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Abstract—Structural health monitoring applications (SHM)
require large volumes of data that can only be acquired with
automatic methods, such as robots or UAVs. However, localizing
a drone in close proximity to the target structure poses significant
challenges, particularly when the GPS is not precise enough. A
possible solution is to use vision-based localization in a previously
build model of the target. The localization can be however very
challenging if, for safety reasons, the reconstruction of the model
has been acquired far from the target and the target has a
low-texture. These issues often result in reduced data density
and obstruct convergence to the true position. The majority
of previous work deal with the localization at far-field regions,
while only few methods address the vision-based localization close
to targets with low-texture. This paper presents a novel Dense
Visual SLAM method tailored for close-range localization to
surfaces using unmanned aerial vehicles (UAVs) in GPS degraded
conditions. Our method uses a custom registration method to
enable realistic rendering with dense maps, designed for close-
range visual odometry and surface modeling. The system operates
in two steps: First, the UAV performs an exploratory flight with a
stereo camera to build a dense map, modeling surfaces as ellipsoids.
Secondly, the system exploits the map to generate reference data,
enabling dense visual odometry (DVO) in close proximity to the
surfaces without the need of stereo data. Experiments in realistic
simulated environments demonstrate the system’s capability to
localize the drone within 16 cm accuracy at a distance of 2 m from
the surface, outperforming existing state-of-the-art approaches.
Tests on real data confirm this performance in real low-texture
scenarios.

Keywords-robotics; autonomous vehicles; vision and scene
understanding; volumetric image representation.

I. INTRODUCTION

This work builds upon the hybrid SLAM method introduced
in [1], keeping the two-step workflow while incorporating
significant advancements. Such methodological improvements
reflect the adaptation of localization techniques for UAV-based
monitoring and inspection tasks. UAVs have experienced a rapid
increase in adoption across diverse fields [2] in recent years.
Natural hazards and civil engineering sectors are no exception,
with growing enthusiasm for utilizing these advanced tools in
classification surveys and inspections [3][4]. UAVs can operate
either manually, with pilots directly controlling the drone, or
autonomously, using technologies such as environmental sens-
ing and self-localization. Recent technological advancements
have led to the development of autonomous drones capable of
navigating intricate and geometrically complex environments
[5]. As a result, their role has evolved in applications such as
infrastructure inspections, cliff surveys, and more generally in
environmental monitoring [6].

While some surveilling applications can be performed with
current UAV localization techniques [7], more demanding tasks
like close-range inspection are still an issue. Such tasks enable a
more effective analysis and diagnosis through SHM techniques
[8]. With richer data, like radar measurements ([9], [10]), the
quality of structure’s digital twins and their pertinence can
be greatly improved. However, these measurements require
proximity to the surface, which is often done manually.

Manual acquisition not only poses significant risks to human
agents but also lacks in coverage. Although UAVs have the
potential to solve this problem but there are some challenges
to address first. Accurate localization is a critical requirement
for deploying autonomous robots for SHM tasks. However,
conventional techniques often struggle with the accuracy of the
pose estimation, specially in cluttered environments or close
to structures.

Traditionally, UAVs are located using GPS or even GPS-RTK
modules, while they are convenient, their performance depends
heavily on the operation conditions. There are two principal
issues. First, the coverage of the GPS signal, which can
deteriorate or even fail sometimes. In the case of GPS RTK, the
effects of bad reception can degenerate by the proximity to the
correction transmission station and the availability of correction
data. Secondly, obstacles between the signal sources and the
reception antenna can greatly impoverish the quality of the
location. Multiple obstacles, typically in urban environments,
produce multi-path interference, further degrading localization
quality [11].

When GPS signals are unavailable or unreliable, V-SLAM
provides a robust alternative for UAV localization. Visual data
can serve for localization without worrying about multi-path
interference or data availability. However, there are challenges
to solve before being able to locate an UAV during close-range
inspections. UAVs face strict weight and energy constraints,
which limits their capacity to carry both measurement and high-
performance localization equipment simultaneously. This can
be mitigated by dividing the computational load in two steps:
A mapping step with a high-capacity computation payload and
a second step with a simplified tracking unit and measurement
equipment. With the deactivation of the mapping module during
the second step, the tracker can only rely on a pre-generated
map as reference.

