
178

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Improving the Quality of Control of Periodic Tasks Scheduled by FP with an
Asynchronous Approach

P. Meumeu Yomsi, L. George, Y. Sorel, D. de Rauglaudre
AOSTE Project-team

INRIA Paris-Rocquencourt
Le Chesnay, France

{patrick.meumeu, laurent.george, yves.sorel, daniel.derauglaudre}@inria.fr

Abstract

The aim of this paper is to address the problem
of correctly dimensioning real-time embedded systems
scheduled with Fixed Priority (FP) scheduling. It is well
known that computers which control systems are greatly
affected by delays and jitter occurring in the control loop.
In the literature, a deadline reduction approach has been
considered as one solution to reducing the jitter affectinga
task, thereby obtaining better loop stability in the control
loop. Here, in order to improve the sensitivity of the
deadlines, we propose another solution for reducing the
worst case response time of the tasks, hence reducing the
jitter, when all the tasks are scheduled with the Deadline
Monotonic Algorithm. This is performed for a specific
asynchronous scenario for harmonic periodic tasks. We
compare the results to those for the synchronous scenario
in terms of minimum deadline reduction factor preserving
the schedulability of tasks set in both cases.

Keywords: Real-time systems, Fixed-priority scheduling
algorithms, Sensitivity analysis, Robust control.

1. Introduction

In this paper we consider the problem of correctly dimen-
sioning real-time embedded systems ([1], [2], [3], [4]). The
correct dimensioning of a real-time system strongly depends
on the determination of the tasks’ Worst-Case Execution
Times (WCETs). Based on the WCETs, Feasibility Condi-
tions (FCs) ([5], [6], [7]) can be established to ensure thatthe
timeliness constraints of all the tasks are always met when
tasks are scheduled by a fixed or a dynamic priority driven
scheduling algorithm. We consider an application composed
of a periodic task setΓn = {τ1, · · · , τn} of n periodic tasks,
scheduled with Fixed Priority (FP) preemptive scheduling.
The classical definition of a periodic taskτi, is:

• Ci: the Worst Case Execution Time (WCET) ofτi.
• Ti: the period ofτi.
• Di: the relative deadline ofτi (a task requested at time
t must be terminated by its absolute deadlinet+Di),

whereDi ≤ Ti.
A recent research area called sensitivity analysis aims at
providing interesting information on the validity of feasi-
bility conditions by considering possible deviations of task
WCETs ([2]), task periods ([2]), or task deadlines ([3]).
This makes it possible, for example, to find a feasible task
set, if the current one is not feasible, by modifying the
task parameters or determining the impact of a change in
architecture on the feasibility of a task set. A task set is
declared feasible if for any task in the synchronous scenario,
its worst case response time is less than or equal to its
deadline. We are interested in the sensitivity of deadlines.
Computer controlling systems are very much affected by
delays and jitter occurring in the control loop. A deadline
reduction has been considered by ([8]) as one solution to
reducing the jitter affecting a task and therefore obtaining
better loop stability in the control loop. The jitter of a task
depends on the minimum and on the worst case response
times. Reducing the deadline of a task can be a way to
reduce the worst case response time of a task and thus can
reduce the jitter of the task. However, this deadline reduction
should be performed in such a way that it does not cause any
task to fail at run-time. This supposes a scheduling driven
by deadlines.
This paper proposes a solution to reduce as much as possible
the worst case response time of each task when tasks
are scheduled with fixed priorities, according to Deadline
Monotonic Algorithm, by using a specific asynchronous
first release times scenario. We show the benefits of our
asynchronous scenario by comparing the minimum deadline
reduction factor applied preserving the schedulability of
the tasks in the synchronous and in the our asynchronous
scenario.
With Deadline Monotonic Algorithm, tasks are scheduled
according to their relative deadlines. The smaller the relative
deadline, the higher the priority. Starting from a schedulable
task set, we want to characterize the minimum deadline
reduction factor0 < α ≤ 1 such that any taskτi, i =
1, . . . , n having a deadlineDi = α×Ti is schedulable.α is
such that any smaller reduction factor would lead to a non
schedulable task set. We compare the value ofα obtained in



179

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

the worst case synchronous scenario (all the tasks are first
released at the same time) to that obtained with a particular
asynchronous scenario that we propose, and which has some
interesting properties. We show that the minimum reduction
factor obtained in our asynchronous scenario is always less
than or equal to the minimum reduction factor obtained in
the synchronous scenario.

Reducing the deadline of a task makes it possible to reduce
the jitter resulting from the execution of a task. In this paper
we show that the maximum deadline reduction is minimized
for the synchronous scenario where all the tasks are first
released at the same time.

We then propose a particular asynchronous first release times
scenario that allows us to obtain better feasibility conditions
and a better deadline reduction factor than the one obtained
with the synchronous scenario, thus reducing the jitter of the
tasks for a better control.

The feasibility problem of asynchronous task sets is known
to be more complex than for synchronous task sets. We
introduce a new formalism to compute the worst case
response time of a task for asynchronous task sets. We apply
this approach to the case where the periods of the tasks are
harmonic. We then show that in this case, the worst case
response time is always obtained for the second instance of a
task, which represents a significant reduction in complexity.

The rest of the paper is organized as follows. In section
2, we give a state of the art regarding sensitivity analysis
of deadlines considering dynamic and fixed priority driven
schedulings. We then focus on asynchronous task sets and
recall existing feasibility conditions. In section 3, we in-
troduce the concepts and notations and establish important
properties for the particular asynchronous scenario that we
have chosen. We consider harmonic periods. We show that,
using this particular scenario, the worst case response time
of every task is obtained for its second instance1. In section
4, we introduce a new scheduling representation which is
more compact than the classical linear representation / Gantt
Chart for a schedule. In section 5, we introduce the concept
of Mesoid which is used to compute the worst case response
time of an asynchronous task set. In section 6, we give an
algorithm for the computation of the worst case response
time of any task in our asynchronous scenario, then we show
how to compute the minimum deadline reduction factor. An
example is given in order to compare the deadline reduction
factor obtained with our asynchronous scenario to that in
the synchronous scenario. We provide experimental results
in section 7 based on extensive simulations comparing the
deadline reduction factor for several load configurations in
both the synchronous case and in our asynchronous scenario.
Finally, we conclude in section 8.

1. Throughout the paper all subscripts refer to tasks whereas all super-
scripts refer to instances.

2. State of the art

Sensitivity analysis for deadlines has been considered for
Earliest Deadline First (EDF) scheduling algorithm by ([3])
showing how to compute the minimum feasible deadlines
such that the deadline of any taskτi equalsαDi, where
α is reduction factor0 < α ≤ 1. In ([8]), the space of
feasible deadlines (D-space), a space ofn dimensions has
been considered. Any task set having deadlines in the D-
space is considered to be schedulable. To the knowledge of
the authors, no work has been done on the sensitivity of
deadlines for fixed priority scheduling algorithms.

Few results have been proposed to deal with the deadline
assignment problem. As far as the authors are aware, no
results are available for Fixed Priority (FP) scheduling.
Baruah& al., in [9] propose modifying the deadlines of
a task set to minimize the output, seen as a secondary
criteria. In Cervin& al. ([10]), the deadlines are modified to
guarantee close-loop stability of a real-time control system.
Marinca & al. ([11]) focus on the deadline assignment
problem in the distributed case for multimedia flows. The
deadline assignment problem is formalized in terms of a
linear programming problem. The scheduling considered on
every node is non-preemptive EDF or FIFO, with a jitter
cancellation applied on every node. A performance evalua-
tion of several deadline assignment schemes is proposed.

