
ASSOLO: an Efficient Tool for Active End-to-end

Available Bandwidth Estimation

Emanuele Goldoni

University of Pavia

Department of Electronics

27100 - Pavia, Italy

emanuele.goldoni@unipv.it

Giuseppe Rossi, Alberto Torelli

University of Pavia

Department of Computer Eng. and System Science

27100 - Pavia, Italy

giuseppe.rossi@unipv.it, alberto.torelli01@ateneopv.it

Abstract—End-to-end available bandwidth estimation is a cru-
cial metric for bandwidth-dependent services such as multimedia
streaming, peer-to-peer and gaming applications; it is also useful
for quality of service verification and traffic engineering. This
paper presents the details of ASSOLO, an efficient active probing
tool for estimating the available bandwidth of a network path.
The tool is based on the well-known concept of “self-induced
congestion”, and it features a new probing traffic profile called
REACH (Reflected ExponentiAl Chirp) to test a wide range of
possible rates with a single stream of packets. In addition, the
program runs inside a real-time operating system and uses some
de-noising techniques to improve the measurement process. Ex-
perimental results show that ASSOLO outperforms pathChirp,
a state-of-the-art measurement tool, estimating the available
bandwidth with greater accuracy and stability in presence of
different cross-traffic sources. Moreover, we demonstrate that the
use of a real-time operating system can increase the stability of
the estimations lowering the impact of software context switches.

Keywords-Available bandwidth, active network measurement,
performance evaluation, real-time.

I. INTRODUCTION

ASSOLO is a novel tool for available bandwidth estimation

in packet-switched networks which has been originally intro-

duced in [1]. This work extends some of the results presented

in the original paper by investigating the performance of our

tool in presence of poissonian cross-traffics. We also study

the actual impact of a real-time operating system on the

measurement process, and we provide more details on the

filtering technique implemented into the program.

The available bandwidth of a network path is a crucial

metric in quality-of-service management, traffic engineering

or congestion control. Voice over IP (VoIP), peer-to-peer and

video-streaming are examples of widely-used applications that

could greatly benefit from the knowledge of the available

bandwidth along an Internet path. For example, in [2] and

[3] the importance of the available bandwidth is investigated

respectively for peer-to-peer (P2P) networks and gaming-on-

demand services. In [4] the authors focus instead on improving

the perceived quality of video streaming through a dynamic

path selection based on the measurement of network-layer

metrics. Similarly, in [5] the authors propose a live broadcast

platform where the video source is distributed to a number

of clients organized in a peer-to-peer tree-structured overlay

network. In this network the root node is also responsible

for organizing and maintaining the position of each peer

within the tree according to the available bandwidth and the

latency between peers. The knowledge of the actual available

bandwidth is also exploited in [6] to improve video streaming

rate- and quality-adaptation decisions; results obtained through

simulations show that an estimation algorithm can substan-

tially increase streaming performance.

The same approach is also adopted in existing commercial

products: Microsoft Windows Media Server includes a tech-

nology called Intelligent Streaming for on-demand and live

media streaming over IP. This solution identifies the actual

maximum throughput allowed by the network path using a

end-to-end client/server system. This value is used to choose

the best encoding rate which maximizes the quality of received

media without overloading the network [7].

In principle, it would be possible to obtain estimates of the

available bandwidth directly from intermediate routers along

the network path; however, this is not feasible in practice due

to technical and security reasons. Therefore, researchers have

proposed several end-to-end measurement algorithms which

infer the network characteristic transmitting a few packets

and observing the effects of intermediate routers or links on

these probe frames. Examples of probing tools which have

emerged in recent years are IGI [8], Spruce [9], Pathload [10],

TOPP [11], [12], pathChirp [13], FEAT [14] and BART [15].

They differ mainly in the structure of probe streams and in

the algorithms used to estimate available bandwidth from the

received packets. Nevertheless, producing reliable estimations

in real-time still remains challenging: the measurement process

should be efficient, accurate, non-intrusive and robust at the

same time. Moreover, the algorithm should adaptively apply

to different types of networks and cross-traffics, and must be

able to produce fast periodic estimations in order to track

bandwidth fluctuations. As a result, as noted in [16]–[18],

current available bandwidth estimation techniques and tools

are far from being ready to be applied in many applications

and scenarios.

Compared to the tools mention above, our novel tool AS-

SOLO (Available-bandwidth Smart Sampling On-Line Tool)

features a new probing traffic profile called REACH (Reflected

ExponentiAl Chirp). A REACH tests a wide range of rates

283

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

and is more accurate in the center of the probed interval.

Moreover, ASSOLO uses a combination of new and existing

filtering techniques to improve the accuracy and stability of

results. Finally, our tool runs inside a real-time operating

system in order to minimize the impact of context switches

on the measurement process.

The rest of the paper is organized as follows. In Section

II we introduce the related work on available bandwidth

estimation and we focus on the Probe Gap Model, the general

measurement scheme adopted by our tool. Next, Section III

illustrates the algorithm used to generate the REACH probing

stream and the additional features introduced in our tool. An

evaluation of ASSOLO is presented in Section IV, including

results obtained comparing our solution to the state-of-the-

art tool pathChirp both in terms of intrusiveness and accuracy.

Finally, in Section V we conclude and we outline future works.

II. RELATED WORK

Techniques for end-to-end available bandwidth estimation

can be divided into two categories: active probing and passive

measurements. The latter infer the required information from

existing data transmissions while active probing techniques

produce an estimation injecting dedicated probe traffic into

the network.

