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Abstract—This study aims to identify the factors associated with
the risk of demotivation in scientific computing courses. To achieve
this, we modeled the functional relationship between student
motivation and influencing factors using supervised machine
learning, particularly Bayesian regression. This relationship was
then incorporated into a Monte Carlo simulation to generate a
wide range of scenarios, allowing us to estimate both absolute
and relative risks of demotivation for each factor. In conclusion,
the results reveal that the strongest predictors of increased
demotivation risk are low levels of student satisfaction and
enjoyment, followed by insufficient encouragement of independent
study and limited access to up-to-date equipment, among other
factors.
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I. INTRODUCTION

In this study, we identify the factors associated with an
increased risk of demotivation among students enrolled in
scientific courses. To this end, we applied regression and Monte
Carlo statistical methods to estimate students’ motivation levels
across a wide input space defined by multiple motivation factors.
These estimated motivation levels were then used to compute
both the absolute and relative risks of demotivation.

Identifying these factors is essential for designing effective
policies and implementing strategies to prevent or mitigate
the risk of demotivation. Scientific courses, such as numerical
methods, are particularly challenging because they combine
mathematics, computer programming, and scientific domains
(e.g., physics, chemistry, biology), each of which is already
difficult on its own. Additional difficulties arise from the
abstract mathematical concepts underlying scientific computing,
as well as from students’ struggles to understand how these
methods can be applied to solve real-world problems across
diverse scientific fields.

Reducing the risk of demotivation is critical, as demotivated
students often lack the willingness or drive to complete assign-
ments, prepare for examinations, and engage with learning
activities. In the context of scientific computing courses,
sustaining student motivation is particularly challenging.

For this study, we collected data from a community sample
of students enrolled in the Systems Engineering bachelor’s pro-
gram at the University of Cérdoba, Colombia. This dataset was

used to estimate a function that predicts students’ motivation
based on the values of influencing factors

Using this functional dependency, we applied the Monte
Carlo method to simulate a broader range of values for the
influencing factors than those available in the dataset. The goal
of this simulation was to estimate the risk of demotivation.
In this context, simulation provides an appropriate alternative
to avoid unethical experiments in which students would be
exposed to stressful or unfavorable scenarios in order to directly
observe demotivation risk.

The results of the Monte Carlo simulation indicate that
targeted interventions are needed to design courses that
foster student satisfaction and enjoyment, as both factors
are strongly associated with a high risk of demotivation in
scientific computing courses. Interventions are also necessary
in prerequisite mathematics courses, since the greatest risk
of demotivation was linked to students’ experiences in prior
mathematics coursework. Enhancing satisfaction and enjoyment
in these foundational courses may therefore reduce the overall
risk of demotivation in subsequent scientific computing studies.

Additional factors associated with the risk of demotivation
include:

i) Access to up-to-date equipment to support scientific
computing courses.

ii) Encouragement for independent study, cooperation, and
collaborative coursework.

iii) Student focus and engagement in course activities.

iv) Student beliefs regarding the usefulness of the course and
mathematics in general for their future professional life,
their self-perceived ability to learn mathematics and solve
mathematics-related problems, and their perception of the
importance of hard work for successfully completing the
course.

By adopting a Bayesian regression model, our study achieved
a modest improvement in predictive performance, increasing
the coefficient of determination from 0.37 reported in prior
research [1] to 0.38. Moreover, unlike aforementioned pre-
vious research, we explicitly computed and analyzed both
the relative and absolute risks associated with each factor
linked to demotivation, thereby providing a more nuanced
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and actionable assessment of how these factors contribute to
students’ motivational outcomes.

Absolute risk represents the simulated probability of de-
motivation and reflects the practical impact of each factor
on the student population. In contrast, relative risk measures
the strength of association by comparing the probability of
demotivation between exposed and non-exposed groups, thereby
indicating the extent to which a given factor increases or
decreases risk relative to a baseline condition. Taken together,
these metrics enable the identification of factors that are
not only statistically associated with demotivation but also
substantively meaningful in practical terms.

The remainder of this paper is outlined as follows: we discuss
the literature review in Section II, and present the methodology
adopted in this research in Section III. We report and analyze
the results in Sections IV and V. Finally, we conclude the paper
in Section VI and propose directions for further research.

II. PRIOR RESEARCH

Learning scientific computing is challenging because students
must integrate knowledge of mathematics, computer program-
ming, and the sciences (e.g., physics, chemistry). Mathematics
is essential for understanding how numerical methods work,
while computer programming is required to implement them.
Moreover, solving real-world engineering problems demands a
solid grounding in science to understand the problem context
and to apply numerical methods effectively.

This challenge has motivated research aimed at predicting
which students are at risk of failing scientific computing courses
based on their performance in prerequisite subjects [2][3].
Recent studies have even explored quantum machine learning
approaches to address this problem [4]. Furthermore, prediction
accuracy has been improved by adopting alternative represen-
tations of the independent variables, considering only student
performance in prerequisite mathematics courses (i.e., linear
algebra, differential, integral, and vector calculus) [5].

The findings in [5] highlight the importance of students’
mathematics background for success in scientific computing
courses. However, learning mathematics is itself a challenging
task. Consequently, identifying the factors that influence
mathematics learning has been a subject of extensive research,
ranging from basic education [6][7][8][9] to higher educa-
tion [10][11][12][13][14], and even at the doctoral level [15].
Scientific computing, essentially an applied mathematics dis-
cipline, encompasses numerical methods and heuristics for
solving mathematical problems in science and engineering that
cannot be addressed analytically.

In Colombia, studies have explored the process of knowledge
construction among college students in the context of algebra
courses within engineering curricula [11]. Previous research
has primarily focused on students’ commitment, satisfaction,
and the challenges they face in learning mathematics at the
college level.