The lack of map updates introduces other challenges,
localizing far from the original map trajectory often results in
reduced tracking accuracy. The reasons may vary depending
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on the method, one of the most common for feature-based
V-SLAM methods is the perspective narrowing. As cameras
approach the inspection surface, their field of view narrows,
reducing available visual information and rendering previously
mapped features unrecognizable from the new perspective.

In this paper, we present a V-SLAM framework tailored
for close structure inspection using UAVs. To address the
challenges of this use case, we propose a two-step V-SLAM
framework. First, a stereo camera captures images during a
mapping flight, using a feature-based method for ego-pose
estimation. The system’s modular design allows flexibility on
the choice for mapping ego-localization methods.

The resulting dense map serves dual purposes: aiding
mission planning and enhancing localization in the second
step. In this phase, precise localization is performed using a
lightweight monocular camera, reducing the weight and energy
demands typically associated with additional measurement
equipment like radar or thermal cameras. Key contributions of
our method are:

• A registration method that enhances accuracy and robustness
of the localization system.

• Generation of dense map that enables multi-session localiza-
tion, increasing system versatility.

• Use of dense map for precise localization in close-range
inspection scenarios.

• A EWA volume splatting variant, tailored for low density
point-cloud rendering.

• Support for agent localization across mixed hardware
configurations.

The remainder of this paper is organized as follows: Section
II reviews related work that influenced this study. Section III
describes the proposed method, with details of the mapping
workflow presented separately from the localization modules.
Section IV presents the experimental results that validate
system performance, along with the test conditions. Finally, the
conclusion discusses the results and outlines future research
directions to improve the method.

II. RELATED WORK

While some existing methods attempt to handle issues like
perspective narrowing, few specifically address the challenges
posed by scale changes under extreme conditions. Classic
V-SLAM approaches propose different strategies for pose
estimation. On one hand there are the feature-based methods,
such as ORB-SLAM and its successors [12][13], are widely
used due to their computational efficiency. However, they
perform poorly in low texture scenarios, specially in localization
mode, where the system conserves computational resources by
relying on pre-generated maps rather than real-time mapping.

On the other hand, dense direct methods [14], [15], derived
from SfM techniques (Structure from motion) are capable of
locating the agent’s location and demonstrate robustness in low-
texture regions. This robustness derives form the use of pixel
intensity gradient over the entire image to better estimate the

pose changes, particularly in conditions where feature-based
methods may struggle. However, the reduced field of view near
inspection surfaces not only decreases point density, it also
introduces gradient inconsistencies, which can compromise the
system’s localization performance.

Advances in V-SLAM have explored mixed approaches to
benefit from the strengths of both feature-based and dense
methods. Prior work has explored the creation of dense maps
from sparse Key Frames, as presented in [16]. Zhang and
Shu integrated a dense mapping component into the ORB-
SLAM2[12] framework using stereo data. While effective for
merging overlapping point cloud regions, this approach does
not address localization challenges in close-range inspections.
Specifically, the ORB-SLAM tracker struggles to match de-
scriptors in such environments, likely due to the limitations of
scale invariance, where descriptors lose discriminative power
at extreme proximity. Moreover, the map generated by Zhang
et al.’s dense mapping thread neither addresses this problem
nor demonstrates the necessary capabilities to resolve it.

One approach to mitigate perspective changes is to improve
the ability to generate pose hypotheses from multiple view-
points. For example, Kerb et al. [17] proposed a novel modeling
method that enables realistic rendering by optimizing 3D
ellipsoid parameters using outputs from SfM algorithms. These
ellipsoids can be rendered from new viewpoints via Gaussian
splatting, an old rasterization technique that is now more
affordable thanks to advancements in hardware architectures
and rendering methods. This work reignited interest in dense
mapping approaches, leading to the emergence of new SLAM
techniques inspired by [17]. With proper equipment, VSLAM
methods can benefit from more realistic images, increasing
their robustness in far-field regions of the map.