Passive measurements do not require dedicated packets to

perform the estimation: useful information is obtained from

traffic originated by active connections providing a particular

service. In this context, the idea of using TCP for network

measurements has attracted a lot of studies: RTT values [19]

or ACK arrival times [20], [21] have been used on the

sender’s side to infer the available bandwidth from existing

transmissions. These methods are lightweight and fast but they

can be applied only to network paths that have recently carried

traffic. Moreover, congestion control algorithms, buffers and

competing connections may influence the achievable through-

put of a single TCP connection, thus altering the accuracy of

estimations [22].

Active measurement techniques use probe packets to mea-

sure the end-to-end delays introduced by existing cross-traffic

(Figure 1). These methods require instrumentation at both

ends of the path; moreover, the probe traffic injected into the

network may affect the performance of other applications and

actually alter the available bandwidth. In addition, some tools

require a long measurement time and use hundred of packets

before producing an estimation. The majority of existing tools

belong to the Probe Gap Model (PGM) or the Probe Rate

Model (PRM).

In the Probe Gap Model, a tool sends a single probing

pair or train; it exploits then the dispersion of packets on

the receiver side to calculate the available bandwidth. The

main assumption of this model is that the link with the

minimum available bandwidth is also the link having the

minimum capacity. This is probably the biggest limit of this

approach: the hypothesis is not valid for many Internet paths

and can results in significant underestimations of the available

Fig. 1. The spacing effect on multiple traffics over a congested network
path.

bandwidth over multi-hop links [23]. Notable tools based on

the Probe Gap Model are Spruce [9], IGI [8] and Delphi [24].

Delphi [24] assumes a multi-fractal model for the cross-

traffic. The main idea in this tool is that the spacing of two

probing packets at the receiver can provide an estimate of the

amount of traffic at a link. Spruce [9] is based too on direct

probing and it uses tens of packet pairs to collect available

bandwidth estimations. The input rate of pairs is chosen to be

roughly around to the capacity of the path, which is assumed

to be known. Moreover, packets are spaced with exponential

intervals to emulate a poissonian sampling process. IGI [8]

uses a sequence of about 60 unevenly space packets to probe

the network and the gap between two consecutive packets is

increased until the average output and initial gaps match.

The Probe Rate Model, instead, is based on the concept of

self-induced congestion. The underlying idea is quite simple:

if a sequence of packets is sent at a rate lower than the

available bandwidth along the network path, then the arrival

rate of packets at the receiver will not exhibit any notable

variation and it will match with the sender’s rate. On the other

hand, if the sending rate exceeds available bandwidth, one or

more intermediate queues will fill up and the probe traffic

will experience delays. Thus, the measurement is performed

through the research of the turning point at which the probe

stream starts seeing an increasing trend. The PRM model has

proved to be accurate and it is used in many estimation tools,

such as TOPP, Pathload, pathChirp, FEAT and BART.

TOPP [11], [12] and Pathload [10] use a constant bit-rate

stream, sending pairs or trains of packets at a given rate and

changing this rate every round. TOPP increases linearly the

sending rate in successive streams, trying to find out the exact

turning point. Pathload on the other hand varies the probing

rate using a binary search scheme and the final output, result

of multiple measurements, is a variation range rather than a

single estimate. Since multiple trains are required to produce a

single estimation, the intrusiveness of these techniques is quite

high and the measurement process is time-consuming.

PTR [8] is an active probing algorithm which sends several

probing packets to detect background traffic. The method com-

284

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

pares the time interval at the source with that of destination

and then uses the timings to estimate the value of available

bandwidth.

pathChirp [13] sends a variable bit-rate stream called chirp,

which consists of exponentially spaced packets. A chirp allows

to probe the network path over a wide range of rates injecting

only one stream – if the delays show an increasing trend

starting from a particular packet, the associated rate is used to

infer the unused capacity. pathChirp can estimate available

bandwidth sending only one chirp: this feature makes the

measurement process fast and lightweight. However, path-

Chirp samples the lower rates more frequently than the higher

rates. Therefore the tool is less accurate if actual available

bandwidth is not located nearby the beginning of the probing

range. Smoothed-chirp (S-chirp) is a similar approach based

on iterative probing and originally proposed in [25].

BART [15] relies on sequences of packet pairs sent at

randomized rates. This tool uses also a Kalman filter to track

the evolution of available bandwidth in real-time and to filter

out noisy observations. BART is lightweight, efficient and

non-intrusive; however, the tool is still in development and

it is not freely available. MR-BART is a extension of the

original BART method which employs multi-rate probe packet

sequences to achieve faster convergence and more accurate

estimations.

FEAT [14] is a recent tool which features a probe pattern

called fisheye stream. A fisheye stream consists of packets of

equal size which are sent at a changing rate, from a lower

bound to a maximum probing rate. The tool identifies also an

interval, called “focus region”, where the available-bandwidth

is most likely to be. Inside this region the sampling frequency

is higher and the number of packets sent for each sampling

rate is larger. This approach creates a more identifiable turning

point but it also makes the measurement process intrusive.

While BART and FEAT look quite promising, it is difficult

to compare them to other state-of-the-art tools: the results

presented by the respective authors have been obtained only

through simulations or using specific Internet paths, and to our

best knowledge the two programs have never been released

publicly.

III. ASSOLO

ASSOLO is an available bandwidth estimation tool which

has been originally presented in [1]. Unique to this tool is a

new probe traffic profile called REACH (Reflected ExponentiAl

Chirp), which tests a wide range of rates using a single stream

of packets and injecting a negligible amount of traffic into the

network. The tool introduces also some techniques to minimize

the impact of different sources of errors on the estimation

process.

