit is required for all benchmarks and all configurations.
Hence, a single multiply/divide unit, which can be accessed
by all rows would be sufficient.

Besides the number of rows the number of columns also
dictates the hardware effort. To find out a minimum array
width we measured the number of used columns per configu-
ration i.e., the number of columns with at least a single issued
instruction. The histogram in Figure 14 shows how much con-
figurations could be satisfied by a certain number of columns.
Therefore we conservatively assumed a maximum array length
of 32 rows i.e., using a shorter array would also lead to smaller
configurations. As a result we can notice that only 8 columns
are required to satisfy 95% of all configurations emerging in

Relative amount of configurations

Colums

Fig. 14.
columns.

Ratio of the satisfied configurations depending on the number of

all applied benchmarks. With 14 columns, 99% and with 20
columns all of the configurations can be mapped completely
into the array.

Besides the lower number of FUs also the input multiplexers
of the FUs shrink if the array width is decreased. Choosing
an array width where not all configurations can be issued
completely does not mean that some applications cannot
be executed at all. Rather these configurations require an
additional array flush resulting in an additional configuration
phase.

VI. CONCLUSION AND FUTURE WORK

We presented the new GAP architecture comprising a pro-
cessor back-end similar to a two-dimensional reconfigurable
array. In contrast to well-known reconfigurable architectures
the GAP is able to execute a conventional instruction stream
generated by a standard compiler. The comparison to an out-
of-order superscalar processor simulator shows a maximum
performance factor of 2.56 when using the GAP with branch
prediction and 4.65 when using it with additional predicated
execution.

The great advantage of the GAP architecture is the improve-
ment of sequential program execution that cannot be provided
by modern multithreaded and multicore architectures. Besides
the performance, we also evaluated different sizes of the FU
array and its utilization to find an optimal array size. The
measurements show that the number of allocated FUs is much
less than the total amount of FUs (about 6-12%).

In future, we will further improve the performance by
implementing multiple configuration layers, which speed up
frequently used configurations and allow to decrease the max-
imum number of rows and columns. Multiple configuration
layers would support especially function calls and configura-
tions that do not fit into a single configuration layer. Hence, the
layers will at least compensate the drawback of a smaller array.
Moreover, a possible misprediction penalty can be eliminated
completely by having the target instruction stream already
configured within another layer.

Further optimizations concern the horizontal connection net-
work. Because the current implementation allows to transport
data from any FU of one row to any FU of the next row,
complex multiplexers are required at each data input of the
FUs. To reach simpler horizontal connections, we will reduce

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

80

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

the number of horizontal busses. This reduction will restrict the
number of output values that can be transported to the inputs
of the next row’s FUs. Hence, the configuration unit must be
modified to take care of that circumstance. If more data must
be transferred to succeeding FUs than busses are available, the
concerned operations must be placed in the following row.

[1]

[3]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Architec-
tural exploration of the adres coarse-grained reconfigurable array. In
ARC, pages 1-13, 2007.

D. Burger and T. Austin. The simplescalar tool set, version 2.0. ACM
SIGARCH Computer Architecture News, 25(3):13.

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin,
C. R. Moore, J. H. Burrill, R. G. McDonald, and W. Yode. Scaling to the
end of silicon with EDGE architectures. IEEE Computer, 37(7):44-55,
2004.

N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner.
An architecture framework for transparent instruction set customization
in embedded processors. In Proc. of the International Symposium on
Computer Architecture, pages 272-283, 2005.

N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution
accelerator for loops. In Proc. of the International Symposium on
Computer Architecture, pages 389-400, 2008.

K. Compton and S. Hauck. Reconfigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys, 34(2):171-210, June
2000.

S. Cotofana and S. Vassiliadis. On the design complexity of the issue
logic of superscalar machines. EUROMICRO Conference, 1:10277,
1998.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and T. Brown.
Mibench: A free, commercially representative embedded benchmark
suite. 4th IEEE International Workshop on Workload Characteristics,
pages 3—14, December 2001.

S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera Reconfigurable
Functional Unit. In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 1997), pages 87-96, 1997.

J. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfig-
urable coprocessor. In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 1997), pages 12—, 1997.

M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M.
Filho, and V. C. Alves. Design and implementation of the morphosys
reconfigurable computingprocessor. Journal of VLSI Signal Processing
Systems, 24(2-3), March 2000.

R. Lysecky, G. Stitt, and F. Vahid. Warp processors. ACM Trans. Des.
Autom. Electron. Syst., 11(3):659-681, 2006.

PACT XPP Technologies, July 2006. http
//www.pactxpp.com/main/download /X PP — I1I_overview_WP.pd f.
R. Razdan and M. D. Smith. A High-Performance Microarchitecture
with Hardware-Programmable Functional Units. In Proceedings of the
27th Annual International Symposium on Microarchitecture, pages 172—
80, 1994.

R. Santos, R. Azevedo, and G. Araujo. 2d-vliw: An architecture based
on the geometry of computation. In ASAP ’06: Proceedings of the
IEEE 17th International Conference on Application-specific Systems,
Architectures and Processors, pages 87-94, Washington, DC, USA,
2006. IEEE Computer Society.

J. Sicolo. A multiported nonblocking cache for a superscalar unipro-
cessor. Master’s thesis, Department of Computer Science, University of
Illinois, Urbana IL, 1990.

F. Sun, S. Ravi, and N. K. Jha. A scalable application-specific processor
synthesis methodology. In Proceedings of the International Conference
on Computer-Aided Design, pages 9-13, 2003.

M. B. Taylor, J. S. Kim, J. E. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffmann, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. P. Amarasinghe,
and A. Agarwal. The Raw microprocessor: A computational fabric for
software circuits and general-purpose programs. [EEE Micro, 22(2):25—
35, 2002.

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

M. B. Taylor, W. Lee, J. E. Miller, D. Wentzlaff, 1. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. S. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. P. Amarasinghe, and A. Agarwal. Evaluation
of the Raw microprocessor: An exposed-wire-delay architecture for ILP
and streams. In ISCA, pages 2—-13. IEEE Computer Society, 2004.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. pages 13-21, 1995.

S. Uhrig. Processor with internal grid of execution units. Patent pending,
WO 2007/143972 A3.

S. Uhrig, S. Maier, G. Kuzmanov, and T. Ungerer. Coupling of a
reconfigurable architecture and a multithreaded processor core with
integrated real-time scheduling. In /3th Reconfigurable Architectures
Workshop (RAW 2006), Rhodos, Greece, Apr. 2006.

S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer. A two-dimensional
superscalar processor architecture. In The First International Conference
on Future Computational Technologies and Applications, FUTURE
COMPUTING 2009, Athens, Greece, November 2009.

S. Vassiliadis, S. Wong, and S. D. Cotofana. ~The molen pmu-
coded processor. In In in I11th International Conference on Field-
Programmable Logic and Applications (FPL), Springer-Verlag Lecture
Notes in Computer Science (LNCS) Vol. 2147, pages 275-285, August
2001.

S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. M. Panainte. The molen polymorphic processor. IEEE Transactions
on Computers, 53(11):1363-1375, 2004.

F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei. Custom imple-
mentation of the coarse-grained reconfigurable ADRES architecture for
multimedia purposes. International Conference on Field Programmable
Logic and Applications, pages 106-111, 2005.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

81

