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Abstract— Fixed-Point implementation of FFT is very
sensitive to finite-word-length-effects due to the large
guantization noise that is being accumulated throughout
the FFT stages. In FFT implementations on fixed register
size processors like CPUs and DSPs, Block-Floating-Point
is a well-known scheme for controlling the tradeoffs
between the fixed-point register size and the resultant
accuracy. The performance of the radix-2 ideal Block-
Floating-Point FFT, in terms of the output SQNR, has
been investigated in depth. The ideal BFP-FFT suffers
from implementation complexity, and especially non-
deterministic latency. This results from the inherent
mechanism which requires recalculating an entire FFT
stage if one of that stage’s outputs overflows. Because of
this, most of the implementations are of a more practical
variant of the BFP-FFT that does guarantee fixed latency.
This, however, comes on the expense of reduced accuracy
(degraded SQNR). In this paper we derive the SQNR
formulas for the practical BFP-FFT for radix-2 and
radix-4 Cooley-Tukey Decimation-In-Time FFTs, as well
as for mixed-radix and non-power-of-2 FFTs. The
derived model is compared to computer simulations and
found highly accurate (less than 0.2 dB difference for the
fixed radix, and less than 0.5 dB for the non-power-of-2
mixed radix). We use the derived model to compare the
SQNR performance of the practical algorithm to the ideal
one and show a 6-14 dB penalty for guaranteeing fixed
latency implementation. For the mixed radix, the model
enables to determine the optimal order of radices in terms
of maximal SQNR at the FFT output.

Keywords- Block-Floating-Point; Fixed-Point; DIT; SQNR;
Mixed-Radix; Non-power-of-2.

l. INTRODUCTION

The Fast Fourier Transform (FFT) serves as an important
tool in many signal processing applications. It has been
successfully used in many applications such as radar, spectral
analysis, filtering, voice processing and modems. Some of
those are heavily relying on fixed-point processing. Since the
FFT algorithm is known to be highly sensitive to finite-word-
length effects (which are manifested as quantization noise),
many attempts to derive an analytical model of the

quantization noise have been conducted throughout the years.
A rigorous such analysis for Decimation-In-Time (DIT)
Block-Floating-Point FFT (BFP-FFT) for radix-2 and radix-4
is givenin [1].

The vast majority of the applications and use-cases where
FFT is being used require a power-of-2 FFT (FFT who’s size,
N, is a power of 2, e.g., 256, 512, 1024, etc.). This is the case
in filtering via the convolution theorem, in DSL multitone
modems [2], in wireless modems for multimedia [3], in fiber
optics modems [4] and more. In the last few decades, a
demand for mixed-radix, non-power-of-2 FFT has been
showing up. Examples for this demand are cellular OFDM
based modems like LTE, [5], and 5G-NR, [6].

In the cases that non-power-of-2 FFTs are required, when
possible, one will extend the size to the next power-of-2 size
and implement a power-of-2 FFT. However, there are cases
where such extension is not possible, just like in LTE [5] or
5G-NR [6]. In those OFDM modems, there exist an uplink
channel which relies on modulation scheme known as single-
carrier OFDM. This modulation scheme is composed of two
different FFT sections. In the first section the antenna data
passes IFFT of sizes that are the product of 2™13™2 where
m, = 7 and m, belong to the set {0,1}. In the second section
the sequence of QAM modulated symbols is FFT
transformed by a non-power-of-2 FFTs of sizes that are of the
product 2™13M25Ms where m,, m, and my are integers
complyingtom, = 2,m, = 1,m3; > 0.

Finite-word-length effects have substantial implications
on the accuracy performance of FFT. This is a result of the
native characteristic of the FFT in which quantization noise
that is added at the output of each stage of the FFT is
accumulated toward the FFT output. Since the maximal value
at each stage’s output grows as we proceed with the stages
[7], in many hardware implementations the performance
degradation due to the quantization noise is mitigated by
adapting the register size at each stage to accommodate the
signal growth [8], [9], [10]. On the other hand, in Software
implementations (as in CPUs and Digital Signal Processors -
DSPs), or hardware implementations where intermediate
values are forced to be written to memory, gradually
increasing the bit-width of the stored values is not possible.
For those cases, BFP based schemes are commonly used.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

37



Among the BFP schemes, the dynamic-scale BFP lead to the
highest accuracy for a given register size.

The straight-forward dynamic-scale BFP is such that
throughout the calculation of each FFT stage, the butterflies’
outputs are tested for an overflow. If an overflow is detected,
the entire stage is recalculated and scaled down to prevent the
overflow before being stored to memory. The advantage of
this BFP scheme is that the scale down is done only on a
concrete need, which leads to the best accuracy performance
among other BFP-FFT algorithms. For that reason, we relate
to the straight-forward dynamic-scale BFP-FFT as “ideal
BFP-FFT” herein. The drawbacks of this algorithm are its
complexity and the fact that that it results in non-
deterministic latency. Deterministic latency may have high
importance when the FFT is used within a synchronized
pipelined system, such as a modulator or demodulator in
OFDM modems [5].