Although Gaussian-splatting can mitigate the perspective
narrowing issues, it does not guarantee the geometric accu-
racy of the ellipsoids because its optimization focuses on
visual quality rather than spatial precision. Moreover, high
quality images remain computationally expensive, even with
an optimized implementation. While effective in structured and
information-rich environments, they are limited in low texture
scenarios. Additionally, their energy consumption and hardware
requirements make them impractical with UAV platforms.

Compared to the initial paper [1], this paper introduces new
improvements focused to improve the robustness of the system
in close-range observations. First, the rasterization method is
improved, transitioning from an ellipsoid representation based
on the statistical properties of the observations to a model
that prioritizes geometric accuracy and incorporates occlusion
handling. Secondly, this work expands on the graph-based map
management introduced in the previous paper by detailing
the logic behind node creation and adding a critical feature:
the detection and handling of pixel resolution changes to
enhance DVO performance This enhancement enables DRONE-
SLAM to detect when incoming images improve the surface
model’s detail and prioritize their integration into the map.
Finally, this paper introduces new experimental validation with
real-world data acquired in conditions relevant to close-range
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UAV inspections. While [1] primarily focuses on generating a
dense map to address the point density problem in close-range
observations, this paper extends the approach significantly. It
emphasizes geometric accuracy, realistic scene rendering, and
detailed implementation, bringing the system closer to a fully
integrated dense SLAM framework.

III. PROPOSED METHOD

To address the challenges of close-range structure inspection
we propose a visual localization system. In contrast to GPS-
localization that can easily be occluded by the elements in
the environment, this kind of methods do not rely solely in
fixed sources of information and use the environment in their
favor. While the system can work with conventional cameras,
it was designed for the application case of UAV deployment.
In the current state of implementation, the proposed method is
designed to work in two steps. This section explains the main
elements of the proposed method. First, we will elaborate over
the details of the mapping step, the workflow, how the 3D data
is computed and the aggregation of the different key-frames.
Then, the elements of the scanning step will be explained in
the scanning section along with other key elements of the
workflow related to the estimation of the drone pose relative
to the environment.

A. Mapping

In the first step the pilot of the mission shall perform
a simple exploratory fight around the structure at a safe
distance with the mapping payload composed by a pair of
synchronized stereo cameras. The main components of the
mapping workflow (see Figure 1) are described as follows:

1) System initialization: In this implementation, the UAV is
supposed to start close to a common takeoff position for both
mapping and scanning steps. This assumption is necessary
because, currently, the system lacks a loop closure module
capable of recognizing previously visited locations. During
the first scene observation, the mapping module computes the
first data-cloud from the stereo images and saves it as the
first reference data. The selection of the initial observation
is crucial for high-quality mapping, as the rest of the map
will be forced to be coherent to the scale of this frame. This
initial data-cloud is assumed to provide a fair reference, as
the flight plan includes a preliminary parameter verification.
This can either be done with a calibration check or an on-site
adjustment of the depth estimation module’s parameters.

2) Depth estimation: The current implementation relies in
two different methods for scene depth estimation. For low-
texture unstructured scenarios, the depth map is computed
using the stereo Block Matching (BM) algorithm provided by
the OpenCV library [18]. With proper parametrization, this
method can approximate the overall geometry of the scene
even in low texture scenes. However, its performance depends
heavily on the parametrization, which has to be done manually
for each scenario, compromising mapping precision. Moreover,

the disparity estimation quality of this module vary depending
on the scenario, requiring additional adjustments. In case of
very low-textured environments, this algorithm is obliged to
chose between sensibility for geometry detection and noise-free
depth-maps. That said, the use of this module is provisional
until the implementation of a better method is achieved.

The second module used is the CREStereo ML model,
proposed by Li et al. [19], which performs well in structured
scenarios, offering a full depth-map estimation (BM often skips
parts of the images when the texture uniqueness parameter
is too strict). For this implementation we used a pre-trained
version of the model available on the project’s GitHub
repository. However, as this model was not specifically trained
for our unstructured environments, often mistakes the surfaces
of natural formations (i.e. cliff scenario) by planes.

