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Abstract 
 
The Shannon’s sampling theorem was derived 

using the assumption that the signals must exist over 

infinite time interval. But all of our applications are 

based on finite time intervals. The objective of this 

research is to correct this inconsistency. In this paper 

we show where and how this infinite time assumption 

was used in the derivation of the original sampling 

theorem and then we extend the results to finite time 

case.  Our research shows that higher sample rate is 

necessary to recover finite duration signals. This 

paper validates, with detailed theory, the common 

industrial practice of higher sample rate. We use the 

infinite dimensionality property of function space as 

the basis of our theories. A graphical example 

illustrates the problem and the solution. 

 

Keywords: Sampling methods, Communication, 

Linear system, Wavelet transform, Modulation. 

 
 

1. Objective 
 

This paper is an extended version of [1]. It 

provides more details of the theories and presents 

many related ideas including the re-sampling process. 

The objective of this paper is to extend the original 

sampling theorem [2] to finite duration signals. It is 

shown here that the proof of the Shannon’s sampling 

theorem assumed that the signal must exist for infinite 

time. This assumption came because the proof used 

Fourier transform theory which in turn uses infinite 

time. We give a new proof that does not require 

infinite time assumption and as a result of elimination 

of this assumption we get a new theory. 

Our research shows that more you sample more 

information you get about the signal when your signal 

measurement window is finite. We provide some 

theoretical analysis to justify our results. A very 

fundamental and well known concept in mathematics, 

infinite dimensionality of function space, is used as a 

basis of our research. Thus the main focus of the paper 

is on sampling theorem and on the number of samples. 

Since the result establishes a new view in signal 

processing, we apply the result to few other areas like 

signal reconstruction and up-down sampling. 

In engineering practice most of the applications 

use two to four times the Nyquist sample rate. In audio 

engineering much higher rate is used [3]. So the 

results of this paper are not new ideas in the practical 

world. However, this engineering practice also points 

out that there is something wrong somewhere in our 

theory. There is also this (mis)conception that higher 

sample rate provides redundant information. Therefore 

we examine the core issues and assumptions behind 

the original theory of [2], make some changes, and 

provide a theoretical proof of the high sample rate 

concept. It should be noted that the theory in [2] is not 

wrong, we are only changing one of the assumptions 

that is more meaningful in the present technology. 

Besides sampling theorem, another objective is to 

highlight the infinite time assumption behind the 

existing theories. This infinite time assumption is not 

practical in engineering. Thus we emphasize the 

infeasibility of the approaches based on transfer 

function and Fourier transform. All of them use 

infinite time assumption. In the past many engineers 

have rejected these approaches because they are useful 

for only Linear Time Invariant (LTI) systems. Now we 

have another reason – the infinite time assumption. 

Interestingly enough, we show that LTI systems do not 

exist in engineering. 

This research leads us to realize that the concept 

of finite time duration of signals is the backbone of all 

our engineering systems. Therefore we need to do 

something about it, i.e., we should start a research in 

reducing these inconsistencies between the theory and 

the practice. Eventually, if we can successfully 

provide a new direction, then our technology will be 

more predictable and reliable. We may get significant 

product quality improvements. It may also be possible 

to reduce waste and thus help to create a greener 

technology [4]. 

In this paper our objective is not really to make a 

big jump in this new research on finite time direction 
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but occasionally we have touched upon the various 

related topics, problems, and solutions. We believe 

that this is an important area of investigation even in 

mathematics. It should be noted though that all time 

domain approaches are closer to finite time reality. 

However unless we create or change some basic 

engineering definitions all our theories will remain 

somewhat inconsistent and unsatisfactory. 

During the publication process of this research 

many colleagues and reviewers have made many 

comments and questions on the subject of this paper. 

We have tried to include our answers to many of them. 

As a result, the paper got little bit defocused from its 

original goal and the contents got diluted. We hope the 

integration of all these subjects still maintains some 

coherency and novelty. 

The contents of this paper can be described using 

the following high level summary. We first show, in 

Section 2, that infinite time assumption is not really 

needed in engineering. Then we present a new 

modulation method, in Section 3, and show how we 

encountered this infinite time issue in a practical 

engineering problem. To solve the problem over finite 

time and to provide its theoretical foundation we 

discuss in details the concept of infinite dimensionality 

of function space in Section 4. Using this infinite 

dimensionality concept, in Section 5, we show that 

finite rate sample representations actually converge to 

the original function as rate increases to infinity. In 

Section 6, we provide new proofs of the original 

sampling theorem and provide a numerical example in 

Section 7. We also discuss briefly using a numerical 

example, in Section 8, how approaches based on 

analytical expressions rather than samples can help to 

resample a finite duration signal. Finally, in Sections 9 

and 10, we discuss the nonlinear nature of engineering 

systems and explain why time domain approach with 

high sample rates is more meaningful. 
 

2. Infinite Time 
 

In this section we show that the assumption of 

infinite time duration for signals is not practical and is 

not necessary for our theories. In real life and in all 

our engineering systems we use signals of finite time 

durations only. Intuitively this finite duration concept 

may not be quite obvious though. Ordinarily we know 

that all our engineering systems run continuously for 

days, months, and years. Traffic light signaling 

systems, GPS satellite transmitters, long distance air 

flights etc. are some common examples of systems of 

infinite time durations. Then why do we talk about 

finite duration signals? The confusions will be cleared 

when we think little bit and examine the internal 

design principles, the architecture of our technology, 

and the theory behind our algorithms. Originally we 

never thought that this question will be asked, but it 

was, and therefore we look here, at the 

implementations, for an explanation. 

The computer based embedded engineering 

applications run under basically two kinds of operating 

systems (OS). One of these OS uses periodic 

approaches. In these systems the OS has only one 

interrupt that is produced at a fixed rate by a timer 

counter. Here the same application runs periodically, 

at the rate of this interrupt, and executes a fixed 

algorithm over and over again on input signals of fixed 

and finite time duration. As an example, in digital 

communication engineering, these signals are usually 

the symbols of same fixed duration representing the 

digital data and the algorithm is the bit recovery 

process. Every time a symbol comes, the algorithm 

recovers the bits from the symbol and then goes back 

to process the next arriving symbol.  

Many core devices of an airplane, carrying 

passengers, are called flight critical systems. Similarly 

there are life critical systems, like pacemaker 

implanted inside human body. It is a very strict 

requirement that all flight critical and life critical 

systems have only one interrupt. This requirement is 

mainly used to keep the software simple and very 

deterministic. They all, as explained before, repeat the 

same periodic process of finite duration, but run 

practically for infinite time. 

The other kind of applications is based on the real 

time multi-tasking operating systems (RTOS). This 

OS is required for systems with more than one 

interrupts which normally appear at asynchronous and 

non-periodic rate. When you have more than one 

interrupts, you need to decide which one to process 

first. This leads to the concept of priority or 

assignment of some kind of importance to each 

interrupt and an algorithm to select them. The software 

that does this work is nothing but the RTOS. Thus 

RTOS is essentially an efficient interrupt handling 

algorithm. 

These RTOS based embedded applications are 

designed as a finite state machine. We are not going to 

present a theory of RTOS here. So to avoid confusions 

we do not try to distinguish among threads, tasks, 

processes, and states etc. We refer to all of these 

concepts as tasks, that is, we ignore all details below 

the level of tasks, in this paper. These tasks are 

executed according to the arrival of interrupts and the 

design of the application software. The total 

application algorithm is still fixed and finite but the 

work load is distributed among these finite numbers of 

tasks. The execution time of each task is finite also. 

These tasks process the incoming signals of finite time 

and produce the required output of finite size.  
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An example will illustrate it better. A digital 

communication receiver can be designed to have many 

tasks – signal processing task, bit recovery task, error 

correcting task etc. They can be interconnected by data 

buffers, operating system calls, and application 

functions. All these tasks together, implement a finite 

state machine, execute a finite duration algorithm, and 

process a finite size data buffer. These data buffers are 

originated from the samples of the finite duration 

signals representing the symbols.  