An alternative BFP algorithm is such that there is a pre-
defined down-scale factor at every stage [11]. This alternative
has lower complexity and deterministic latency, but it’s
accuracy performance in terms of Signal-to-Quantization-
Noise-Ratio (SQNR) is degraded as compared to the
dynamic-scale BFP-FFT algorithms [12]. Another dynamic
scale BFP scheme has been proposed by Shively [13]. In this
scheme the decision of whether to scale down a certain FFT
stage is determined as a function of the values of the outputs
of the previous stage. That is, the decision whether to scale
down a certain FFT stage is taken before the calculation of
that stage is started, leading to a deterministic latency. This,
on the other hand, comes on the expense of some loss in the
FFT accuracy. Nevertheless, thanks to the deterministic
latency of this scheme, it turns to be among the most
commonly used schemes in practical implementations, e.g.,
[14], [15]. We refer to the Shively’s scheme herein as
“practical BFP-FFT". The original Shively’s scheme aimed
at Cooley-Tuckey, radix-2 FFT, and we extend it here to any
Cooley-Tuckey, mixed-radix, power-of-2 and non-power-of-
2 FFT.

The accuracy of non-BFP fixed-point FFT has been
intensively analyzed as well as that of the pre-defined down-
scale at every stage, e.g., [16]. The ideal BFP-FFT was
originally analyzed in [17], which provided a lower and upper
bound for the output quantization noise variance. In [7] and
[12] a more accurate statistical model was used to project the
expected value of the ideal BFP-FFT output noise power for
an uncorrelated input sequence. A rigorous accuracy analysis
of the practical BFP-FFT for power-of-2, fixed-radix DIT
FFT is found in [1]. In the current paper we extend this
analysis to mixed-radix and non-power-of-2 FFTs, where for
power-of-2 we restrict ourselves to radix-2 and radix-4
(denoted as R2 and R4 hereafter) only. We derive an
analytical model for the signal and noise power at the FFT
output for any mixed-radix FFT by which the resultant SQNR
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can be predicted. Using the derived model one can also
estimate the performance loss paid for using practical BFP as
compared to an ideal BFP-FFT. For mixed-radix FFT, we
show how the optimal order of radices of the given FFT size
can be determined.

The problem of Twiddle Factors (TFs) quantization is not
treated in this paper since the quantization effects of those are
considerably lower than the computation roundoff errors
[12].

The structure of the paper is as follows: in Section Il the
models of the underline FFT, the quantization, and the noise
that are being used throughout the paper are defined. In
Section 11l the SQNR formulas for a generic BFP-FFT
scheme are derived. Section 1V presents the scaling policies,
and in Section V the SQNR formula for each of the scaling
policies is provided. Section VI discusses the radices
allocation throughout the FFT stages and the relations to the
output SQNR for mixed-radix FFT. Results are presented in
Section VII and the conclusions are given in Section VIII.

Il.  FFT, PROCESSOR AND QUANTIZATION NOISE
MODELS

We relate to fixed-point representation of fractional
datatypes. We assume a processor having registers of b bits
(including sign) and accumulators of at least B = 2b +
[log, R] + 1 bits, where R is the FFT radix and [a] is the
smallest integer that is larger than a . The numbers
represented by the registers are in 2’s complement
representation and in the range —1 < x <1 —2"®~D_ The
numbers represented by the accumulators are in the range
—2Mog2 RI+1 <y < 2MloB2 RI+1 The width of the data stored
to memory is always of b bits. We assume complex
multipliers that multiply complex multiplicands of b bits per
component (b bits for the real component and b bits for the
imaginary component). The output of the multiplier is of
2b + 1 bits (as being a complex multiplication) that can be
either scaled down and rounded to b bits, or added to an
accumulator.

A generic scheme of a radix-R butterfly of DIT-FFT is
given in Fig. 1. The inputs, x,,, are loaded from the memory
and first multiplied by the Twiddle Factors (TFs), wk". After
multiplication by the TFs, they are multiplied by the
butterfly’s coefficients y,., ;7,t € {0,1, ..., R — 1}, and then
summed up within the butterfly to get the butterfly outputs,
vy, before being stored back to the memory. The processing
model that we will deal here with, is a model that is most
common to DSPs and dedicated FFT processors. In this
model the inputs x,, and the TFs, wk™, are represented by b
bits per component (b bits for the real component and b bits
for the imaginary component) and are within the range of
[-1,1—27®=Y]. When multiplied, the multiplication is
spanned over 2b + 1 bits. In R2 and R4 FFTs the butterfly’s
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Fig. 1: Generic model of DIT FFT butterfly

internal coefficients, y,.. , belong to the sets {1, -1} and
{1,-1,j,—j} ; j = V—1 respectively, and thus there are no
actual multiplications within the butterfly. In those radices,
the butterfly operation is, in fact, an addition or subtraction
of the complex numbers or of their real-imaginary exchanged
versions. This implies that the 2b + 1 bit-wide results of the
multiplication by the TFs are not quantized before being
summed up toward the butterfly output. The bit-width of the
butterfly’s output can grow and span over up to B bits and
then potentially scaled down by a factor of @, where we
restrict @ to be of the form a =277 and g is a positive
integer (the number of right shifts at the butterflies’ outputs).
The scaled down butterfly output is quantized to b bits per
component, via rounding, before being stored to memory.

In radices other than R2 and R4 (i.e., non-power-of-2

radices), the butterflies’ internal coefficients, y, ., belong to
2nrtyR-1

the set {e" R } , which implies that true complex
r,t=0

multiplication takes place. Since the multiplier’s
multiplicands must be of b bits, the results of the TF
multiplication are quantized to b bits before being multiplied
by the butterfly internal coefficients.