In both cases, the disparity images are collected and used
to compute a depth-map that will then be used to build the
data-clouds that from now on we will call Surfaces (Sx).

3) Environment modeling: These data-structures model more
than a simple point-cloud. While many point-cloud registration
methods assume that cameras, very much like lidars, observe
a set of perfect 3D points in the space.

Our Surface model, however, considers the fact that cameras
are sensors that discretize the space in pixels. Due to technical
restrictions linked to the construction of the camera sensor,
pixels cannot be infinitely small. In consequence, this data-
structure considers each pixel as a patch of the surface that is
observed at a certain position to conserve as much information
as possible from the observation model. To implement the
patch hypothesis, each j pixel is saved with the following data:

• 3D mean position mj computed and updated through map
registration

• A shape matrix Mj representing the patch covered by the
pixel

• Color information of the pixel cj
The shape matrix of each pixel pj is computed so the

ellipsoid can cover a plane matching the size of the pixel in
the real world (see Figure 2):

wpxj
(pj) =

djwcam

wimgflength
(1)

hpxj
(pj) =

djhcam

himgflength
(2)

Here, dj is the depth value at pj , wcam and hcam are the
camera sensor size in meters, wimg and himg are the image
size in pixels and flength is the focal length in meters. The
shape matrix can be composed as follows:
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Figure 1. Mapping thread workflow. Input images Ik are frames selected when the current estimated pose T̂n
w checks any criteria for node creation becoming

then T̂k
w . DVO module is initialized with identity as the estimated pose and the stereo-images pose should be the same. Tracking thread uses similar structure
but instead using virtual reference data Iv ,Dv the DVO module uses the data stored in the closest surface to the current estimated pose T̂n

w .

Figure 2. For each n incoming frame there is a color image In and its
respective depth-map Dn, the shape matrix is computed so the corners of the
pixel plane are tangent to the ellipse border. The surplus ellipsoid coverage is

assumed to be forget by the weighted average.

The shape matrices are first computed in the camera frame
and then rotated to the global frame so they can be updated
with the next observations. The 3D position of the ellipsoid is
determined by the weighted average of the point observations
along the camera axis. The color information is saved in the
form of CIELAB L,A,B coefficients and also fused trough
weighted average. This approach contemplates homogeneous
lighting across the scenes, further work on light modeling will
improve the robustness of the system in more realistic lighting
conditions.

4) Pose correction: As the agent moves, new stereo images
are continuously acquired. These new observations are used by
the tracking module to keep an estimation of the pose of the
agent. Simultaneously, the mapping module will select specific
frames as key-frames Ik,Dk. At each k selected frame, the

incoming stereo images are aligned with the closest reference
surface in the map. To achieve this, a virtual observation form
the actual estimated pose is computed using the rasterization
module. The rendering of the virtual observation will be
explained in Section III-C.

Once rendered, the dense odometry module (DVO) computes
the pose between the virtual observation of the map Iv,
generated at the current estimated pose T̂k

w, and the current
stereo frame Ik. The resulting pose, T̃v

k, represents the error
of the tracking module. In consequence, the true pose of Ss

can be computed as:

◦
T

k

w = T̂k
w

(
T̃k

v

)−1

(4)

Since the visibility of the map ellipsoids depends on the
position of the camera, the computation of the correction
T̃k

v is done iteratively. This continues until the position and
rotation of the pose are under a threshold defined by the user.
For each iteration, a new set of virtual reference image Iv and
depth-map Dv are computed (feedback loop at the bottom of
Figure 1).

5) Surface data-structure: Once the pose is corrected, the
surface is supposed aligned with the global map. Under this
assumption, information in the incoming frame can either be
used to update an existing reference surface or to create a new
one.