A. Probing stream

ASSOLO is based on the concept of “self-induced con-

gestion” – it tests different rates using a single stream of

packets, and then infers the available bandwidth harnessing

the information about the relative delays. This approach has

a twofold advantage: it requires neither clock synchronization

nor clock-offset knowledge between the two end-hosts probing

the network. However, it is important to consider that the

first packet of the train itself does not have any associated

rate. Instead, it is used as a reference value to calculate all

successive relative queuing delays within a stream.

The novel REACH probing traffic profile tests multiple rates

with a single stream, and it is more accurate at the center

of the stream, where the actual available bandwidth is likely

to be. A similar idea was originally proposed in [14], but our

method introduces a different spacing algorithm and sends less

packets. Compared to pathChirp, the stream used by ASSOLO

is different too – both tools use a sequence of packets with

increasing delays, but the shape of the traffic and the delays

within a stream are not the same.

The REACH stream used by our tool tests different rates

increasing the instantaneous packet rates from a lower bound

L to a maximum rate U . The first k packets of the stream

probe values lower than the center H = U+L
2

; additional k
packets test values between H and the maximum probing rate

U . However, the probing rates do not increase linearly in a

REACH. Instead, the density of the stream increases as well

as values approach the center of the interval [L,U]. Then,
once the rate H has been tested, the probing density start

decreasing. The same can be said for the accuracy of the

estimation, since it is proportional to the density of the probing

stream.

The maximum relative accuracy of ASSOLO’s estimations

is defined by the parameter σ. Given the probing range, the

absolute error S around the center of the probing interval is

calculated as:

S = σ

(

U − L

2

)

. (1)

Moreover, the algorithm uses a coefficient γ to control how

fast the density of streams changes. This parameter reminds

the spread factor used by pathChirp, although the two resulting

trains are quite different. ASSOLO uses by default σ = 5%
and it sets γ to 1.2. However, it is important to note that

the choice of these parameters is arbitrary – values should be

assigned according to the specific requirements of the target

application. Decreasing γ and σ, the tool would send more

packets but it should result in a more accurate estimation; sim-

ilarly, increasing these value should reduce both intrusiveness

and accuracy.

An additional parameter ∆x is also needed to better describe

the REACH stream generated by ASSOLO. The function of

this auxiliary coefficient is to describe the gap between two

consecutive packets of the stream, and it is defined as follows:

∆x = S · γ|x−1| (2)

and combining Equations 1 and 2 we get:

∆x = σ
U − L

2
γ|x−1| (3)

Starting from the center H of the probing interval towards

the upper bound U , instantaneous packet rates in a REACH are

285

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

0 5 10 15
0

20

40

60

80

100

120

140

160

180

200

Probed rate

R
a

te
s
 [

M
b

p
s
]

Reach Profile

Fig. 2. Distribution of packets in a REACH stream.

H,H + ∆1,H + ∆1 + ∆2,H + ∆1 + ∆2 + ∆3, A more

formal description of instantaneous probing rates Rx tested by

this stream is:

{

Rx = H, if x = 1

Rx = Rx−1 + ∆x, ∀x > 1, Rx < U
(4)

On the other hand, probing rates from the center towards

the lower bound are H,H − ∆1,H − ∆1 − ∆2,H − ∆1 −
∆2 −∆3, The instantaneous rates tested by a REACH can

then be described as:

{

Ry = H, if y = 1

Ry = Ry−1 −∆y, ∀y > 1, Ry > L
(5)

The resulting stream is shown in Figure 2. As also the name

REACH (Reflected ExponentiAl CHirp) suggests, the profile is

symmetric: the right and the left part look like two mirrored

exponential functions.

Since the function is symmetric, we can analyze only the

right part of the stream – the same considerations would also

apply to the left one. ASSOLO uses k packets to test values

between H and the upper bound U . Thus, the instantaneous

rate Rk associated with the kth packet is the maximum probing

rate. We can write this condition as:

U = Rk = H +

k
∑

i=1

∆i → U −H =

k
∑

i=1

∆i (6)

If we substitute the values of ∆i and H , we get:

U −H = σ
U − L

2

k
∑

i=1

γ|i−1| (7)

U −
U + L

2
= σ

U − L

2

k
∑

i=1

γ|i−1| (8)

U − U+L
2

σ U−L
2

=

k
∑

i=1

γ|i−1| (9)

U−L
2

σ U−L
2

=

k
∑

i=1

γ|i−1| (10)

1

σ
=

k
∑

i=1

γ|i−1| (11)

In addition, the value of the truncated sum is:

k
∑

i=1

γ|i−1| =
γk+1 − 1

γ − 1
(12)

Combining Equations 11 and 12, we get:

γk+1 =
γ − 1

σ
+ 1 (13)

which leads to

k = logγ

(

γ − 1

σ
+ 1

)

− 1 (14)

Actually we should define Rk as the maximum sending rate

not exceeding the upper bound U . Equation 6 should then take

the form:

U ≥ H +

k
∑

i=1

∆i (15)

Hence the correct value of k is:

k =

⌊

logγ

(

γ − 1

σ
+ 1

)

− 1

⌋

(16)

As we mentioned before, a REACH uses the first k packets

of the stream to probe values lower than the center H = U+L
2

.

Then, the stream probes the rate H; finally, other k packets

tests values between H and the maximum probing rate U . As

a result, a REACH probes 2k+1 rates exploiting relative delays

between probe packets. Therefore, our tool needs to send an

additional packet at the beginning of the REACH. The total

number N of packets used by ASSOLO to probe 2k +1 rates

is:

N = 1 + (2k + 1) = 2k + 2 (17)

Since we know the size of a REACH, we can also combine

Equations 4 and 5 and describe the rates probed by a REACH

profile as:

Rj = H + sign

(

j −
N

2

)

· S ·
γ|j−N

2
| − 1

γ − 1
(18)

286

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

B. End-hosts predictability

A fundamental difficulty with the existing measurement

tools stems from a number of issues on both end-hosts and

network paths [26]: system timing, hardware errors and end-

to-end pathologies could produce a considerable amount of

noise in the individual network observations. For example, the

Linux kernel is a time sharing operating system designed to

give a fair share of the CPU in a multi-user environment [27] –

even some kernel services like memory allocation and system

calls exhibit some non-deterministic timing behavior.