The quantization model that we use here is the so-called
Rounding-Half-Up (RHU) [18], which is also known as
hardware-friendly-rounding and is being used in most digital
signal processors and hardware implementations of digital
signal processing functions. The mathematical function of
RHU in rounding the value of s to b bits is

y=Q[s] 227" |s-2P +05], (1)

where |a] is maximal integer lower than a and s € [—1,1 —
2-®-D]. The quantization error is v =s—y and in the
general case is modeled as an additive noise having uniform
distribution [19]

v~U[-27P,27), )

and is independent of s. As we deal here with finite-word-
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length, in fact, v has a discrete distribution. However, for
large enough b, it is common to treat it as a continuous
uniform distribution. We note also that by the definition of
the RHU, v has an implicit bias since half way values of s -
2P are always rounded up. Nevertheless, in most cases that s
is of 2b bits, and b is large enough, this bias is negligible and
hence the variance of the quantization noise is well
approximated by the uniform RV variance
-2(b-1
2o 20 ®)
12

The model representing quantized values in R2 and R4
butterfly is given in Fig. 2. In this model there is a single
quantization operation taking place at the butterfly output
before being stored to memory. It is modeled as an additive
noise source v, and we treat v as per (2). The model
representing quantized values of butterflies with non-power-
of-2 radices is given in Fig. 3. Here there is a noise source, v,
modeling the quantization at the butterfly output, and a
second noise source after the multiplication by the TF, u, that
models the quantization noise caused by quantizing the result
of the input multiplied by the TF.

In addition, throughout the FFT there are plenty of cases
at which the butterfly’s output value, before being scaled
down and quantized, is a result of the summation of b-bits
numbers multiplied by TF coefficients from the set

T2 (L,-1j,—j}; j=V-1, “)
i.e., all the coefficients toward a given butterfly output are
among the set 7;. We define those outputs as the set 0. In R2
and R4 butterflies, the outputs belonging to the set O are the
outputs of butterflies that all the TFs preceding the butterfly

belong the set 7;. For the non-power-of-2 radices, the first
output of any butterfly belongs to the set O (since y,. o =

270

e’k =1 belong to the 77 set). In those cases, where all
the coefficients toward a given butterfly output are among the
set 7;, the multiplication of a b-bits value x € [—1 ,1—
27(=D] py the TF w € 7; would result in a 2b-bits number
a = w - x that it’s lower b bits are equal to zero. When such
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Fig. 2: R2 and R4 quantization noise butterfly model

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

J9



a number is scaled down by very few bits, the quantization
noise does not obey to the uniform distribution anymore [19].
In this case we get an RV having a discrete distribution and
non-zero mean. For example, in the case that such a number
is shifted one bit to the right, the quantization noise &, is
distributed as

0 w.p.0.5

f= —12_“"1) w.p.0.5, ®)
2
where the subscript 1 in &, refers to the case of quantization
noise generated by right shift of the b-bits number by one bit.
The expected value of this noise equals —2~®~Y /4 and
hence, when dealing with SQNRs of those RVs, we will
relate to the noise power rather than to its variance. To
distinguish the power from the variance we use the symbol
p? for power. The expected value of the power of ¢, then is

2 L . L —(b-1>)2 _rew

ph =50+ (52 - (6)
As expected, this is larger than the variance of the zero mean
uniformly distributed quantization noise of (3). In a similar
way we can calculate the noise power of quantization noises
that are generated due to the rounding after right shift of a b-
bits number by q bits. In most FFT topologies and radices up
to R5, the right shifts are in the range of 0 to 3. Moreover,
for right shifts of 4 and above, the quantization noise power
is very close to the variance of the zero mean uniform
quantization noise of (3). Therefore, for our analytical
derivations we use

0 ; =0
%2-2(”-” q=1
Py = 31%12_2@_1) e (7)
mz—z(b—l) . q=3
%2‘2(”'1) ; q=4

I1l.  SONR OF A GENERIC BFP-FFT

By “generic BFP-FFT” we refer to a BFP-FFT that
incorporates down-scaling by right shifts at the outputs of the
FFT stages using an arbitrary scaling policy, where a scaling
policy refers to the decision at which stages to scale down,
and by what factor. For now, at which stages to scale down
and by what factor will be parameters in the derivation. In the
following paragraphs we will relate to specific BFP scaling
policies and will analyze their SQNR performance. We
assume zero mean i.i.d. input sequence, x(n), and that the
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Fig. 3: Quantization noise model for Non-power-of-2 butterfly

quantization is regarded as an i.i.d. noise source. Moreover,
multiple quantization noises at the input to a given butterfly
that have been generated at earlier stages are mutually
uncorrelated [12]. In order to derive the analytical expression
of the SQNR, we will adopt the analysis strategy of Weinstein
[12]. Let us relate to an input sequence of length N, x(n), and
a mixed-radix FFT with M stages. Denote the radix of the
mth stage as R,,, such that [[¥_, R,, = N. The scale value at
the m®" stage is a,,, m € {1, 2, ..., M}, where we restrict a,,
to be of the form a,,, = 279 and q,, is the number of right
shifts at the butterflies’ outputs of the m*" stage. We denote
xn,(n) as the array values at the output of the m®" stage,
where x,, (k) = X (k) is the FFT output, and x,(n) 2 x(n)
is the FFT input. For a zero mean, i.i.d. sequence x(n), the
variance of the signal at the FFT output is given by