A recent paper proposed by Balvastre& al. ([3]) proposes
an optimal deadline assignment for periodic tasks scheduled
with preemptive EDF in the case of deadlines less than or
equal to periods. The goal is to find the minimum deadline
reduction factor preserving all the deadlines of the tasks.

They first focus on the case of a single task deadline
reduction and show how to computeDmin

i , the minimum
deadline of taskτi such that any deadline smaller thanDmin

i

for task τi will lead to a non-feasible task set.

They also show in [3] that when considering the reduction of
a single taskτi,Dmin

i is the worst case response time of task
τi for EDF scheduling. The maximum deadline reduction
factorαi for taskτi is then:αi = 1−

Dmin
i

Di
.

In the case of a deadline reduction applied ton tasks, the
goal is to minimize all tasks’ deadlines assuming the same
reduction factor for all the tasks (with no preference re-
garding which task requires the greatest deadline reduction).
Balbastre& al. in [3] show how to compute the maximum
deadline reduction factorα applied to all the deadlines
using an iterative algorithm. The principle is to compute the
minimum slackt−h(t) for any timet ∈ [0, L) to determine
the deadline reduction factor applied to all the tasks, where
h(t) =

∑n

i=1max(0, 1 + ⌊ t−Di

Ti
⌋)Ci andL is the length of

the first synchronous busy period, solution of the equation

t =

n
∑

i=1

⌈

t

Ti

⌉

Ci.



180

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

τ = {τ1, . . . , τn} : task set;
L ← compute-L(τ ) : integer; α← 1 : real
slack = mint∈[0,L)(t− h(t)) : real;
While (slack 6= 0) do

α = mini=1...n(1− slack
Di

);
For (i = 1;i < n;i+ +) do

Di = αDi;
end For
slack = mint∈[0,L)(t− h(t));

done
Returnα;

Algorithm 1: Computation ofα for EDF scheduling

For Fixed Priority (FP) scheduling, necessary and sufficient
FCs have been proposed in the case of non-concrete tasks
where the first release times of the tasks can be arbitrary.
A classical approach is based on the computation of the
tasks’ worst-case response times ([12], [6]). The worst-case
response time, defined as the worst case time between the
request time of a task and its latest completion time, is
obtained in the worst case synchronous scenario where all
the tasks are first released at the same time, and is computed
by successive iterations. This worst case response time
provides a bound on the response time valid for any other
task first release times. It can be shown that considering only
non-concrete tasks can lead to a pessimistic dimensioning
[13].
The complexity of this approach depends on the worst
case response time computation complexity. In the case of
deadlines less than or equal to periods for all tasks, the
worst-case response timeRi of a taskτi is obtained in the
synchronous scenario for the first release ofτi at time 0
and is the solution of the equation ([12])Ri = Wi(Ri),

whereWi(t) = Ci +
∑

τj∈hp(i)

⌈

t
Tj

⌉

Ci andhp(i) denotes
the set of tasks with a priority higher than or equal to that
of τi except τi itself. The value ofRi is computed by
successive iterations and the number of iterations is bounded
by 1+

∑

τj∈hp(i)

⌊

Di

Tj

⌋

. A necessary and sufficient feasibility

condition for a task set is:∃t ∈ S, such thatWi(t)/t ≤ 1,
whereS = ∪τj∈hp(i){kTj, k ∈ N}∩[0, Di]. For any taskτi,
the checking instants correspond to the arrival times of the
tasks with a higher priority thanτi within the interval[0, Di].
This feasibility has been improved by ([14]), where the
authors show how to reduce the time instants ofS. For any
task τi, they show how to significantly reduce the number
of checking instants during the interval[0, Di] to at most

2i−1 times rather than1+
∑

τj∈hp(i)

⌊

Di

Tj

⌋

. When deadlines
and periods are independent, ([6]) shows that the worst-
case response times of a sporadic taskτi are not necessarily
obtained for the first activation request ofτi at time0. The
number of activations to consider is1 +

⌊

Li

Ti

⌋

, whereLi

is the length of the worst-case level-τi busy period defined
in ([15]) as the longest period of processor activity running
tasks of priority higher than or equal toτi in the synchronous
scenario. It can be shown thatLi =

∑

τj∈hp(i)∪τi

⌈

Li

Tj

⌉

Cj .
From its definition,Li is bounded by:

Min























∑

τj∈hp(i)∪τi

Cj

1−
∑

τj∈hp(i)∪τi

Cj

Tj

,
∑

τj∈hp(i)∪τi

Cj

Tj

· P























([7]).

where P = LCM(T1, . . . , Tn) is the least common
multiple (LCM) of the periods of all tasks and it leads to
a pseudo-polynomial time complexity for the feasibility
conditions.

This is an interesting approach as it provides a pseudo-
polynomial time complexity but it may lead to a pessimistic
dimensioning as the synchronous scenario might not be
likely to occur.
In order to improve the schedulability of the systems, offset
strategies on the first release times of the tasks have been
considered. A system where offsets are imposed is called
an asynchronous system. ([13]) shows significant feasibility
improvements considering offsets. Simulations show that
the number of feasible schedulable systems with offsets
(while unfeasible in the synchronous case) increases with the
number of tasks for a processor load of0.8 and ranges from
40.5% to 97% for different offset assignment strategies. This
percentage strongly decreases when the load is high (tends
to 1).
With asynchronous tasks, ([16]) shows that for a given offset
assignment, the schedulability of the tasks must be checked
in the interval[0,maxi=1...n(Oi)+2P ) whereP is the least
common multiple of the tasks andOi is the offset of taskτi,
leading to an exponential time complexity. To provide less
pessimistic FCs, it is furthermore mandatory to prove that
the offsets will not result later in a synchronous scenario.
This problem is referred to as the K-simultaneous congru-
ence problem in the state of the art ([16]). This feasibility
result has been significantly improved by ([17]) showing that
the interval to check the feasibility of a periodic task set with
offsets can be reduced to[0,maxi=1...n(Oi) + P ).

Furthermore, ([16]) proves the non optimality of Deadline
Monotonic scheduling algorithm for asynchronous systems
when task deadlines are less than or equal to periods. An
optimal priority assignment can be obtained inO(n2) using
the Audsley procedure ([18]).
A particular case denotedoffset free systemscorresponds
to the case where offsets can be chosen arbitrarily. An
optimal offset assignment is given in ([19]). An offset
assignment is optimal if it can find a schedulable offset
whenever a feasible assignment exists. The complexity of



181

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

the offset assignment algorithm is exponential and is in
O((max2≤j≤nTj)

n−1). The offset of taskτ1 is set to 0.
Different offset strategies / heuristics have been considered
in the literature. Among them, we can cite the dissimilar
offset assignment proposed by ([19]) that consists in shifting
(computing a distance between the offsets) the offset of
the tasks to be as far as possible from the synchronous
scenario. The algorithm sorts the couple of tasks(τi, τj)
by decreasing values ofgcd{Ti, Tj} such that the distance
belongs to[0, gcd{Ti, Tj}). The dissimilar offset assignment
significantly reduces the number of offsets to consider, lead-
ing to a complexity inO(n2.(log(maxi∈[1,n]Ti)+log(n