Network measurement tools have strict operational dead-

lines between the arrive of a packet and the application’s

response to that event – the same can be said for the sender

side, where the packet sent by the application should ideally

start with no delay. In [28] the impact of context switching

on the measurement process is analyzed in depth. Some tests

conducted in our lab confirmed that a significant amount of

noisy observations is due to the non-deterministic behavior of

the operating systems hosting the sender and the receiver. To

accommodate deadlines on both the end-hosts we decided to

use a real-time operating systems (RTOS), which can guaran-

tee predictability and accurate system timings for applications.

ASSOLO runs inside a GNU/Linux system with RT-Preempt

[29], [30] patch enabled, thus using a fully preemptible ker-

nel with high-resolution kernel timers. In order to minimize

the impact of context switches on the bandwidth estimation

process, the tool gets the highest priority on both the end-host

systems while probing the network.

Our program could be easily ported to other real-time

operating systems, since it is written in C language and uses

standard system calls. However we decided to use the RT-

preempt approach, which makes the software much more

portable and easier to deploy and maintain over a large

network infrastructure.

Compared to other Linux real-time approaches, such as

RTAI [31] and Xenomai [32], RT-Preempt is not a hard real-

time approach in strict sense: processes can incur a latency that

is not deterministic and no guarantees are usually provided

on the feasibility of a given task set. Although this real-

time extension to the Linux kernel suffers from the above-

mentioned limitations, it greatly improves the performances

of many applications and the responsiveness of the whole

system, thus providing adequate service for most applications

that need real-time determinism [33]. Moreover, no special

programming libraries are required: the applications compiled

for RT-Preempt Linux can be also used on a standard, non

real-time Linux system with negligible adaptations.

C. Observations filtering

Like the end-hosts, also intermediate routers can be heavily

affected by predictability issues: interrupt coalescence, clock

resolution and context-switching delays are all factors that

can potentially modify timings of the probe traffic, therefore

introducing errors. Moreover, almost all existing tools assume

the hypothesis of fluid cross-traffic [34], ignoring the discrete

nature of packets. However this non-deterministic behavior of

intermediate nodes depends on the specific network path and

it can not be easily controlled or even described. As a result,

most of existing available bandwidth estimation techniques

produce noisy observations [35], [36].

A vast majority of available bandwidth estimation tools

introduce filtering techniques: for example, Moving Average,

Exponential Weighted Moving Average (EWMA), Wavelets or

Kalman filters have been successfully adopted in [13], [15],

[37]–[40] to attenuate noise and local random fluctuations,

converting noisy values into a reliable estimate.

The idea of using such a solution in this context is based

on the predictability and long-term stability of the Internet.

Typically, the available bandwidth of an Internet path shows

strong correlation and a certain degree of stability over inter-

vals that span from several minutes to a few hours [14], [41].

Given a new observation, an effective filtering technique can

produce a new estimate of the available bandwidth combining

both the most recent observation and the old values.

For example, the Exponentially Weighted Moving Average

(EWMA) filter uses one or more observed values Ok and

outputs a new estimation Ei calculated as follows:

Ei = αEi−1 + (1− α)Oi. (19)

This filter is used by some estimation tool like Abing [37] and

Yaz [38]. However, the difficulty with the EWMA technique

lies in the choice of the exponential weight α. With large

values of α, the old estimates are given more importance and

the filter is slow but stable; agility is instead achieved by

keeping α small. Ideally, the filter should be adaptive, setting

the value of α according to the current circumstances: sharp

and non-persistent changes can at first be treated as noise

using lower weights αi. However, if the change persists, the

filter should quickly converge to the new value. Equation (19)

should then take the form:

Ei = αiEi−1 + (1− αi)Oi. (20)

Lowpass EMA [42], Stability [43] and Error Based Filters [43]

are three existing techniques designed around this philosophy.

Although they have been proposed a couple of years ago, to

our best knowledge none of them has actively been employed

in an available bandwidth estimation tool.

In [44] we originally proposed the use of Vertical Horizontal

Filter (VHF) in such a context. The VHF filter is a modified

EWMA technique borrowed from the financial world [45]

which can dynamically modify its behavior according to trends

identified in the temporal evolution of available bandwidth

according to the same principles of the three above mentioned

filters. The dynamically exponential weight αi in (20) is

computed as:

αi = β
∆max

∑i

t=i−M |Ot −Ot−1|
(21)

where ∆max is the gap between the maximum and the

minimum values in the M most recent observations. We set β
as 1

3
and the window size M = 10, although these parameters

287

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

were obtained empirically and a careful choice could bring

further improvements.

We performed a series of simulations to investigate the

effectiveness of different filtering techniques on the avail-

able bandwidth estimation process. Compared to the methods

mentioned above, we found that the VHF filter leads to

better results in many cases and shows greater stability. Our

experiments also indicated that there is no need to fine tune

the VHF filter every time some network conditions change.

A detailed description of VHF and a comparison between

different linear filtering techniques can be found in [44].

Results persuaded us to employ the Vertical Horizontal

Filter, which is used inside our tool to cope with noisy

observations and to estimate the actual available bandwidth

from raw measurements.