M
of, = Nog, 1_[ a? = Na§02‘22%=1 am (8)

m=1

The noise at the output of a given butterfly is composed of
two components: the noise that is generated by that particular
butterfly, which we call butterfly self-noise, and the noise that
is propagated through the butterfly (noise that was generated
at earlier stages), which we call propagated-noise. At
butterflies of R2 and R4, the self-noise is composed of a
single noise source, v, at the butterfly output (refer to Fig. 2),
while at the other, non-power-of-2, radices it is composed of
the sum of R,, noise sources u,, n =0--R,, — 1, scaled
down by a,,, plus a single v noise source at the butterfly
output (refer to Fig. 3). Defining a uniform RV ¢ distributed
as §é~U[—27P,27Y), and denoting the variance of the self-
noise at each of the stage outputs as ¢, we have

oz (m) = Cp, - ¢, 9)

where
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R, € {2,4}

1 ;
Cm = { R, € {2,4}.

Rtz +1) (10)

To simplify the description in the sequel, we define the set of
radices R2 and R4 as the set S.

The propagated-noise power passing through a butterfly
is multiplied by a factor of R,,,a2, as each butterfly output is
composed of the sum of R,, i.i.d. input noise values and is
multiplied by a scaling factor a,,,. Looking at the propagated-
noise at the output of an M stages FFT, it is observed that the
self-noise from the first stage propagates through the
following M-1 stages, which results in accumulation of
[1¥_, R,, such i.i.d. noise sources, each attenuated by a
factor of [T _, a2,. The propagation of the self-noise from
the second stage results in accumulation [T _ R,,, such i.i.d.
noise sources, each attenuated by a factor of [T¥_; aZ,, and
so on. The total output noise variance, o2, for an M stages
FFT, assuming all the quantization operations are modeled as
uniform RVs, U[-27?,27%), is therefore given by the
following expression

M-1 M
of = o} (CM + Z Crm 1_[ Riai2>. (11)
m=1

i=m+1

For the sake of simplicity of the formulation, we define a
. . 1
virtual (M + 1)®* stage at which ay,, = T and re-

write (11) as

M M+1
of = of (Z Cm 1_[ Riaiz). (12)
m=1

i=m+1

In (11) and (12) it was assumed that the self-noise is a
continuous RV and have the same PDF at all the outputs of
all the butterflies. For b sufficiently large (e.g., b = 16) this
assumption is commonly accepted. However, as explained in
paragraph I, This is not the case for butterfly outputs of the
set 0. The noise at the outputs of those butterflies is a discrete
RVs and its Probability-Mass-Function (PMF) depends on
the number of right shifts took place at the butterfly output.
The power of those noise sources is larger than that of the
zero-mean uniform RV, and hence they also have negative
effect on the quantization noise power at the FFT output. In
order to be able to evaluate the effect of those noise sources,
we want to incorporate their statistical model in the derivation
of a2 (or p2). Before doing so, it worth mentioning two
important notes. The first is that the distribution of the TFs of
the set 7; among the FFT stages and among the butterflies
within each stage is not uniform. Therefore, in each stage of
radix R € § there are some outputs that their self-noise has a
non-uniform, non-zero-mean discrete PMF, and other outputs
that their self-noise behaves as a continuous, zero-mean
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uniform RV. Similarly, in stages of radix R ¢ S, the first
output of each butterfly is of the set O, which has a non-
uniform, non-zero-mean discrete PMF. The self-noise at the
other outputs of those radices behaves as a continuous, zero-
mean uniform RV. In addition, since each FFT output is
connected (through the FFT flow graph) to a subset of the
butterflies in each stage (except the first stage), the SQNR at
the FFT output will not be identical at all output points. We
will not relate to those effects here and will calculate the
average SQNR at the FFT output sequence (average over all
the output points). In fact, the noise power at the output of
every stage of the FFT is not distributed evenly. But since we
are interested in the average SQNR at the FFT output, we will
also relate to the average noise power at the output of each
stage of the FFT. The second note is the fact that the power
of the sum of two non-zero-mean RVs does not equal to the
sum of the powers like in two independent, zero-mean RVs
as assumed in (12). However, since different noise sources
are passing through different set of coefficients toward the
same FFT output node, they can be assumed random and
independent, justifying the use of the model of (12). There
are very few FFT output nodes near the DC vicinity (near k =
0), that the set of coefficients along the path is correlated and
the above assumption does not hold. Nevertheless, since the
assumption does not hold only for a very small number of
FFT output nodes, the effect on the overall averaged SQNR
is negligible and the model of (12) can be used.

We denote by pém the noise power of a butterfly output
noise source (noise source v) that belong to the set 0. The
output noise power at those outputs is

pa. ; R,€ES

(13)
(0fRmak, +p2) ; Rnmé€s.

p5(m) = {
Denoting also by g,, the fraction of the outputs belonging to
the set O at the m®" stage, we incorporate the effects of those
outputs into the expression of the total output noise
variance/power getting

pE = D 101 = Bk m)

mt M+1 (14)
+Bupim)] | | Ric?
i=m+1
Rearranging (14) and using (9), (10) and (13) we get
M M+1
pt = > [Cn? +bn(0f, —oB)] [ | Ra?.  @9)
m=1 i=m+1

