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Abstract— Fixed-Point implementation of FFT is very 

sensitive to finite-word-length-effects due to the large 

quantization noise that is being accumulated throughout 

the FFT stages. In FFT implementations on fixed register 

size processors like CPUs and DSPs, Block-Floating-Point 

is a well-known scheme for controlling the tradeoffs 

between the fixed-point register size and the resultant 

accuracy. The performance of the radix-2 ideal Block-

Floating-Point FFT, in terms of the output SQNR, has 

been investigated in depth. The ideal BFP-FFT suffers 

from implementation complexity, and especially non-

deterministic latency. This results from the inherent 

mechanism which requires recalculating an entire FFT 

stage if one of that stage’s outputs overflows. Because of 

this, most of the implementations are of a more practical 

variant of the BFP-FFT that does guarantee fixed latency. 

This, however, comes on the expense of reduced accuracy 

(degraded SQNR). In this paper we derive the SQNR 

formulas for the practical BFP-FFT for radix-2 and 

radix-4 Cooley-Tukey Decimation-In-Time FFTs, as well 

as for mixed-radix and non-power-of-2 FFTs. The 

derived model is compared to computer simulations and 

found highly accurate (less than 0.2 dB difference for the 

fixed radix, and less than 0.5 dB for the non-power-of-2 

mixed radix). We use the derived model to compare the 

SQNR performance of the practical algorithm to the ideal 

one and show a 6-14 dB penalty for guaranteeing fixed 

latency implementation. For the mixed radix, the model 

enables to determine the optimal order of radices in terms 

of maximal SQNR at the FFT output. 

Keywords- Block-Floating-Point; Fixed-Point; DIT; SQNR; 

Mixed-Radix; Non-power-of-2. 

I.  INTRODUCTION 

The Fast Fourier Transform (FFT) serves as an important 
tool in many signal processing applications. It has been 
successfully used in many applications such as radar, spectral 
analysis, filtering, voice processing and modems. Some of 
those are heavily relying on fixed-point processing. Since the 
FFT algorithm is known to be highly sensitive to finite-word-
length effects (which are manifested as quantization noise), 
many attempts to derive an analytical model of the 

quantization noise have been conducted throughout the years. 
A rigorous such analysis for Decimation-In-Time (DIT) 
Block-Floating-Point FFT (BFP-FFT) for radix-2 and radix-4 
is given in [1].   

The vast majority of the applications and use-cases where 
FFT is being used require a power-of-2 FFT (FFT who’s size, 
𝑁, is a power of 2, e.g., 256, 512, 1024, etc.). This is the case 
in filtering via the convolution theorem, in DSL multitone 
modems [2], in wireless modems for multimedia [3], in fiber 
optics modems [4] and more. In the last few decades, a 
demand for mixed-radix, non-power-of-2 FFT has been 
showing up. Examples for this demand are cellular OFDM 
based modems like LTE, [5], and 5G-NR, [6]. 

In the cases that non-power-of-2 FFTs are required, when 

possible, one will extend the size to the next power-of-2 size 

and implement a power-of-2 FFT. However, there are cases 

where such extension is not possible, just like in LTE [5] or 

5G-NR [6]. In those OFDM modems, there exist an uplink 

channel which relies on modulation scheme known as single-

carrier OFDM. This modulation scheme is composed of two 

different FFT sections. In the first section the antenna data 

passes IFFT of sizes that are the product of 2𝑚13𝑚2  where 

𝑚1 ≥ 7 and 𝑚2 belong to the set {0,1}. In the second section 

the sequence of QAM modulated symbols is FFT 

transformed by a non-power-of-2 FFTs of sizes that are of the 

product 2𝑚13𝑚25𝑚3   where 𝑚1 , 𝑚2  and 𝑚3  are integers 

complying to 𝑚1 ≥ 2,𝑚2 ≥ 1,𝑚3 ≥ 0.  

Finite-word-length effects have substantial implications 

on the accuracy performance of FFT. This is a result of the 

native characteristic of the FFT in which quantization noise 

that is added at the output of each stage of the FFT is 

accumulated toward the FFT output. Since the maximal value 

at each stage’s output grows as we proceed with the stages 

[7], in many hardware implementations the performance 

degradation due to the quantization noise is mitigated by 

adapting the register size at each stage to accommodate the 

signal growth [8], [9], [10]. On the other hand, in Software 

implementations (as in CPUs and Digital Signal Processors - 

DSPs), or hardware implementations where intermediate 

values are forced to be written to memory, gradually 

increasing the bit-width of the stored values is not possible. 

For those cases, BFP based schemes are commonly used. 
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Among the BFP schemes, the dynamic-scale BFP lead to the 

highest accuracy for a given register size.  

The straight-forward dynamic-scale BFP is such that 

throughout the calculation of each FFT stage, the butterflies’ 

outputs are tested for an overflow. If an overflow is detected, 

the entire stage is recalculated and scaled down to prevent the 

overflow before being stored to memory. The advantage of 

this BFP scheme is that the scale down is done only on a 

concrete need, which leads to the best accuracy performance 

among other BFP-FFT algorithms. For that reason, we relate 

to the straight-forward dynamic-scale BFP-FFT as “ideal 

BFP-FFT” herein. The drawbacks of this algorithm are its 

complexity and the fact that that it results in non-

deterministic latency. Deterministic latency may have high 

importance when the FFT is used within a synchronized 

pipelined system, such as a modulator or demodulator in 

OFDM modems [5]. 

An alternative BFP algorithm is such that there is a pre-

defined down-scale factor at every stage [11]. This alternative 

has lower complexity and deterministic latency, but it’s 

accuracy performance in terms of Signal-to-Quantization-

Noise-Ratio (SQNR) is degraded as compared to the 

dynamic-scale BFP-FFT algorithms [12]. Another dynamic 

scale BFP scheme has been proposed by Shively [13]. In this 

scheme the decision of whether to scale down a certain FFT 

stage is determined as a function of the values of the outputs 

of the previous stage. That is, the decision whether to scale 

down a certain FFT stage is taken before the calculation of 

that stage is started, leading to a deterministic latency. This, 

on the other hand, comes on the expense of some loss in the 

FFT accuracy. Nevertheless, thanks to the deterministic 

latency of this scheme, it turns to be among the most 

commonly used schemes in practical implementations, e.g., 

[14], [15]. We refer to the Shively’s scheme herein as 

“practical BFP-FFT". The original Shively’s scheme aimed 

at Cooley-Tuckey, radix-2 FFT, and we extend it here to any 

Cooley-Tuckey, mixed-radix, power-of-2 and non-power-of-

2 FFT. 

The accuracy of non-BFP fixed-point FFT has been 

intensively analyzed as well as that of the pre-defined down-

scale at every stage, e.g., [16]. The ideal BFP-FFT was 

originally analyzed in [17], which provided a lower and upper 

bound for the output quantization noise variance. In [7] and 

[12] a more accurate statistical model was used to project the 

expected value of the ideal BFP-FFT output noise power for 

an uncorrelated input sequence. A rigorous accuracy analysis 

of the practical BFP-FFT for power-of-2, fixed-radix DIT 

FFT is found in [1]. In the current paper we extend this 

analysis to mixed-radix and non-power-of-2 FFTs, where for 

power-of-2 we restrict ourselves to radix-2 and radix-4 

(denoted as ℛ 2 and ℛ 4 hereafter) only. We derive an 

analytical model for the signal and noise power at the FFT 

output for any mixed-radix FFT by which the resultant SQNR 

can be predicted. Using the derived model one can also 

estimate the performance loss paid for using practical BFP as 

compared to an ideal BFP-FFT. For mixed-radix FFT, we 

show how the optimal order of radices of the given FFT size 

can be determined. 