D. Excursions segmentation

According to the basic principle of PRM’s self-induced

congestion, an instantaneous sending rate higher than the

actual available bandwidth results in increasing queuing delays

at receiver; otherwise, packets sent by a tool will experience

no delays. This model is valid also for tools which probe

multiple rates with a single train, like ASSOLO does – the

last instantaneous probing rate which does not result in an

increasing queuing delay is considered a simple estimate of

available bandwidth. However, this approach oversimplifies

reality, lacking, for example, to consider cross-traffic bursty

behavior and end-host interrupt coalescence effects.

Traditional network adapters generate an interrupt for each

received frame, thus generating up to thousands of internal

signals per second in high-speed networks. These interrupts

consume a lot of system’s resources and introduce a significant

amount of context switches, resulting in a CPU overhead. [46]

To mitigate the effects of this issue, some network adapters

recently introduced the support for Interrupt Coalescence (IC)

[47]. This solution decreases the processing overhead buffering

multiple packets before generating a single interrupt for the

burst of frames. A similar approach has been introduced

in NAPI [48], a modification to the device driver packet

processing framework of Linux kernel. NAPI mixes interrupts

with a polling approach to implement an adaptive interrupt

coalescing which modifies its behavior according to the actual

network load. This solution usually results in improved per-

formances for high-speed networking. Although IC decreases

the per-packet processing overhead, it introduces also non-

deterministic queueing delays, thus altering the time spacing

of packets in a probing train. As noted in [49], IC can be

detrimental to TCP self-clocking making the traffic more

bursty, and it has a negative effect on the accuracy of active

and passive bandwidth measurements.

The typical profile of queuing delays in a train is often non-

monotonic. For example, Figure 3 shows the typical queuing

delays of a chirp sent by pathChirp: one or more excursions

produced by bursts return to zero, while a final excursion ends

with increasing queuing delays.

Fig. 3. Typical queuing delays in a chirp.

function EXCURSION(q, i, F, L)

j ← i + 1
qmax ← 0
while (j ≤ N)AND (qj − qi > qmax/F) do

j++ ⊲ Count excursion’s packets

end while

if j ≥ N then

return j ⊲ Non-ending Excursion

end if

if j − 1 ≥ L then

return j ⊲ Excursion

else

return i ⊲ Not an excursion

end if

end function

Fig. 4. Pseudo-code for the pathChirp’s excursion segmentation algorithm
[13].

The authors of pathChirp introduced a smart segmentation

algorithm to cope with this kind of burstiness effects, detecting

increasing delays belonging to a cross-traffic bursty transient.

The main goal of pathChirp’s excursion segmentation algo-

rithm is to identify potential starting and ending packet i and j
respectively for an excursion. Potentially, every packet i where
queueing delay qi starts increasing could be a starting point

of an excursion. We define the end of the excursion as the

point where the queuing delay returns to zero or where it has

decreased by a factor F from the maximum queueing delay

experienced during this interval. Moreover, if the distance

between these two packet is long enough, for example longer

than a threshold L, then all packets between i and j form

an excursion. On the other hand, the last excursion identifies

the congested region and it does not terminate. The pseudo-

code of the procedure is presented in Figure 4 while a detailed

description of the whole algorithm can be found in the original

paper of pathChirp [13]. Since this solution proved to be quite

effective to cope with burstiness, ASSOLO adopts exactly the

same technique to analyze the queuing delays of each single

REACH and to identify the correct turning point.

288

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

E. Availability

Additional implementation details and a copy of the source

code of ASSOLO are all freely available at http://netlab-

mn.unipv.it/assolo/ or through the authors. Future develop-

ments and data reports will be published at the same location.

IV. RESULTS

In order to evaluate our estimation method, the performance

of ASSOLO has been studied in a controlled testbed envi-

ronment. In addition, we compared the intrusiveness and the

accuracy of our solution with pathChirp, a similar state-of-the-

art measurement tool, in presence of poissonian or constant bit

rate (CBR) cross-traffics.

The testbed configuration is shown in Figure 5. Two

computers using Ubuntu GNU/Linux are connected together

through a Fast Ethernet cross-cable and serve as routers. Two

other machines of the testbed simulate a source of controlled

traffic flows using the D-ITG tool [50], which loads the

network generating synthetic flows of known properties and

statistical distributions. Finally, the sender and the receiver for

each measurement tool use additional PCs running Ubuntu

GNU/Linux with a standard or real-time kernel. Prasad et al.

in [51] showed that each store-and-forward device introduces

an additional serialization latency in a packet’s delay. This can

result in a consistent underestimation of the hop’s capacity.

Therefore, we provisioned the network with two Fast Ethernet

switches in order to introduce an additional potential source

of errors during tests.

The topology of the testbed is quite simple but sufficient to

evaluate the performance of a measurement tool: for example,

the same configuration has been used in [52] and [17] to

perform an experimental comparison of different available

bandwidth estimation tools.

We adopted the default configurations for both probing

tools: ASSOLO uses σ = 5% and γ to 1.2 while the γ of

pathChirp has been initially set to 1.2. Since results obtained

in [13] showed that pathChirp generally performs better with

larger packets, the packet size for both tools was 1000 byte.

Finally, the upper and the lower bandwidth bounds U and L
were respectively equal to 200 and 10 Mbps; however, both

tools automatically adjust the values if the range is too narrow.

A complete list of all the configuration parameters of testbed’s

devices and tools is provided in [53].

A. Intrusiveness

The intrusiveness of pathChirp and ASSOLO can be easily

compared. From [36] we know that a chirp is composed of N
packets, where N can be calculated as follows:

Nchirp =

⌊

2 +
1

logγ
log

(

U

L

)⌋

.

The size of the stream sent by pathChirp depends on the

upper (U) and lower (L) rate bounds. However, pathChirp

automatically reduces or increases the probing range if it is

too wide or too narrow: as a result, the tool sends on average

15-20 packets.