The second term in (15), B,.(p3,, —0f). is a positive
quantity that represents the increased output noise power
caused by outputs of the set 0. The precise expression of 3,
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as a function of the radix R can be extracted from the flow
graphs of the FFTs. As stated before, for R2 and R4, outputs
of the set O are caused by butterflies that all their preceding
TFs are among the set 77, and for the non-power-of-2 radices,
the first output of each butterfly belong to the set O0. The
general rule is that at stages of non-power-of-2 radix, the
fraction of the outputs of the set O is the reciprocal of the
radix itself, i.e., R, while for stages of radices R2 or R4,
the fraction of outputs of the set O is one at the first stage
(m = 1), and the product of the reciprocal of all preceding
radices, [[™;1R;* for m > 1. Alternatively, this can be
written as R,, [, R; * for any m. An exception is the case
that R,, = 2 and the radices of all preceding stages are
among S. In such a case the fraction of outputs of the set O is
211 R = 41, R;t, m > 1. This is given by

(R;l1 ; Rm&S
1 m
41_[R;1 i Rp=2{R;,i<m}€S
Bm = i=1 (16)
| m
[Rm 1_[ R;' ; Otherwise.
i=1

Using (16) in (15), we can calculate the quantization noise at
the FFT output, p2. The output SQNR for a given scale
pattern, q = [q1,92, -, qu] , can be calculated, the by
a?,,/p# from (8) and (15) respectively where assigning a; =
274,

For a mixed-radix FFT, the output noise power of (15) is
a function of the radices’ distribution among the FFT stages.
A precise expression for the output noise is a bit cumbersome.
For fixed-radix FFTs, we can get a closed form for the output
noise by introducing the expression of g, into (15). For R2
this results in

M M+1
pi=ci ) R | | af
m=1 i=m+1
M+1
+(o3, —a)RM | | a? a7)
=2
M M+1
+ ) (0 = oty | | a2,
m=2 i=m+1
for R4 it results in
M M+1
pg_ — 0.{2 RM—m+1 1_[ a,iZ
m=1 i=m+1
y M1 (18)
+ ) (0, —at)rrzmez [ ],
m=1 i=m+1

and for non-power-of-2, fixed-radix, in

M M+1
pi = of Z(Rafn +1) 1—[ Ra?
m=1 i=m+1
M M+1 (19)
+ ) (o =ot)r | | rat
m=1 i=m+1

IV. SCALING POLICIES

Theoretically, one would like to pick a scaling policy that
maximizes the Signal-to-Computation-Noise-Ratio of the
finite-word-length FFT algorithm. Such maximization
requires the allowance of overflows, which generates
overload noise, and the optimization would be over the
guantization plus overload noise. However, in most practical
systems, such overflows are not allowed. As a result, the
scaling policy is selected to maximize the SQNR under the
constraint of zero-overflows. At the ideal BFP-FFT, the
scaling policy is such that throughout the butterflies’
computation, every butterfly’s output is tested for an
overflow before it is quantized down to b bits. If the real or
the imaginary components of the butterfly output are smaller
than —1.0 or larger than 1 — 2=(®~1| the entire stage is re-
calculated and the butterflies’ outputs are scaled down by g
bits before being rounded to b bits and stored to memory. The
value q is selected to guarantee that the scaled result does not
overflow anymore. For example, if one of the absolute values
of the real or imaginary butterfly’s outputs is within the range
[1,2 —27®=D], the entire stage will be re-calculated while
the butterflies’ outputs will be shifted by one bit to the right
(g = 1). If one of the of the absolute values of the real or
imaginary butterfly’s outputs is within the range [2,4 -
27®=D], the entire stage will be re-calculated while the
butterflies’ outputs will be shifted by two bits to the right, and
so on. As was mentioned in the introduction, this scheme
suffers from non-deterministic latency and therefore is less
favorable in practical implementations. The second, more
common, policy is the one proposed by Shively [13], which
guarantees deterministic latency and lower complexity at the
expense of decreased SQNR. In this policy, the decision
whether to down-scale the outputs of stage m and by what
factor is taken based on the values of the outputs of stage m —
1, which are guaranteed to fit in the range [-1,1 — 2®~D)].
While writing the outputs of stage m — 1 to the memory, the
processor finds the maximal absolute value among the real
and imaginary components of the whole stage, and the down-
scaling decision for the next stage is made according to this
value. The down-scaling criterion is similar to the criterion
being used by the scaling policy of the ideal BFP-FFT, i.e.,
to guarantee that no overflow will occur at the output of the
next stage. Here, there is a need to consider the fact that the
maximal absolute value at the butterflies’ output of the m*"
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stage would grow by a factor that is between 1 and V2R,,
relative to the outputs of stage m — 1. In order to formalize
this, let us define x5, (n) forn € {0,1,..., N — 1} as

x5 (2n) = real(xm (n))

20
x5(2n + 1) = imag(x,(n)), (0)

and
X = max{|xp ()1} . (21)

The scaling policy of the practical BFP-FFT can now be
written as

1
0 P X < ——
m-—1 \/ER
1 ! < 2
) T = S Xp— =
VZR™ ™ V2R
2 4
Im =19 2 § e < Fpq < —— (22)
VZR ™ "N T 2R
[log,(R)]+ 1 1<~
(0] T =S X
g2 NG m—1

We denote the scaling policy of the ideal BFP-FFT as 9;
and of the practical BFP-FFT as 9.