The problem of Twiddle Factors (TFs) quantization is not 

treated in this paper since the quantization effects of those are 

considerably lower than the computation roundoff errors 

[12]. 

The structure of the paper is as follows: in Section II the 

models of the underline FFT, the quantization, and the noise 

that are being used throughout the paper are defined. In 

Section III the SQNR formulas for a generic BFP-FFT 

scheme are derived. Section IV presents the scaling policies, 

and in Section V the SQNR formula for each of the scaling 

policies is provided. Section VI discusses the radices 

allocation throughout the FFT stages and the relations to the 

output SQNR for mixed-radix FFT. Results are presented in 

Section VII and the conclusions are given in Section VIII.   

II. FFT, PROCESSOR AND QUANTIZATION NOISE 

MODELS 

We relate to fixed-point representation of fractional 

datatypes. We assume a processor having registers of 𝑏 bits 

(including sign) and accumulators of at least 𝐵 = 2𝑏 +
⌈log2 𝑅⌉ + 1 bits, where 𝑅  is the FFT radix and ⌈𝑎⌉  is the 

smallest integer that is larger than 𝑎 . The numbers 

represented by the registers are in 2’s complement 

representation and in the range −1 ≤ 𝑥 ≤ 1 − 2−(𝑏−1). The 

numbers represented by the accumulators are in the range 

−2⌈log2 𝑅⌉+1 ≤ 𝑥 < 2⌈log2 𝑅⌉+1. The width of the data stored 

to memory is always of 𝑏  bits. We assume complex 

multipliers that multiply complex multiplicands of 𝑏 bits per 

component (b bits for the real component and b bits for the 

imaginary component). The output of the multiplier is of 

2𝑏 + 1 bits (as being a complex multiplication) that can be 

either scaled down and rounded to 𝑏  bits, or added to an 

accumulator. 

A generic scheme of a radix-R butterfly of DIT-FFT is 

given in Fig. 1. The inputs, 𝑥𝑛, are loaded from the memory 

and first multiplied by the Twiddle Factors (TFs), 𝑤𝑁
𝑘𝑛. After 

multiplication by the TFs, they are multiplied by the 

butterfly’s coefficients 𝛾𝑟,𝑡  ; 𝑟, 𝑡 ∈ {0, 1, … , 𝑅 − 1}, and then 

summed up within the butterfly to get the butterfly outputs, 

𝑦𝑛, before being stored back to the memory. The processing 

model that we will deal here with, is a model that is most 

common to DSPs and dedicated FFT processors. In this 

model the inputs 𝑥𝑛 and the TFs, 𝑤𝑁
𝑘𝑛, are represented by 𝑏 

bits per component (b bits for the real component and b bits 

for the imaginary component) and are within the range of 

[−1 , 1 − 2−(𝑏−1)] . When multiplied, the multiplication is 

spanned over 2𝑏 + 1 bits. In ℛ2 and ℛ4 FFTs the butterfly’s  
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Fig. 1: Generic model of DIT FFT butterfly 

internal coefficients,  𝛾𝑟,𝑡  , belong to the sets  {1, −1} and  

{1, −1, 𝑗, −𝑗}  ;   𝑗 = √−1 respectively, and thus there are no 

actual multiplications within the butterfly. In those radices, 

the butterfly operation is, in fact, an addition or subtraction 

of the complex numbers or of their real-imaginary exchanged 

versions. This implies that the 2𝑏 + 1 bit-wide results of the 

multiplication by the TFs are not quantized before being 

summed up toward the butterfly output. The bit-width of the 

butterfly’s output can grow and span over up to 𝐵 bits and 

then potentially scaled down by a factor of 𝛼 , where we 

restrict 𝛼  to be of the form 𝛼 = 2−𝑞  and 𝑞  is a positive 

integer (the number of right shifts at the butterflies’ outputs). 

The scaled down butterfly output is quantized to 𝑏 bits per 

component, via rounding, before being stored to memory.  

In radices other than ℛ2  and ℛ4  (i.e., non-power-of-2 

radices), the butterflies’ internal coefficients, 𝛾𝑟,𝑡, belong to 

the set {𝑒−𝑗
2𝜋𝑟𝑡

𝑅 }
𝑟,𝑡=0

𝑅−1

,  which implies that true complex 

multiplication takes place. Since the multiplier’s 

multiplicands must be of 𝑏  bits, the results of the TF 

multiplication are quantized to 𝑏 bits before being multiplied 

by the butterfly internal coefficients.  

The quantization model that we use here is the so-called 

Rounding-Half-Up (RHU) [18], which is also known as 

hardware-friendly-rounding and is being used in most digital 

signal processors and hardware implementations of digital 

signal processing functions. The mathematical function of 

RHU in rounding the value of 𝑠 to 𝑏 bits is 

 𝑦 = 𝑄[𝑠] ≜ 2−𝑏 ∙ ⌊𝑠 ∙ 2𝑏 + 0.5⌋, (1) 

where ⌊𝑎⌋ is maximal integer lower than 𝑎 and 𝑠 ∈ [−1,1 −

2−(𝑏−1)] . The quantization error is 𝑣 = 𝑠 − 𝑦  and in the 

general case is modeled as an additive noise having uniform 

distribution [19] 

 𝑣 ~ 𝑈[−2−𝑏 , 2−𝑏), (2) 

and is independent of 𝑠. As we deal here with finite-word-

length, in fact, 𝑣  has a discrete distribution. However, for 

large enough 𝑏 , it is common to treat it as a continuous 

uniform distribution. We note also that by the definition of 

the RHU, 𝑣 has an implicit bias since half way values of 𝑠 ∙

2𝑏 are always rounded up. Nevertheless, in most cases that 𝑠 
is of 2𝑏 bits, and 𝑏 is large enough, this bias is negligible and 

hence the variance of the quantization noise is well 

approximated by the uniform RV variance 

 
𝜎𝑣
2 =

2−2(𝑏−1)

12
 . (3) 

The model representing quantized values in ℛ2  and ℛ4 

butterfly is given in Fig. 2. In this model there is a single 

quantization operation taking place at the butterfly output 

before being stored to memory. It is modeled as an additive 

noise source 𝑣 , and we treat 𝑣  as per (2). The model 

representing quantized values of butterflies with non-power-

of-2 radices is given in Fig. 3. Here there is a noise source, 𝑣, 

modeling the quantization at the butterfly output, and a 

second noise source after the multiplication by the TF, 𝑢, that 

models the quantization noise caused by quantizing the result 

of the input multiplied by the TF. 