We should point out that there are systems which 

are combinations or variants of these two basic 

concepts. Most commercial RTOS provide many or all 

of these capabilities. Thus although all of the 

engineering systems run continuously for all time, all 

of them are run under the above two basic OS 

environment. Or in other words for all practical 

engineering designs the signal availability windows, 

the measurement windows, and the processing 

windows are all of finite time. For more details of real 

time embedded system design principles see many 

standard text books, for example [5, pp73-88]. 

The signals may exist theoretically or 

mathematically for infinite time but in this paper none 

of our theories, derivations, and assumptions will use 

that infinite time interval assumption.  

In the next section we describe the concept of a 

new digital communication scheme [6][7] to 

demonstrate the need for high sample rate. This 

scheme will also give the details of how finite time 

analysis can be used in our engineering systems. 

 

3. Motivation 
 

Almost all existing communication systems use 

sinusoidal functions as symbols for carrying digital 

data. But a sine function has only three parameters, 

amplitude, frequency, and phase. Therefore you can 

only transmit at most three parameters per symbol 

interval. That is a very inefficient use of symbol time. 

If instead we use general purpose functions then we 

can carry very large amount of information, thus 

significantly increasing the information content per 

symbol time. However, as we show below, these 

general purpose functions will require a large number 

of samples over its symbol time, and hence a high 

sample rate, to represent them precisely. We present a 

new digital communication system, called function 

modulation (fm) [6], to introduce the application of 

non-sinusoidal functions and the need for a new 

sampling theorem.  

Figure 1 shows an fm transmitter. The left hand 

side (LHS) vertical box shows four bits, as example, 

that will be transmitted using one symbol, s(t), shown 

in the right hand side (RHS) graph. Each bit location 

in the LHS box is represented by a graph or a general 

function. These functions, called bit functions, are 

combined by an algorithm to produce the RHS graph 

or function. A very simple example of the algorithm 

may be to add all the bit functions for which the bit 

values are ones and ignore whose bit values are 

zeroes. We call this algorithm a 0-1 addition 

algorithm. Since the bits in the LHS vertical box are 

continuously changing after every symbol time, the 

symbol s(t), t ϵ [0,T], is also continuously changing.  

For this 0-1 addition algorithm we can write: 
 

s(t) = d1g1(t) + d2g2(t) + ..+dMgM(t)            (1) 
 

where di ϵ {0,1} are the bit values. If we select {gi(t), 

tϵ[0,T], i=1…M} as a set of independent bit functions 

then we will be able to recover the bits if we know 

s(t). Here M is the number of bits to be transmitted 

using one symbol. This process of recovery of {di} 

from s(t) will require very precise knowledge of s(t). 

That can be achieved only by providing large number 

of samples for s(t) and for each member of {gi(t)}. 

Note that in (1) s(t), {gi(t)}, and {di}are all known 

quantities. In a later section we highlight the similarity 

of expression (1) with Fourier series and its 

consequences. 

The functions used in fm are not defined over 

infinite time interval; they are defined only over the 

symbol time, which are usually very small, of the 

order of microseconds or milliseconds, and should not 

be considered as infinite time intervals. The Nyquist 

rate will provide very few samples on these small 

intervals and will not enable us to reconstruct them 

correctly. We use these general classes of functions to 

represent digital data, because they have higher 

capacity to represent information compared to simple 

sine wave functions. Modern Digital Signal Processors 

(DSP) are ideally suited to handle them also. The DSP 

technology, high speed and high resolution Analog to 

Digital Converters (ADC), along with the analytical 

functions are quite capable of handling powerful 
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design methods, which cannot be implemented using 

hardware based concepts like voltage controlled 

oscillators or phase lock loops etc. 

The fm receivers are more complex than the fm 

transmitters. Mainly because the objective of the fm 

receiver is to decompose the received functions into 

the component bit functions that were used to create 

the symbol at the transmitter. The decomposition 

process is usually more complex than the composition 

process. However, if the bit functions are orthogonal 

then the decomposition process is very trivial [7]. 

Figure 2 shows the block diagram of a fm receiver 

based on orthogonal bit functions. Note however that 

the transmitter design is the same whether we use 

orthogonal or non-orthogonal bit functions. 

In Figure 2, the functions {gi(t)}are assumed to be 

orthogonal bit functions. They are M in number, the 

number of bits to be transmitted using one symbol. 

The received symbol r(t) is generated by the 

corresponding fm transmitter using 0-1 addition 

algorithm as shown in (1). We can write the symbol 

r(t) using the following relation: 
 

r(t) = g1(t)x1 + g2(t)x2 + .. + gM(t)xM +  w(t)            (2) 
 

Where the set {xi} in (2) represents the unknown bit 

values and w(t) is the additive white Gaussian noise 

term. If the functions in {gi(t)} are orthogonal then we 

can get the estimate for {xi} using the following 

integration (3). Here wi is the projection of the noise 

on the i-th orthogonal function. 
 �� = � ����	����
� +  ���               (3) 

 

The integration process (3) is shown in the Figure 2, 

along with the thresholds for detecting the bits. 

Unlike similar figures in communication text 

books, here all parallel paths produce bit data. 

Therefore all integrations in all paths must be very 

precisely performed. This process will also require 

large volume of samples as well as powerful 

numerical integration methods, preferably based on 

analytical approaches. The receiver for non-orthogonal 

functions [6] is more complex and also demands large 

sample rate. Later we point out that the fm method is 

essentially an implementation of the concept behind 

the finite term Fourier series. 

The fm design provides a method for using 

general purpose functions for digital data 

communication. General functions can carry more 

information than sinusoidal functions. We highlight in 

many different ways the well known fact that any 

general continuous function defined over any finite 

time interval has infinite dimension and therefore can 

carry infinite amount of information. Intuitively this 

concept and its consequences in communication 

engineering may not be very clear, so we describe it in 

many details beginning with the following section. We 

also show that to extract this infinite information 

content we have to sample the functions, theoretically, 

at infinite rate. Thus the motivation for this research is 

to establish the theoretical foundation for the function 

modulation method. The engineering foundation of the 

fm method over real time voice band telephone line 

has already been demonstrated and presented [6]. 

 

4. Infinite Dimensionality 
 

We will use the following basic notations and 

definitions in our paper. Consider the space L2[a,b] of 

all real valued measurable functions defined over the 

finite, closed, and real interval [a,b]. We assume that 

the following Lebesgue integral is bounded: 
 � |����|� 
� < ∞ ,   ∀� ∈ ��[�, �]��              (4) 

 

And then we define the norm:
 

 ��� =  � |����|��� 
�!"/� , ∀� ∈ ��[�, �]            (5) 

 

Measurable functions form an equivalence class, 

in the sense that each function in this class has the 

same integral value. Two such functions in the same 

equivalent class differ on some countable discrete set 

whose measure is zero thus without affecting the 

integral value. We can always find a continuous 

function that can represent this equivalent class [8, 

pp418-427] in the sense of L2[a,b] norm. Thus for all 

engineering purposes we can think about continuous 

functions only [9, pp27-28]. 

The space L2[a,b] is a complete space. This 

completeness property ensures that every convergent 

sequence {fn} converges to a function f that belongs to 

L2[a,b] space. That is, L2[a,b] includes all the limit 

Figure 2.  fm Receiver for orthogonal functions 
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points. The norm (5) is used to prove the convergence 

because it embeds the concept of distance between the 

elements of a sequence. 

We also define the inner product for L2[a,b] as: 

 $�, 	% = � ����	���
�    ∀�, 	 ∈ ��[�, �]��             (6) 

 

For L2[a,b] the integral in (6) exists and therefore the 

inner product is well defined. In a finite dimensional 

vector space the inner product of two vectors u = {&�} 

and v = {'�} is defined by 
 &(' = &"'" + &�'� + ⋯ + &*'*  

 

Which is similar to (6) when you take the limit of the 

approximation given by the following: 
 $�, 	% = � ����	���
���   ≈ ∆�[���"�	��"� + �����	���� + ⋯ + ���*�	��*�]    
 

Thus a function space is very intimately linked with 

the concept of finite dimensional linear vector space 

when we look at it as nothing but a collection of 

infinite samples. 