V. SQNR CALCULATION

From the previous paragraph it is clear that the SQNR at
the FFT output of a particular realization of the FFT depends
on the scale pattern that has been used throughout this
realization. Each scale pattern q =1[q;,q2, ., qu] IS
associated with a resultant SQNR. We adopt Weinstein’s
definition for “theoretical” SQNR as the weighted sum of the
SONR per scale pattern, i.e., the SQNR per scale pattern
weighted by the probability of the particular scale pattern to
occur [12]. The probability of a scale pattern depends on the
radices allocation among the stages and the PDF of the input
sequence. Of course, the radices allocation among the stages
is a design parameter, therefore, for a given radices
allocation, the probability of a scale pattern is solely
dependent on the PDF of the input sequence and the scaling
policy. In the sequel we will derive the scale patterns
probabilities as well as the SQNR for the practical BFP-FFT
algorithm and for the ideal BFP-FFT algorithm, for Gaussian
input sequences. The Gaussian assumption simplifies the
description, yet, the derivation can be adapted to any input
sequence distribution.

A. SQNR of practical BFP-FFT

We start with the derivation of the probabilities of scale
patterns. Given the practical BFP-FFT’s scaling policy, the
probability that there will be exactly g > 0 right shifts at
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stage m is equal to

Pr(CIm = q;ﬁp)
= Pr(297Y < V2R, %y 1 < 29)

(s = )
=Pr(——<%py <——
V2R, = "' T V2R,

(23)
24 24
=Pr|-— <all{xf,_,(n)} <
( o S el ) <
2471 24-1
—Pr| - <allf{xf,_(n)} < )
(o = ooy =
whereas for g = 0
Pr(qm = 0;9;) = Pr(V2RpEm—1 < 1)
p ( 1 ) (24)
=Pr|X,-.1 < .
1 V2R,

By the assumption that the input sequence, x5,_,(n);n €
{0,1,...,2N — 1} is an i.i.d. sequence, (23) and (24), can be
written as

Pr(Qm = Q;ﬁp)

Zq . Zq 2N
= [Pr (— VaR <x5H_1(n) < ﬁRm>] 5)

201 201\
(e 2

V2R, V2R,
and
Pr(qm = O,ﬁp)
1 1 \1*" (26)
=|Pr|-———<x- () <——|| .
[ ( V2R, = ) ﬁRm>]
We now define the following auxiliary variables
T, = 27%0m, 27)
where
m
Qn = Zqi ;mef{1,2,..,M}
(28)
QO = 1 )
and

m
P = nRi. (29)
i=1

Using those, the variance of the sequence at the output of the
mth stage is
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O = Oy P Ty (30)
and the variance of the real and imaginary individual
components at the output of the m'" stage is o7 /2 =
02 Py /2.

For an i.i.d. complex Gaussian input sequence,
x§(m)~N(0,02/2); n €{0,1,...,2N — 1}, it can be shown
that all the intermediate sequences x5, (n) ,m € {1, 2, ..., M}
are also Gaussian i.i.d. [12]. Therefore, the probability that
the outputs of the m*" stage would be shifted by exactly g >
0 right shifts, given that there were accumulated Q,,,_, right
shifts at the stages preceding stage m is

PT(Qm =q | Qm—l; 0-)?0'1917)

24 N ga-1 WZN
V2R V2R

=ierf —er_l —lerf —GX:_l
V2= | ) (31)

2N
24
| Oxo/ 2PmRme—l
r 2N
2071
L o-xov 2PmRme—l

and the probability that there would be no right shifts (q,, =
0) is given by

Pr(qm =0]|Qm-1; 0-9?0'1917)

1 2N
V2R,
\/E G)\(/mi_l (32)

= |erf

2N

_ f 1
= ler _—
| axo\/ 2PmRme—l

where erf (x) is defined by

X

erf(x) = if e tdt (33)
N= .

0

We use those per-stage probabilities to calculate the
probability of a specific scale pattern, q = [q1, 92, -, qu],
Pr(q; 0,30,191, )

(34)

M
= Pr(‘hi Uaggrﬁp) 1_[ PT(Qm|Qm—1i 0'9?0,19;;) )
m=2

and the output SQNR is calculated by the weighted sum of
the SQNRs per scale pattern as
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SQNRy, = Z Pr(q;0%,9,)  SQNR(q,02,)
q

(35)

O-xM (Gxo)
pE (ql O-xo)

Z Pr(q, o-xo’ P)

In (35) the expression Pr(q; a2 ,9,) is calculated by (34),
o2, () is calculated by (8) and p2(q,d?), with a; =
274 is calculated by (17), (18) or (19) for R2, R4 and non-
power-of-2 radices respectively. The number of different q
patterns is quite large (e.g., for R2, since g,, can take one of
three options {0,1,2} there are 3'°82N optional different
patterns). Nevertheless, the summation over all the g patterns
in (35) can be calculated in reasonable time via a computer
program.

Since we focus the analysis here on Gaussian inputs
which are un-bounded in their values on one hand, while the
FFT under analysis requires inputs in the range [—1,1 -
27®=D] on the other hand, we select the variance of the input
signal such that the probability for values outside the allowed
range at the input is sufficiently low. For the sake of the
current analysis, we used g, = 0.15 which leads to a very
low probability of having a sample outsize the allowed range.
For example, for 4096 points FFT, the probability of having
a vector of size 4096 with a sample outside the range [—1,1]
is approximately 1077 (once per ten million FFT
realizations, in average, there will be an input sample that has
to be saturated to [-1,1 — 2=~ 1]).