Students’ motivation for learning scientific computing has
been investigated using machine learning, particularly regres-
sion, and the Monte Carlo method to estimate the probability
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that a student reaches one of ten motivation levels. The study
was conducted with 117 students enrolled in scientific com-
puting courses within the undergraduate Systems Engineering
program at the University of Cérdoba in Colombia. The results
revealed that students are most likely to achieve moderate
motivation levels, although effective policies and strategies
could increase the probability of attaining higher levels of
motivation [1].

In this paper, we estimate the functional dependency between
independent and dependent variables using linear regression
fitted with the No-U-Turn Sampler (NUTS) [16], a Hamiltonian
Monte Carlo method. This differs from the previous study [1],
which adopted Ridge Regression (cf. [17] for details). We
then use the regression function to explore a broader space of
independent variables in order to calculate the probability that a
student reaches a specific motivation level, as in [1]. In addition,
we estimate the absolute and relative risk of demotivation
associated with the independent variables, an analysis that, to
our knowledge, has not been conducted in prior research.

II1. RESEARCH METHODOLOGY

We adopted a quantitative approach in which the factors
assumed influence the students’ motivation to study scientific
computing courses are treated as independent variables, while
the student’s motivation level serves as the dependent variable
(aka, target variable). Our goal is to estimate the functional
dependency between the independent and dependent variables,
i.e., to identify the function g : X — ) that maps, for the
ith student, the independent variables represented by the D-
dimensional vector z; € X C R” to the dependent variable
y; € Y C R. Herein, we consider D = 15 independent
variables.

Thus, the function g(x;) predicts motivation level of the
ith student given their influential factors x;. Henceforth, the
vector z; shall be referred to as the input variables or input
vector, since its component serve as input to the function g. We
consider the same input variables utilized in [1], as listed in
Table I. Some of these variables are also used in [13][14]. Each
factor is quantified on a scale from 1 to 5 and then rescaled to
the interval [0, 1]. For instance, if the ith student perceives that
the university provides up-to-date equipment and assigns this
factor a value of 5, the corresponding input variable becomes
Ti5 = 1.

On the other hand, the dependent variable is measured on a
discrete scale from 1 to 10, where higher values indicate greater
student motivation. Hereafter, y; is referred to as the output
variable, since the function g approximates it (i.e., g(x;) &~ y;).

We used the same dataset collected in 2024 by Caicedo-
Castro et al. [1], which contains 117 examples obtained from
a survey of students enrolled in scientific computing courses,
specifically Numerical Methods and Nonlinear Programming.
The identities of the students were anonymized. The input
variables were selected using an F-test: if the null hypothesis
of no linear relationship between a given input variable and
the output variable was rejected (i.e., p-value < 5 x 1072),
the variable will be included for fitting the regression model.
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Following this criterion, a total of 15 input variables were
retained, as listed in Table I.

The histogram, shown in Figure 1, illustrates that the
maximum motivation level was chosen by most of the students,
namely, 48 out of 117 students (see Table II).

Given the dataset described above, we perform a Bayesian
linear regression to estimate the function g that models the
relationship between the predictors and student motivation. In
this framework, the regression parameters are treated as random
variables with prior probability distributions. The model is
defined as:

9i = B+ Bo + (H

where the real-valued D-dimensional vector 3 € R” and the
real number (3 are the parameters or weights (aka., coefficients)
of the function g. Besides, y; denotes the predicted motivation
level for student ith §; = y;, ¢; ~ N(0, o) represents the error
term, and o is the standard deviation of the residuals. The
prior distribution are specified as follows: o ~ A(0, 1), and
the weights §; ~ N(0,1), for j = 0,...,D. Consequently,
the likelihood of the observations is given by:

yi ~ N (B z; + Bo, o) 2)

The regression model was implemented in PyMC[18], which
performs Bayesian posterior sampling using the No-U-Turn
Sampler (NUTS). NUTS is an extension of Hamiltonian
Monte Carlo (HMC) that adaptively determines the number
of leapfrog steps L, thereby avoiding the need to specify
this tuning parameter manually. This is advantageous because
choosing L too small induces random-walk behavior, whereas
an excessively large L results in unnecessary computational
overhead (cf. [16] for details). The sampler was run with
14 parallel chains, each drawing 3500 samples, and a target
acceptance rate of 0.99 to reduce the likelihood of divergent
transitions.
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Figure 1. This histogram depicts the frequency with the students chose every
level of motivation during the survey
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Once the functional dependency between input and output
variables was established, the function g was used to calculate
the probability that students reach each motivation level. To
accomplish this, we adopted the Monte Carlo method to
simulate a broader input space than that available in the
dataset [19]. This approach allows us to explore combinations
of influencing factors not observed in the collected data,
thereby providing a more comprehensive estimate of the risk
of demotivation.

The probability that students achieve motivation level % for
learning scientific computing is defined as follows:

Plys = k)~ Plota) =) = | Plola) = k) Play) doi.

3)
where P(z;) is the probability density function of the input
variables.

Assuming that each component of z; is uniformly distributed,
ie., z;; ~U(0,1) for j =1,...,D, the probability density
function P(x;) is uniform. Therefore, Equation (3) is rewritten
as:

1
Ply: = k) ~ Plg(e:) = k) ~ 5 Y- Lglar) = k), @)
where IV is the number of vectors x;, whose components are
random numbers uniformly distributed. Moreover, 1(u) = 1 if
u is true, and 1(u) = 0 otherwise.

The value of IV is chosen based on the standard error (SE),
which is calculated as:

&)

where o is the standard deviation of the calculated probabilities.
The value of NV is increased iteratively until the SE decreases
to a tolerable threshold.