In addition, throughout the FFT there are plenty of cases 

at which the butterfly’s output value, before being scaled 

down and quantized, is a result of the summation of 𝑏-bits 

numbers multiplied by TF coefficients from the set 

 𝒯1 ≜ {1,−1, 𝑗, −𝑗}  ;   𝑗 = √−1 , (4) 

i.e., all the coefficients toward a given butterfly output are 

among the set 𝒯1. We define those outputs as the set 𝒪. In ℛ2 

and ℛ4 butterflies, the outputs belonging to the set 𝒪 are the 

outputs of butterflies that all the TFs preceding the butterfly 

belong the set 𝒯1. For the non-power-of-2 radices, the first 

output of any butterfly belongs to the set 𝒪  (since 𝛾𝑟,0 =

𝑒−𝑗
2𝜋𝑟⋅0

𝑅 = 1 belong to the 𝒯1 set). In those cases, where all 

the coefficients toward a given butterfly output are among the 

set 𝒯1 , the multiplication of a 𝑏 -bits value 𝑥 ∈ [−1 , 1 −

2−(𝑏−1)] by the TF 𝑤 ∈ 𝒯1 would result in a 2𝑏-bits number 

𝑎 = 𝑤 ∙ 𝑥 that it’s lower 𝑏 bits are equal to zero. When such  

 
 

Fig. 2:  ℛ2 and ℛ4 quantization noise butterfly model 
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a number is scaled down by very few bits, the quantization 

noise does not obey to the uniform distribution anymore [19]. 

In this case we get an RV having a discrete distribution and 

non-zero mean. For example, in the case that such a number 

is shifted one bit to the right, the quantization noise 𝜀1  is 

distributed as  

 

𝜀1 = {

0                  𝑤. 𝑝. 0.5

−
1

2
2−(𝑏−1)  𝑤. 𝑝. 0.5 ,

 (5) 

where the subscript 1 in 𝜀1 refers to the case of quantization 

noise generated by right shift of the 𝑏-bits number by one bit. 

The expected value of this noise equals −2−(𝑏−1)/4  and 

hence, when dealing with SQNRs of those RVs, we will 

relate to the noise power rather than to its variance. To 

distinguish the power from the variance we use the symbol 

𝜌2 for power. The expected value of the power of 𝜀1 then is 

 
𝜌𝜀1
2 =

1

2
∙ 0 +

1

2
∙ (
1

2
2−(𝑏−1))

2

=
2−2(𝑏−1)

8
 . (6) 

As expected, this is larger than the variance of the zero mean 

uniformly distributed quantization noise of (3). In a similar 

way we can calculate the noise power of quantization noises 

that are generated due to the rounding after right shift of a 𝑏-

bits number by 𝑞 bits. In most FFT topologies and radices up 

to ℛ5, the right shifts are in the range of 0 to 3. Moreover, 

for right shifts of 4 and above, the quantization noise power 

is very close to the variance of the zero mean uniform 

quantization noise of (3). Therefore, for our analytical 

derivations we use 

 

𝜌𝜀𝑞
2 =

{
 
 
 
 

 
 
 
 
0                        ;    𝑞 = 0  
1

8
2−2(𝑏−1)        ;    𝑞 = 1   

3

32
2−2(𝑏−1)     ;    𝑞 = 2   

11

128
2−2(𝑏−1)   ;    𝑞 = 3    

1

12
2−2(𝑏−1)     ;    𝑞 ≥ 4 .  

 (7) 

III. SQNR OF A GENERIC BFP-FFT 

By “generic BFP-FFT” we refer to a BFP-FFT that 

incorporates down-scaling by right shifts at the outputs of the 

FFT stages using an arbitrary scaling policy, where a scaling 

policy refers to the decision at which stages to scale down, 

and by what factor. For now, at which stages to scale down 

and by what factor will be parameters in the derivation. In the 

following paragraphs we will relate to specific BFP scaling 

policies and will analyze their SQNR performance. We 

assume zero mean i.i.d. input sequence, 𝑥(𝑛), and that the 

 
 

Fig. 3:  Quantization noise model for Non-power-of-2 butterfly 

quantization is regarded as an i.i.d. noise source. Moreover, 

multiple quantization noises at the input to a given butterfly 

that have been generated at earlier stages are mutually 

uncorrelated [12]. In order to derive the analytical expression 

of the SQNR, we will adopt the analysis strategy of Weinstein 

[12]. Let us relate to an input sequence of length 𝑁, 𝑥(𝑛), and 

a mixed-radix FFT with 𝑀 stages. Denote the radix of the 

𝑚𝑡ℎ stage as 𝑅𝑚 such that ∏ 𝑅𝑚
𝑀
𝑚=1 = 𝑁. The scale value at 

the 𝑚𝑡ℎ stage is 𝛼𝑚, 𝑚 ∈ {1, 2, … ,𝑀}, where we restrict 𝛼𝑚 

to be of the form 𝛼𝑚 = 2−𝑞𝑚 and 𝑞𝑚 is the number of right 

shifts at the butterflies’ outputs of the 𝑚𝑡ℎ stage. We denote 

𝑥𝑚(𝑛)  as the array values at the output of the 𝑚𝑡ℎ  stage, 

where 𝑥𝑀(𝑘) ≜ 𝑋(𝑘) is the FFT output, and 𝑥0(𝑛) ≜ 𝑥(𝑛) 
is the FFT input. For a zero mean, i.i.d. sequence 𝑥(𝑛), the 

variance of the signal at the FFT output is given by 

 

𝜎𝑥𝑀
2 = 𝑁𝜎𝑥0

2 ∏𝛼𝑚
2

𝑀

𝑚=1

= 𝑁𝜎𝑥0
2 2−2∑ 𝑞𝑚

𝑀
𝑚=1  . (8) 

The noise at the output of a given butterfly is composed of 

two components: the noise that is generated by that particular 

butterfly, which we call butterfly self-noise, and the noise that 

is propagated through the butterfly (noise that was generated 

at earlier stages), which we call propagated-noise. At 

butterflies of ℛ2  and ℛ4 , the self-noise is composed of a 

single noise source, 𝑣, at the butterfly output (refer to Fig. 2), 

while at the other, non-power-of-2, radices it is composed of 

the sum of 𝑅𝑚  noise sources 𝑢𝑛 , 𝑛 = 0⋯𝑅𝑚 − 1, scaled 

down by 𝛼𝑚 , plus a single 𝑣  noise source at the butterfly 

output (refer to Fig. 3). Defining a uniform RV 𝜉 distributed 

as 𝜉~𝑈[−2−𝑏 , 2−𝑏), and denoting the variance of the self-

noise at each of the stage outputs as 𝜎𝐵
2, we have 

 𝜎𝐵
2(𝑚) = 𝐶𝑚 ⋅  𝜎𝜉

2,  (9) 

where 
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𝐶𝑚 = {

         1                  ;     𝑅𝑚 ∈ {2, 4} 

(𝑅𝑚𝛼𝑚
2 + 1)      ;     𝑅𝑚 ∉ {2, 4}.