Under the above conditions the function space, 

L2[a,b], is a Hilbert space. Hilbert space is defined as a 

complete inner product space. The inner product 

comes from the definition (6) and the completeness 

from the norm (5). The inner product helps to 

introduce the concept of orthogonality in the function 

space. We also define the distance between two 

functions in L2[a,b] space by: 
 
��, 	� = �� − 	� =  � |���� − 	���|��� 
�!"/�

      (7) 

 

The metric d in (7) defines the mean square distance 

between any two functions in L2[a,b]. 

One very important property of the Hilbert space 

[9, pp31-32] related to the communication theory, is 

that it contains a countable set of orthonormal basis 

functions. Let ]},[...,2.1),({ batntn ∈=ϕ  be such a 

set of basis functions. Then the following is true: 
 $./, .*% = 0/* = 10   3� 4 ≠ 61   3� 4 = 68             (8) 

 

Also for any f ϵ L2[a,b] we have the Fourier series 

 ���� = ∑ �*.*���,   ∀� ∈ [�, �]:*;"               (9) 

 

The above expression (9) really means that for any 

given ε > 0 there exists an N such that 
 <���� − ∑ �*.*���=*;" < < >, ∀? > A           (10) 
 

In this context we should also mention that the 

coefficients in (9) can be obtained using the following 

expression: 
 �* = � ����.*���
��� , 6 = 1,2, …              (11) 

 

In this paper we will consider only the continuous 

functions and their Riemann integrability. Riemann 

integration is the normal integration process we use in 

our basic calculus. We note that the continuous 

functions are measurable functions and the Riemann 

integrable functions are also Lebesgue integrable. For 

continuous functions the values for these two integrals 

are also same. Thus the Hilbert space theory (4-11) 

and the associated concepts will still remain applicable 

to our problems. We should point out though that the 

space of continuous functions is not complete for the 

L2[a,b] norm defined by (5). That means, there exists a 

sequence of continuous functions that does not 

converge to a continuous function under the L2[a,b] 

norm. However it will converge to a measurable 

function under L2 norm, that is, in the mean. 

Equality (9) happens only for infinite number of 

terms. Otherwise, the Fourier representation in (10) is 

only approximate for any finite number of terms. In 

this paper ε in (10) will be called as the measure of 

approximation or accuracy estimate in representing a 

continuous function. The Hilbert space theory ensures 

the existence of N in (10) for a given ε. The existence 

of such a countably infinite number of orthonormal 

basis functions (8) proves that the function space is an 

infinite dimensional vector space. This dimensionality 

does not depend on the length of the interval [a,b]. 

Even for a very small interval, like symbol time, or an 

infinite interval, a function is always an infinite 

dimensional vector. The components of this vector are 

the coefficients of (9). 

Hilbert space theory shows that a function can be 

represented by equation (9). The coefficients in (9) 

carry the information about a function. Since there are 

infinite numbers of coefficients, a function carries an 

infinite amount of information. Our digital 

communication theory will be significantly richer if 

we can use even a very small portion of this infinite 

information content of a function. The function 

modulation approach provides a frame work for such a 

system. The fm scheme essentially implements 

equation (9), for fm transmitter, where the coefficients 

used are zero or one instead of any real number. 

Similarly Figure 2, the fm receiver for orthogonal 

functions, implements expression (11). For an fm 

receiver (11) will produce zero or one as the values for 

{an}. It is clear that if we can find a band limited set of 

orthogonal functions then equations (9) and (11) will 
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allow us to create a fm system with almost unlimited 

capacity [4]. 

It is not necessary to have orthonormal basis 

functions for demonstrating that the function space is 

infinite dimensional. The collection of all polynomial 

functions {t
n
, n=1,2,..}is linearly independent over the 

interval [a,b] and their number is also countable 

infinity. These polynomials can be used to represent 

any analytic function, i.e., a function that has all 

derivatives. Using Taylor’s series we can express such 

a f(t) at t as: 
 ���� = ∑ D�E��F�*!:*;�  �� − H�*            (12) 
 

around the neighborhood of any point c. Thus the 

above polynomial set is also a basis set for the 

function space. Therefore using the infinite Taylor 

series expression (12), we prove that a function is an 

infinite dimensional vector over a finite interval. Here 

the information content of the function is defined by 

the derivative coefficients and the polynomial 

functions. Expression (12) also shows that the 

information content of a general function is infinity. 

The above two theories prove that the dimension 

of the function space is infinity. The number of such 

functions in this function space is also infinity, 

actually uncountable infinity. This is illustrated using 

the following logic. Consider any coefficient in the 

right hand side of (9). You will get a new function 

every time you change that coefficient. Since that 

coefficient can be adjusted to any value in the interval 

[0,1] you get a continuum of functions. Thus the 

cardinality of the function space is uncountable 

infinity whereas the dimensionality is countable 

infinity. 

We say that to represent a function accurately 

over any interval we need two sets of information: (A) 

An infinite set of basis functions, not necessarily 

orthogonal, like the ones given by (8) and (B) An 

infinite set of coefficients in the infinite series 

expression for the function, similar to (9). That is, 

these two sets completely define the information 

content in a mathematical function. In most cases the 

basis set described in (A) will remain fixed. We will 

distinguish functions only by their coefficients 

described in (B). Each function will have different 

coefficients in its expression for (9). 

We normally represent vectors as rows or 

columns with components as real numbers. As an 

example, a three dimensional vector has three real 

components. Similarly an n dimensional vector has n 

real components. Along that line an infinite 

dimensional vector will have infinite number 

components. We can represent a function by an 

infinite dimensional vector by selecting the 

coefficients of (9) as components of this vector. In this 

sense every function is an infinite dimensional vector. 

We will show later that the samples of a function can 

also be used to represent these components of an 

infinite dimensional vector. Thus these samples will 

bring this mathematics to engineering, because the 

ADCs can produce these samples. 

We now show that a band limited function is also 

infinite dimensional and therefore carries infinite 

amount of information. Consider a band limited 

function f(t), with bandwidth [-W,+W]. Then f(t) is 

given by the following inverse Fourier Transform [2]: 

 ���� = "�I � J��K�LM
N:O:             
 = "�I � J��K�LM
N�IPO�IP             (13) 

 

In (13) t is defined for all time in (–∞,+∞). But the 

frequency w is defined only over [–W,+W], and it can 

take any value: integer, rational, or irrational 

frequencies, within that range. 

The second line in expression (13) shows that the 

band limited function f(t) has uncountably infinite 

number of frequencies. That is, f(t) is created using 

infinite number of frequencies and therefore is an 

infinite dimensional vector. This is true even when we 

consider a small interval of time for the function f(t). 

In that small interval the function still has all the 

infinite frequency components corresponding to the 

points in [–W,+W]. This is another way of showing 

that a band limited function is an infinite dimensional 

vector over a finite measurement window.  

We have been talking about countable and 

uncountable infinities. To refresh our memory, 

countable infinity is the number of elements in the set 

of integers {1,2,…} and the uncountable infinity is the 

number of points in the interval [0,1]. The set of 

rational numbers is also countable. Clearly 

uncountable infinity is larger than the countable 

infinity. However, one interesting fact is that any real 

number can be represented as a limit of a sequence of 

rational numbers. This fact is mathematically stated as 

the set of rational numbers is a dense set in the set of 

real numbers [8, pp43-45]. Therefore when we talk 

about uncountable infinity we can in many cases think 

in terms of countable infinity also. The relationship 

between measurable functions and continuous 

functions are similar as mentioned before. 

We point out here that a constant function f(t) = 

C, as an element of function space, is also an infinite 

dimensional vector. The only difference is that all 

sample values are same. In terms of Taylor series the 

coefficients for a constant function are {C,0,0,….}, 

which is an infinite dimensional vector. 

