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Abstract—This paper details a complete, vehicle-mounted sys-
tem for automated road surface inspection, developed to enhance
the efficiency and safety of large-scale urban infrastructure
management. As an extended version of our previous work
presented at the SMART 2025 conference, this study provides an
in-depth analysis of the system architecture, a refined Artificial
Intelligence (AI) pipeline, and a detailed performance evaluation
under challenging real-world scenarios. The system operates
on a multi-sensor fusion principle, integrating High-Resolution
Light Detection and Range (LiDAR) point clouds for precise
3D geometry, camera imagery for visual texture analysis, and
high-accuracy Global Navigation Satellite Systems (GNSS) and
inertial data for robust georeferencing. Its AI capabilities are
driven by custom models: a fine-tuned Convolutional Neural
Networks (CNNs) model detects and classifies road defects like
potholes and cracks in images, while a Visual Transformer
(ViT) semantic segmentation model provides comprehensive se-
mantic scene understanding to avoid false positives. Through
a precise LiDAR-camera calibration, these 2D detections are
then projected into the 3D domain of the point clouds. This
critical step isolates each defect, allowing for the creation of
a three-dimensional model and the precise quantification of its
physical properties, such as surface area, depth, and volume. A
significant contribution of this work is the extensive validation
conducted across dozens of kilometers in a complex urban
road environment in Rome, Italy. We present key quantitative
results that achieve high detection accuracy and centimeter-level
measurement precision. Furthermore, we discuss the iterative
tuning process that overcame operational challenges like motion
blur, misclassification of manholes, shadows, and road markings.
The findings confirm that the system is a robust and scalable
solution, with a pipeline optimized for edge computing to enable
real-time analysis, delivering actionable data through a map-
based web portal to facilitate proactive urban road management.

Keywords-smart cities; road maintenance; LiDAR; AI; edge
computing; sensor fusion.

I. INTRODUCTION

As urban areas grow, the need to monitor road conditions
efficiently becomes crucial for keeping infrastructure intact
and promoting road safety. The conventional methods of
inspecting roads are laborious, time-consuming, and frequently
fall short of providing the accuracy required for proactive re-
pairs. However, recent progress in sensor technology, artificial
intelligence, and data integration presents fresh opportunities
for transforming road condition monitoring.

Our approach overcomes this challenge by basing AI in-
ference solely on standard Red-Green-Blue (RGB) images

and then projecting the 2D detection information into the 3D
domain provided by the LiDAR. This is achieved through a
meticulous camera-LiDAR calibration process, as shown in
Figure 1.

Figure 1. Camera-LiDAR Registration.

This strategy allows us to leverage large, pre-existing public
datasets for training, significantly reducing development time
and cost. As an extension of our preliminary work [1], this
paper details the complete system that utilizes LiDAR tech-
nology along with RGB imaging and GNSS/INS data within a
Robot Operating System (ROS) based framework to identify
and map road surface issues efficiently. We provide a deep
dive into the system’s architecture, the full AI pipeline, and a
comprehensive report on its real-world performance, including
a transparent discussion of the operational challenges we
overcame.

From an economic standpoint, the system’s adaptability
to city vehicles, including public transport, could potentially
transform routine operations into continuous, cost-effective
road monitoring. Combining this distributed sensing with on-
the-ground human supervision, such as cleaning personnel,
creates a hybrid model that optimizes resource use and en-
hances data accuracy, leading to efficient urban road mainte-
nance.

The paper is structured as follows. Section II discusses the
state of the art. Section III outlines the specific advancements
over our previous conference paper. Section IV describes
the system’s hardware and software architecture. Section V
details the AI pipeline. Section VI presents the experimental
validation results, and Section VII concludes the paper.
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II. RELATED WORK

Over the past few years, many approaches have been
explored for automated road inspection. Some methods rely
on inertial data [2], while others utilize pure machine learning
and computer vision techniques [3][4]. More sophisticated
approaches exploit deep learning models [5] or combine vision
and depth sensing together with spatial AI [6][7].