The Absolute Risk (AR) of demotivation given the factor jth
is not guaranteed is defined as follows:

Pi y Lig .
AR(yi<5\xij<o.5):/ W <5255 <05) 4 (6

X P(JJ,‘]‘ < 05)

Similarly, the AR of demotivation given the factor jth is
guaranteed is defined as follows:

Ply; < 5,24, > 0.5)
AR(y; <5 x; >0.5) = 14
e <5lay 205 = [ FLERIS

dz (7)

The Relative Risk (RR) is defined as the ratio of these two
quantities:

AR(y; <5 | x;; < 0.5)

RE(y: <5 iy <05) = a0 512 5 05)

(®)

Using the Monte Carlo method the AR(y; < 5| x;; < 0.5)
is calculated as follows:
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TABLE I. INPUT VARIABLES ASSOCIATED TO THE FACTORS THAT INFLUENCE THE STUDENT’S MOTIVATION IN SCIENTIFIC COMPUTING COURSES

Input Variable

F-statistic p-value

The student’s average grade in previous mathematics courses
The extent to which the student has felt good about the courset x; 1
The extent to which the student has felt good about previous mathematics coursest ;2 24.68 2.38 x 1076
The extent to which the student has enjoyed the coursef x; 3

The extent to which the student considers it imperative to study the course

0.43 5.16 x 10~ 1
26.17 1.27 x 106

37.08 1.54 x 108
1.08 3.02 x 10~1

The extent to which the student considers it imperative to study mathematics courses 0.99 3.22 x 1071
The extent to which the student considers it wrong not to study the course 0.40 5.26 x 1071
The extent to which the student considers it wrong not to study mathematics courses 1.30 2.56 x 1071
The extent to which the student would like to recommend the course to other peerst x; 4 37.27 1.43 x 1078
The extent to which the student perceives that the university provides them with up-to-date equipmentf x; 5 8.43 4.42 x 1073
The extent to which the course has encouraged students to study with classmatest ;¢ 29.49 3.17 x 1077
The extent to which the student has been encouraged to help classmates{ x; 7 29.09 3.74 x 1077
The extent of the student’s current engagement in participating in course lessonst x; g 20.43 1.51 x 107°
The extent of the student’s current engagement in attending course lessons 2.04 1.56 x 101
The extent of the student’s current engagement in making an additional effort to understand the coursef x; 9 27.31 7.82 x 1077
The extent of the student’s current focus and engagement during course lessonst x; 10 27.59 6.96 x 10~7
The extent to which the student has been encouraged to study the course independentlyt ; 11 31.37 1.48 x 1077
The extent to which the student has believed the course is useful for their professional lifet x; 12 20.64 1.37 x 10—°
The extent to which the student has considered mathematics courses useful for their professional lifef x; 13 12.94 4.75 x 1074
The extent to which the student has believed that they possess the ability to learn mathematicst x; 14 3.30 7.17 x 1072
The extent to which the student has believed that they have the ability to solve mathematics-related problems 0.93 3.37 x 1071
The extent to which the student has enjoyed to solve challenging mathematics-related problems similar to those addressed 15.02 1.77 x 10~%
in the course

The extent to which the student feels their secondary school preparation is insufficient for succeeding in mathematics 3.67 5.79 x 1072
courses

The extent to which the student believes people have innate abilities for mathematics 1.96 1.64 x 1071
The extent to which the student believes learning success depends on the lecturer 3.80 5.36 x 1072
The extent to which the student believes learning success depends on the student 1.62 2.06 x 10~1
The extent to which the student believes hard work is key to succeeding in the courset ;15 4.29 4.07 x 10~2

1The input variable is selected for regression

TABLE II. MOTIVATION LEVELS OF THE STUDENTS WHO ANSWERED THE
SURVEY

Motivation Level = Number of Students

Proportion of the Sample

2 2 1.71%
3 1 0.85%
4 4 3.42%
5 11 9.40%
6 6 5.13%
7 10 8.55%
8 27 23.08%
9 8 6.84%
10 48 41.02%
Total 117 100.00%

AR(yL <5 | T < 05) I~ Zi:l

N

1(yi <H5 AT < 0.5)

PO

1 1(1‘1‘]‘ < 05)

€))

Similarly, the AR(y; < 5 | z;; > 0.5) is calculated as

follows:

Yo Ly <5 Aay > 0.5)

2

N
i=1

(10)

Furthermore, the relative risk is calculated as follows:

SN 1(yi<5Azi;>0.5)
>, 1(w4;>0.5)
SN | 1(yi<5Az;;>0.5)
SN 1(z;>0.5)

Finally, if a factor exerts a negative influence on motivation
(i.e., its associated weight is negative), the interpretation of
“high” versus “low” values of that factor is reversed. To account
for this, we compute the relative risk as RR(y; < 5 | z;; > 0.5)
rather than RR(y; < 5 | z;; < 0.5). This adjustment ensures
that the calculation consistently reflects the condition under
which the factor increases the probability of demotivation.

IV. RESULTS

We estimated the weights of the function g(z;) = 87 z; + Bo
adopting the above-mentioned Bayesian regression model. The
estimated values of the weights are reported in Table III. The
largest weights correspond to students’ satisfaction (x; 4) and
enjoyment (z; 3) with the scientific computing course.

The negative weight for x; 13 suggests that students who
perceive mathematics courses as useful tend to be slightly
less motivated in scientific computing courses. One possible
explanation is that these students are primarily motivated
by achieving high grades while considering mathematical
knowledge mainly as a graduation requirement. Alternatively,
they might feel demotivated because they prefer solving
problems through analytical approaches (more common in
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classical mathematics courses) in lieu of numerical methods,
or heuristic, which are more common in scientific computing.