The infinite dimensionality idea of a function can 

be understood in another very interesting way. 
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Consider the real line interval [0,1]. We know that it 

has uncountably infinite number of points. If we 

stretch this line to [0,2] we will still have all these 

uncountable number of points inside it. Now if we 

bend it and twist it all the points will still be there but 

the line will now become a function, a graph, in the 

two dimensional plane. Thus a function has 

uncountably infinite number of points. Every sample 

you take will have different coordinates and therefore 

different information. Therefore we can prove that a 

function can be exactly represented by this infinite 

number of samples and that more samples you take 

over this finite interval better will be the 

representation of the function. 

The definition of dimension should be clearly 

pointed out. The dimension of a vector space is the 

number of basis vectors of the space. For function 

space, both Fourier series (9) and the Taylor series 

(12) show, that the number of basis vectors is 

countable infinity. Therefore the dimension of the 

function space is countable infinity. Any element of 

this vector space will also have the same number of 

components in its representation as a vector. Therefore 

the total number of components in a vector is also 

called the dimension of the vector. 

We now show that samples can also be used to 

represent this infinite dimensionality. We prove that it 

is theoretically necessary to sample a function that is 

defined over finite time interval, infinite number of 

times, to extract all the information from the function. 

 

5. Sample Convergence 
 

Let f(t) be a continuous function defined over the 

real time interval [a,b]. Assume that we divide this 

finite time interval [a,b] into n > 1 equal parts using 

equally spaced points {t1, t2, .. tn, tn+1}.  Where t1 = a 

and tn+1 = b. Use the following notations to represent 

the t-subintervals 
 ∆�� = Q [MR,MRST�,[ME,MEST],     �;",�,..,*O"        �;*                    8  
 

Define the characteristic functions: 
 V���� = Q",�,     M∈∆MRM∉∆MR 8    3 = 1,2, . . , 6            (14)          
 

In this case the characteristic functions, Xi(t) are 

orthonormal over the interval [a,b] with respect to the 

inner product on L2 [a,b], because 
 V����VX��� = 0, 3 ≠ Y, ∀� ∈ [�, �]           (15) 
 

Also define the simple functions as: 

 �*��� = ∑ �����V����    ∀� ∈ [�, �]*�;"           (16) 

 

Here f(ti) is the sampled value of the function f(t) at 

time t = ti that is, at the beginning of each sample 

interval ∆t. It is easy to visualize that fn(t) is a 

sequence of discrete step functions over n. Expression 

(16) is an approximate Fourier series representation of 

f(t) over [a,b]. This representation uses the samples of 

the function f(t) at equal intervals, fn(t) uses n number 

of samples.  

We show that this approximate representation 

(16) improves and approaches f(t) as we increase the 

value of n. Which will essentially prove that more you 

sample more information you get about the function.  

Thus the higher sample rate is meaningful and does 

not produce any redundant information. The following 

theorem is quite intuitive; its proof is also very simple. 

However, its consequence is very profound in the field 

of digital signal processing and in communication 

engineering. 
  

Theorem 1: fn → f in L2[a,b] as ∞→n . 
 

First consider Figure 3, where we show the simple 

function fn(t) and the original continuous function f(t), 

between two consecutive sample points on the time 

line. It is geometrically obvious that the maximum 

error between the two functions reduces as the interval 

∆t reduces. Mathematically, consider the error 
 Z[* = maxM|���� − �*���|, ∀� ∈ [�, �]          (17) 
 

It is then clear that {∆yn} is a monotonically 

decreasing sequence of n since the function f(t) is 

continuous over the closed interval [a,b]. Therefore, 

given any ε>0 we can find an N such that ∆[* ≤>/`�� − ��    for all n > N. We can also verify that 
 �� − �*� =  � |���� − �*���|�
��� !"/�

           

 =  � |���� − ∑ �����V����*�;" |��� 
�!"/�
            (18) 

 

Since V���� = 1 for all t we can rewrite the above 

expression without affecting the integral as 
 =  � |∑ ����V���� − ∑ �����V����*�;"*�;" |��� 
�!"/�

   

 

ti ti+1 

∆t 

f(t) fn(t) 

Figure 3.  Simple function approximation 
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Rearranging the terms we can write 
 =  � a∑ b���� − �����cV����*�;" d�
��� !"/�

                 

 

Now performing the squaring operation, noting that 

(15) holds, we can write the above as: 

 =  � [∑ [���� − �����]�V�����*�;" ]
��� !"/�
            

 ≤  � [∑ [∆[*]�V�����*�;" ]
��� !"/�
             

 =  ∆[*� � �∑ V��*�;" ����
��� !"/�
             

 = [∆[*��� − ��]"/� = `�� − ��∆[* ≤ > 

 

Thus from (18) we see that ∀6 ≥ A  

 ����� − ∑ ����*�;" �V����� ≤ f, ∀� ∈ [�, �]             (19) 
 

Which means: 
 ���� = ∑ �����V���� , ∀� ∈ [�, �]:�;"                     (20) 
 

This concludes the proof of Theorem 1.  

 

The expression (20) says that a function is an 

infinite dimensional vector and can be correctly 

represented by all the infinite samples, while the 

expression (19) can be used for approximate 

representation with accuracy given by ε. Essentially 

Theorem 1 proves that infinite sample rate is 

necessary to represent a continuous function correctly 

over a finite time interval. Another important 

interpretation of Theorem 1 is that the information 

content of a function is available in the samples of the 

function. Thus the amount of information these 

general purpose functions can carry is actually 

infinity. A communication system can be designed to 

extract a large amount of information from this infinite 

content. The fm system uses such a general class of 

function and can be used to carry more information 

than conventional designs. 

It is clear that the Theorem 1 does not depend on 

the bandwidth of the function f(t). However, for any 

given ε>0 the number N will depend on the 

bandwidth. 

Theorem 1 is similar to the one described for 

measurable functions in [8, pp389-391]. But the 

coefficients are not the sampled values in that 

theorem.  For measurable functions, samples are 

usually taken on the y-axis. Another proof can be 

found in [10, pp247-257] where the Bernstein 

polynomial has been used instead of the characteristic 

function. Although Bernstein polynomial functions are 

not orthogonal, like the characteristic functions used in 

Theorem 1, but they are defined over finite and closed 

interval, occasionally know as functions with compact 

support. We will see that it has an important 

consequence when we reconstruct the function using 

the samples. 

Theorem 1 shows that the approximating 

functions (16) converge in the mean, because we have 

used the L2 norm. In engineering we normally like 

pointwise, that is point by point convergence. We say 

that a sequence of functions, like {fn} in (16), 

converges uniformly to a function f on the closed 

interval [a,b] if for every ε > 0 there exists an N > 0, 

depending only on ε and not on t in the interval [a,b], 

such that |�*��� − ����| < > for all n >N, and for all t 

in [a,b]. It should be pointed out that uniform 

convergence implies pointwise convergence. 

Since the function f(t) is continuous over a closed 

interval, the sequence (16) is bounded, because the 

sample values are bounded. Therefore if we show that 

the supremum or the maximum of (16) converges then 

obviously the sequence will converge uniformly also 

[8, pp308-311]. That is we have to show that 
 sup�jMj�|���� − �*���| < > , ∀6 > A          (21) 
 

Incidentally, the supremum and the maximum are 

the same thing for continuous functions over closed 

interval and also the difference really does not matter 

for engineering problems. Over every small interval 

∆ti we can write 
 |���� − �*���| = |����V���� − �����V����|           
 = |���� − �����|V����                
 

According to the mean value theorem, there exists a ci 

within every interval ∆ti such that 
 ���� = ����� + �� − ����(�H��            
 

Therefore using (16) we can write 
 |���� − �*���| = ∑ |���� − �����|V����*�;"            (22) 
 = ∑ |�� − ����(�H��|V����*�;"              
 = ∑ |� − ��||�(�H��|*�;" V����             
 ≤ ∆� k ∑ V���� = �O�**�;" k             (23) 

 

Where, M is the upper bound of the derivative of f(t) 

on the entire interval [a,b]. Since f(t) is a continuous 

function over a closed interval, M always exists. So in 

the above proof we have assumed that the function is 

differentiable. Thus the right hand side of (23) is 

independent of t and therefore is an uniform bound for 

all t for the left hand side of (22). Thus we can see that 

the difference expressed in the left side of (22) goes to 
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zero as n goes to infinity. This shows that (20) is true 

for all t, thus proving the uniform convergence. The 

above derivation also proves the intuitive assertion 

made in (17). 