2))).
Other offset assignment strategies have been considered
by ([13]) using the Audsley procedure to determine the
subset of tasks ofτ that can be feasibly scheduled in the
synchronous scenario (setting their offset to 0). The offsets
are only computed for the subset of tasks that are unfeasible
with the Audsley procedure in the synchronous case. The
authors consider different criteria to assign the offsets,based
on the criteria used to sort the couple of tasks(τi, τj).
The complexity is the same as that of the dissimilar offset
assignment.
In this paper we consider a particular asynchronous
harmonic concrete task set where∀2 ≤ i ≤ n, Ti−1 | Ti

(i.e. there existsk ∈ Z such thatTi = kTi−1) with
particular offsets. In the case of non-concrete harmonic
tasks, when tasks are scheduled with Rate Monotonic
Algorithm (the shorter the period, the higher the priority)
and in the case where deadlines are equal to periods, a
necessary and sufficient condition for the feasibility of such
a system is given byU =

∑

i=1...n
Ci

Ti
≤ 1 (see [20]). This

potentially proves the benefits of considering harmonic
tasks in order to get better feasibility conditions. This
property does not hold when deadlines can be shorter than
periods. In this case we show how to determine inO(n)
the offset of the tasks to obtain a pseudo-polynomial time
feasibility condition instead of an exponential one. In the
case of asynchronous tasks, the worst case response time
cannot be computed with a recursive equation as for the
synchronous tasks. This is due to the fact that with offsets,
there is not necessarily a continuous busy period from time
0 to the release time of a task. In this paper we investigate
a new approach to compute the worst case response time
of a task based on the Mesoid approach. This approach
was first introduced by ([4]) in the context of real-time
scheduling with preemption cost. This approach does not
require a continuous busy period to compute the worst case
response times of the tasks. We propose a particular offset
assignment, such that the worst case response time of any
task is obtained for its second request time, providing an
exponential time improvement in the complexity of the FCs.

More recently, for control systems, [21] has proposed to
include the control delay resulting from the response time of

a task as a cost function for the controllers. They show how
to solve the optimal period assignment problem analytically.

3. Properties of the asynchronous harmonic
task set

3.1. Concepts and notations

We recall classical results in the uniprocessor context for
real-time scheduling.

• Time is assumed to be discrete (task arrivals occur
and task executions begin and terminate at clock ticks;
the parameters used are expressed as multiples of
the clock tick); in [22], it is shown that there is no
loss of generality with respect to feasibility results by
restricting the schedules to be discrete, once the task
parameters are assumed to be integers (multiples of the
clock tick) i.e. a discrete schedule exists, if and only if
a continuous schedule exists.

• A task set is said to be valid with a given scheduling
policy if and only if no task occurrence ever misses its
absolute deadline with this scheduling policy.

• U =
∑n

i=1
Ci

Ti
is commonly called the processor

utilization factor associated to the task setΓn, i.e., the
fraction of processor time spent in the execution of the
task set ([23]). IfU > 1, then no scheduling algorithm
can meet the tasks’ deadlines.

• The synchronous scenario corresponds to the scenario
where all the tasks are released at the same time (at
time 0).

The model depicted in figure 1 is Liu & Layland’s
pioneering model [23] for systems executed on a single
processor.

Figure 1. Model

Throughout the paper, we assume that all timing characteris-
tics are non-negative integers, i.e. they are multiples of some
elementary time interval (for example the “CPU tick”, the
smallest indivisible CPU time unit):
We introduce several notations for a periodic taskτi =
(Ci, Di, Ti) used to compute the worst case response time
of a task:

• τk
i : The kth instance ofτi



182

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

• r1i : Release time of the first instance ofτi
• rk

i = r1i + (k − 1)Ti: Release time ofτk
i

• Rk
i : Response time ofτk

i released at timerk
i

• Ri: Worst-case response time ofτi

3.2. The specific asynchronous scenario

Here we give some interesting properties which are satis-
fied by the specific asynchronous scenario we propose and
which lead to the conclusion that the worst case response
time of a task in our asynchronous scenario is obtained for
any task for its second release.

In this section we assume that the relative deadline for
each task equals its period, i.e.Di = Ti. This assumption
will be weakened in section 6.

We first show in lemma 1 that with harmonic asyn-
chronous tasks, two instances belonging to any two tasks
can never be released at the same time if their release times
are not equal modulo their periods.

Lemma 1:Let Γn = {τ1, τ2, · · · , τn} be a system ofn
independent harmonic (i.e.Ti | Ti+1, ∀i ∈ {1, · · · , n − 1})
preemptive tasks ordered by decreasing priorities (Ti ≤
Ti+1, ∀i ∈ {1, · · · , n− 1}).

If there exist two tasksτi, τj ∈ Γn, (i < j) such that
r1j 6= r1i mod[Ti]

2, then 6 ∃k, l ≥ 0 such thatrk
j = rl

i.

Proof: (by contradiction)
Let us assume that there exist two tasksτi, τj ∈ Γn, (i <

j) such thatr1j 6= r1i mod[Ti], and∃k, l ≥ 0 such thatrk
j =

rl
i.
rk
j = rl

i ⇐ r1j + (k − 1)Tj = r1i + (l − 1)Ti

⇐ r1j = r1i + (l − 1)Ti − (k − 1)Tj

⇐ r1j = r1i mod[Ti] asTi | Tj .
Contradicts the hypothesis and thus, ends the proof.

We now show in theorem1 that from the point of view
of any task in the system, the schedule repeats identically
from the second instance.

Theorem 1:(inspired by theorem 2.48 in [24])
Let Γn = {τ1, τ2, · · · , τn} be a system ofn asyn-

chronous independent periodic preemptive tasks ordered by
decreasing priorities (Ti ≤ Ti+1, ∀i ∈ {1, · · · , n − 1}). Let
r11 , r

1
2 , · · · , r

1
n be respectively the release time of their first

instances. Let(si)1≤i≤n be the sequence inductively defined
by







s1 = r11

si = r1i +

⌈

(si−1 − r
1
i )+

Ti

⌉

· Ti ∀i ∈ {2, · · · , n}

(1)
Then,
if Γn is schedulable up tosn + Hn, with Hn =

2. Givena, b, c ∈ Z : a = b mod[c] means that there existsd ∈ Z such
that a = b + cḋ.

LCM(T1, T2, · · · , Tn) and x+ = max{x, 0}, then Γn is
schedulable and periodic fromsn with periodHn.

Proof: (By induction on the number of tasksn)
The property is straightforward for the simple case where

n = 1: indeed, the schedule for taskτ1 is periodic of
period T1 from its first release (s1 = r11) sinceC1 ≤ T1,
otherwise the deadline of the first instance is missed. Let
us now assume that the property is true up ton = i − 1
and Γi = {τ1, τ2, · · · , τi} is schedulable up tosi + Hi,
with Hi = LCM(T1, T2, · · · , Ti). Notice that si is the
first release time of taskτi after (or at) si−1. We have
si + Hi ≥ si−1 + Hi−1 and by induction hypothesis,
the subsetΓi−1 = {τ1, τ2, · · · , τi−1} is schedulable and
periodic from si−1 of periodHi−1. As tasks are ordered
by priority, the instances of the first ones are not changed
by the requests of taskτi and the schedule repeats at time
si + LCM(Hi−1, Ti) = si + Hi. Consequently,Γi =
{τ1, τ2, · · · , τi} is schedulable and its schedule repeats from
si with periodHi.