TABLE III. WEIGHTS OF THE PREDICTION FUNCTION ESTIMATED
THROUGH THE BAYESIAN REGRESSION MODEL

Expected Weight 97% CI

E[Bo] = 0.19 [[1.224, 1.627]
E[81] =0.82 [-0.718, 2.36 ]
E[B2] = 1.01 [-0.38, 2.39]
E[B3] = 1.12 [-0.44, 2.64]
E[B4] =1.15 [-0.45, 2.73]%
E[Bs5] = 0.45 [-0.65, 1.55]
E[Bs] = 0.52 [-0.94, 1.94]
E[37] = 0.89 [-0.51, 2.33]
E|[Bs] = 0.56 [-0.72, 1.84]
E[By] = 0.83 [-0.64, 2.31]
E[B10] = 0.79 [-0.68, 2.25]
E[p11] = 1.01 [-0.38, 2.38]
E[f312] =0.35 [-1.13, 1.817]
E[B13] = —0.38 [-1.82, 1.08]
E[B14] = 0.27 [-0.96 1.497]
E[B15) = 0.18 [-1.148 1.499]

The Bayesian regression model adopted in this study
achieved slightly better predictive performance than that
reported by Caicedo-Castro et al. [1]. Our model attained
a coefficient of determination (R?) of 0.38 and a root-mean-
squared error (RMSE) of 1.61, whereas the model in Caicedo-
Castro et al. achieved an R? of 0.37 and an RMSE of 1.62.
Although the improvement is marginal, it suggests that the
Bayesian approach provides at least comparable, and potentially
more robust, predictive accuracy.

Using the aforementioned function g, the results obtained
from the Monte Carlo simulation revealed the most probable
level is 4.98 with a standard error of 7 x 10~%. Figure 2
illustrates how the simulation converges to this value as NV
increases. The estimate was obtained with 95% confidence («
= 0.05), yielding an interval [4.97, 4.98]. Since this value does
not correspond to an actual motivation level, we rounded the
result to the nearest even integer in halfway cases to ensure
consistency with the discrete nature of the motivation scale
(levels 1-10). The resulting probabilities of motivation levels
are presented in Table IV.

TABLE IV. PROBABILITY OF EVERY MOTIVATION LEVEL CALCULATED
WITH THE MONTE CARLO METHOD

Level Probability

1 Py =10)=122x10"%%
2 P(y = 2.0) = 0.13%

3 P(y = 3.0) = 3.86%

4 P(y = 4.0) = 24.72%

5 P(y = 5.0) = 44.09%

6 P(y = 6.0) = 23.64%

7 P(y = 7.0) =3.46%

8 Py =8.0)=9.78 x 1072%
9 Py =9.0)=1.22 x 10~%%

It is noteworthy that both the highest and lowest motivation
levels have the smallest probabilities when the input variables
are uniformly distributed across a broader space, as shown
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in Figure 3 and reported in Table IV. This suggests that
extreme levels of motivation are less likely to occur under
general conditions, and may instead arise from particular
combinations of factors that are not equally represented in
a uniform distribution. By contrast, the dataset indicates that
students are predominantly highly motivated (see Table II in
Section III), likely reflecting characteristics specific to the
surveyed population rather than the broader input space.

Standard Error vs. InN

0.08

0.06

0.04

Standard Error (SE)

0.02 1

0.00

Figure 2. This chart shows how the standard error drops as the variable IV is
increased in the Monte Carlo simulation applied on the two-dimensional input
space.

Satisfaction and enjoyment emerge as critical factors influenc-
ing the risk of demotivation, according to our simulation results.
When the input space is explored through Monte Carlo methods,
students who are unsatisfied with the scientific computing
course and would not recommend it (i.e., input variable x; 4)
are more than twice as likely to become demotivated compared
to satisfied students, with a relative risk of 2.41. In probabilistic
terms, the simulation indicates that dissatisfaction raises the
absolute risk of demotivation to 40.55%, while satisfaction
reduces it to 16.85%. This corresponds to a risk difference of
23.7%, with a 95% confidence interval of [23.571, 23.838]. It
is important to note that these figures do not reflect individual
survey responses but instead arise from simulated projections
across a broader range of possible student profiles. The results
highlight how dissatisfaction can sharply elevate the probability
of demotivation, underscoring the need to design course
experiences that foster engagement and positive perceptions.

Moreover, the simulation results reveal that satisfaction
and enjoyment, while related, are distinct factors influencing
demotivation. Specifically, students who do not enjoy the
scientific computing course (i.e., input variable x; 3) are more
than twice as likely to become demotivated compared to those
who might be enjoying it, with a relative risk of 2.31. In
absolute terms, lack of enjoyment increases the simulated
risk of demotivation to 40.10%, while enjoyment reduces it
to 17.31%. This yields a risk difference of 22.79%, with a
95% confidence interval of [22.653, 22.921]. Together with
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the results for satisfaction, these findings underscore that
both enjoyment and satisfaction independently contribute to
mitigating demotivation, and that guaranteeing an enjoyable
learning experience is as crucial as ensuring a satisfactory one.

700000

6500000 A

500000

400000 -

Motivation

300000 A

200000

100000 4

o

10

Density

Figure 3. Histogram yielded through the Monte Carlo method. This shows the
frequency with which the function g calculates each motivation level based
on the random input variables.

Forest Plot lllustrating the Relative Risk of Demotivation
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Figure 4. Forest plot showing the relative risk (RR) of failing the Physics II
course. In all cases, the Wald test p-value is less than 0.05.