We have shown that the approximations generated 

by sample values of the original function f(t) 

converges to the original function. As it converges the 

number of samples increases, because that is the way 

we constructed the approximating function fn(t). Since 

the approximations improve, the fn(t) improves, 

confirming that more samples are better and does not 

generate redundant information. These infinite 

samples collectively define the function. A complete 

description of the function can only be obtained by 

these infinite numbers of samples, which can be 

considered as components of an infinite dimensional 

vector. The above basic tools now can help us to give 

theoretical proofs of sampling theorem. 

 

6. Sampling Theorem 
 

Consider the simple sinusoidal function 
 

s(t) = A sin (2 π f t + θ)            (24) 
 

and assume that it is defined only for one period for 

simplicity, although not necessary. We can think of 

this sinusoidal function as the highest frequency 

component of a band limited signal. So if we can 

recover this function by sampling it then we will be 

able to recover the entire original signal, because the 

other components of the band limited signal are 

changing slowly at lower frequencies. We try now to 

determine how many samples we need to recover the 

sine function. 

We can see from the above expression (24) that a 

sinusoidal function can be completely specified by 

three parameters A, f, and θ. That is we can express a 

sine function as a three dimensional vector: 
 

s = [A, f, θ]             (25) 
 

However (25) is very misleading. There is a major 

hidden assumption; that the parameters of (25) are 

related by the sine function. Therefore more precise 

representation of (25) should be: 
 

s = [A, f, θ, “sine”]            (26) 
 

The word sine in (26) means the Taylor’s series, 

which has an infinite number of coefficients. 

Therefore when we say (25) we really mean (26) and 

that the sine function, as usual, is really an infinite 

dimensional vector. 

We can use the following three equations to solve 

for the three unknown parameters, A, f, and θ of a 

sinusoidal function: 

s1 = A sin (2 π f t1 + θ) 

s2 = A sin (2 π f t2 + θ)            (27) 

s3 = A sin (2 π f t3 + θ) 
 

where t1 , t2 , t3  are sample times and s1 , s2 , s3 are 

corresponding sample values. Again a correct 

representation in terms of samples would be 
 

s = [(s1,t1), (s2,t2), (s3,t3), “sine”]            
 

Hence with sinusoidal assumption, a sine function can 

be completely specified by three samples. The above 

analysis gives a simple proof of the sampling theorem. 

We can now state the well known result: 

 

Theorem 2: A sinusoidal function, with the 

assumption of sinusoidality, can be completely 

specified by three non-zero samples of the function 

taken at any three points in its period. 

 

From (27) we see that if we assume sinusoidality 

then more than three samples, or higher than Nyquist 

rate, will give redundant information. However 

without sinsoidality assumptions more samples we 

take more information we get, as is done in common 

engineering practice. It should be pointed out that 

Shannon’s sampling theorem assumes sinusoidality. 

Because it is derived using the concept of bandwidth, 

which is defined using Fourier series or transform, and 

which in turn uses sinusoidal functions.  

Theorem 2 says that the sampling theorem should 

be stated as fs > 2fm instead of fs ≥ 2fm that is, the 

equality should be replaced by strict inequality. Here, 

fm is the signal bandwidth, and fs is the sampling 

frequency. There are some engineering books [11, 

p63] that mention strict inequality.  

Shannon states his sampling theorem [2, p448] in 

the following way: “If a function f(t) contains no 

frequencies higher than W cps, it is completely 

determined by giving its ordinates at a series of points 

spaced 1/2 W seconds apart”.  The proof in [2] is very 

simple and runs along the following lines. See also 

[12, p271]. A band limited function f(t) can be written 

as in (13). Substituting t = n/(2W) in (13) we get the 

following expression: 
 � l *�Pm = "�I � J��K�L EnoN�IPO�IP 
             (28) 

 

Then the paper [2] makes the following comments: 

“On the left are the values of f(t) at the sampling 

points. The integral on the right will be recognized as 

essentially the nth coefficient in a Fourier-series 

expansion of the function F(w), taking the interval –W 

to +W as a fundamental period. This means that the 

values of the samples f(n/2W) determine the Fourier 

coefficients in the series expansion of F(W).” It then 
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continues “Thus they determine F(w), since F(w) is 

zero for frequencies greater than W, and for lower 

frequencies F(w) is determined if its Fourier 

coefficients are determined”.   

Thus the idea behind Shannon’s proof is that from 

the samples of f(t) we reconstruct the unknown 

Fourier transform F(w) using (28). Then from this 

known F(w) we can find f(t) using (13) for all time t. 

One important feature of the above proof is that it 

requires that the function needs to exist for infinite 

time, because only then you get all the infinite samples 

from (28). We show that his proof can be extended to 

reconstruct functions over any finite interval with any 

degree of accuracy by increasing the sample rate. The 

idea behind the proof is similar, we construct F(w) 

from the samples of f(t). 

In this proof we use the principles behind the 

numerical inversion of Laplace transform method as 

described in [13, p359]. Let F(w) be the unknown 

band limited Fourier transform, defined over [-

W,+W]. Let the measurement window for the function 

f(t) be [0,T], where T is finite and not necessarily a 

large number.  Divide the frequency interval 2W into 

K smaller equal sub-intervals of width ∆w with 

equally spaced points {wj} and assume that the set of 

samples {F(wj)} is constant but unknown over that j-th 

interval. Then we can express the integration in (13) 

approximately as: 

 ���� ≈ "�I �∆� ∑ K�MLpqX;" J�X�           (29) 

 

The right hand side of (29) is a linear equation in 

{F(wj)}, which is unknown. Now we can also divide 

the interval [0,T] into K equal parts with equally 

spaced points {tj} and let the corresponding known 

sample values be {f(tj)}. Then if we repeat the 

expression (29) for each sample point tj we get K 

simultaneous equations in the K unknown variables 

{F(wj)}as shown below: 

 

r���"������⋮���q�t = ∆L�I r K�MTLT    K�MTLn … K�MTLuK�MnLT    K�MnLn … K�MnLu⋮K�MuLT    K�MuLn … K�MuLu
t rJ�"�J���⋮J�q�t (30) 

 

These equations are independent because the 

exponential functions in (29) are independent.  

We recall that a set of functions v��� = {	����,3 = 1 … k, � ∈ [0, x]} is called dependent over the 

interval if there exists constants ci, not all zero, such 

that 

 	"���H" + 	����H� + ⋯ + 	z���Hz = 0 

 

for all t in [0,T]. If not, then it is independent [14, 

pp177-181]. The above expression is a linear 

combination of functions. Here the coefficients {H� , 3 = 1 … k} are all real numbers. It essentially 

says that one function cannot be constructed using 

other functions. 

Therefore we can solve (30) for {F(wj)}.  

Theorem 1 ensures that the sets {F(wj)} and {f(tj)} can 

be selected to achieve any level of accuracy 

requirements in (13) for either f(t) or F(w). For 

convenience we assume that the number of terms K in 

(29) is equal to Tkfs = 2kWT. Here fs is the Nyquist 

sample rate and k > 1. We state the following new 

sampling theorem. 

 

Theorem 3:  Let f(t) be a band limited function 

with bandwidth restricted to [-W,+W] and be available 

over the finite measurement window [0,T]. Then given 

any accuracy estimate ε >0, there exists a constant k>1 

such that 2kWT equally spaced samples of f(t) over 

[0,T] will completely specify the Fourier transform 

F(w) of f(t) with the given accuracy ε. This F(w) can 

then be used to find f(t) for all time t. 