We now characterize the asynchronous scenario we con-
sider in this paper in corollary 1. This leads to providing
a simple method for computing the worst response time of
each task in section 5 by using corollary2, and then a pseudo
polynomial FC detailed in section 6.1.

Corollary 1: From the point of view of any taskτi of
a schedulable systemΓn = {τ1, τ2, · · · , τn} ordered by
decreasing priorities (Ti ≤ Ti+1, ∀i ∈ {1, · · · , n− 1}) such
thatTi | Ti+1 andr1i+1 = r1i −Ci+1, the schedule is periodic
from the second instance with periodHi = Ti.

Proof: (By induction on the indexi of the task)
Let us consider a taskτi of a schedulable systemΓn =
{τ1, τ2, · · · , τn}, we assume thatTi | Ti+1 and r1i+1 =
r1i − Ci+1, ∀i ≥ 1. Thanks to the previous theorem, it
is sufficient to prove thatsi − r

1
i = Ti, ∀i ≥ 2. This is

done by induction oni.
The property is straightforward for the simple case where

i = 2: indeed, asC2 ≤ T2 andH2 = LCM(T1, T2) = T2,
the schedule for taskτ2 is periodic of periodT2 from its

second release sinces2 = r12 +

⌈

(s1 − r
1
2)

+

T2

⌉

· T2 = r12 +
⌈

C2

T2

⌉

·T2 = r12 +T2 is the first release time of taskτ2 after

(or at) s1 = r11 . Let us now assume that the property is true
up to indexi− 1 andΓi = {τ1, τ2, · · · , τi} is schedulable.
Thanks to the previous theorem, we have

si = r1i +

⌈

(si−1 − r
1
i )+

Ti

⌉

·Ti = r1i +

⌈

(Ti−1 + r1i−1 − r
1
i )+

Ti

⌉

·Ti

by induction hypothesis.

Thus,si = r1i +

⌈

(Ti−1 + Ci)
+

Ti

⌉

·Ti sincer1i−1 = r1i +Ci.

Now, as0 < Ti−1 + Ci < Ti due to the scenario imposed



183

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

to the first instance of each task and the fact thatTi−1 | Ti,
then we obtainsi = r1i + Ti.

Corollary 2: The worst response timeRi of each taskτi
is obtained in the second instance and is equal to that in all
instances greater than 2.

Proof:
Immediately follows from corollary 1 and the fact that

R1
i = Ci by construction,Rk

i ≥ Ci ∀k ≥ 1, and we
consider harmonic tasks.

4. A new scheduling representation

A direct consequence of corollary 2 leads us to the
conclusion that in the case of a valid schedule, i.e. when all
deadlines are met for all tasks, the schedule obtained at level
i (the resulting schedule of thei tasks with the highest prior-
ity) is periodic with the periodTi = LCM{Tj|j = 1, · · · , i}
from the second instance. As such, from the point of view
of each task, the interval preceeding the second instance
necessarily contains thetransient phase, corresponding to
the initial part of the schedule at leveli, and the interval
starting at dater2i with the lengthTi is isomorphic to the
permanent phaseof the schedule at leveli, corresponding
to the periodic part of the schedule. The transient phase is
always finite due to the existence of the permanent phase
and the permanent phase repeats indefinitely.

For a system ofn periodic harmonic tasks for which there
exists a valid schedule, since the permanent phase repeats
indefinitely, we introduce a new scheduling representation.
This scheduling representation is obtained by graphicallyus-
ing anoriented circular diskcalledDameidwith a reference
time instantt0 = 0 corresponding to the time reference in the
classical linear representationor Gantt Chart. The positive
direction inDameidis the trigonometrical one, i.e. opposite
to that of the hands of a watch. The circumference ofDameid
at leveln corresponds toHn = LCM{Ti | i = 1, · · · , n}
whereTi means the period of theith task andn denotes
the number of tasks in the system. InDameid, the different
release times for each task are unambiguously determined
by the value of their first release time relatively to that of
other tasks with respect to the reference datet0 = 0, and

the ratio
Hn

Ti

for taskτi. As an example, figure 2 illustrates

the release times of each task for a system consisting of4
periodic harmonic tasks. In this figure, the first release time
of task t1 is −2, while that of taskt3 is 0.

Figure 3 clarifies our idea for the construction ofDameid
for a given set of harmonic periodic tasks. This figure
illustrates, for the same system with4 tasks (see Figure 2),
the correspondence of the release times of each periodic
task in Dameid relative to the reference datet0 = 0. The
main intuition behind this new representation is to reduce

Figure 2. Release times of each task in the classical
linear representation or Gantt Chart

the interval of analysis for a system harmonic periodic tasks
whatever their first release times are.

Figure 3. Release times of each task in Dameid

Now, in addition to the release times of each task, let
us add the WCETs and explain howDameidcan represent
schedules.

During the scheduling process from the highest priority
task to the lowest priority task, some of the available time
units at a given leveli, i.e. those which are not executed
after the schedule of the firsti − 1 highest priority tasks,
are executed by time units corresponding to the WCETCi

of the current taskτi. This is done in order to obtain the
next result for the scheduling analysis of the next taskτi+1

with respect to the priorities. As the considered scheduling
policy (DM) determines thetotal order in which to perform
the scheduling analysis, it follows that the circular repre-
sentation, i.e.Dameid, of circumference corresponding to
the LCM of periods of all tasks that we have introduced
allows us to build directly thepermanent phaseof the system
if it is schedulable. Indeed,Dameid can be constructed
completely independently from the linear representation.In
this representation, the WCETs of the tasks correspond to

angular sectors, where the angular unit is given by
1

Hn

and



184

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Hn = LCM{T1, T2, · · · , Tn}.
Figure 6 shows an example of theDameidfor the system

of which the schedule and the curve of response time as
a function of time for each task are illustrated in figure
4 and figure 5. For this system, whose characteristics are
summarized in table 1, we assume that taskt1 has a higher
priority than taskt2, i.e. tasks are scheduled by using DM. In
figure 4, the permanent phase is illustrated by the highlighted
zone (blue zone). The curve of the response time of each
task according to time (see figure 5) shows that from the
time t = 15, the response time of each task is constant.
We find this result by constructing theDameid. Indeed, the
LCM of the periods of both taskst1 and t2 is given by
H2 = LCM(5, 15) = 15. The release times of taskt1
in Dameid with respect to its first release time are given
by r11 = 4, r21 = 9 and r31 = 14. For task t2, we have
a single release time equal tor12 = 0 because its period
T2 = H2 = 15. Since taskt1 has a higher priority than
task t2, then at each release time oft1, i.e. at the dates
r11 , r21 and r31 , a sector corresponding to its worst case
execution time (C1 = 2 time units) is executed. As task
t2 has a lower priority than taskt1, the filling of the sectors
of circumference corresponding to its worst case execution
time (C2 = 4 time units) can only be done between the time
instants1 and4, then time instants6 and7. Dameidbuilds
the permanent phase of the system directly: in figure 4, task
t2 has two distinct response times,4 time units for the first
activation and7 time units afterwards, while in the circular
representation throughDameid, it has a single response time,
7 time units, which corresponds to its response time in the
permanent phase.