  (10) 

To simplify the description in the sequel, we define the set of 

radices ℛ2 and ℛ4 as the set 𝒮. 

The propagated-noise power passing through a butterfly 

is multiplied by a factor of 𝑅𝑚𝛼𝑚
2  as each butterfly output is 

composed of the sum of 𝑅𝑚 i.i.d. input noise values and is 

multiplied by a scaling factor 𝛼𝑚. Looking at the propagated-

noise at the output of an M stages FFT, it is observed that the 

self-noise from the first stage propagates through the 

following M-1 stages, which results in accumulation of 

∏ 𝑅𝑚
𝑀
𝑚=2  such i.i.d. noise sources, each attenuated by a 

factor of ∏ 𝛼𝑚
2𝑀

𝑚=2 . The propagation of the self-noise from 

the second stage results in accumulation ∏ 𝑅𝑚
𝑀
𝑚=3  such i.i.d. 

noise sources, each attenuated by a factor of ∏ 𝛼𝑚
2𝑀

𝑚=3 , and 

so on. The total output noise variance, 𝜎𝐸
2, for an M stages 

FFT, assuming all the quantization operations are modeled as 

uniform RVs, 𝑈[−2−𝑏 , 2−𝑏) ,  is therefore given by the 

following expression 

 

𝜎𝐸
2 = 𝜎𝜉

2 (𝐶𝑀 + ∑ 𝐶𝑚 ∏ 𝑅𝑖𝛼𝑖
2

𝑀

𝑖=𝑚+1

𝑀−1

𝑚=1

). (11) 

For the sake of simplicity of the formulation, we define a 

virtual (𝑀 + 1)𝑡ℎ  stage at which 𝛼𝑀+1 =
1

√𝑅𝑀+1
, and re-

write (11) as 

 

𝜎𝐸
2 = 𝜎𝜉

2 (∑ 𝐶𝑚 ∏ 𝑅𝑖𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

). (12) 

In (11) and (12) it was assumed that the self-noise is a 

continuous RV and have the same PDF at all the outputs of 

all the butterflies. For 𝑏 sufficiently large (e.g., 𝑏 = 16) this 

assumption is commonly accepted. However, as explained in 

paragraph II, This is not the case for butterfly outputs of the 

set 𝒪. The noise at the outputs of those butterflies is a discrete 

RVs and its Probability-Mass-Function (PMF) depends on 

the number of right shifts took place at the butterfly output. 

The power of those noise sources is larger than that of the 

zero-mean uniform RV, and hence they also have negative 

effect on the quantization noise power at the FFT output. In 

order to be able to evaluate the effect of those noise sources, 

we want to incorporate their statistical model in the derivation 

of 𝜎𝐸
2  (or 𝜌𝐸

2) . Before doing so, it worth mentioning two 

important notes. The first is that the distribution of the TFs of 

the set 𝒯1 among the FFT stages and among the butterflies 

within each stage is not uniform. Therefore, in each stage of 

radix 𝑅 ∈ 𝒮 there are some outputs that their self-noise has a 

non-uniform, non-zero-mean discrete PMF, and other outputs 

that their self-noise behaves as a continuous, zero-mean 

uniform RV. Similarly, in stages of radix 𝑅 ∉ 𝒮 , the first 

output of each butterfly is of the set 𝒪 , which has a non-

uniform, non-zero-mean discrete PMF. The self-noise at the 

other outputs of those radices behaves as a continuous, zero-

mean uniform RV. In addition, since each FFT output is 

connected (through the FFT flow graph) to a subset of the 

butterflies in each stage (except the first stage), the SQNR at 

the FFT output will not be identical at all output points. We 

will not relate to those effects here and will calculate the 

average SQNR at the FFT output sequence (average over all 

the output points). In fact, the noise power at the output of 

every stage of the FFT is not distributed evenly. But since we 

are interested in the average SQNR at the FFT output, we will 

also relate to the average noise power at the output of each 

stage of the FFT. The second note is the fact that the power 

of the sum of two non-zero-mean RVs does not equal to the 

sum of the powers like in two independent, zero-mean RVs 

as assumed in (12). However, since different noise sources 

are passing through different set of coefficients toward the 

same FFT output node, they can be assumed random and 

independent, justifying the use of the model of (12). There 

are very few FFT output nodes near the DC vicinity (near 𝑘 =
0), that the set of coefficients along the path is correlated and 

the above assumption does not hold. Nevertheless, since the 

assumption does not hold only for a very small number of 

FFT output nodes, the effect on the overall averaged SQNR 

is negligible and the model of  (12) can be used. 

We denote by 𝜌𝑞𝑚
2  the noise power of a butterfly output 

noise source (noise source 𝑣)  that belong to the set 𝒪. The 

output noise power at those outputs is  

 
𝜌𝑂
2(𝑚) =  {

           𝜌𝑞𝑚
2                     ;     𝑅𝑚 ∈ 𝒮 

(𝜎𝜉
2𝑅𝑚𝛼𝑚

2 + 𝜌𝑞𝑚
2 )      ;     𝑅𝑚 ∉ 𝒮.

  (13) 

Denoting also by 𝛽𝑚 the fraction of the outputs belonging to 

the set 𝒪 at the 𝑚𝑡ℎ stage, we incorporate the effects of those 

outputs into the expression of the total output noise 

variance/power getting 

𝜌𝐸
2 = ∑[(1 − 𝛽𝑚)𝜎𝐵

2(𝑚)

𝑀

𝑚=1

+ 𝛽𝑚𝜌𝑂
2(𝑚)] ∏ 𝑅𝑖𝛼𝑖

2

𝑀+1

𝑖=𝑚+1

. 

(14) 

Rearranging (14) and using (9), (10) and (13) we get 

𝜌𝐸
2 = ∑[𝐶𝑚𝜎𝜉

2 + 𝛽𝑚(𝜌𝑞𝑚
2 − 𝜎𝜉

2)] ∏ 𝑅𝑖𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 . (15) 

The second term in (15), 𝛽𝑚(𝜌𝑞𝑚
2 − 𝜎𝜉

2) , is a positive 

quantity that represents the increased output noise power 

caused by outputs of the set 𝒪. The precise expression of 𝛽𝑚 
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as a function of the radix R can be extracted from the flow 

graphs of the FFTs. As stated before, for ℛ2 and ℛ4, outputs 

of the set 𝒪 are caused by butterflies that all their preceding 

TFs are among the set 𝒯1, and for the non-power-of-2 radices, 

the first output of each butterfly belong to the set 𝒪 . The 

general rule is that at stages of non-power-of-2 radix, the 

fraction of the outputs of the set 𝒪 is the reciprocal of the 

radix itself, i.e., 𝑅𝑚
−1, while for stages of radices ℛ2 or ℛ4, 

the fraction of outputs of the set 𝒪 is one at the first stage 

(𝑚 = 1), and the product of the reciprocal of all preceding 

radices, ∏ 𝑅𝑖
−1𝑚−1

𝑖=1  for 𝑚 > 1 . Alternatively, this can be 

written as 𝑅𝑚∏ 𝑅𝑖
−1𝑚

𝑖=1  for any 𝑚. An exception is the case 

that 𝑅𝑚 = 2  and the radices of all preceding stages are 

among 𝒮. In such a case the fraction of outputs of the set 𝒪 is 

2∏ 𝑅𝑖
−1𝑚−1

𝑖=1 = 4∏ 𝑅𝑖
−1𝑚

𝑖=1 , 𝑚 > 1. This is given by 

 