Fig. 5. Testbed configuration.

On the other hand, the length of a REACH only depends on

the two parameter σ and γ. In section III-A we calculated the

size of a REACH probe as:

Nreach = 2 ·

⌊

logγ

(

γ − 1

σ
+ 1

)

− 1

⌋

+ 2.

Hence, our algorithm send always 18 packets using default

values of σ and γ.
Our experiments show that the amount of traffic injected by

ASSOLO and pathChirp is comparable and extremely limited.

Using the default parameters, the measurement process of both

tools takes less than one second to produce an estimation over

links with a capacity higher than 1 Mbps. However, the two

methods are based on the concept of self-induced congestion,

i.e., the estimation is performed by injecting probe traffic at a

rate higher than the available bandwidth of the network path.

The drawback of this approach is that the bottleneck node is

congested by the probe traffic – the existing cross-traffic is

delayed, and its packets’ timings can be significantly affected

by the measurement process.

B. Accuracy

We tested both pathChirp and ASSOLO in the presence

of different sources of cross-traffic with varying intensity. We

generated CBR cross-traffic of 64, 32 and 16 Mbps and, finally,

we turned off the traffic source. We evaluated both tools in

each cross-traffic scenario, repeating the measurement process

10 times for each algorithm: averaged results are shown in

Figure 6. Then, we repeated the same tests simulating different

sources of poissonian cross-traffic with increasing average

traffic load. The results obtained after 10 runs are shown in

Figure 7.

Our experiments show that pathChirp constantly overesti-

mates available bandwidth and measurements are quite un-

stable. This is a well-know problem of pathChirp: similar

results have been obtained in [15], [17], [54]. On the other

hand, we found that 80% of ASSOLO’s estimations exhibit a

relative error lower than 15%. Figure 8 shows an example of

289

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

CBR Cross−Traffic [Mbps]

A
v
a
ila

b
le

 B
a
n
d
w

it
h
 [
M

b
p
s
]

PathChirp Measurements

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

CBR Cross−Traffic [Mbps]

A
v
a
ila

b
le

 B
a
n
d
w

it
h
 [
M

b
p
s
]

ASSOLO Measurements

Fig. 6. Measurements obtained in presence of different CBR cross-traffics

measurement performed in our testbed while the network path

is loaded with a Constant Bit Rate cross-traffic of 32 Mbps:

the difference between the two tools is notable both in terms

of accuracy and stability.

It is worthy of remark that the accuracy of the two tools

does not seem to depend on the nature of the cross-traffic

– the performances are almost identical using either a CBR

source or poissonian distributed packets.

C. Stability

We have analyzed the impact of a real-time operating system

on the ASSOLO’s measurement process. We performed a

few tests with the real-time feature enabled and then we

disabled it before repeating the estimation procedure with our

tool. A sample comparison of the measurements obtained in

the two cases is shown in Figure 9: the average value is

correct in both configurations but the real-time feature provides

much more stability. Although more investigations would be

required, preliminary results confirm that the use of a real-time

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Poisson Cross−Traffic [Mbps]

A
v
a
ila

b
le

 B
a
n
d
w

it
h
 [
M

b
p
s
]

PathChirp Measurements

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Poisson Cross−Traffic [Mbps]

A
v
a
ila

b
le

 B
a
n
d
w

it
h
 [
M

b
p
s
]

ASSOLO Measurements

Fig. 7. Measurements obtained in presence of different poissonian cross-
traffics

environment can effectively reduce the impact of different non-

deterministic sources of error.

The same experiments could also be repeated for a longer

observation interval, in order to catch possible long-term

oscillations or biases in the estimations obtained with a non

real-time system.

V. CONCLUSION AND FUTURE WORK

In this work we presented the details of ASSOLO, an

active probing tool which features an efficient measurement

scheme for end-to-end available bandwidth estimation in

packet-switched networks. Moreover, we described some de-

noising techniques and detailed the real-time operating system

used by our tool to improve the estimation process.

Preliminary experiments revealed that our algorithm is non-

intrusive and accurate, estimating the available bandwidth with

greater accuracy and stability with respect to the pathChirp

measurement tool developed by the Rice university.

290

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

0 10 20 30 40 50
0

20

40

60

80

100

Time [s]

E
s
ti
m

a
te

d
 A

v
a
ila

b
le

 B
a
n
d
w

id
th

 [
M

b
p
s
]

Real

ASSOLO

PathChirp

Fig. 8. An example of estimation using pathChirp and ASSOLO.

10 15 20 25 30 35 40
0

20

40

60

80

100

Time [s]

E
s
ti
m

a
te

d
 A

v
a
ila

b
le

 B
a
n
d
w

id
th

 [
M

b
p
s
]

Avail−BW

Real−Time

Non Real−Time

Fig. 9. Measurements using either a real-time operating system or not.

The testbed we used is quite simple and the synthetic cross-

traffic does not fully catch the complexity of actual commu-

nication flows. We plan to test intensively the performance

of our tool over actual Internet paths and in presence of

realistic cross-traffic traces. We will also include a study of the

actual accuracy, intrusiveness and robustness when dynamic

traffic patterns are presents. An extensive comparison of our

approach with other state-of-the-art tools is needed too. Above

all, BART and FEAT are recent tools which seem to perform

better than the original pathChirp: a comparative study will be

conducted as soon as the code of these software will be freely

available.

Since the bounds of ASSOLO’s probing interval have to

be set manually at start up, a coarse estimation of the current

available bandwidth is required prior using our tool. We plan

to introduce an initial self-configuring feature as proposed in

[55], thus avoiding the need for any prior knowledge of the

network path.