Tche r1

i
Ci Di Ti

t1 4 2 5 5
t2 0 4 15 15

Table 1. Characteristics of the tasks

Figure 4. Linear representation / Gantt Chart of the
schedule.

This new representation of the schedule is more interest-
ing than the linear representation / Gantt Chart because it is
more compactand puts greater emphasis on theavailable
time unitsin the resulting schedule. In his thesis ([24]),Joel
Goossenssuggested that the permanent phase is sufficient to
guaranteeing the schedulability of a given periodic task set

Figure 5. Response time of each task as a function of
time.

Figure 6. Circular representation of the schedule by
using Dameid.

when the cost of preemption is neglected and this permanent
phase is directly built by usingDameid. We now suppose the
asynchronous task set defined in corollary1 and present the
Mesoid approach used to compute the worst case response
time of each periodic task.

5. Worst case response time: the Mesoid ap-
proach

In this section we provide the method for computing
the worst response time of each task in order to check
its schedulability. Actually, three classical methods maybe
used to do so: the utilisation factor of the processor ([25]),
the worst response time of each task, or the processor



185

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

demand ([26]). In this paper we have chosen to use the
second approach as it provides a schedulability condition
for each task individually. The main idea behind the Mesoid
approach is to fill some available time units left by the
schedule of higher priority tasks with executed time units
corresponding to the execution time of the current task.
Since the worst response time is obtained in the second
instance w.r.t. corollary2, we will achieve this goal by
applying the method described in [4] to a system where the
tasks are not all released simultaneously and where the cost
of a preemption is assumed to be zero. This method, unlike
those proposed in ([27], [7], [28]), is of lesser complexity
since it is not necessary to determine the releases of every
task w.r.t. those of higher priority tasks.

As we are in a fixed priority context, the proposed method
checks for the schedulability of each task by computing its
worst response time, from the task with the highest priority
to that with the lowest priority. Hence, from the point of view
of any taskτi of a systemΓn = {τ1, τ2, · · · , τn} ordered by
decreasing priorities (Ti−1 ≤ Ti, ∀i ∈ {2, · · · , n}) such that
Ti−1|Ti and r1i = r1i−1 − Ci, the elapsed duration between
the release of the second instance and the first releaser1i−1

of task τi−1 is given by Ti − Ci. Before providing the
computation method of the worst case response time, we
provide some necessary definitions below.

5.1. Definitions

All the definitions and terminologies used in this section
are directly inspired by ([4]) and are applied here to the case
of a model where the cost of preemption is assumed to be
zero. From the point of view of any taskτi, thehyperperiod
at level i, Hi, is given byHi = LCM{Tj}τj∈sp(τi) = Ti

as Ti−1|Ti for every i ∈ {2, · · · , n} , and sp(τi) is the
set of tasks with a period shorter than that of taskτi.
Without any loss of generality we assume that the first task
τ1 starts its execution at timet = 0 and that all tasks have
different periods. Since at each level the schedule repeats
indefinitely from the second instance thanks to corollary1, it
is sufficient to perform the scheduling analysis in the interval
[r1i +Ti, r

1
i +2Ti] for taskτi as its response time in its first

instance equals its WCET.
We proceed the schedule from the task with the shortest

period towards the task with the longest period. Thus, at each
level in the scheduling process the goal is to fill available
time units in the previous schedule, obtained up to now, with
slices of the WCET of the current task, and hence we obtain
the next current schedule. Consequently, we represent the
previous schedule of every instanceτk

i of the current task
τi = (Ci, Ti) by an ordered set ofTi time units where some
have already been executed because of the execution of tasks
with shorter periods, and the others are still available forthe
execution of taskτi in that instance. We call this ordered set
which describes the state of each instanceτk

i theMk
i Ti-

mesoid. More details on the definition of aTi-mesoidare
given in [4]. For the current taskτi = (Ci, Ti), there are as
manyTi-mesoids as instances. We callMb,2

i theTi-mesoid
corresponding to the second instance of taskτi before being
scheduled in the current schedule. The process used to build
Mb,2

i for taskτi will be detailed later in this subsection. Still,
from the point of view of taskτi, we define for the mesoid
Mb,2

i the correspondinguniverseX2
i to be the ordered set,

compatible with that of the mesoid, which consists of all
the availabilities ofMb,2

i – that is to say, all the possible
values thatCi can take inMb,2

i . Taskτi will be said to be
potentially schedulableif and only if

Ci ∈ X
2
i ∀ i ∈ {1, · · · , n} (2)

This equation verifies thatCi belongs to the universe
at level i. If it does not, then the system is clearly not
schedulable. When equation (2) holds for a given taskτi,
we callMa,2

i the Ti-mesoidscorresponding to the second
instance of taskτi after τi has been scheduled.Ma,2

i is a
function ofMb,2

i which itself is a function ofMa,2
i−1, both

detailed as follows.
Let f be the function such thatMb,2

i = f(Ma,2
i−1)

which transforms theTi−1-mesoid after taskτi−1 has been
scheduled at leveli− 1 into theTi-mesoid before taskτi is
scheduled at leveli.

As mentioned in [4], a mesoid consists only of time units
already executed denoted by “e” and time units still available
denoted by “a”. Moreover, the cardinal of a mesoid is equal
to the period of the task under consideration whatever the
level is. As such, the functionf transforms a time unit al-
ready executed (resp. still available) inMa,2

i−1 into a time unit
already executed (resp. still available) inMb,2

i by following
an indexψ which enumerates, according to naturals, the time
units (already executed or still available) inMa,2

i−1 of task
τi−1 after τi−1 has been scheduled. As the elapsed duration
between the release of the second instance of taskτi and
the release of the first instance ofτi−1 is Ti − Ci, thenψ
starts from the time unit right afterγi = Ti−Ci mod[Ti−1]
time units in the mesoidMa,2

i−1 towards the last time unit,
and then circles around to the beginning of the mesoid
Ma,2

i−1 again, until we get theTi-mesoidMb,2
i . This Ti-

mesoid is obtained whenψ = Ti. Indeed, the previous
schedule at leveli (the schedule obtained at leveli − 1)
consists ofHi−1 = Ti−1 time units whereas the schedule
of the current taskτi is computed uponHi = Ti time
units. Thus, that amounts to extending the previous schedule
from Ti−1 to Ti time units by identically repeating the
previous schedule as often as necessary to obtainHi time
units. Due to the particular releases of the first instance of
each task, i.e.r1i+1 = r1i − Ci+1 ∀ i ∈ {1, · · · , n − 1},
notice that indexψ in contrast to indexζ used in [4]
which started from the first time unit, starts from the time
unit right after γi = Ti − Ci mod [Ti−1] time units in
the mesoidMa,2

i−1. Since τ1 is the task with the shortest



186

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

period, thensp(τ1) = {τ1}. Becauseτ1 is never preempted,
we haveMb,2

1 = {1, 2, · · · , T1} and therefore we obtain
Ma,2

1 = {(C1), 1, 2, · · · , T1 − C1}.
Let g be the function such thatMa,2

i = g(Mb,2
i ) which

transforms theTi-mesoidMb,2
i before taskτi has been

scheduled at leveli into theTi-mesoidMa,2
i after taskτi

has been scheduled at leveli.