The technologies that have been tested for depth estimation
are based on stereoscopy, Red-Green-Blue-Depth (RGB-D)
cameras, and LiDAR. However, each has its own disadvan-
tages: stereoscopy generally does not work well with feature-
poor surfaces. RGB-D cameras based on Time of Flight
(ToF) technology, while achieving good accuracy, drop their
performance in outdoor environments and are limited to a
range of a few meters. Conversely, LiDAR provides the most
long-range and accurate measurements but at the expense of
lower point density and the need for an additional imaging
system to obtain the scene picture. Furthermore, approaches
using RGB-D images as input for AI detection models, while
achieving good performance due to depth information, are
strongly affected by the context, sensor position, and framing
of the training data. Therefore, they require the acquisition
of huge amounts of images from every possible angle and
distance in order to replicate all possible setups.

III. EXTENSION OF PREVIOUS WORK

This journal article represents a substantial extension of
the preliminary research presented in our conference paper
[1]. While the original work introduced the concept of the
multi-sensor fusion architecture, this paper incorporates signif-
icant technical advancements and a more rigorous validation
methodology.

Firstly, the AI pipeline has been refined. In [1], the fo-
cus was primarily on detection feasibility. In this work, we
present a consolidated dual-model approach (YOLOv8-seg and
SegFormer) with a dedicated section on the dataset curation
process, including the integration of negative examples for
manholes to reduce false positives.

Secondly, the experimental validation has been vastly ex-
panded. The previous work relied on limited datasets. Here,
we present results from an extensive on-site campaign covering
approximately 70 km of urban roads in Rome. This includes a
new quantitative analysis of telemetry accuracy (area, volume,
depth) and geolocation precision compared to ground truth.

Thirdly, we include a detailed discussion on the iterative
tuning process required to handle real-world environmental
challenges, such as shadows and motion blur, which were not
addressed in the initial study. This comparison underscores
the transition from a proof-of-concept to a field-validated
prototype.

IV. SYSTEM ARCHITECTURE

The system was engineered as a modular, vehicle-mounted
unit designed for robust data acquisition in dynamic urban
environments. Its architecture integrates carefully selected

hardware components with a sophisticated software pipeline
built on ROS to ensure interoperability and scalability.

A. Hardware Configuration

The hardware setup was chosen to balance high-
performance data acquisition with resilience to on-road condi-
tions and suitability for edge computing. An NVIDIA Jetson
AGX Orin 64GB module serves as the central computing unit,
providing the necessary power for real-time AI inference. For
3D perception, an HESAI Technology AT128 Hybrid Solid-
State LiDAR was selected for its optimal Field of View (FOV)
and mechanical resilience. Visual information is captured by
a 4K global shutter camera, a critical choice made to elimi-
nate motion blur. A Microstrain 3DM-GQ7 module provides
precise geolocalization and orientation by fusing data from
a dual-antenna GNSS receiver and a 9-axis IMU. The entire
system is supported by a 4G/LTE router, a network switch,
and a dedicated power management system. The overall setup
is shown in Figure 2.

Figure 2. Hardware setup.

B. Software Architecture

The software was built entirely on ROS 2, a flexible frame-
work for communication and data processing. The architecture
functions as a pipeline that transforms raw sensor data into
actionable insights. The process begins with dedicated driver
nodes that interface with each sensor and publish data onto
specific ROS topics. A core AI Inference Node, developed for
this project, subscribes to these topics and uses an internal
synchronizer to create a coherent snapshot of the environment
from different sensor inputs. This synchronized data is then
fed into the AI models. The resulting output is packaged into
Safetensors files for later use. A separate Post-Processing and
Reporting Node operates independently on these files. This
agent performs the final data fusion and analysis, projecting
2D detections onto the 3D LiDAR point cloud, calculating
the geometric properties of each defect, and assigning precise
geographic coordinates. Finally, it formats the data into a
JSON payload for transmission to a map-based web portal.
This decoupled architecture makes the process resilient to
network connectivity issues.
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Figure 3. Software architecture components in ROS framework.