B. SQNR of the ideal BFP-FFT

At the scaling policy of the ideal BFP-FFT, 9;, there are
no pre-decisions for per-stage scaling. An FFT stage is
calculated without scaling and throughout the calculations, if
any of the stage’s outputs overflows the allowed range, the
whole stage is re-calculated while the outputs are down-
scaled before being written to memory. Note that in the ideal
policy there may be multiple re-calculation of the same stage
if the strategy is to initiate the re-calculation upon the first
overflowed value (strategy (a)). Different strategies that will
eliminate the multi re-calculations of the same stage are: (b)
upon the detection of the first overflow - set the scale value
to the maximal scale value, and (c) always calculate the stage
to its end and if overflows have been detected throughout the
calculation, set the scale value according the largest
magnitude among the detected overflowed values. Note that
strategy (b) suffers degradations in the SQNR performance
due to potential mismatch between the scale value and the
actual maximal overflow value. Nevertheless, here, for the
sake of SQNR comparison, we assume strategy (a) or (c),
meaning that the scale is according to the largest magnitude
output sample and no performance loss is involved. As
opposed to the practical case where the scale decision for

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



stage m depends on x,,,_; (n), which are the outputs of stage
m — 1 after being scaled down, the scale decision of the ideal
BFP-FFT depends on the output of stage m before being
scaled down. Let us denote the output of stage m before
being scaled down as s,,(n), such that the scaled down
values are

xm(n) = amsm(n): (36)
and define sg,(n) and 3, in analogous to (20) and (21) as
ss(2n) = real(sm (n)) a7
sE(2n+1) = imag(sm(n)),

and
Sm = max{lsy (M)} . (38)

Now the SQNR analysis using the ideal BFP-FFT policy
follows the steps of the analysis of the practical BFP-FFT
scheme. The output signal variance and the output noise
power follow (8) and (15), respectively. The probability that
there will be exactly g > 0 right shifts at stage m is equal to

Pr(q, = q;9;) = Pr(27t < §, <29)
= —24 < 3 < 24
Pr( 29 < argl{sm(n)} <2 ) (39)
—Pr (—2‘7'1 < all{s;(n)} < 2‘7‘1),
and the probability that there will be no right shifts at stage
m,i.e,q=0,Iis
Pr(qm =0;9;) =Pr(§, <1)

= Pr (—1 < argl{sﬁl(n)} < 1) . (40)

Under the i.i.d. Gaussian input assumption, we get for g > 0

Zq 2N
Pr(qm =q| Qm—1§0}?0,19i) = |erf (0_ )]

- Zq_l 2N "
| (5)
L O-Xm
_ 2
= eTf e —
| UxOVPme—l
- 2N
Nerf| ——o1|| ,
| Ox, BnTin_1

2N (41)

and forg,, =0
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1 2N
Pr(Qm =0 | Qm—l;o-)?o’ﬁi) = erf (0_ >]
" (42)

2N
1
o))

VI. RADICES ALLOCATION

For a mixed-radix FFT, the order of the radices (the
allocation of radices to the various stages which forms a
radices pattern) is a design parameter. Different orders will
result in different scale pattern distributions and as a result -
different output SQNR. In fact, the total amount of scaling
(right shifts) of the ideal BFP-FFT for a given input
realization depends solely on the values of the instantaneous
input realization, and is independent of the order of radices.
The number of right shifts in this case can be shown to be

Qu = [log, max(IReal(X ()}, IImag(X(OID],  (43)

where X (k) is the FFT output for the specific input
realization, assuming no scaling take place throughout the
FFT. At the practical BFP-FFT the total number of down
scaling is not completely independent on the order of the
radices. It depends on the radix allocated to the last stage,
stage M , and is in the range {QM,QM+1,---,QM+

[logz(\/fRM)]}.

The output noise, on the other hand, does depend on the
scaling patterns, while those depend on the order of the
radices. The variance of the resultant SQNR between various
radices-patterns is not large and is shown to be in the range
of 0.2 dB to 2.25 dB for the LTE DFT sizes. An easy way to
determine the best order of radices is to calculated the SQNR
(according to (35)) for all the radices permutations and pick
the one with the highest SQNR. In Fig. 4 the best and worst
SQNR among all the radices permutations for each of the
LTE DFT sizes is shown. An interesting observation from
Fig. 4 is that for the non-power-of-2, mixed-radix FFT of the
LTE sizes, the SQNR is not necessarily a monotonic function
of the FFT size. As can be seen there is an average
monotonicity, but not local monotonicity. The reason is the
fact that in close sizes, despite the fact that the size is close,
the set of radices involved is different. Since the quantization
noise generated by a butterfly of non-power-of-2 radix is
larger than that of a butterfly of power-of-2 radix (refer to (9)
and (10)), an FFT that involves more non-power-of-2 radices,
is likely to result in larger output quantization noise. For
example, the sizes of 324, 360 and 384 are three consecutive
sizes in Fig. 4, and show monotonic increasing SQNR. When
examining the radices involved, we find that size 324 include
four stages of non-power-of-2 radices (since 324 = 4 - 3%),
size 360 include three stages of non-power-of-2 radices
(360 = 4 -2 -5-3?%), and the size 384 include only one radix
which is non-power-of-2 (384 = 2 - 43 - 3),
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Fig. 4: SQNR of best and worst radices permutations for non-power-of-2
FFTs of LTE sizes