ACKNOWLEDGMENT

We would like to thank Dr. Davide Cavalca for giving the

paper a critical reading and for providing us several helpful

comments. We acknowledge also Dr. Alberto Savioli and

Marco Schivi for their help during the setup of the laboratory

testbed and the analysis of experimental results.

REFERENCES

[1] E. Goldoni, G. Rossi, and A. Torelli, “Assolo, a new method for available
bandwidth estimation,” in Proc. IARIA International Conference on

Internet Monitoring and Protection (ICIMP 2009), May 2009, pp. 130–
136.

[2] C. Wu, B. Li, and S. Zhao, “Characterizing peer-to-peer streaming
flows,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 9, pp. 1612–1626, December 2007.

[3] J. P. Laulajainen, T. Sutinen, and S. Jarvinen, “Experiments with QOS-
aware gaming-on-demand service,” in IEEE International Conference

on Advanced Information Networking and Applications (AINA 2006),
vol. 1, Apr. 2006, pp. 805–810.

[4] M. Jain and C. Dovrolis, “Path selection using available bandwidth
estimation in overlay-based video streaming,” Computer Networks,
vol. 52, no. 12, pp. 2411–2418, August 2008.

[5] M. Favalli, L.and Folli, A. Lombardo, D. Reforgiato, and G. Schembra,
“A bandwidth-aware p2p platform for the transmission of multipoint
multiple description video streams,” in Proc. Italian Networking Work-

shop Reti.it 2009, Jan. 2009.

[6] T. Tunali and K. Anar, “Adaptive available bandwidth estimation for
internet video streaming,” Signal Processing: Image Communication,
vol. 21, no. 3, pp. 217–234, March 2006.

[7] M. Topic, Streaming Media Demystified. New York, NY: McGraw-Hill
Professional, 2002.

[8] N. Hu and P. Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE Journal on Selected Areas in

Communications, vol. 21, no. 6, pp. 879–894, August 2003.

[9] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proc. ACM SIGCOMM

Conference on Internet Measurement (IMC’03), pp. 39–44, October
2003.

[10] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-
end available bandwidth,” in Proc. Passive and Active Measurement

Conference (PAM 2002), Mar. 2002, pp. 14–25.

[11] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,” in
Proc. IEEE Global Communications Conference (GLOBECOM 2000),
Nov. 2000, pp. 415–420.

[12] A. Johnsson, B. Melander, and M. Björkman, “Diettopp: A first
implementation and evaluation of a simplified bandwidth measurement
method,” in Proc. Swedish National Computer Networking Workshop

(SNCNW 2004), Nov. 2004.

[13] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “path-
Chirp: Efficient available bandwidth estimation for network paths,” in
Proc. Passive and Active Measurement Conference (PAM 2003), Apr.
2003.

[14] Q. Wang and L. Cheng, “FEAT: Improving accuracy in end-to-end avail-
able bandwidth measurement,” in Proc. IEEE Global Communications

Conference (GLOBECOM 2006), Nov. 2006, pp. 1–4.

[15] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.-E. Mangs,
B. Melander, and M. Bjorkman, “Real-time measurement of end-to-
end available bandwidth using kalman filtering,” in Proc. IEEE/IFIP

Network Operations and Management Symposium (NOMS 2006), Apr.
2006, pp. 73–84.

[16] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end
available bandwidth estimation,” in Proc. ACM SIGCOMM Conference

on Internet Measurement (IMC’04). Oct. 2004, pp. 272–277.

[17] A. A. Ali, F. Michaut, and F. Lepage, “End-to-end available bandwidth
measurement tools : A comparative evaluation of performances,” in
Proc. International Workshop on Internet Performance, Simulation,

Monitoring and Measurement (IPS-MoMe 2006), Feb. 2006.

[18] C. D. Guerrero and M. A. Labrador, “On the applicability of available
bandwidth estimation techniques and tools,” in Computer Communica-

tions, vol. 33, no. 1, pp. 11–22, January 2010.

291

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

[19] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: new
techniques for congestion detection and avoidance,” in Proc. ACM

SIGCOMM Conference on Communications Architectures, Protocols

and Applications (SIGCOMM’94). Aug. 1994, pp. 24–35.
[20] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and

S. Mascolo, “TCP westwood: congestion window control using band-
width estimation,” in Proc. IEEE Global Communications Conference

(GLOBECOM 2001), Nov. 2001, vol. 3, pp. 1698–1702.
[21] C. L. T. Man, G. Hasegawa, and M. Murata, “A new available band-

width measurement technique for service overlay networks,” in Proc.

IEEE/IFIP International Conference on Management of Multimedia

Networks and Services (MMNS 2003), Sep. 2003, pp. 436–448.
[22] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement

methodology, dynamics, and relation with tcp throughput,” IEEE/ACM

Transactions on Networking, vol. 11, no. 4, pp. 537–549, August 2003.
[23] L. Lao, C. Dovrolis, and M. Y. Sanadidi, “The probe gap model

can underestimate the available bandwidth of multihop paths,” ACM

SIGCOMM Computer Communication Review, vol. 36, no. 5, pp. 29–
34, October 2006.

[24] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, and
R. Baraniuk, “Multifractal cross-traffic estimation,” in Proc. ITC

Specialist Seminar on IP Traffic Measurement, Sep. 2000.
[25] A. Pasztor, “Accurate active measurement in the internet and its

applications,” Ph.D. dissertation, Department of Electrical and Electronic
Engineering, The University of Melbourne, 2003.

[26] H. Zhou, Y. Wang, X. Wang, and X. Huai, “Difficulties in estimating
available bandwidth,” in Proc. IEEE International Conference on

Communications (ICC’06), Jun. 2006, pp. 704–709
[27] The Linux Kernel. [Online]. Available: http://www.kernel.org
[28] Y. Ozturk and M. Kulkarni, “Dichirp: direct injection bandwidth

estimation,” International Journal of Network Management, vol. 18,
no. 5, pp. 377–394, September 2008.