V. AI MODELS

The system’s ability to accurately identify road defects
depends on an AI pipeline composed of two distinct deep
learning models. The development process involved careful
model selection, extensive dataset preparation, rigorous train-
ing, and detailed validation.

A. Model Selection

Two primary architectures were chosen for their proven
performance. For defect detection, a You Only Look Once
(YOLO) model [8] version "v8small-seg" was selected for its
powerful instance segmentation capabilities. This task extends
beyond simple object detection by not only providing a
bounding box for each detected object but also generating a
pixel-perfect mask that outlines its exact shape. This capability
is crucial for our application, as the generated masks are later
projected into the 3D domain to enable precise geometric
measurements of defects, such as their area and volume. The
"s" variant (YOLOv8s-seg) was specifically chosen as it offers
an excellent trade-off between accuracy and computational

efficiency, making it highly suitable for real-time processing
on our edge computing platform.

In parallel, a SegFormer variant B1 model [9] is used for
scene understanding. This model is based on a Vision Trans-
former (ViT) architecture, which, unlike traditional CNNs,
excels at capturing long-range dependencies and global context
within an image. This makes SegFormer particularly effective
for semantic segmentation, the task of assigning a class label
to every pixel. Its primary role in our pipeline is to generate a
highly accurate and reliable "road mask". This mask serves as
a critical contextual filter: by intersecting the defect detections
from YOLO with this road mask, we can effectively eliminate
false positives that may occur on sidewalks, vegetation, or
other non-road surfaces, thereby significantly increasing the
overall reliability of the system.

B. Dataset Preparation and Training

The performance of the AI models relies on carefully
prepared training data. For the scene understanding model,
a transfer learning approach was used, employing a Seg-
FormerB1 model pre-trained on the well-known Cityscapes
dataset [10]. The dense annotations of urban scenes in this
large-scale dataset enabled high-performance road segmenta-
tion without the need to create a new dataset from scratch.

For the defect detection model, however, an initial analysis
of existing public datasets revealed that none fully met the
project’s requirements in terms of camera perspective, labeling
quality, and class definitions. Consequently, a significant effort
was dedicated to creating a custom, high-quality dataset. The
process began by curating a base set of images from the
public Road Damage Detection (RDD) dataset [11], selecting
only those from geographical regions with road conditions and
perspectives relevant to the target operational environment.

This base set was strategically composed to include a
substantial number of images without any defects to train
the model to minimize false positives on well-maintained
road surfaces. A critical challenge identified was the under-
representation of certain scenarios, particularly images con-
taining both potholes and manholes, which often led to mis-
classifications. To address this, the dataset was enriched with
hundreds of additional images sourced from various other
public repositories, specifically chosen to increase the variety
of potholes and provide negative examples of manholes.

The final curated dataset consisted of 6,504 images, split
into training (5,199), validation (652), and test (653) sets. A
meticulous manual re-labeling process was undertaken with
the help of Segment Anything Model (SAM) [12] to create
precise instance segmentation masks for two target classes:
pothole and crack, which consolidated various types of fissures
like alligator and linear cracks into a single category. To
further enhance the model’s robustness and its ability to
generalize, the training set was expanded through extensive
data augmentation. Techniques such as flipping, rotation, and
adjustments to saturation, brightness, and noise were applied,
resulting in a final training dataset of 25,995 images.
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The training process itself employed a fine-tuning strategy,
starting from the Common Objects in Context (COCO) pre-
trained model. This approach leverages the generalized fea-
tures learned on a large-scale dataset and adapts them to the
specific task of defect detection. The default training configu-
rations were used, which include additional data augmentation
techniques like mosaicing to improve the model’s performance
on objects at various scales. The training was configured to
run for 100 epochs with a standardized input image size of
640x640 pixels, using the custom dataset described above.