𝛽𝑚 =

{
  
 

  
 
𝑅𝑚
−1                    ;   𝑅𝑚 ∉ 𝒮                               

4∏𝑅𝑖
−1

𝑚

𝑖=1

         ;   𝑅𝑚 = 2, {𝑅𝑖 , 𝑖 < 𝑚} ∈ 𝒮

𝑅𝑚∏𝑅𝑖
−1

𝑚

𝑖=1

      ;   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                        

 (16) 

Using (16) in (15), we can calculate the quantization noise at 

the FFT output, 𝜌𝐸
2 . The output SQNR for a given scale 

pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀] , can be calculated, the by 

𝜎𝑥𝑀
2 /𝜌𝐸

2 from (8) and (15) respectively where assigning 𝛼𝑖 =

2−𝑞𝑖. 
For a mixed-radix FFT, the output noise power of (15) is 

a function of the radices’ distribution among the FFT stages. 

A precise expression for the output noise is a bit cumbersome. 

For fixed-radix FFTs, we can get a closed form for the output 

noise by introducing the expression of 𝛽𝑚 into (15). For ℛ2 

this results in 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+(𝜌𝑞1
2 − 𝜎𝜉

2)𝑅𝑀∏𝛼𝑖
2

𝑀+1

𝑖=2

 

+∑(𝜌𝑞𝑚
2 − 𝜎𝜉

2)𝑅𝑀−2𝑚+3 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=2

 , 

(17) 

for ℛ4 it results in 

 
𝜌𝐸
2 = 𝜎𝜉

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑(𝜌𝑞𝑚
2 − 𝜎𝜉

2)𝑅𝑀−2𝑚+2 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

, 

(18) 

and for non-power-of-2, fixed-radix, in 

 

𝜌𝐸
2 = 𝜎𝜉

2 ∑(𝑅𝛼𝑚
2 + 1) ∏ 𝑅𝛼𝑖

2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑(𝜌𝑞𝑚
2 − 𝜎𝜉

2)𝑅−1 ∏ 𝑅𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 . 

(19) 

IV. SCALING POLICIES 

Theoretically, one would like to pick a scaling policy that 

maximizes the Signal-to-Computation-Noise-Ratio of the 

finite-word-length FFT algorithm. Such maximization 

requires the allowance of overflows, which generates 

overload noise, and the optimization would be over the 

quantization plus overload noise. However, in most practical 

systems, such overflows are not allowed. As a result, the 

scaling policy is selected to maximize the SQNR under the 

constraint of zero-overflows. At the ideal BFP-FFT, the 

scaling policy is such that throughout the butterflies’ 

computation, every butterfly’s output is tested for an 

overflow before it is quantized down to 𝑏 bits. If the real or 

the imaginary components of the butterfly output are smaller 

than −1.0 or larger than 1 − 2−(𝑏−1), the entire stage is re-

calculated and the butterflies’ outputs are scaled down by 𝑞 

bits before being rounded to 𝑏 bits and stored to memory. The 

value 𝑞 is selected to guarantee that the scaled result does not 

overflow anymore. For example, if one of the absolute values 

of the real or imaginary butterfly’s outputs is within the range 

[1 , 2 − 2−(𝑏−1)], the entire stage will be re-calculated while 

the butterflies’ outputs will be shifted by one bit to the right 

(𝑞 = 1). If one of the of the absolute values of the real or 

imaginary butterfly’s outputs is within the range [2 , 4 −

2−(𝑏−1)] , the entire stage will be re-calculated while the 

butterflies’ outputs will be shifted by two bits to the right, and 

so on. As was mentioned in the introduction, this scheme 

suffers from non-deterministic latency and therefore is less 

favorable in practical implementations. The second, more 

common, policy is the one proposed by Shively [13], which 

guarantees deterministic latency and lower complexity at the 

expense of decreased SQNR. In this policy, the decision 

whether to down-scale the outputs of stage 𝑚 and by what 

factor is taken based on the values of the outputs of stage 𝑚 −

1, which are guaranteed to fit in the range [−1 , 1 − 2−(𝑏−1)]. 

While writing the outputs of stage 𝑚 − 1 to the memory, the 

processor finds the maximal absolute value among the real 

and imaginary components of the whole stage, and the down-

scaling decision for the next stage is made according to this 

value. The down-scaling criterion is similar to the criterion 

being used by the scaling policy of the ideal BFP-FFT, i.e., 

to guarantee that no overflow will occur at the output of the 

next stage. Here, there is a need to consider the fact that the 

maximal absolute value at the butterflies’ output of the 𝑚𝑡ℎ 
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stage would grow by a factor that is between 1 and √2𝑅𝑚 

relative to the outputs of stage 𝑚− 1. In order to formalize 

this, let us define 𝑥𝑚
𝑐 (𝑛) for 𝑛 ∈ {0, 1, … , 𝑁 − 1} as 

 
𝑥𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑥𝑚(𝑛)) 

𝑥𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑥𝑚(𝑛)), 

(20) 

and  

 𝑥̃𝑚 = max
𝑛
{|𝑥𝑚

𝑐 (𝑛)|} . (21) 

The scaling policy of the practical BFP-FFT can now be 

written as 

𝑞𝑚 =

{
 
 
 
 
 

 
 
 
 
 0                          ;  𝑥̃𝑚−1 <

1

√2𝑅
               

1                          ;  
1

√2𝑅
≤ 𝑥̃𝑚−1 <

2

√2𝑅

2                          ;  
2

√2𝑅
≤ 𝑥̃𝑚−1 <

4

√2𝑅
⋮
⋮

⌈𝑙𝑜𝑔2(𝑅)⌉ + 1   ;
1

√2
≤ 𝑥̃𝑚−1      .               

 (22) 

We denote the scaling policy of the ideal BFP-FFT as 𝜗𝑖 
and of the practical BFP-FFT as 𝜗𝑝. 