 

Note that we did not say that the function does not 

exist over the entire real line. We only said that our 

measurement window is finite. What happens to the 

function beyond the finite interval is not needed for 

our analysis. The main point of our paper is that we do 

not need to be concerned with the existence of our 

signals over the entire real line. 

We have given, as in (30), a very general 

numerical method of solving an integral equation. The 

method can be applied also to the case when f(t) in the 

left hand side of the equation (13) is unknown. The 

equation (13) itself can be generalized too. A well 

known [15] generalization is given below: 
 ���� = � {��, �J��
��            (31) 
 

Here we have replaced the sinusoidal function by the 

kernel function K(t,w). Expression (31) represents a 

relationship between frequency components with the 

time functions for finite duration signals. In that sense 

it gives the bandwidth information of any given 

function f(t). It may even be possible to solve the 

equation (31) analytically over finite time and 

frequency ranges for some specific kernel functions. 

More we research in this very practical finite duration 

engineering problem better will be our definitions and 

theories and they will be closer to reality. We point out 

here that there is a need for extending the definition of 

bandwidth of a function from infinite time to finite 

time. 
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In a sense Shannon’s sampling theorem gives a 

sufficient condition. That is, if we sample at twice the 

bandwidth rate and collect all the infinite number of 

samples then we can recover the function. We point 

out that this is not a necessary condition. That is, his 

theorem does not say that if T is finite then we cannot 

recover the function accurately by sampling it. We 

have confirmed this idea in the above proof of 

Theorem 3. That is if T is finite we have to sample at 

infinite rate to get all the infinite number of samples. 

Or in other words more we sample more information 

we get. This is because a function is an infinite 

dimensional vector and therefore it can be correctly 

specified only if we get all the infinite number of 

samples.  

Shannon proves his sampling theorem in another 

way [2]. Any continuous function can be expressed 

using the Hilbert space based Fourier expression (9). 

He has used the expression (9) for a band limited 

function f(t), defined over infinite time interval. He 

has shown that if we use  

 .*��� = |�*{ID}[MO�*/D}�]}ID}[MO�*/D}�]               (32) 

 

Then the coefficients of (9) can be written as 
 

an = f(n/fs)            (33)  
 

Thus the function f(t) can be expressed as: 
 ���� = ∑ ��6/�|� |�*{ID}[MO�*/D}�]}ID}[MO�*/D}�]:*;O:              (34) 

 

Here fs = 2W, where W is the bandwidth of the 

function f(t). The set {φn } in (32) is orthogonal only 

over (-∞,+∞).    

Observe that the above is very similar to our proof 

of theorem 1. Shannon used sinc functions as the 

orthogonal basis functions, whereas in our theorem 1 

we used rectangular pulses as the orthogonal basis 

functions. We know that the sinc function is the 

Fourier transform of the rectangular pulse. Only 

difference is that the sinc functions require infinite 

time interval. 

 

We make the following observations about (34): 

1. The representation (34) is exact only when 

infinite time interval and infinite terms are 

considered. 

2. If we truncate to finite time interval then the 

functions φn in (32) will no longer be orthogonal, 

and therefore will not form a basis set, and 

consequently will not be able to represent the 

function f(t) correctly. 

3. If in addition we consider only finite number of 

terms of the series in (34) then more errors will be 

created because we are not considering all the 

basis functions. We will only be considering a 

subspace of the entire function space. 

 

We prove again, that by increasing the sample 

rate we can get any desired approximation of f(t), over 

any finite time interval [0,T], using the same sinc 

functions of (32). From calculus we know that the 

following limit holds: 
 lim�→: ��� �� = 0             (35) 
 

Assume that fs is the Nyquist sampling frequency, i.e., 

fs = 2W.  Let us sample the signal at k times the 

Nyquist rate. Here k>1 is any real number. Then using 

(35), we can show that given any T and a small δ > 0, 

there exists an N such that  
 �|�*�I=D}M�I=D}M � < 0, ∀? > A, ∀� ≥ x           (36) 

 

Thus these orthogonal functions (32) substantially 

go to zero outside any finite interval [0,T] for large 

enough sampling rate and still maintain their 

orthogonality property, substantially, over [0,T]. 

Therefore, for a given band limited function f(t), with 

signal capture time limited to the finite window [0,T], 

we can always find a high enough sample rate, kfs so 

that given any ε>0 the following will be true: 
 ����� − ∑ �� *=D}� |�*{I=D}[MO�*/=D}�]}I=D}[MO�*/=D}�]q*;� � < >          (37) 

 ∀? > A, ∀� ∈ [0, x] 
 

The number of functions in the above series (37) 

is now K, which is equal to the number of samples 

over the period [0,T]. Thus K= kfsT = 2kWT. As k 

increases the number of sinc functions increases and 

the distance between the consecutive sinc functions 

reduces thus giving higher sample rate. See the 

numerical example given below. The original proof 

[2] for (32-34) still remains valid as we increase the 

sample rate. That is, the sinc functions in (32) still 

remain orthogonal. It can be shown using the original 

method that the coefficients in (33) remain valid and 

represent the sample values. Of course, the original 

proof requires the infinite time interval assumption. 

Thus the system still satisfies the Hilbert Space theory 

expressed by (4-11) making expression (37) justified. 

Now we can state the following new sampling 

theorem. 
 

Theorem 4:  Let f(t) be a band limited function 

with bandwidth restricted to [-W,+W] and available 

over the finite measurement window [0,T]. Then given 

any accuracy estimate ε there exists k>1 such that 

2kWT equally spaced samples of f(t) over [0,T] along 

11

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/



 

with their sinc functions, will completely specify the 

function f(t) for all t in [0,T] at the given accuracy.  
 

We should point out, like in Theorem 2, that if we 

assume infinite time interval then faster than the 

Nyquist rate will also not give redundant information. 

This concept is also easily seen from the Fourier series 

expression (9). To solve for the coefficients of (9) we 

need infinite number of samples to form a set of 

simultaneous equations similar to (30). As we increase 

the sample rate the solution of (30) will only become 

better, that is, the resolution of the coefficients will 

increase and the unknown function will also get better 

approximations. 

For finite time assumption higher sampling rate is 

necessary to achieve the desired accuracy. The reason 

is same; the concept of infinite dimensionality must be 

maintained over finite time interval. That can be 

achieved only by higher sample rate. We also repeat, if 

you know the analytical expression then the number of 

samples must be equal to the number of unknown 

parameters of the analytical expression. This case does 

not depend on the time interval. 

A lot of research work has been performed on the 

Shannon’s sampling theorem paper [2]. Somehow the 

attention got focused on the WT factor, now well 

known as the dimensionality theorem. It appears that 

people have [16][17] assumed that T is constant and 

finite, which is not true. Shannon said in his paper [2] 

many times that T will go to infinite value in the limit. 

No one, it seems, have ever thought about the finite 

duration issue. This is probably because of the 

presence of infinite time in the Fourier transform 

theory. The paper [15] gives a good summary of the 

developments around sampling theorem during the 

first thirty years after the publication of [2]. 

Interestingly [15] talks briefly about finite duration 

time functions, but the sampling theorem is presented 

for the frequency samples, that is, over Fourier domain 

which is of infinite duration on the frequency axis. 

Now we give a numerical example to show how 

higher rate samples actually improves the function 

reconstruction. 

 

7. A Numerical Example 
 

We illustrate the effect of sample rate on the 

reconstruction of functions. Since every function can 

be considered as a Fourier series of sinusoidal 

harmonics, we take one sine wave and analyze it. This 

sine function may be considered as the highest 

frequency component of the original band limited 

signal. The Nyquist rate would be twice the 

bandwidth, that is, in this case twice the frequency of 

the sine wave. We are considering only one period, 

and therefore the Nyquist rate will give only two 

samples of the signal during the finite interval of its 

period. We are also assuming that we do not know the 

analytical expression of the sine wave that we are 

trying to reconstruct.  