C. Model Validation and Performance Metrics

After training, the models were rigorously evaluated on their
respective test sets, to provide an unbiased assessment of their
generalization capabilities. This validation involved both a
quantitative analysis through standard computer vision metrics
and a qualitative visual inspection of the model’s predictions.
The quantitative evaluation is based on the confusion matrix,
which categorizes predictions into True Positives (TP), False
Positives (FP), and False Negatives (FN). Key metrics include
Precision, which measures the model’s ability to avoid false
positives, and Recall, which measures the model’s ability to
find all relevant instances in an image. Additionally, also the
F1-score is taken into account, providing the balance between
Precision and Recall in one formula:

F1 = 2 · P ·R
P +R

(1)

where P is the Precision and R is the Recall value.
For tasks involving spatial localization, such as segmenta-

tion and detection, accuracy is quantified by the Intersection
over Union (IoU). This metric measures the overlap between
the predicted region (mask or bounding box) and the ground-
truth region, providing a score for spatial accuracy. From this,
the Average Precision (AP) is calculated for each class by
averaging the precision values over the Precision-Recall curve.
The primary summary metric for object detection models is
the mean Average Precision (mAP), which is the mean of the
AP values across all classes and, often, across a range of IoU
thresholds, e.g., mAP@0.5:0.95. The mAP is calculated with
the following equation:

mAP =
1

Nc

Nc∑
c=1

1

NIoU

NIoU∑
i=1

AP(i)
c (2)

where Nc is the total number of classes, NIoU is the number
of IoU thresholds, and AP(i)

c is the average precision for class
c at IoU threshold i.

The YOLOv8s-seg defect detection model achieved an mAP
of 0.564. While the performance for the pothole class was
strong, the instance segmentation of cracks proved more chal-
lenging due to their ambiguous and continuous nature, making
it difficult for the model to distinguish separate instances.
However, when evaluating the crack class from a semantic
segmentation perspective (merging all predicted crack masks),
the model’s ability to correctly identify crack pixels versus
background was excellent, confirming its effectiveness for

the project’s use case. The F1-Confidence curve indicated an
optimal confidence threshold of 0.343, at which the model
reached a balanced F1-score of 0.57.

The SegFormerB1 model demonstrated outstanding perfor-
mance for road segmentation. On the Cityscapes test set, it
achieved an F1-score of 0.98, specifically for the main road
class, with a correct pixel classification rate of 99%. On the
other hand, semantic segmentation models are often evaluated
with meanIoU metrics, calculated with the following formulas:

IoUc =
|Ac ∩Bc|
|Ac ∪Bc|

(3)

meanIoU =
1

Nc

Nc∑
c=1

IoUc (4)

where Ac is the predicted segmentation for class c, Bc is the
ground truth segmentation for class c, and Nc is the number
of classes.

The resulting meanIoU was actually 0.43, not as excellent
as other metrics, but this is expected as the metric heavily pe-
nalizes minor shape deviations, which are common in complex
road scenes. For the primary task of creating a reliable road
mask, the performance was deemed excellent. Following vali-
dation, both models were optimized using NVIDIA TensorRT
with FP16 precision, which more than doubled their inference
speed on the edge device with negligible impact on accuracy.
A summary of the resulting metrics is shown in Table I. A
qualitative visual analysis further confirmed the two models’
performance and robustness across various scenarios as shown
in Figure 4.

TABLE I. SUMMARY OF AI MODEL PERFORMANCE.

Model Main Task Key Metric Value

Yolov8s-seg Road Defect
Detection

mAP@0.5 (all
classes)

0.564

F1-Score (op-
timal)

0.57

SegFormerB1 Road
Segmentation

F1-Score
("Road"
class)

≈ 0.98

MeanIOU
("Road"
class)

0.43

VI. EXPERIMENTAL SYSTEM VALIDATION

The system’s validation followed a two-stage process. First,
controlled laboratory tests were conducted to calibrate the sen-
sors and benchmark core functionalities. Then, extensive on-
site tests were run to evaluate its performance and robustness
in real-world scenarios.
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Figure 4. Qualitative inspection of model outputs. The top rows illustrate the SegFormerB1 model’s road segmentation, displaying the input image, the
complete segmentation map colored by CityScapes class, and the activation map for the "road" class. The bottom rows present a mosaic of detections from

the YoloV8s-seg model, which identifies cracks (blue) and potholes (cyan) using bounding boxes and masks, each annotated with a confidence score.