V. SQNR CALCULATION 

From the previous paragraph it is clear that the SQNR at 

the FFT output of a particular realization of the FFT depends 

on the scale pattern that has been used throughout this 

realization. Each scale pattern 𝒒 = [𝑞1 , 𝑞2 , … , 𝑞𝑀]  is 

associated with a resultant SQNR. We adopt Weinstein’s 

definition for “theoretical” SQNR as the weighted sum of the 

SQNR per scale pattern, i.e., the SQNR per scale pattern 

weighted by the probability of the particular scale pattern to 

occur [12]. The probability of a scale pattern depends on the 

radices allocation among the stages and the PDF of the input 

sequence. Of course, the radices allocation among the stages 

is a design parameter, therefore, for a given radices 

allocation, the probability of a scale pattern is solely 

dependent on the PDF of the input sequence and the scaling 

policy. In the sequel we will derive the scale patterns 

probabilities as well as the SQNR for the practical BFP-FFT 

algorithm and for the ideal BFP-FFT algorithm, for Gaussian 

input sequences. The Gaussian assumption simplifies the 

description, yet, the derivation can be adapted to any input 

sequence distribution. 

A. SQNR of practical BFP-FFT 

We start with the derivation of the probabilities of scale 

patterns. Given the practical BFP-FFT’s scaling policy, the 

probability that there will be exactly 𝑞 > 0  right shifts at 

stage 𝑚 is equal to  

𝑃𝑟(𝑞𝑚 = 𝑞; 𝜗𝑝) 

= 𝑃𝑟(2𝑞−1 ≤ √2𝑅𝑚𝑥̃𝑚−1 ≤ 2𝑞) 

= 𝑃𝑟 (
2𝑞−1

√2𝑅𝑚
≤ 𝑥̃𝑚−1 ≤

2𝑞

√2𝑅𝑚
) 

= 𝑃𝑟 (−
2𝑞

√2𝑅𝑚
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞

√2𝑅𝑚
) 

−𝑃𝑟 (−
2𝑞−1

√2𝑅𝑚
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞−1

√2𝑅𝑚
), 

(23) 

whereas for 𝑞 = 0  

 
𝑃𝑟(𝑞𝑚 = 0; 𝜗𝑝) = 𝑃𝑟(√2𝑅𝑚𝑥̃𝑚−1 ≤ 1)

= 𝑃𝑟 (𝑥̃𝑚−1 ≤
1

√2𝑅𝑚
). 

(24) 

By the assumption that the input sequence, 𝑥𝑚−1
𝑐 (𝑛); 𝑛 ∈

{0, 1, … , 2𝑁 − 1} is an i.i.d. sequence, (23) and (24), can be 

written as  

𝑃𝑟(𝑞𝑚 = 𝑞; 𝜗𝑝) 

= [𝑃𝑟 (−
2𝑞

√2𝑅𝑚
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞

√2𝑅𝑚
)]

2𝑁

 

−[𝑃𝑟 (−
2𝑞−1

√2𝑅𝑚
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞−1

√2𝑅𝑚
)]

2𝑁

, 

(25) 

and 

𝑃𝑟(𝑞𝑚 = 0; 𝜗𝑝) 

= [𝑃𝑟 (−
1

√2𝑅𝑚
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
1

√2𝑅𝑚
)]

2𝑁

. 
(26) 

We now define the following auxiliary variables  

 𝑇𝑚 = 2−2𝑄𝑚 , (27) 

where 

 

𝑄𝑚 =∑𝑞𝑖

𝑚

𝑖=1

 ;  𝑚 ∈ {1, 2, … ,𝑀} 

𝑄0 = 1 , 

(28) 

and  

 
𝑃𝑚 =∏𝑅𝑖

𝑚

𝑖=1

. (29) 

Using those, the variance of the sequence at the output of the 

𝑚𝑡ℎ stage is  
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 𝜎𝑥𝑚
2 = 𝜎𝑥0

2 𝑃𝑚𝑇𝑚, (30) 

and the variance of the real and imaginary individual 

components at the output of the 𝑚𝑡ℎ  stage is 𝜎𝑥𝑚
2 /2 =

𝜎𝑥0
2 𝑃𝑚𝑇𝑚/2.  

For an i.i.d. complex Gaussian input sequence, 

𝑥0
𝑐(𝑛)~𝑁(0, 𝜎𝑥0

2 /2) ;  𝑛 ∈ {0, 1, … , 2𝑁 − 1}, it can be shown 

that all the intermediate sequences 𝑥𝑚
𝑐 (𝑛) , 𝑚 ∈ {1, 2, … ,𝑀} 

are also Gaussian i.i.d.  [12]. Therefore, the probability that 

the outputs of the 𝑚𝑡ℎ stage would be shifted by exactly 𝑞 >
0 right shifts, given that there were accumulated 𝑄𝑚−1 right 

shifts at the stages preceding stage 𝑚 is  

𝑃𝑟(𝑞𝑚 = 𝑞 | 𝑄𝑚−1; 𝜎𝑥0
2 , 𝜗𝑝) 

=

[
 
 
 

𝑒𝑟𝑓

(

 

2𝑞

√2𝑅𝑚

√2
σxm−1
√2 )

 

]
 
 
 
2𝑁

−

[
 
 
 
 

𝑒𝑟𝑓

(

 
 

2𝑞−1

√2𝑅𝑚

√2
σxm−1
√2

)

 
 

]
 
 
 
 
2𝑁

= [𝑒𝑟𝑓 (
2𝑞

𝜎𝑥0√2𝑃𝑚𝑅𝑚𝑇𝑚−1
)]

2𝑁

− [𝑒𝑟𝑓 (
2𝑞−1

𝜎𝑥0√2𝑃𝑚𝑅𝑚𝑇𝑚−1
)]

2𝑁

, 

(31) 

and the probability that there would be no right shifts (𝑞𝑚 =
0) is given by 

 
𝑃𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1; 𝜎𝑥0

2 , 𝜗𝑝) 

=

[
 
 
 

𝑒𝑟𝑓

(

 

1

√2𝑅𝑚

√2
σxm−1
√2 )

 

]
 
 
 
2𝑁

= [𝑒𝑟𝑓 (
1

𝜎𝑥0√2𝑃𝑚𝑅𝑚𝑇𝑚−1
)]

2𝑁

, 

(32) 

where 𝑒𝑟𝑓(𝑥) is defined by 

 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑥

0

 . (33) 

We use those per-stage probabilities to calculate the 

probability of a specific scale pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀],  

 𝑃𝑟(𝒒; 𝜎𝑥0
2 , 𝜗𝑝 )

= 𝑃𝑟(𝑞1; 𝜎𝑥0
2 , 𝜗𝑝)∏𝑃𝑟(𝑞𝑚|𝑄𝑚−1; 𝜎𝑥0

2 , 𝜗𝑝)

𝑀

𝑚=2

 , 
(34) 

and the output SQNR is calculated by the weighted sum of 

the SQNRs per scale pattern as 

𝑆𝑄𝑁𝑅𝜗𝑝 =∑𝑃𝑟(𝒒; 𝜎𝑥0
2 , 𝜗𝑝) ∙ 𝑆𝑄𝑁𝑅(𝒒, 𝜎𝑥0

2 )

𝒒

 

=∑𝑃𝑟(𝒒; 𝜎𝑥0
2 , 𝜗𝑝) ∙

𝜎𝑥𝑀
2 (𝜎𝑥0

2 )

𝜌𝐸
2(𝒒, 𝜎𝑥0

2 )
𝒒

 . 