5.2. Worst case response time with a Mesoid

For theTi-mesoidMb,2
i , we will compute the response

time R2
i of task τi in the second instance by adding to the

WCETCi all the consumptions appearing in thatTi-mesoid
before the availability corresponding toCi [4]. This yields
the worst-case response timeRi of taskτi since at each level
the schedule becomes periodic from the second instance, that
is to sayRk

i = R2
i ∀ k ≥ 2, andR1

i = Ci ∀ i ≥ 1.
Now we can buildMa,2

i = g(Mb,2
i ): function g trans-

forms a time unit already executed inMb,2
i into a time unit

already executed inMa,2
i , and transforms a time unit still

available into either a time unit still available or a time unit
already executed w.r.t. the following condition. We use an
index which enumerates according to numerals the time units
in Mb,2

i from the first to the last one, at each step in the
incremental process, if the current value of the index is less
than or equal toR2

i , function g transforms the time unit
still available into a time unit already executed due to the
execution of instanceτ2

i , otherwiseg transforms it into a
time unit still available. Indeed, functiong fills available
time units in the current schedule with slices of the WCET
in eachTi-mesoid, leading to the previous schedule for the
next task at leveli + 1 w.r.t. priorities. To summarize, for
every taskτi, we have

τi :







Mb,2
i : Ti-mesoid beforeτi is scheduled at leveli

Ma,2
i : Ti-mesoid afterτi is scheduled at leveli.

6. Deadline reduction factor

6.1. Worst case response time computation

The approach proposed here leads to a new schedulability
condition for harmonic hard real-time systems. This
condition is new in the sense that in addition to providing
a necessary and sufficient schedulability condition, it
also reduces the feasibility interval for a given harmonic
asynchronous system.

In the scheduling process, at each leveli, the basic idea
consists in filling availabilities in the mesoidMb,2

i before
taskτi is scheduled, with slices of its WCET. This is why it
is fundamental to calculate the corresponding response time.
This yields the worst case response time and allows us to

conclude on the schedulability of taskτi w.r.t. priorities. In
the case whereτi is schedulable, we buildMa,2

i , afterτi has
been scheduled, in order to check the schedulability of the
next task, and so on, otherwise the system is not schedulable.
Thanks to everything we have presented up to now,τ1 is
scheduled first andr11 = 0. The latter statement implies
that before τ1 is scheduled, its WCET can potentially take
any value from1 up to the value of its periodT1. Since
taskτ1 is never preempted, thenMb,2

1 = {1, 2, · · · , T1} and
X2

1 = {1, 2, · · · , T1}. Moreover, its response time is also
equal toC1. Consequently, the correspondingT1-mesoids
associated to taskτ1 are given by

τ1 :







Mb,2
1 = {1, 2, · · · , T1}

Ma,2
1 = {(C1), 1, 2, · · · , T1 − C1}

We assume that the firsti− 1 tasks with2 ≤ i ≤ n have
already been scheduled, i.e. theTi−1-mesoidMa,2

i−1 of task
τi−1 is known, and that we are about to schedule taskτi.

As explained in the previous section, theTi-mesoid
Mb,2

i = f(Ma,2
i−1) of task τi is built thanks to indexψ on

Ma,2
i−1 of taskτi−1 without forgetting to start from the time

unit right afterγi = Ti−Cimod[Ti−1] time units rather than
the first time unit as in [4]. Again this is due to the particular
release of the first instances of tasks:r1i = r1i−1−Ci. We can
therefore determine the universeX2

i when theTi−1-mesoid
Ma,2

i−1 is known. Unless the system is not schedulable, i.e.
Ci 6∈ X

2
i , we assume that taskτi is potentially schedulable,

i.e. Ci ∈ X2
i . The response timeR2

i of task τi in its kth

instance (withk ≥ 2), i.e. in the kth Ti-mesoidwill be
obtained by summingCi with all consumptions prior toCi

in the corresponding mesoid. The worst-case response time
Ri of task τi will then be given by

Ri = R2
i

This equation leads us to say that taskτi is schedulable
if and only if

Ri ≤ Ti (3)

If for task τi expression (3) holds, thenMa,2
i = g(Mb,2

i )
will be deduced as explained in the previous section. For
the sake of clarity, whenever there are two consecutive con-
sumptions in amesoid, this amounts to considering only one
consumption which is the sum of the previous consumptions.
That is to say that after determining the response time of task
τi in its kth mesoid, ifMa,k

i = {(c1), (c2), 1, 2, · · · }, then
this is equivalent toMa,k

i = {(c1 + c2), 1, 2, · · · }.
Below, we present our scheduling algorithm which, for

a given task, on the one hand first determines the value
of γi = Ti − Ci mod [Ti−1] relative to priorities, then, on
the other hand the schedulability condition. Recall that the
elapsed duration between the release of the second instance
and the first release isTi − Ci. The scheduling algorithm
has the following nine steps. Since the task with the shortest



187

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

period, namely taskτ1, is never preempted, the loop starts
from the index of the task with the second shortest period,
namely taskτ2 as the schedule proceeds towards tasks with
longer periods.

1: for i = 2 to n do
2: Determine the release time of the first instance of task

τi:
r1i = r1i−1 − Ci

and computeγi = Ti − Ci mod[Ti−1] of the second
instance ofτi w.r.t. τi−1.

3: Build the Ti-mesoidMb,2
i = f(Ma,2

i−1) of task τi
before it is scheduled. This construction is based on a
moduloTi arithmetic using indexψ onMa,2

i−1 without
forgetting to start from the time unit right afterγi =
Ti−Ci mod[Ti−1] time units rather than the first time
unit as in [4]. This is due to the particular release of
tasks.

4: For theTi-mesoidMb,2
i resulting from the previous

step, build the corresponding universeX2
i which

consists of the ordered set of all availabilities of
Mb,2

i . Notice that this set corresponds to the set of
all possible values that the WCETCi of task τi can
take inMb,2

i .

5: Since τi is potentially schedulable, i.e. its WCET
Ci ∈ X

2
i , we must verify that it is actually schedula-

ble. Clearly, ifCi 6∈ X
2
i , then taskτi is not schedu-

lable because the deadline of the task is exceeded.

6: Determine the response timeRk
i of taskτi in its kth

instance, i.e. in thekth Ti-mesoid. This is obtained
by summingCi with all the consumptions prior toCi

in the corresponding mesoid. Deduce the worst-case
response timeRi of task τi.

Ri = R2
i

It is worth noticing that taskτi is schedulable if and
only if

Ri ≤ Di.

7: If Ri ≤ Di, then buildMa,2
i = g(Mb,2

i ), increment
i, and go back to step 2 as long as there remain
potentially schedulable tasks in the system.

8: If Ri > Di, then the system{τi = (Ci, Ti)}1≤i≤n is
not schedulable.

9: end for
Thanks to the above algorithm, a system ofn tasks
{τi = (Ci, Ti)}1≤i≤n, with harmonic periods and first
released such thatr1i = r1i−1 − Ci, is schedulable if and
only if

Ri = R2
2 ≤ Di ∀i ∈ {1, 2, · · · , n} (4)

6.2. Computation of α

The value ofα is given by:α = max1≤i≤n

(

Ri

Ti

)

.

This value ofα guarantees that no task fails at run-time.
We recall that for the synchronous scenario, the worst case
response time of taskτi is given by:

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj

Example

Let us consider{τ1, τ2, τ3, τ4} to be a system of four
tasks with harmonic periods and first released such thatr1i =
r1i−1 − Ci. The characteristics are defined in table 2.