In this example we use the sinc functions of 

Shannon’s theory, equation (37), to reconstruct the 

signal from the samples. In Figures 4-6 x-axis 

represents the angles of the sine function in terms of 

degrees or samples or time. The y-axis represents the 

amplitude of the sine function. Figure 4 shows the 

reconstruction process using two samples of the 

signal. In part (a) we show the sample locations and 

the corresponding sinc functions over the interval of 

one period. In part (b) we show how the construction 

formula (37) reproduces the function. Part (c) shows 

the error between the reconstructed sine function and 

the original sine function. We can see that the 

reconstruction really did not work well with two 

samples. Thus for finite time interval signals this 

process of recovering the function using expression 

(37) and the Nyquist rate provides very poor results. 

Therefore in all engineering application we cannot use 

the Nyquist rate. 

Figure 5. Reconstruction using three samples 
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In Figure 5 we repeat the process described for 

Figure 4 with three samples. In part (b) of Figure 5 we 

still have significant errors. The error is prominent at 

the two edges because the sinc functions do not stop at 

the end, they continue up to infinity. This is where 

Bernstein polynomials, with compact support, will fit 

better [10]. Usually Bernstein polynomial converges 

very slowly and thus will require large number of 

samples. We mention about the Bernstein polynomial 

because it has some good analytical qualities [10, 

pp247-258]. However when we have large number of 

samples we may have many other better options for 

reconstructing the functions as described in the next 

section. 

Figure 6 shows how the reconstruction process 

improves when we substantially increase the sample 

rate to six samples per period or three times the 

Nyquist rate. In this figure we still use the sinc 

function approach, i.e., expression (37). Notice that 

the errors at the edges are also reduced. This is 

because, as we increase the sample rate the sinc 

functions become narrower as predicted by the 

expression (36) and major part of the functions remain 

inside the signal interval. 

The graphs show that the error decreases as we 

increase the sample rate as predicted by the new 

sampling theory and infinite dimensionality of the 

function space. It is clear from the examples that, for 

the same number of samples, a different recovery 

function, instead of sinc function, will give different 

result. In the next section we discuss this different 

reconstruction approach. 

 

8. Re-sampling and Reconstruction 
 

In many applications in engineering we may 

require different sampling rates mainly to control the 

computation time of the processor. The theory 

presented in this paper essentially says that, sample as 

fast as you can. That will give you maximum amount 

of information about the signal you want to process. 

However, we may not be able to select the desired 

Analog to Digital Converters (ADC) to sample the 

signal at the rate we want, because of many reasons. 

The two most important of them are the cost and the 

power required by the ADC chips. 

After we have all the samples, collected at the 

highest feasible sample rate, then to reduce the sample 

rate we can simply drop few samples. This approach 

will maintain the quality of the signal representation. 

This is can be justified from the expression (30). Note 

that the Fourier series expression (9) can also be 

converted into a form given by (30). Normal 

decimation process changes the bandwidth thus losing 

the accuracy.  

However, if we want to increase the sample rate, 

after collecting all the samples from the ADC, then we 

have to interpolate the samples and resample the 

analytical expression, thus obtained, using the new 

higher rate.  

We emphasize the idea of using the analytical 

expression for the received signal in our algorithms. 

Instead of focusing on the samples we should focus on 

the mathematical expression and on the design of the 

algorithms around that mathematical expression. If we 

can achieve that then the number of samples will play 

a very minimal role. We will still have the complete 

expression of the signal even when we use very few 

samples.  

Since in this paper we are dealing with finite time 

intervals, we do not yet have the proper definition of 

bandwidth. We also cannot use the conventional filters 

because they use transfer function, which uses Laplace 

transform, and which in turn is defined only over 

infinite time interval. Classical linear system theory is 

inappropriate for finite time interval problems. Note 

that the normal decimation and interpolation methods 

used in digital signal processing techniques [18, 

pp303-316] cannot be used also, because they use 

bandwidth related and transfer function based filters. 

Thus all of our analysis must rely on the time domain 

approaches. 

We have described several analytical approaches 

for signal definition from the samples. Any method 

based on Fourier series (9), similar to (37), can be 

used as an analytical expression. Once you have the 

expression you can generate any number of samples 

from that expression. Approximation theory [10], a 

time domain approach, is also very rich in the area of 

interpolation using analytical expressions and can be 

used for re-sampling. This analytical expression 

approach requires that we use the entire batch of data. 

This batch allows us to see the entire life history of the 

system. This history can be more effective in signal 

processing than a sample by sample approach. 

Figure 6. Reconstruction using six samples 
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We want to add another layer of information to 

our signal processing approach. All of the above 

methods assume that we do not have any total system 

level information about the origin of the signal we are 

trying to reconstruct. More specifically, in digital 

communication receiver, for example, we know how 

the received signal was constructed at the transmitter. 

We can use that information to reconstruct an analytic 

expression from the samples at the receiver and then 

go for re-sampling, if necessary. This will produce 

more realistic results than straight forward application 

of approximation theories to the samples. 

We give a numerical example to illustrate this 

global or system level concept of re-sampling and 

reconstruction of signal analysis. In function 

modulation [6] for example, at the transmitter, we 

used linear combination of a set of sinusoidal 

frequencies. We also used some constraints on the 

coefficients of this linear combination. The purpose of 

these constraints was to control the bandwidth 

(defined using the conventional sense) of the stream of 

concatenated symbols existing over infinite time. At 

the receiver we may not be able to use these 

constraints, but definitely we can interpolate using 

these specific frequency signals and achieve a higher 

level of accuracy in the reconstruction process. 

In our experiment, we transmitted the signal 

shown in Figure 7. We used the voice band telephone 

line to transmit the signal. The signal sample rate both 

at the transmitter and at the receiver was 16 kHz at 16 

bits resolution. The telephone companies sample the 

voice signals at 8 kHz rate and at 8 bits resolution. 

This sample rate difference or some other unknown 

reasons distorted the received signal very significantly 

as shown in the Figure 8. As we can see from the 

figures the received signal has two positive peaks as 

opposed to three positive peaks in the transmitted 

signal. As if the second trough of the transmitted 

signal got folded up in the received signal. 

It is clear that the conventional signal recovery 

methods, that use local concepts, no matter how many 

samples we take, cannot bring the received signal back 

to the transmitted form. However, a global approach 

or a systems approach, where we use the knowledge of 

the entire system can definitely help. We used the 

same sine wave frequencies of the transmitter, to 

interpolate the samples at the receiver. Here, of course, 

the high sample rate played an important role in the 

least square interpolation method. The details of the 

signal processing, is quite involved, and is not given 

here. The large sample rate and the systems approach 

helped us to bring the received signal back to a shape 

that is very close to the transmitted signal, as shown in 

Figure 9, which allowed us to detect the bits correctly. 

Thus we can see that a total system level or global 

approach in signal processing can perform miracles. 

At this end, we repeat again that all of the existing 

theories that are based on infinite time assumptions 

should be carefully reviewed, redefined, and recreated 

for their finite time applications. We do not want any 

infinite time assumptions behind any of our finite time 

applications. That is not theoretically correct. More 

research will be required to generate analytical results 

for finite time systems. We should design our theories 

based on the engineering constraints. Our technology 

has advanced significantly. We can now use many 

mathematical theories that we could not use before. 

Besides infinite time assumption most of our 

theories assume linearity also. We point out here in the 

next section how linearity concepts are deeply 

embedded in all our theories thus ignoring some basic 

engineering constraints. It is to be noted that the 

original sampling theorem used linearity assumption 

also, because it was based on Fourier theory. 
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Figure 7.  Transmitted symbol for fm 
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Figure 9.  Best fit of the received symbol 
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Figure 8.  Received symbol for fm 
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9. Linearity Assumptions 
 

All of our engineering systems are nonlinear 

because of two very important reasons. We briefly 

discuss them here to point out in another section that 

the transform methods that are based on linearity 

assumptions cannot be effectively used in engineering 

problems. Also we want to raise the importance of this 

nonlinearity to create a concern for the validity of our 

theories for engineering. 