(35) 

In (35) the expression 𝑃𝑟(𝒒; 𝜎𝑥0
2 , 𝜗𝑝) is calculated by (34), 

𝜎𝑥𝑀
2 (𝜎𝑥0

2 )  is calculated by (8) and 𝜌𝐸
2(𝒒, 𝜎𝑥0

2 ) , with 𝛼𝑖 =

2−𝑞𝑖, is calculated by (17), (18) or (19) for ℛ2, ℛ4 and non-

power-of-2 radices respectively. The number of different 𝒒 

patterns is quite large (e.g., for ℛ2, since 𝑞𝑚 can take one of 

three options {0,1,2}  there are 3log2 𝑁  optional different 

patterns). Nevertheless, the summation over all the 𝒒 patterns 

in (35) can be calculated in reasonable time via a computer 

program. 

Since we focus the analysis here on Gaussian inputs 

which are un-bounded in their values on one hand, while the 

FFT under analysis requires inputs in the range [−1, 1 −

2−(𝑏−1)] on the other hand, we select the variance of the input 

signal such that the probability for values outside the allowed 

range at the input is sufficiently low. For the sake of the 

current analysis, we used 𝜎𝑥0 = 0.15 which leads to a very 

low probability of having a sample outsize the allowed range. 

For example, for 4096 points FFT, the probability of having 

a vector of size 4096 with a sample outside the range [−1,1] 
is approximately 10−7  (once per ten million FFT 

realizations, in average, there will be an input sample that has 

to be saturated to [−1, 1 − 2−(𝑏−1)]).  

B. SQNR of the ideal BFP-FFT 

At the scaling policy of the ideal BFP-FFT, 𝜗𝑖, there are 

no pre-decisions for per-stage scaling. An FFT stage is 

calculated without scaling and throughout the calculations, if 

any of the stage’s outputs overflows the allowed range, the 

whole stage is re-calculated while the outputs are down-

scaled before being written to memory. Note that in the ideal 

policy there may be multiple re-calculation of the same stage 

if the strategy is to initiate the re-calculation upon the first 

overflowed value (strategy (a)). Different strategies that will 

eliminate the multi re-calculations of the same stage are: (b) 

upon the detection of the first overflow - set the scale value 

to the maximal scale value, and (c) always calculate the stage 

to its end and if overflows have been detected throughout the 

calculation, set the scale value according the largest 

magnitude among the detected overflowed values. Note that 

strategy (b) suffers degradations in the SQNR performance 

due to potential mismatch between the scale value and the 

actual maximal overflow value. Nevertheless, here, for the 

sake of SQNR comparison, we assume strategy (a) or (c), 

meaning that the scale is according to the largest magnitude 

output sample and no performance loss is involved. As 

opposed to the practical case where the scale decision for 
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stage 𝑚 depends on 𝑥𝑚−1(𝑛), which are the outputs of stage 

𝑚 − 1 after being scaled down, the scale decision of the ideal 

BFP-FFT depends on the output of stage 𝑚  before being 

scaled down. Let us denote the output of stage 𝑚  before 

being scaled down as 𝑠𝑚(𝑛) , such that the scaled down 

values are 

 𝑥𝑚(𝑛) = 𝛼𝑚𝑠𝑚(𝑛), (36) 

and define 𝑠𝑚
𝑐 (𝑛) and 𝑠̃𝑚 in analogous to (20) and (21) as 

 
𝑠𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑠𝑚(𝑛)) 

𝑠𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑠𝑚(𝑛)), 

(37) 

and  

 𝑠̃𝑚 = max
𝑛
{|𝑠𝑚

𝑐 (𝑛)|} . (38) 

Now the SQNR analysis using the ideal BFP-FFT policy 

follows the steps of the analysis of the practical BFP-FFT 

scheme. The output signal variance and the output noise 

power follow (8) and (15), respectively. The probability that 

there will be exactly 𝑞 > 0 right shifts at stage 𝑚 is equal to  

𝑃𝑟(𝑞𝑚 = 𝑞; 𝜗𝑖) = 𝑃𝑟(2𝑞−1 ≤ 𝑠̃𝑚 ≤ 2𝑞) 

= 𝑃𝑟 (−2𝑞 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞) 

−𝑃𝑟 (−2𝑞−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞−1), 

(39) 

and the probability that there will be no right shifts at stage 

𝑚, i.e., 𝑞 = 0, is  

𝑃𝑟(𝑞𝑚 = 0; 𝜗𝑖) = 𝑃𝑟(𝑠̃𝑚 ≤ 1) 

= 𝑃𝑟 (−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 1) . 

(40) 

Under the i.i.d. Gaussian input assumption, we get for 𝑞 > 0 

 

𝑃𝑟(𝑞𝑚 = 𝑞| 𝑄𝑚−1; 𝜎𝑥0
2 , 𝜗𝑖) = [𝑒𝑟𝑓(

2𝑞

σxm
)]

2𝑁

− [𝑒𝑟𝑓(
2𝑞−1

σxm
)]

2𝑁

= [𝑒𝑟𝑓(
2𝑞

𝜎𝑥0√𝑃𝑚𝑇𝑚−1
)]

2𝑁

− [𝑒𝑟𝑓(
2𝑞−1

𝜎𝑥0√𝑃𝑚𝑇𝑚−1
)]

2𝑁

, 

 

(41) 

and for 𝑞𝑚 = 0 

𝑃𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1; 𝜎𝑥0
2 , 𝜗𝑖) = [𝑒𝑟𝑓 (

1

σxm
)]

2𝑁

= [𝑒𝑟𝑓 (
1

𝜎𝑥0√𝑃𝑚𝑇𝑚−1
)]

2𝑁

. 

(42) 

VI. RADICES ALLOCATION 

For a mixed-radix FFT, the order of the radices (the 

allocation of radices to the various stages which forms a 

radices pattern) is a design parameter. Different orders will 

result in different scale pattern distributions and as a result - 

different output SQNR. In fact, the total amount of scaling 

(right shifts) of the ideal BFP-FFT for a given input 

realization depends solely on the values of the instantaneous 

input realization, and is independent of the order of radices. 

The number of right shifts in this case can be shown to be 

𝑄𝑀 = ⌈log2max
𝑘
(|𝑅𝑒𝑎𝑙{𝑋(𝑘)}| , |𝐼𝑚𝑎𝑔{𝑋(𝑘)}|)⌉,  (43) 

where 𝑋(𝑘)  is the FFT output for the specific input 

realization, assuming no scaling take place throughout the 

FFT. At the practical BFP-FFT the total number of down 

scaling is not completely independent on the order of the 

radices. It depends on the radix allocated to the last stage, 

stage 𝑀 , and is in the range {𝑄𝑀 , 𝑄𝑀 + 1,⋯ , 𝑄𝑀 +

⌈log2(√2𝑅𝑀)⌉}. 