[29] Gnu/Linux Real-Time. [Online] Available: http://rt.wiki.kernel.org/
[30] K. Koolwal, “Myths and realities of real-time linux software systems,”

in Proc. Real-Time Linux Workshop (RTLWS 2009), Oct. 2009. [Online].
Available: http://lwn.net/images/conf/rtlws11/papers/proc/p20.pdf

[31] RTAI: Realtime application interface for linux. [Online] Available: http:
//www.rtai.org/

[32] Xenomai: Real-time framework for Linux. [Online] Available: http:
//www.xenomai.org

[33] K. Yaghmour, J. Masters, G. Ben-Yossef, and P. Gerum, Building

Embedded Linux Systems. Sebastopol, CA: O’Reilly & Associates, 2008.
[34] R. Prasad, M. Murray, C. Dovrolis, and K. Claffy, “Bandwidth

estimation: Metrics, measurement techniques, and tools,” IEEE Network,
vol. 17, no. 6, pp. 27–35, November 2003.

[35] C. D. Guerrero and M. A. Labrador, “Experimental and analytical
evaluation of available bandwidth estimation tools,” in Proc. IEEE

Conference on Local Computer Networks (LCN 2006), Nov. 2006, pp.
710–717.

[36] E. Goldoni, “Nuovi approcci nella stima della banda disponibile in una
rete a pacchetto,” Master thesis, University of Pavia, 2007.

[37] J. Navratil and R. L. Cottrell, “Abwe: A practical approach to available
bandwidth,” in Proc. Passive and Active Measurement Conference (PAM

2003), Apr. 2003.
[38] J. Sommers, P. Barford, and W. Willinger, “A proposed framework

for calibration of available bandwidth estimation tools,” in Proc. IEEE

Symposium on Computers and Communications (ISCC’06), Jun. 2006,
pp. 709–718.

[39] S.-R. Kang and D. Loguinov, “IMR-Pathload: Robust available band-
width estimation under end-host interrupt delay,” in Proc. Passive and

Active Measurement Conference (PAM 2008), Apr. 2008, pp. 172–181.
[40] G. Urvoy-Keller, T. En-Najjary, and A. Sorniotti, “Operational com-

parison of available bandwidth estimation tools,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 1, pp. 39–42, January
2008.

[41] Y. Zhang and N. Duffield, “On the constancy of Internet path prop-
erties,” in Proc. ACM SIGCOMM Workshop on Internet Measurement

(IMW’01), Nov. 2001, pp. 197-211.
[42] L. Burgstahler and M. Neubauer, “New modifications of the exponential

moving average algorithm for bandwidth estimation,” in Proc. ITC Spe-

cialist Seminar on Internet Traffic Engineering and Traffic Management,
July 2002.

[43] M. Kim and B. Noble, “Mobile network estimation,” in Proc. Interna-

tional conference on Mobile Computing and networking (MobiCom’01),
Jul. 2001, pp. 298–309.

[44] E. Goldoni, G. F. Rossi, and P. Gamba, “Improving available bandwidth
estimation using averaging filtering techniques,” University of Pavia,
Tech. Rep., 2008. [Online]. Available: netlab-mn.unipv.it/publications/
tr-netlab2008-01.pdf

[45] A. White, “The vertical horizontal filter,” Futures Magazine, vol. 20,
no. 10, pp. 1–10, 1991.

[46] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, August 1997.

[47] Intel. (2003) Interrupt moderation using Intel gigabit ethernet controllers.
[Online]. Available: http://download.intel.com/design/network/applnots/
ap450.pdf

[48] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Proc.

USENIX Annual Linux Showcase & Conference (ALC’01). Nov. 2001,
pp. 165-172.

[49] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence
on network measurements,” in Proc. Passive and Active Measurement

Conference (PAM 2004), Apr. 2004, pp. 247–256.
[50] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-

ITG distributed internet traffic generator.” in QEST. IEEE Computer
Society, 2004, pp. 316–317.
A. Botta, A. Dainotti, A. Pescapè, “Multi-protocol and multi-platform
traffic generation and measurement,” in IEEE Conference on Computer

Communications (INFOCOM 2007), Demo Session, May 2007.
[51] R. S. Prasad, C. Dovrolis, and B. A. Mah, “The effect of layer-2

store-and-forward devices on per-hop capacity estimation,” in IEEE

Conference on Computer Communications (INFOCOM 2003), Mar.
2003, vol. 3, pp. 2090–2100.

[52] L. Angrisani, S. D’Antonio, M. Esposito, and M. Vadursi, “Techniques
for available bandwidth measurement in ip networks: a performance
comparison,” Computer Networks, vol. 50, no. 3, pp. 332–349, February
2006.

[53] A. Torelli, “Sviluppo di una tecnica innovativa per la stima della banda
disponibile,” Master thesis, University of Pavia, 2008.

[54] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, and K. C.
M. Fomenkov, “Comparison of public end-to-end bandwidth estimation
tools on high-speed links,” in Proc. Passive and Active Measurement

Conference (PAM 2005), Mar. 2005, pp. 306–320
[55] W. Tan, M. Zhanikeev, and Y. Tanaka, “Abshoot: A reliable and efficient

scheme for end-to-end available bandwidth measurement,” in Proc.

IEEE Region 10 Conference (TENCON 2006), Nov. 2006.

292

International Journal on Advances in Systems and Measurements, vol 2 no 4, year 2009, http://www.iariajournals.org/systems_and_measurements/