A. Laboratory Calibration and Testing

Before on-site deployment, the integrated prototype was
subjected to a series of crucial tests in a controlled labora-
tory environment. This preparatory phase was fundamental to
ensuring the system’s reliability and accuracy.

The most critical step was the multi-sensor calibration.
Since the system relies on fusing data from a 2D camera
and a 3D LiDAR, it was essential to precisely determine
the geometric relationship between them. This process was
divided into two parts. First, an intrinsic camera calibration
was performed using a standard chessboard pattern viewed
from multiple angles, as shown in Figure 5.

This allowed us to calculate the camera’s internal param-
eters, i.e., the K matrix shown in Table II, and to generate

correction maps to remove lens distortion. As shown in Figure
6, this undistortion process transforms the raw, warped image
into a geometrically accurate one, which is a prerequisite for
any precise measurement.

TABLE II. INTRINSIC MATRIX (K).

K =

304.6712 0.0 313.5861
0.0 380.5664 165.4646
0.0 0.0 1.0



Next, an extrinsic LiDAR-camera calibration was con-
ducted. This procedure establishes the rigid transformation,
i.e., rotation and translation, between the LiDAR’s and the
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Figure 5. Intrinsics calibration process: using multiple images of chessboard
from different points of view to calculate intrinsics matrix.

Figure 6. Undistortion process, after intrinsics calibration. Left: original
image. Right: Undistorted image.

camera’s coordinate systems. By manually identifying a set of
corresponding points in both the 3D LiDAR point cloud and
the 2D camera image, we used a Perspective-n-Point (PnP)
algorithm to compute the 4x4 roto-translation matrix, shown
in Table III. The accuracy of this calibration was verified by
reprojecting the 3D LiDAR points onto the 2D image using
the calculated matrix; the near-perfect alignment confirmed the
success of the calibration. This matrix is the key that enables
the accurate fusion of data from the two sensors. Final results
of reprojection are shown in Figure 7.

Figure 7. Point cloud reprojection onto RGB image, after intrinsics and
estrinsics calibration.

With the sensors calibrated, we proceeded to benchmark
the system’s core functionalities. Throughput tests on the
ROS AI node were conducted to measure its computational
performance. The system demonstrated a stable processing
average of 11.12 Frames Per Second (FPS), confirming its

TABLE III. ESTRINSINCS ROTO-TRANSLATION MATRIX (RT).

RT =


0.998 −0.008 −0.059 −0.111
0.008 1.000 0.005 0.014
0.059 −0.005 0.998 0.093
0.0 0.0 0.0 1.0



capability for real-time processing at typical urban driving
speeds.

The system’s telemetry accuracy was evaluated using targets
of known size - specifically, two manholes of different shapes
- to simulate road defects. The results were highly encour-
aging, showing a low average relative error of just 6% for
surface area measurements. The more challenging depth and
volume estimations also yielded respectable average relative
errors of 24% and 19%, respectively, demonstrating a good
approximation capability.

Finally, static geolocation tests were performed to assess
positioning accuracy. The system reported the coordinates
of known points, which were then compared against high-
precision ground truth data obtained from a topographic sur-
vey. The tests revealed a mean horizontal error of 2.13 meters,
an accuracy level that is well within acceptable limits for the
primary goal of dispatching maintenance crews to the correct
location. A summary of the resulting metrics is shown in Table
IV.

TABLE IV. SUMMARY OF THE PROTOTYPE’S MEASUREMENT AND
POSITIONING PERFORMANCE.