When both satisfaction and enjoyment are absent, the

simulation shows a synergistic effect on the risk of demotivation.

In this scenario, the absolute risk rises sharply to 54.54%,
compared to only 8.09% among students who are both satisfied
and enjoy the course. This corresponds to a risk difference of
46.45%, with a 95% confidence interval of [46.272, 46.619].
Put differently, the simulation indicates that students lacking
both satisfaction and enjoyment are more than eight times as
likely to become demotivated as their peers who experience
both.

This combined effect is considerably stronger than the impact
of each factor in isolation: dissatisfaction alone increases the
absolute risk to 40.55%, while lack of enjoyment increases it
to 40.10%. Thus, the simulation suggests that dissatisfaction
and lack of enjoyment do not merely add up their effects, but
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instead interact to amplify the overall risk, underscoring the
importance of addressing both factors simultaneously in the
design of scientific computing courses.

Finally, the absolute and relative risks associated with the
remaining factors are summarized in the forest plot shown in
Figure 4 and detailed in Table V. This visualization provides
a comparative view of how each factor contributes to the
simulated risk of demotivation, allowing the relative importance
of different influences to be assessed at a glance.

V. DISCUSSION

The Monte Carlo method enables the estimation of demoti-
vation risk in scientific computing courses without relying
on direct experimentation with students, an approach that
would be both unethical and impractical. This simulation-
based framework therefore provides a valuable alternative for
examining how different factors influence student motivation
and for evaluating the prospective impact of educational
policies. Whereas previous studies have primarily focused on
predicting academic performance or identifying challenges
associated with mathematical prerequisites, the present work
extends this line of research by explicitly quantifying the risk
of demotivation.

Fostering satisfaction, interest, and enjoyment in scientific
computing requires designing courses in which students feel
capable, perceive a clear sense of purpose, and experience
continuous progress. Student satisfaction is enhanced when
learning expectations are well defined and academic success
is attainable; in this regard, transparent rubrics can help
build confidence while reducing uncertainty and anxiety. In
parallel, enjoyment increases when the learning experience is
active, engaging, and meaningful, reinforcing students’ intrinsic
motivation and sustained involvement with course material.

Building on this contribution, the simulation results indicate
that lecturers should prioritize fostering both satisfaction and
enjoyment in scientific computing courses, as these factors
consistently emerged as the strongest predictors of reduced
demotivation. In other words, cultivating positive learning
experiences may be as important as addressing cognitive
challenges when designing effective courses.

Beyond satisfaction and enjoyment, the simulation results
also indicate that encouraging independent study is a key
factor in reducing the risk of demotivation. This finding
suggests that lecturers should design learning environments that
promote self-regulation, for example, by providing structured
learning guides, formative assessments, and opportunities
for collaborative problem-solving that still require individ-
ual accountability. At the same time, targeted interventions
in prerequisite mathematics courses are needed to improve
students’ learning experiences. Redesigning these courses to
emphasize conceptual understanding, applied problem-solving,
and clear connections to scientific computing may help mitigate
the negative impact of unfavorable prior experiences on student
motivation.

From a pedagogical perspective, these findings underscore
the importance of fostering self-regulated learning and im-

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6

7



International Journal on Advances in Systems and Measurements, vol 18 no 3&4, year 2025, http://www.iariajournals.org/systems_and_measurements/

TABLE V. ABSOLUTE AND RELATIVE RISK OF DEMOTIVATION FOR LEARNING SCIENTIFIC COMPUTING.

Factor Absolute Risk (%) Absolute Risk (%) Risk Relative Risk (%) 95% CI 95% CI

exposed unexposed Difference (%) (Relative Risk) (Risk Differences)
The student has not felt 37 20.41 16.59 1.81 [1.803, 1.822] [16.449, 16.721]
good about the course
(zi,1)
The student has not felt 39 18.43 20.57 2.12 [2.105, 2.127] [20.438, 20.708]

good about previous
mathematics  courses

T4,2<0.5

The student has not en-  40.10 17.31 22.79 2.32 [2.304, 2.329] [22.653, 22.921]
joyed the course (z;,3)

The student would not  40.55 16.85 23.7 241 [2.384, 2.420] [23.571, 23.838]

recommend the course

to other peers (;,4)

The student perceives  33.29 24.13 9.16 1.38 [1.373, 1.386] [9.023, 9.298]
the university lacks

up-to-date  equipment

(zi,5)

The course has not en- 33.9 23.53 10.37 1.44 [1.434, 1.448] [10.237, 10.512]
couraged students to

study with classmates

(z;.6)

The student has not 37.78 19.65 18.13 1.92 [1.912, 1.932] [17.990, 18.261]
been encouraged to help

classmates (z;,7)

The student lacks en-  34.35 23.07 11.29 1.49 [1.482, 1.497] [11.150, 11.425]
gagement to participate

in course lessons (;,8)

The student lacks 37.22 20.22 17 1.84 [1.831, 1.850] [16.860, 17.132]
engagement to make

an additional effort to

understand the course

(z4,9)

The student struggles  36.62 20.78 15.83 1.76 [1.753, 1.771] [15.698, 15.971]
focus and lacks en-

gagement during course

lessons (x4,10)

The student has been  38.97 18.48 20.49 2.11 [2.097, 2.120] [20.351, 20.621]
discouraged to study the

course independently

(zi11)

The student has be- 32.18 25.23 6.95 1.28 [1.269, 1.281] [6.807, 7.083]
lieved the course is not

useful for their profes-

sional life (x;,12)

The student has  32.41 25.01 7.4 1.3 [1.290, 1.302] [7.266, 7.542]
considered mathematics

courses useless for their

professional life (x;,13)

The student has be- 31.35 26.07 5.28 1.2 [1.197, 1.209] [5.146, 5.423]
lieved that they lack the

ability to learn mathe-

matics (x,14)

The student believes  30.55 26.87 3.68 1.14 [1.131, 1.142] [3.538, 3.815]
hard work is not key to

succeeding in the course

(Ti,15)

The student has not en-  54.54 8.09 46.45 6.74 [6.668, 6.812] [46.272, 46.619]
joyed the course and

would not recommend it

to other peers (z;,3 and

Ti4)
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proving the design of prerequisite mathematics instruction.
The simulation results reveal that neglecting factors such as
students’ encouragement to study independently and their
prior experiences in mathematics courses is associated with an
increased risk of demotivation, highlighting the need for coor-
dinated instructional strategies that address both foundational
preparation and autonomous learning skills.