VII. RESULTS

The derived models of the SQNR of the practical and the
ideal BFP-FFT have been validated against simulation. The
model and the simulation results for 16-bit datatype (b = 16)
and Gaussian i.i.d. input with standard deviation of o, =
0.15 are shown in Fig. 5 and Fig. 6 for radix-2 and radix-4
respectively. The simulation result vs. the BFP model for
non-power-of-2, mixed radix, practical BFP-FFT of the LTE
sizes is shown in Fig. 7. For the simulation results we have
averaged the SQNR of 1000 FFT runs per FFT length. As can
be seen, there is a very good match between the simulation
results and the derived model in all cases. The gap between
the refined statistical model (that incorporate the refinement
for butterfly outputs of the set 0) and the simulation result for
the practical BFP-FFT is in the order of 0.2 dB for the fixed-
radix, power-of-2 FFTs and in the order of 0.5 dB for the
mixed-radix, non-power-of-2 FFTs. The simulation results
for the ideal BFP-FFT are not shown in the figures since the
model has almost perfect match to the simulation result with
gaps that are in the order of 0.05 dB.

In Fig. 5 and Fig. 6 we can also see the effect of the
refined statistical model for the butterfly outputs of the set O.
In Fig. 5 is it seen that the model neglecting the effects of the
butterfly outputs of the set 0, for radix-2 BFP-FFT, is
optimistic by about 0.5 dB for the practical BFP-FFT and in
Fig. 6 it is optimistic by about 1 dB for radix-4.

One of the main goals of the paper is to provide an
analytical tool that enables the prediction of the SQNR
penalty one needs to pay for getting fixed latency BFP-FFT.
This penalty is clearly seen for radix-2 and radix-4 in Fig. 5
and Fig. 6 respectively. We see that such a penalty is in the
order of 6 dB when the number of stages is above five, and
grows up to 13.5 dB for lower number of stages as seen at the
case of 64 points radix-4 FFT. The reason that for low
number of stages the degradation of the practical BFP-FFT is
larger, is the fact that the difference between the number of
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truly required down-scales (used by the ideal BFP-FFT) and
the number of down-scales used by the practical BFP-FFT
(Shively’s scheme) reduces as the number of stages grows
and that in the practical BFP-FFT the scaling take place at
earlier stages.

Another interesting observation that the model reveals
relates to the comparison of the SQNR between radix-2 and
radix-4 BFP-FFT implementations for a power-of-2 fixed-
radix FFT. It is well known that from complexity perspective,
the radix-4 has advantages over radix-2 (at least in the
number of multiplications). From the results in Fig. 5 and Fig.
6, we can also see that radix-4 have better SQNR in the ideal
BFP-FFT implementation. We get 4 dB advantage for 64-
points FFT down to about 2 dB advantage for 4096-points
FFT. However, for the practical BFP-FFT we see an opposite
behavior. The radix-2 practical BFP-FFT results in 2.8 dB
better SQNR for 64-point FFT, down to 1.2 dB better SQNR
for 4096-points FFT. The reason for this phenomenon is that
the number of the quantization noise sources depends on the
number of stages, such that in the radix-4 FFT there are half
the number of noise sources as compared to radix-2, while
the total down-scaling depends on the type of the BFT-FFT.
For ideal BFP-FFT the total down scaling of radix-2 and
radix4 is the same (as given in (43)). Hence, since radix-2 has
more quantization sources, it also has lower SQNR
performance as compared to radix-4. For the practical BFP-
FFT, number of down-scaling of the radix-2 and radix-4
FFTs may not be the same. Since the maximal absolute value
is a monotonic, non-decreasing, function of the stage index
(it always non-decreasing between consecutive stages) [7],
the number of down-scales of the practical BFP-FFT would
be greater or equal to that of the radix-2. As a result, the signal
power at the output of the radix-4 practical BFP-FFT is lower
or equal that that of the radix-2 and hence, despite the fact
that there are more noise sources in radix-2 the total SQNR
is better

M.{a\ i - : —
- practical BFP-FFT, simulation
§ ~ N — & —Practical BFP-FFT, refined model
82 A —-%-— Practical BFP-FFT, non-refined model
- ~A — & —|deal BFP-FFT, refined model
80 -~ i
T A

64 128 256 512 1024 2048 4096
FFT length

Fig. 5: Radix-2 Practical BFP-FFT
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82 1 ~ 1
~

-

64 256 1024 4006
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Fig. 6: Radix-4 Practical BFP-FFT

VIIl. CONCLUSIONS

In this paper we extended the analytical model of the
finite-word-length-effects of Cooley Tukey DIT BFP-FFT of
[1] to cover fixed-radix, as well as mixed-radix, non-power-
of-2 FFTs. We incorporate butterfly outputs belonging to the
O set as a refined model, and derived the analytical
expressions for the ideal and practical BFP-FFTs. The
models have been validated against simulation and found
highly accurate for both, the ideal and the practical BFP-
FFTs. The model enables to accurately predict the SQNR for
the practical BFP-FFT and the performance degradation
compared to the ideal BFP-FFT scheme. The model also can
be used to determine the best radix order of mixed-radix FFTs
as described in paragraph VI.

The derivation covers DIT-FFT and refer to a straight-
forward implementation model of non-power-of-2 butterfly.
The framework used can be easily adapted to other topologies

82 T T T T T T

— & —Practical BFP-FFT refined model
Practical BFP-FFT simulation

68 b

0 200 400 600 BOO 1000 1200 1400
FFT length

Fig. 7: Mixed-Radix LTE sizes Practical BFP-FFT
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and other implementation models of the non-power-of-2
butterflies.
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