Category Metric Calculated Value

Defect Dimensional Estimation (Telemetry)

Mean Relative Error Area 6%
Mean Relative Error Depth 24%
Mean Relative Error Volume 19%

Geographic Defect Localization

Mean Error Horizontal 2.131 meters
Root Mean Squared Error Horizontal RMSE 2.780 meters

B. On-Site Testing

The most comprehensive and conclusive validation of the
system was an extensive on-site testing campaign. This in-
volved deploying the fully calibrated prototype on a vehicle
and conducting multiple data acquisition sessions across ap-
proximately 70 km of public roads in Rome, Italy. The system
has been positioned on a vehicle, pointing forward as shown in
Figure 9. The routes were strategically selected to cover a wide
spectrum of real-world conditions, including different road
types (from high-speed arteries to narrow residential streets),
varying traffic densities, and diverse lighting environments.
This campaign was structured as an iterative process of testing,
analysis, and refinement, allowing to systematically address
challenges encountered in the field.

A primary challenge identified during the initial test runs
was the misclassification of manholes. The AI model fre-
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Figure 8. Iterative tuning of on-site tests: each row represents different situations. On the left: the system output before correction. On the right: output after
tuning. The main issues were related to: false positives related to manholes, sharp shadows producing fake crack output, dark environment and road marks

sensitivity.
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Figure 9. A picture of the system prototype.

quently identified manholes, particularly those slightly re-
cessed or with damaged edges, as "potholes". Through a care-
ful analysis of these false positives, it has been determined that
the confidence scores assigned to manholes were consistently
lower than those for genuine potholes. Based on this obser-
vation, we iteratively adjusted the detection threshold, raising
the minimum score threshold value for potholes to 0.30. This
seemingly simple change proved highly effective, making the
model more selective and drastically reducing manhole-related
false positives without compromising its sensitivity to actual
defects.

Another significant issue was caused by environmental
factors, specifically the strong, hard-edged shadows cast by
buildings and trees on sunny days. The high contrast along
these shadow lines was often misinterpreted by the model as
"cracks". This led to another round of data-driven tuning. After
experimenting with different values, the confidence threshold
for the minimum score threshold value for cracks was also
set to 0.30. This found an optimal balance, successfully
eliminating the vast majority of shadow-induced artifacts while
still reliably detecting significant cracks, and also helped in
correctly ignoring most worn-out road markings. Examples
of challenges overcome through iterative tuning are shown in
Figure 8.

The campaign culminated in a final, long-duration test
session of approximately 35 km, which served as a validation
run for the fully tuned system. This test confirmed the system’s
operational stability and thermal resistance over an extended
period. Throughout this iterative process, the web portal as
shown in Figure 10, proved to be a valid tool, allowing
for rapid qualitative inspection of results and enabling the
data-driven refinements that led to a robust and reliable final
configuration for automated road condition assessment.

VII. CONCLUSION AND FUTURE WORK

This paper has presented an extended and in-depth analysis
of a multi-sensor system for automated road defect assessment,
building upon previous work [1]. By detailing the system’s
architecture, its AI pipeline, and the results of extensive
validation, this work has demonstrated a robust and viable
solution for enhancing Smart City infrastructure management.
The rigorous testing campaign confirmed the system’s high
performance. The AI-driven pipeline achieves reliable de-
tection of critical defects suitable for practical applications.
Furthermore, the fusion of LiDAR and camera data enables

Figure 10. A screenshot of the web application for the visualization of
results.

quantitative measurements and geolocalization with a preci-
sion that provides actionable data for maintenance planning.
The iterative, data-driven tuning of the AI models was essential
for overcoming real-world challenges and achieving a stable
final configuration. The deployment of the entire processing
pipeline on an edge computing device ensures real-time capa-
bilities and operational autonomy. The final system represents
a significant step forward from conventional inspection meth-
ods, offering a scalable, cost-effective, and data-rich approach
to proactive road maintenance. Future work will specifically
focus on improving the segmentation performance for complex
crack patterns by exploring advanced model architectures and
expanding the dataset with more diverse crack topologies,
alongside further refining depth and volume estimation algo-
rithms. Ultimately, this work validates the power of integrating
advanced sensing and artificial intelligence to create smarter
and more efficient urban environments.
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