To promote independent study, instructional approaches such
as flipped classrooms, problem-based learning, and scaffolded
assignments can be particularly effective, as they combine
learner autonomy with structured pedagogical support. These
methods encourage students to take responsibility for their
learning while ensuring they receive ongoing guidance and
formative feedback.

Flipped classrooms, or flipped learning, reverse the tradi-
tional instructional model in which lecturers deliver content dur-
ing class time and students complete practice activities at home.
In this approach, students engage with instructional materials
(such as, e.g., readings, videos, or interactive resources) prior
to class, allowing face-to-face time to be devoted to problem-
solving, discussion, project work, and direct interaction with
the lecturer. As a result, students assume a more active role in
the learning process, which promotes deeper engagement by
transforming class sessions into interactive rather than passive
experiences. Moreover, flipped learning supports self-paced
study, enabling students to revisit materials as needed and
thereby gain greater control over their learning process.

Flipped learning can be effectively combined with problem-
based learning, where class time is dedicated to addressing
real, open-ended problems rather than listening to traditional
lectures. In this integrated approach, students are motivated to
acquire the concepts, theoretical knowledge, and practical skills
necessary to solve the problems posed in class. At the same
time, they strengthen their ability to engage in independent
study and develop critical thinking skills through active inquiry
and collaborative problem-solving.

Scaffolded assignments can be used to complement both
flipped learning and problem-based learning. These assignments
are designed to provide structured, temporary support that helps
students gradually build the skills and competencies required to
work independently. The educational concept of scaffolding is
inspired by the construction scaffold, which supports workers
during the building process and is progressively removed as
the structure becomes self-sustaining.

In order to improve the design of prerequisite mathematics
instruction for scientific computing, coursework should focus
on preparing students to model, simulate, and reason algorithmi-
cally. Mathematics courses can be oriented around applied use
cases relevant to scientific computing, such as linear algebra
for analyzing the stability of numerical solvers, differential
calculus for numerical optimization and differentiation, and
integral calculus for Monte Carlo estimation. In this approach,
mathematics is taught through algorithms rather than solely
through symbolic manipulation, enabling students to implement
methods, explore numerical error and conditioning, visualize
results, and work with approximations, thereby strengthening
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the practical connections between mathematical theory and
computational application.

Strengthening prerequisite mathematics courses requires
conceptual teaching approaches that deliberately connect ab-
stract ideas with practical applications in scientific computing.
Instructional strategies such as contextualized problem-solving,
interdisciplinary projects, and active learning techniques (e.g.,
peer instruction and inquiry-based exercises) can make math-
ematics more meaningful and directly relevant to students’
future coursework. Together, these pedagogical approaches
not only help reduce the risk of demotivation but also foster
continuity between foundational mathematical training and
applied scientific computing.

In contrast, students’ beliefs show a relatively weak associa-
tion with the risk of demotivation. Perceptions such as viewing
hard work as unimportant for success in scientific computing,
doubting one’s ability to learn mathematics, or considering
mathematics or scientific computing to have little practical value
are associated with comparatively low relative risks. Moreover,
the corresponding differences in absolute risk are substantially
smaller than those observed for other factors, indicating a
limited practical impact of these beliefs on demotivation.

The weak association observed between students’ beliefs
and demotivation suggests that these beliefs may function as
mediating factors rather than direct determinants of motivational
outcomes. Negative beliefs concerning effort, ability, or the
value of mathematics and scientific computing may develop
in response to prior learning experiences, including academic
difficulty, ineffective instructional practices, or early failure.
Consequently, experiential conditions may shape learning
outcomes first, followed by adjustments in students’ beliefs,
with demotivation emerging thereafter. Because the regression
model includes variables with stronger effects (such as, e.g.,
satisfaction and enjoyment) the independent contribution of
beliefs is attenuated, resulting in comparatively low relative
risks and small absolute risk differences associated with these
factors.

Limited access to up-to-date equipment also exhibits a
relatively low relative risk and a small absolute risk difference.
In contemporary educational contexts, this factor is not a
dominant barrier to student motivation, as the tasks typically
performed in scientific computing courses do not require high-
performance hardware. Consequently, inadequate equipment
alone is unlikely to constitute a substantial contributor to
demotivation.

When most students have adequate access to functional equip-
ment, or when mitigation strategies are widely available through
appropriate instructional design, the exposed group (those who
truly lack usable hardware) becomes small and heterogeneous.
This statistical compression reduces discriminative power and
biases both relative and absolute risk estimates toward modest
values. Furthermore, scientific computing courses frequently
make use of platforms such as Google Colab, which allow
students to access sufficient computational resources even from
low-spec devices, including smartphones.