The most important reason for this nonlinearity is 

very well known though, but we probably never think 

about them. Hardly any text book [19, pp196-199] 

talks or provides any theory [20, pp167-179] for 

solving them. We call it saturation nonlinearity. Every 

engineering variable, like voltage, current, pressure, 

flow, etc. has some upper and lower bounds. They 

cannot go beyond that range. In terms of mathematical 

equation this situation can be described as 

 4� ≤ � ≤ k�,  
 

where x is any physical engineering variable, mx is the 

lower bound and Mx is the upper bound. Graphically 

the above equation can be represented by Figure 10. 

The figure shows that whenever the engineering 

variable x is within the range of [a,b] the output is 

linear and is equal to x. If x goes outside the boundary 

it gets clipped by Mx on the higher side and by mx on 

the lower side. Note that mx can be zero or negative 

also.  

Clearly Figure 10 shows severe nonlinearity and 

there is no escape from this in any engineering 

problems. We should not ignore its presence in 

engineering. These constraints are a kind of natural 

laws for our technology. Therefore we cannot treat our 

engineering problems using simple Linear Time 

Invariant (LTI) systems theory. Simply because there 

are no real LTI systems in engineering. If we do use 

such a theory then the performance of the system will 

be compromised. 

It should be pointed out that it is almost 

impossible to keep the variables in the linear region. In 

most practical engineering problems there are 

hundreds of variables and hundreds of equations. It is 

not feasible to ensure that all variables will be within 

the linear range all the time. Their relationships are 

very complex. In addition there are many transients in 

all systems that can significantly alter the domain size 

of the variables. There is yet another important case 

where we have to demonstrate that the systems we 

build must behave normally when it goes to these 

limits. In addition, many systems have strict 

requirements that variables must go to this limit and 

stay there, like actuators in airplane wings. The wing 

flaps must reach their maximum angular positions and 

stay there for certain period of time. 

In all engineering software, any conscientious 

programmer will always include the above 

nonlinearity test, usually called anti-windup, in their 

source code. And this code will automatically make 

the software, and hence our algorithm, nonlinear. A 

software engineer, barring few exceptions, does not 

know how mathematics works but knows how to make 

systems work. If you see any source code you will find 

many such patch work or kludge in the source code 

that are necessary to make the systems work. This 

necessity originates not only because of the lack of 

theoretical foundations of our algorithms but it will 

also be due to the RTOS and the interrupts of the 

background software which interferes with our theory. 

All electronic hardware automatically includes 

such saturation nonlinearity in their systems. An 

automatic gain control mechanism, for example, 

actually is nothing but a nonlinear method of keeping 

the variables inside their linear regions. Because of 

this non-linearity any application of the LTI theory in 

engineering will violate the mathematical assumptions 

of the LTI theory. All transfer functions based 

approaches, like Laplace, or Fourier, are inappropriate 

for all engineering methods. They cannot work, 

because they violate the basic engineering 

assumptions. The transform approaches not only 

assume infinite time, they also assume linearity. If we 

use correct theory consistent with engineering models 

then we will definitely get much better results from 

our systems. 

There is another very natural reason for using the 

non-linear theory in the design of our systems. Every 

engineer knows this one also but we want to mention 

it to strengthen our argument against the application of 

the LTI system theory. Most of the engineering 

requirements for today’s technology are very stringent 

and we have experienced that our technology in most 

cases can support them to some extent. Because of 

these highly advanced and sophisticated requirements 

a simple linear model of engineering systems cannot 

achieve the objectives. We must make use of advanced 
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nonlinear and dynamic or time varying adaptive 

system models. 

A very well know and well established example 

that engineers have developed during the last thirty 

years is the Inertial Navigation System (INS). Today 

our requirement says that the first missile will make a 

hole in the building and the second missile must go 

through that hole. That is a very sophisticated and 

precise demand. The INS development shows that 

simple Newton’s law of force equals to mass times 

acceleration cannot work. The equation has been 

extended to fill books of hundreds of pages. They 

derive starting with simple linear Newton’s equation 

[21, p4] a complete and very highly nonlinear set of 

equations [22, pp73-77] to describe the motion of an 

object. These equations include, among many other 

things, Coriolis forces, earth’s geodetic ellipsoidal 

models etc. Even after including all the nonliniearities 

that we know of we still had to integrate the INS with 

a Global Positioning System (GPS) to satisfy many of 

our requirements.  

The simple Linear Time Invariant (LTI) system 

equation like the one given below: 

 ���M��M = ����� + �&���           (38) 

 

cannot solve most of  our engineering problems, 

simply because the laws of nature are too complex and 

the demands from our technology are too precise. In 

engineering many nonlinear problems have been 

attempted using successive linearization methods with 

the application of theories of (38). These approaches 

do not work also, mainly because there are no theories 

with very general assumptions that establish their 

convergence, stability, and optimality. The above 

reason of nonlinearity is very well known to all of us.  

We have added this section to highlight the need 

for the signal processing approach presented in this 

paper. We are proposing a software radio approach 

with finite time batch data processing, very high 

sampling rate, time domain theories, and global 

system level simultaneous interactions. We believe 

that this direction, has some theoretical foundations, 

and can be augmented to many nonlinear dynamic 

approaches.  

The wavelets have become a very popular signal 

processing tools. It also has been used to extend the 

sampling theorem applications [23]. So we briefly talk 

about it in the next section. 
 

10. Wavelet theory 
 

The wavelet theory has many relations with the 

theories discussed in this paper. The Haar wavelet 

systems starts [24, p431] with the characteristic 

function of the [0,1] interval similar to the one defined 

by (14). These are also orthogonal functions as 

described in (15). The Shannon’s scaling functions 

[24, p422] are the sinc functions sin ��/�� similar to 

(32). Wavelets are very useful signal processing tools 

for many image and voice related problems. However 

it is still at its developmental phase. It has not been 

demonstrated yet that it can be integrated, similar to 

Fourier or Laplace methods, into dynamic systems 

governed by differential equations. 

The wavelet theory also gives a down sampling 

process [25, pp31-35]. Like Fourier theory the wavelet 

down sampling provides a lower resolution, as a 

consequence of the multi-resolution analysis, 

reconstruction of the original function. This is in 

contrast to the method presented in previous section, 

where the down sampled version still maintains the 

original resolution quality. The down sampling 

process is required for reducing the throughput 

requirements of the processor. Down sampling should 

not therefore reduce the quality of the signal. 

Continuous wavelet transform [24, p366] of a 

function f(t) has been defined by the following 

integral: 
 ��[�]��, �� = � ������,�������������:

O: 
� 

Where the wavelet ��,���� ∈ ����� is defined by 
 ��,���� = 1`|�| � �� − �� � , �, � ∈ �, � ≠ 0 

It is clear from the above definitions that the wavelet 

theory uses the infinite time assumption and therefore 

is not appropriate for signals of finite duration. It has 

the same application problem that the Fourier 

transform has. As mentioned before all practical 

problems are based on finite time assumptions. Since 

the scaling functions and the wavelets are used with 

translations on time axis, only very few and finite 

number of translations can be used over a finite 

duration interval. 

It is also well known that the wavelet transform 

uses the linearity assumptions [24, p378]. Therefore it 

has the same problems discussed in Section 9 above 

and should not be used for most engineering 

applications. 

Because many wavelets are orthogonal functions 

they will be very helpful in implementation of the 

function modulation systems described in Section 3. 

However it is not really known at this time how many 

band limited orthogonal wavelets can be constructed 

over a finite duration symbol time. Although wavelets 

are band limited but their bandwidth appears to be 

very high. 
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11. Conclusion and Future Work 
 

We have given various proofs to show that k 

times, k>1, the Nyquist sample rate is necessary to 

improve the accuracy of recovering a function that is 

available only over finite time measurement window. 

We have shown that this k can be selected based on 

the required accuracy estimate ε.  

The foundation of our derivations used the infinite 

dimensionality property of the function space.  The 

concept essentially means that an infinite number of 

samples are necessary to precisely extract all the 

information from a function.  

We have pointed out that many of our existing 

definitions and theories depend on the infinite time 

assumptions. We should systematically approach to 

eliminate this requirement from all our theories to 

make them realistic for our engineering problems. 
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