Table 2. Characteristics of the tasks

Ci Ti

τ1 2 5
τ2 4 15
τ3 5 30
τ4 7 60

The shorter the period of a task is, the higher its level is.
Thus, as depicted in table 2,τ1 has the highest level and task
τ4 the lowest level. Thanks to our scheduling algorithm,
for task τ1 whose first release time isr11 = 0, we have

τ1 :







Mb,2
1 = {1, 2, 3, 4, 5}

R1 = 2

Ma,2
1 = {(2), 1, 2, 3}

γ2 = T2 −C2 mod[T1] = 15− 4 mod[5] = 1, thus for task
τ2 whose first release time isr12 = r11 −C2 = −4, we have

τ2 :







Mb,2
2 = {(1), 1, 2, 3, (2), 4, 5, 6, (2), 7, 8, 9, (1)}

R2 = 4 + 2 + 1 = 7

Ma,2
2 = {(7), 1, 2, (2), 3, 4, 5, (1)}

γ3 = T3−C3 mod[T2] = 30−5mod[15] = 10, thus for task
τ3 whose first release time isr13 = r12−C3 = −4−5 = −9,
we have

τ3 :







Mb,2
3 = {(1), 1, 2, 3, (8), 4, 5, (2), 6, 7, 8, (8), 9, 10, (1)}

R3 = 5 + 8 + 1 = 14

Ma,2
3 = {(16), 1, 2, 3, (8), 4, 5, (1)}

γ4 = T4−C4 mod[T3] = 60−7mod[30] = 23, thus for task
τ4 whose first release time isr14 = r13−C4 = −9−7 = −16,
we have

τ4 :







Mb,2
4 = {(4), 1, 2, (17), 3, 4, 5, (8), 6, 7, (17), 8, 9, 10, (4)}

R4 = 7 + 8 + 17 + 4 = 36

Ma,2
4 = {(53), 1, 2, 3, (4)}

Consequently, the set of tasks{τ1, τ2, τ3, τ4} with har-
monic periods and first released such thatr1i = r1i−1 − Ci

is schedulable. The schedule with the above characteristics



188

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 7. Execution of a set of harmonic tasks with r1i =
r1i−1 − Ci, ∀ i ∈ {2, · · · , 4}

Figure 8. Circular representation of the schedule for a
set of harmonic tasks with r1i = r1i−1−Ci, ∀i ∈ {2, · · · , 4}

is depicted in figure 7 and the circular representation of the
schedule by usingDameidis depicted in figure 8.
The schedule of the same set of tasks released simultane-
ously is depicted in figure 9 and the circular representation
of the schedule by usingDameidis depicted in figure 10.

Figure 9. Execution of a set of harmonic tasks with r1i =
0 ∀ i ∈ {1, · · · , 4}

It is worth noticing here the large variation between the
two scenarios in terms of the tasks’ response times. In fact,
the worst case response time of taskτ4 in figure 7 and figure

Figure 10. Circular representation of the schedule for a
set of harmonic tasks with r1i = 0 ∀ i ∈ {1, · · · , 4}

8 is 36 time units whereas it is55 time units in figure
9 and figure 10. This phenomenon is even more apparent
in the next section with the experimental results where we
gradually and uniformly decrease the value of the relative
deadlines for all tasks by the same factor to highlight the
advantage of our approach.

Tasks Rsynchronous
i Rasynchronous

i

τ1 2 2
τ2 8 7
τ3 15 14
τ4 55 36

This leads us to obtain αsynchrnous =
max(2/5, 8/15, 15/30, 55/60) = 0.91 whereas
αasynchrnous = max(2/5, 7/15, 14/30, 36/60) = 0.60,
which means the improvement performed in this case is of
34.54%

7. Experimental results

In this section we present some experimental results found
by using the approach we have developed above. To achieve
these experimental results, we proceed in two steps. First,we
compare the minimum deadline reduction factorα obtained
in the synchronous scenario with that obtained in our specific
asynchronous scenario. Second, we extend this comparison
concerning the valueα to the value ofα obtained for an
arbitrarily generated scenario of the first release times for all
tasks. This extension is performed by using more extensive
experiments in order to get more accurate conclusions with



189

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

regard to the contributions of the proposed approach. As in
([1]), we consider a set of harmonic tasks scheduled with
the Deadline Monotonic algorithm.

The first step in our process of comparing the value of
α for given scenarii of first release for all tasks consists
in performing 10000 experiments for each graph, where
every task set consists ofn = 10 harmonic tasks. The
total utilization factor of the processor is randomly chosen
between0.7 and1 for each task set. Hence, we can evaluate
the gain of our specific asynchronous scenario defined in
corollary 1 in section 3, compared to the synchronous one.
We setα = Di

Ti
, and we gradually and uniformly decrease

the value of the relative deadlinesDi by the same factor
for all tasks in each set. In both the synchronous and the
asynchronous scenario, we plot the curves corresponding to
the smallest value ofα, as a function of the total utilization
factor of the processor, for the task set to remain schedulable.
The resulting graphic is displayed in figure 11. If the value
of α is denotedαsynchronous in the synchronous scenario
and αasynchronous in our asynchronous scenario, the gain
can be computed as follows:

gain =
αsynchronous − αasynchronous

αsynchronous
× 100

Figure 11. Value of α with our asynchronous scenario
and with the synchronous scenario

In figure 11, the solid curve represents the result obtained
for α in our specific asynchronous case whereas the dotted
curve represents the result obtained in the synchronous case.
In both cases, we start with a schedulable task set∀τi, Di =
Ti. From [20],U ≤ 1 is a necessary and sufficient condition
for the schedulability of a harmonic task set as tasks are
scheduled with DM, equivalent to RM when∀τi, Di = Ti.
We can see that for a small load, we obtain almost the same

α both in the synchronous and in the specific asynchronous
cases.

Concerning the second step in our process of comparing
the value ofα for given scenarii of first release times for
all tasks, we perform twice as many experiments than for
the first step. That is to say, we perform20000 experiments
for each graph, and every task set still consists ofn = 10
harmonic tasks. Again, the total utilization factor of the
processor is randomly chosen between0.7 and 1 for each
task set. As such, we can evaluate the gain ofα obtained
in our specific asynchronous scenario, compared to that
obtained in the synchronous scenario on the one hand, and
to the mean value obtained for a set of arbitrarily generated
scenarii on the other hand. As for the first step, we set
α = Di

Ti
, and we gradually and uniformly decrease the

value of the relative deadlinesDi by the same factor for all
tasks in each set. For the synchronous, and the asynchronous
scenarii, we plot the curves corresponding to the smallest
value ofα. For the set of arbitrarily generated scenarii, we
plot the curves corresponding to the mean value ofα. This is
performed in each case as a function of the total utilization
factor of the processor, for the task set to remain schedulable.
The curves obtained are displayed in figure 12.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

load

al
ph

a

Figure 12. Value of α with our asynchronous scenario,
then with the synchronous scenario and the mean of a
set of arbitrarily generated scenarii

In figure 12, the curve inred represents the result obtained
for α by using our specific asynchronous scenario. The curve
in greenrepresents the result obtained for the synchronous
case and the curve inblue represents the mean value
obtained for a set of arbitrarily generated scenarii. In allthe
cases, we start with a schedulable task set∀τi, Di = Ti and
U ≤ 1 remains a necessary and sufficient condition for the
schedulability of a harmonic task set as tasks are scheduled



190

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

with DM. It is worth noticing that DM is equivalent to RM
when∀τi, Di = Ti.