Finally, it is important to acknowledge the methodological
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scope of this study. Expanding the dataset to include additional
explanatory variables and a larger number of observations,
as well as adopting more sophisticated models capable of
capturing nonlinear relationships between inputs and outcomes,
could further improve predictive performance. These enhance-
ments may reduce the root-mean-square error and increase
the coefficient of determination, thereby strengthening the
robustness and validity of the simulation results. Overall,
by integrating computational simulation with pedagogical
analysis, this work contributes methodologically to educational
research while offering practical guidance for enhancing student
motivation in scientific computing courses.

VI. CONCLUSION AND PERSPECTIVES

We employed the Monte Carlo statistical method to estimate
the absolute and relative risk of student demotivation in
undergraduate scientific computing courses within the Systems
Engineering program at the University of Cérdoba (Colombia).
This approach enabled the simulation of a large number of
scenarios that cannot be examined empirically, thereby allowing
exploration of a broad range of values for the independent vari-
ables representing factors associated with student motivation,
the dependent variable of the study. The relationships between
these factors and motivation were quantified using Bayesian
regression, which provided the functional dependencies used
as inputs for the simulation.

The results of the Monte Carlo simulations indicate that
the factors most strongly associated with increased risk of
demotivation are: i) students’ satisfaction with the scientific
computing course, ii) the level of enjoyment perceived by
students during the course, iii) students’ experiences in pre-
requisite mathematics courses, and iv) discouragement toward
independent learning.

A hybrid pedagogical approach that integrates flipped
instruction, scaffolded assignments, problem-based teamwork,
and frequent formative feedback may offer an effective course
design for enhancing student motivation while maximizing
enjoyment and satisfaction in scientific computing. Such an
approach aims to reduce anxiety, support the development
of competence, increase the perceived relevance of learning
activities, foster autonomy, and strengthen social connection,
thereby improving the likelihood that students remain motivated
and engaged throughout the course.

Additional simulation findings reveal that students’ beliefs
about effort, personal ability, and the relevance of mathematics
and scientific computing are associated with a relatively low
risk of demotivation. Similarly, the availability of up-to-date
equipment at the university shows only a minor association
with demotivation risk, suggesting that these factors exert a
limited practical influence compared with the primary predictors
identified in the study.

For future research, we shall conduct intervention testing and
instructional design evaluations through controlled trials that
compare pedagogical approaches such as scaffolded instruction,
flipped learning, and problem-based learning. These studies
will aim to verify whether and to what extent these strategies
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effectively enhance student motivation in scientific computing
courses.

So far, we have assumed a linear relationship between student
motivation and its influencing factors. In future work, we
plan to explore nonlinear regression models in which the
independent variables are mapped into higher-dimensional
feature spaces. Such approaches may better capture complex
interactions among factors, potentially increasing the coefficient
of determination while reducing the root-mean-squared error.

Additionally, we shall apply dimensionality reduction tech-
niques (such as, e.g., principal component analysis, matrix
factorization, and autoencoders) to identify latent factors un-
derlying student motivation. These methods may provide more
compact and informative representations of the independent
variables by filtering noise and capturing the most relevant
structure in the data, thereby improving the performance and
interpretability of the regression models.

Another extension of this research is the development of
Monte Carlo—based causal simulations to move beyond risk
association toward explicit counterfactual policy evaluation.
Under this approach, a probabilistic causal structure (derived
from methods such as Bayesian causal networks, structural
equation modeling, or quasi-experimental estimators) is speci-
fied and used as a generative model of the educational system.
Large numbers of simulated student trajectories can then
be sampled under alternative interventional scenarios (e.g.,
enhanced instructional quality or the introduction of scaffolded
assignments) using the logic of do-calculus. This framework
enables the estimation of causal quantities such as the expected
reduction in demotivation, changes in satisfaction levels, and
heterogeneity of intervention effects across student subgroups,
all while accounting for uncertainty.

Monte Carlo causal simulation is particularly well suited to
educational research because it can capture the nonlinear dy-
namics, mediation pathways, interaction effects, and threshold
behaviors inherent to learning processes—phenomena that are
difficult to isolate using closed-form regression models alone.
This approach enables the evaluation of complex, multicom-
ponent interventions rather than single-factor manipulations,
for example by assessing whether moderate, coordinated
improvements across several instructional dimensions yield
larger motivational gains than major changes in only one
area. In addition, sensitivity analyses can be directly integrated
into the simulation framework to quantify how unmeasured
confounding, measurement error, or parameter uncertainty
propagate into causal predictions, thereby providing more
transparent and realistic uncertainty bounds than conventional
point estimates.

Finally, implementing this framework would enable a shift
from descriptive modeling toward decision-support analytics
for curricular and pedagogical design. Simulated policy ex-
periments could identify which combinations of instructional
interventions are most cost-effective, determine which student
profiles benefit most from targeted support, and reveal points
at which diminishing returns occur.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

70



International Journal on Advances in Systems and Measurements, vol 18 no 3&4, year 2025, http://www.iariajournals.org/systems_and_measurements/

ACKNOWLEDGMENT

Caicedo-Castro thanks the Lord Jesus Christ for blessing this
project. The authors thank Universidad de Cérdoba in Colombia
for supporting this study. They also thanks all students who
collaborated by answering the survey conducted for collecting
the dataset used in this study. Finally, the author thanks the
anonymous reviewers for their comments that contributed to
improve the quality of this article.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

REFERENCES

I. Caicedo-Castro, O. Vélez-Langs, and R. Castro-Piche,
“Using the Monte Carlo Method to Estimate Student Motivation
in Scientific Computing”, in PATTERNS 2025: The Seventeenth
International Conferences on Pervasive Patterns and Applica-
tions, ser. International Conferences on Pervasive Patterns and
Applications, Valencia, Spain: IARIA: International Academy,
Research, and Industry Association, 2025, pp. 15-22, ISBN:
978-1-68558-263-0.