The output noise, on the other hand, does depend on the 

scaling patterns, while those depend on the order of the 

radices. The variance of the resultant SQNR between various 

radices-patterns is not large and is shown to be in the range 

of 0.2 𝑑𝐵 to 2.25 𝑑𝐵 for the LTE DFT sizes. An easy way to 

determine the best order of radices is to calculated the SQNR 

(according to (35)) for all the radices permutations and pick 

the one with the highest SQNR. In Fig. 4 the best and worst 

SQNR among all the radices permutations for each of the 

LTE DFT sizes is shown. An interesting observation from 

Fig. 4 is that for the non-power-of-2, mixed-radix FFT of the 

LTE sizes, the SQNR is not necessarily a monotonic function 

of the FFT size. As can be seen there is an average 

monotonicity, but not local monotonicity. The reason is the 

fact that in close sizes, despite the fact that the size is close, 

the set of radices involved is different. Since the quantization 

noise generated by a butterfly of non-power-of-2 radix is 

larger than that of a butterfly of power-of-2 radix (refer to (9) 

and (10)), an FFT that involves more non-power-of-2 radices, 

is likely to result in larger output quantization noise. For 

example, the sizes of 324, 360 and 384 are three consecutive 

sizes in Fig. 4, and show monotonic increasing SQNR. When 

examining the radices involved, we find that size 324 include 

four stages of non-power-of-2 radices (since 324 = 4 ⋅ 34), 

size 360 include three stages of non-power-of-2 radices 

(360 = 4 ⋅ 2 ⋅ 5 ⋅ 32), and the size 384 include only one radix 

which is non-power-of-2 (384 = 2 ⋅ 43 ⋅ 3). 
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Fig. 4: SQNR of best and worst radices permutations for non-power-of-2 

FFTs of LTE sizes 

VII. RESULTS 

The derived models of the SQNR of the practical and the 

ideal BFP-FFT have been validated against simulation. The 

model and the simulation results for 16-bit datatype (𝑏 = 16) 

and Gaussian i.i.d. input with standard deviation of 𝜎𝑥0 =

0.15 are shown in Fig. 5 and Fig. 6 for radix-2 and radix-4 

respectively. The simulation result vs. the BFP model for 

non-power-of-2, mixed radix, practical BFP-FFT of the LTE 

sizes is shown in Fig. 7. For the simulation results we have 

averaged the SQNR of 1000 FFT runs per FFT length. As can 

be seen, there is a very good match between the simulation 

results and the derived model in all cases. The gap between 

the refined statistical model (that incorporate the refinement 

for butterfly outputs of the set 𝒪) and the simulation result for 

the practical BFP-FFT is in the order of 0.2 dB for the fixed-

radix, power-of-2 FFTs and in the order of 0.5 dB for the 

mixed-radix, non-power-of-2 FFTs. The simulation results 

for the ideal BFP-FFT are not shown in the figures since the 

model has almost perfect match to the simulation result with 

gaps that are in the order of 0.05 dB. 

In Fig. 5 and Fig. 6 we can also see the effect of the 

refined statistical model for the butterfly outputs of the set 𝒪. 

In Fig. 5 is it seen that the model neglecting the effects of the 

butterfly outputs of the set 𝒪 , for radix-2 BFP-FFT, is 

optimistic by about 0.5 dB for the practical BFP-FFT and in 

Fig. 6 it is optimistic by about 1 dB for radix-4. 

One of the main goals of the paper is to provide an 

analytical tool that enables the prediction of the SQNR 

penalty one needs to pay for getting fixed latency BFP-FFT. 

This penalty is clearly seen for radix-2 and radix-4 in Fig. 5 

and Fig. 6 respectively. We see that such a penalty is in the 

order of 6 dB when the number of stages is above five, and 

grows up to 13.5 dB for lower number of stages as seen at the 

case of 64 points radix-4 FFT. The reason that for low 

number of stages the degradation of the practical BFP-FFT is 

larger, is the fact that the difference between the number of 

truly required down-scales (used by the ideal BFP-FFT) and 

the number of down-scales used by the practical BFP-FFT 

(Shively’s scheme) reduces as the number of stages grows 

and that in the practical BFP-FFT the scaling take place at 

earlier stages. 

Another interesting observation that the model reveals 

relates to the comparison of the SQNR between radix-2 and 

radix-4 BFP-FFT implementations for a power-of-2 fixed-

radix FFT. It is well known that from complexity perspective, 

the radix-4 has advantages over radix-2 (at least in the 

number of multiplications). From the results in Fig. 5 and Fig. 

6, we can also see that radix-4 have better SQNR in the ideal 

BFP-FFT implementation. We get 4 dB advantage for 64-

points FFT down to about 2 dB advantage for 4096-points 

FFT. However, for the practical BFP-FFT we see an opposite 

behavior. The radix-2 practical BFP-FFT results in 2.8 dB 

better SQNR for 64-point FFT, down to 1.2 dB better SQNR 

for 4096-points FFT. The reason for this phenomenon is that 

the number of the quantization noise sources depends on the 

number of stages, such that in the radix-4 FFT there are half 

the number of noise sources as compared to radix-2, while 

the total down-scaling depends on the type of the BFT-FFT. 

For ideal BFP-FFT the total down scaling of radix-2 and 

radix4 is the same (as given in (43)). Hence, since radix-2 has 

more quantization sources, it also has lower SQNR 

performance as compared to radix-4. For the practical BFP-

FFT, number of down-scaling of the radix-2 and radix-4 

FFTs may not be the same. Since the maximal absolute value 

is a monotonic, non-decreasing, function of the stage index 

(it always non-decreasing between consecutive stages) [7], 

the number of down-scales of the practical BFP-FFT would 

be greater or equal to that of the radix-2. As a result, the signal 

power at the output of the radix-4 practical BFP-FFT is lower 

or equal that that of the radix-2 and hence, despite the fact 

that there are more noise sources in radix-2 the total SQNR 

is better 

 
Fig. 5: Radix-2 Practical BFP-FFT 
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Fig. 6:  Radix-4 Practical BFP-FFT 

VIII. CONCLUSIONS 

In this paper we extended the analytical model of the 

finite-word-length-effects of Cooley Tukey DIT BFP-FFT of 

[1] to cover fixed-radix, as well as mixed-radix, non-power-

of-2 FFTs. We incorporate butterfly outputs belonging to the 

𝒪  set as a refined model, and derived the analytical 

expressions for the ideal and practical BFP-FFTs. The 

models have been validated against simulation and found 

highly accurate for both, the ideal and the practical BFP-

FFTs. The model enables to accurately predict the SQNR for 

the practical BFP-FFT and the performance degradation 

compared to the ideal BFP-FFT scheme. The model also can 

be used to determine the best radix order of mixed-radix FFTs 

as described in paragraph VI.  

The derivation covers DIT-FFT and refer to a straight-

forward implementation model of non-power-of-2 butterfly. 

The framework used can be easily adapted to other topologies 

 

 
Fig. 7:  Mixed-Radix LTE sizes Practical BFP-FFT 

. 

and other implementation models of the non-power-of-2 

butterflies. 
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