We can see that we always obtain almost the same value
for α both in the synchronous case and for the mean value
obtained for a set of arbitrarily generated scenarii.

For a small load, the value ofα varies very slightly
whatever the scenario of first release for all tasks is. In both
steps, this is due to the fact that with a small load the worst
case response times of the tasks are less influenced by the
first release times of other tasks. When the load increases,
the gain also increases, reaches and remains at a maximum
of 14.3% for U = 0.95. Over the loadU = 0.95, the
gain steadily decreases whenU tends to1 andα tends to
1. At high loads, the worst case response time of a task
tends to its period and thusα tends to 1. In this latter case,
the improvement obtained with our spacific asynchronous
scenario becomes less significant.

8. Conclusion

In this paper we have proposed a new approach for a
better control of periodic tasks scheduled with Deadline
Monotonic scheduling algorithm. We have considered a spe-
cific asynchronous task set and harmonic tasks that enables
us to significantly reduce the worst case response time of
each task thus reducing the jitter of each task for a better
control. The asynchronous scenario we considered makes it
possible to significantly reduce the complexity of the worst
case response time computation. We have then considered
the Mesoid approach to compute the worst case response
time of a task in an asynchronous scenario. We have used
the Mesoid approach to compute the minimum deadline
reduction factor characterizing the benefit in terms of worst
case response time reduction. We have proved by extensive
simulations that the gain in terms of deadline reduction
can reach14.3% with our particular asynchronous scenario
compared to the synchronous scenario and to an arbitrarily
generated scenario. This makes it possible to better control
the jitter of the tasks when considering control loops. Future
work will compare the deadline reduction factor obtained
with EDF with the one we have obtained with our specific
asynchronous scenario.

References

[1] P. Meumeu Yomsi, L. George, Y. Sorel, and D. De Rauglau-
dre. Improving the Sensitivity of Deadlines with a Specific
Asynchronous Scenario for Harmonic Periodic Tasks sched-
uled by FP.The Fourth International Conference on Systems
(ICONS’09), Cancun, Mexico, March 1 - 6 2009.

[2] Giorgio Buttazzo Enrico Bini, Marco Di Natale. Sensitivity
Analysis for Fixed-Priority Real-Time Systems.Proceedings
of the 18th Euromicro Conference on Real-Time Systems
(ECRTS’06), Dresden, Germany July 5-7, 2006.

[3] Ismael Ripoll Patricia Balbastre and Alfons Crespo. Optimal
deadline assignment for periodic real-time tasks in dynamic
priority systems.Proceedings of the 18th Euromicro Confer-
ence on Real-Time Systems (ECRTS’06), Dresden, Germany
July 5-7, 2006.

[4] P. Meumeu Yomsi and Sorel Y. Extending Rate Monotonic
Analysis with Exact Cost of Preemptions for Hard Real-Time
Systems.Proceedings of 19th Euromicro Conference on Real-
Time Systems, ECRTS’07, Pisa, Italy, Jul. 2007.

[5] S. Baruah, R. Howell, and L. Rosier. Algorithms and
complexity concerning the preemptive scheduling of periodic
real-time tasks on one processor.Real-Time Systems, Vol. 2,
pp. 301-324, 1990.

[6] K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard
real-time communications.Real-Time Systems, Vol. 9, pp.
147-171, 1995.

[7] L. George, N. Rivierre, and M. Spuri. Preemptive and
non-preemptive scheduling real-time uniprocessor scheduling.
INRIA Research Report, No. 2966, September 1996.

[8] E. Bini and G. Buttazzo. The Space of EDF Feasible
Deadlines.Proceedings of the 19th Euromicro Conference on
Real-Time Systems (ECRTS’07), Pisa, Italy, July 4-6 2007.

[9] S. Baruah, G. Buttazo, S. Gorinsky, and G. Lipari. Scheduling
periodic task systems to minimize output jitter.In 6

th Con-
ference on Real-Time Computing Systems and Applications,
pp. 62-69, 1999.

[10] A. Cervin, B. Lincoln, J. Eker, K. Arzen, and Buttazzo
G. The jitter margin and its application in the design
of real-time control systems.In proceedings of the IEEE
Conference on Real-Time and Embedded Computing Systems
and Applications, 2004.

[11] D. Marinca, P. Minet, and L. George. Analysis of deadline as-
signment methods in distributed real-time systems.Computer
Communications, Elsevier, To appear, 2004.

[12] M. Joseph and P. Pandya. Finding response times in a real-
time system.BCS Comp. Jour., 29(5), pp. 390-395,, 1986.

[13] M. Grenier, J. Goossens, and N. Navet. Near-optimal fixed
priority preemptive scheduling of offset free systems.Proc.
of the 14th International Conference on Network and Systems
(RTNS’2006), Poitiers, France, May 30-31, 2006 2006.

[14] Giorgio Buttazzo Enrico Bini. Schedulability Analysis of
Periodic Fixed Priority Systems. IEEE Transactions On
Computers, Vol. 53, No. 11, Nov.2004.

[15] J.P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines.Proceedings 11th IEEE Real-Time
Systems Symposium, pp 201-209, Dec. Lake Buena Vista, FL,
USA, 1990.

[16] J. Y. T. Leung and M.L. Merril. A note on premptive schedul-
ing of periodic, Real Time Tasks.Information Processing
Letters, Vol 11, num 3, Nov. 19980.



191

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

[17] Annie Choquet-Geniet and Emmanuel Grolleau. Minimal
schedulability interval for real-time systems of periodictasks
with offsets. Theor. Comput. Sci., 310(1-3):117–134, 2004.

[18] N. C. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times.Dept. Comp.
Science Report YCS 164, University of York, 1991.

[19] J. Goossens. Scheduling of offset free systems.Real-Time
Systems, 24(2):239-258, March 2003.

[20] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day.
Real-Time Systems, 29, 5-26, 2005.

[21] E. Bini and A. Cervin. Delay-Aware Period Assignment in
Control Systems.Proceedings of the 26th IEEE International
Real-Time Systems Symposium (RTSS’08), Barcelona, Spain,
Nov. 30 to Dec. 3 2008.

[22] S. Baruah, A. K. Mok, and L. Rosier. Preemptively scheduling
hard real-time sporadic tasks on one processor.Proceedings
of the 11th Real-Time Systems Symposium, pp. 182-190, 1990.

[23] L. C. Liu and W. Layland. Scheduling algorithms for multi-
programming in a hard real time environment.Journal of
ACM, Vol. 20, No 1, pp. 46-61, January 1973.

[24] J. Goossens.Scheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset Constraints. PhD
thesis, Université Libre de Bruxelles, 1998.

[25] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.Journal
of the ACM, 1973.

[26] A.K. Mok S.K. Baruah and L.E. Rosier. Preemptively
scheduling hard realtime sporadic tasks on one processor.In
proc. 11th IEEE Real-Time Systems Symposium, 1990.

[27] Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive
scheduling of periodic, real-time tasks.Information Process-
ing Letters, 1980.

[28] J. Leung and Whitehead J. On the complexity of fixed-
priority scheduling of periodic real-time tasks.Performance
Evaluation(4), 1982.