I. Caicedo-Castro, M. Macea-Anaya, and S. Rivera-Castafio,
“Early Forecasting of At-Risk Students of Failing or Dropping
Out of a Bachelor’s Course Given Their Academic History -
The Case Study of Numerical Methods”, in PATTERNS 2023:
The Fifteenth International Conference on Pervasive Patterns
and Applications, ser. International Conferences on Pervasive
Patterns and Applications, Nice, France: IARIA: International
Academy, Research, and Industry Association, 2023, pp. 40-51,
ISBN: 978-1-68558-049-0.

L. Caicedo-Castro, “Course Prophet: A System for Predicting
Course Failures with Machine Learning: A Numerical Methods
Case Study”, Sustainability, vol. 15, no. 18, 2023, 13950. DOI:
10.3390/su151813950.

I. Caicedo-Castro, “Quantum Course Prophet: Quantum Ma-
chine Learning for Predicting Course Failures: A Case Study
on Numerical Methods”, in Learning and Collaboration
Technologies, P. Zaphiris and A. Ioannou, Eds., Cham: Springer
Nature Switzerland, 2024, pp. 220-240, 1SBN: 978-3-031-
61691-4. por: 10.1007/978-3-031-61691-4_15.

I. Caicedo-Castro, “An Empirical Study of Machine Learning
for Course Failure Prediction: A Case Study in Numerical
Methods”, International Journal on Advances in Intelligent
Systems, vol. 17, no. 1 and 2, pp. 25-37, 2024.

L. Ayebale, G. Habaasa, and S. Tweheyo, “Factors Affecting
Students’ Achievement in Mathematics in Secondary Schools in
Developing countries: A Rapid Systematic Review”, Statistical
Journal of the IAOS, vol. 36, pp. 1-4, 2020. por: 10.3233/SJ1-
200713.

M. Gémez-Garcia, H. Hossein-Mohand, J. M. Trujillo-Torres,
H. Hossein-Mohand, and I. Aznar-Diaz, “Technological Factors
That Influence the Mathematics Performance of Secondary
School Students”, Mathematics, vol. 8, no. 11, 2020, 1935,
ISSN: 2227-7390. pOI: 10.3390/math8111935.

8]

(9]

[10]

(1]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

J.-M. Trujillo-Torres, H. Hossein-Mohand, M. Gémez-Garcia,
H. Hossein-Mohand, and F.-J. Hinojo-Lucena, “Estimating the
Academic Performance of Secondary Education Mathemat-
ics Students: A Gain Lift Predictive Model”, Mathematics,
vol. 8, no. 12, 2020, 2101, 1SSN: 2227-7390. po1: 10.3390/
math8122101.

M. Maamin, S. M. Maat, and Z. H. Iksan, “The Influence
of Student Engagement on Mathematical Achievement among
Secondary School Students”, Mathematics, vol. 10, no. 1, 2022,
41, 1SSN: 2227-7390. poI: 10.3390/math10010041.

A. Brezavscek, J. Jerebic, G. Rus, and A. Znidaréié, “Factors
Influencing Mathematics Achievement of University Students
of Social Sciences”, Mathematics, vol. 8, no. 12, 2020, 2134,
ISSN: 2227-7390. pOI: 10.3390/math8122134.

E. Martinez-Villarraga, 1. Lopez-Cobo, D. Becerra-Alonso,
and F. Ferndndez-Navarro, “Characterizing Mathematics Learn-
ing in Colombian Higher Distance Education”, Mathematics,
vol. 9, no. 15, 2021, 1740, 1SSN: 2227-7390. DOI: 10.3390/
math9151740.

J. Park, S. Kim, and B. Jang, “Analysis of Psychological Factors
Influencing Mathematical Achievement and Machine Learning
Classification”, Mathematics, vol. 11, no. 15, 2023, 3380, ISSN:
2227-7390. DOI: 10.3390/math11153380.

S. Batista-Toledo and D. Gavilan, “Student Experience, Satis-
faction and Commitment in Blended Learning: A Structural
Equation Modelling Approach”, Mathematics, vol. 11, no. 3,
2023, 749, 1SSN: 2227-7390. por: 10.3390/math11030749.
M. Charalambides, R. Panaoura, E. Tsolaki, and S. Pericleous,
“First Year Engineering Students’ Difficulties with Math
Courses- What Is the Starting Point for Academic Teachers?”,
Education Sciences, vol. 13, no. 8, 2023, 835, ISSN: 2227-7102.
DOI: 10.3390/educscil3080835.

T. T. Wijaya, B. Yu, F. Xu, Z. Yuan, and M. Mailizar, “Analysis
of factors affecting academic performance of mathematics
education doctoral students: A structural equation modeling
approach”, International Journal of Environmental Research
and Public Health, vol. 20, no. 5, 2023, 4518, 1SSN: 1660-4601.
DOI: 10.3390/ijerph20054518.

M. D. Hoffman and A. Gelman, “The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo”,
Journal of Machine Learning Research, vol. 15, no. 47,
pp. 1593-1623, 2014.

C. M. Bishop, Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Berlin, Heidelberg: Springer-
Verlag, 2006, I1SBN: 0387310738.

O. Abril-Pla et al., “PyMC: a Modern, and Comprehensive
Probabilistic Programming Framework in Python”, PeerJ
Computer Science, vol. 9, no. 1516, 2023, 1SSN: 2376-5992.
Dpor: 10.7717/peerj-cs.1516.

N. Metropolis and S. Ulam, “The Monte Carlo Method”,
Journal of the American Statistical Association, vol. 44, no. 247,

pp. 335-341, 1949, 1SsN: 01621459, 1537274X.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

71