Initialization: New surfaces are initialized with data from the
neighbors and the incoming frame that triggered the creation
of the new surface. Since all frames are aligned, neighbor data
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Figure 3. Reference surfaces are initialized with neighbor’s data. For instance,
the shape matrix Mj member of a neighbor surface SN is projected into Sk

using a linearized projection model around mj . Perfect correspondences are
passed into the grid (red circle), unoccupied pixels covered by the projection

are initialized with new ellipsoids (green crosses), occupied cells (orange
ellipsoid) are updated following the initialization criteria (yellow triangles).
When multiple cells are covered by the projection, the ellipsoid (Mj ,mj)

becomes the group of the G ellipsoids covered by the projection:
{Mj ,mj}Gg=1. In Sn the group will be updated collectively but in Snew

each cell preserves individuality.

can be passed to the new surface through a simple projection
into the current camera frame (see Figure 3).

In each frame, the data is organized as a grid of ellipsoids
to simplify the manipulation of the data, this grid emulates the
image plane. As each neighbor pixel is transferred into the new
surface, the ellipsoids are projected following the algorithm
proposed in [20]. To achieve this, the image projection matrix
is linearized at the center of the ellipsoid. Then, based on the
dimensions of the ellipsoid, the coverage of cells is computed
to determine whether a reference to the neighbor cell is placed
or a new ellipsoid is created.

Since ellipsoids might cover more than one pixel, new
instances are created and stored in the new gird. In con-
sequence, the old instance is divided to contain the group
of ellipsoids generated by the projection. Now Mj becomes
MG =

{
M

(g)
i |g = 1, · · · , G

}
, as shown in Figure 3. This

ensures that updates to the current surface affect each individual
ellipsoid, while updates form a point of view that sees the
group as one pixel will affect all the ellipsoids at once. When
multiple ellipsoids fall in the same pixel, they are also grouped
but only if they are close enough. If they are farther than a
certain threshold, only the closest one is kept.

This maintains spatial relationship of adjacent pixels since
the update of only visible pixels might derive in noisy surfaces.

Update: Once the new surface has all the neighbor ellipsoids
that can be projected onto this plane, the surface assimilates
the information coming from the current camera observations
Ik,Dk (see Figure 4). First, the position of the ellipsoids are
updated pixel by pixel, if the cell is empty, a new ellipsoid
will be created. The update of the position of the ellipsoid
is done computing a weighted average of the pixel depth
values along the camera axis. This simplify computations and
ensure the respect of the projection model and the alignment
of the ellipsoids of the map in the image plane. The current
implementation updates the conic matrices with a weighted

Figure 4. After initialization or when the incoming key-frame does not meet
any of the criteria to create a new node, the data is assimilated in the closest
reference surface Sn0. The selected data Dk and Ik are projected into the

camera frame of Sn0 using an intermediate surface Sk . Unoccupied ellipses
are added into the grid (green) and existing ones are updated along the

camera axis of Sn0 (yellow). We call this operation retro-splatting since a 3D
reconstruction of the incoming data in camera frame is splatted back into the

surface frame.

Figure 5. There are different ways to trigger the creation of a new node: The
distance inter-surface d(Tk

w,Tn0
w ), the pixel size difference w̃px and the

rate of overlap Õcommon. These metrics are computed with respect to the
closest surface Sn0 data.

average in order to get a new matrix that can cover both old
and new ellipsoids.

Is worth noting that, during the initialization of a new
surface the depth-map Dk and the color image Ik are
assimilated directly since they are observed in the pose that
triggered the creation of the new surface. However, in the
case of the update of an existing surface, the depth-map
is used to create an intermediate surface Sk that will then
be used to render a new set of Ivk and Dvk observed
from the reference surface pose. In summary, during the
update and initialization an operation of retro-splatting is
used to project the new information into the grid, either to
update the surface or to initialize it. After full initialization,
the new surface Snew becomes member of the map nodes (Sw).

6) Mapping criteria: One of the main objectives of this
algorithm is to be able to retain as much as information as
possible to enable the localization at proximity to surfaces.
With this in consideration, the system includes a set of criteria
to implement this policy (see Figure 1). Each condition is
verified at the end of the alignment of a new key-frame. First,
the graph will trigger the creation of a new surface when
any distance from the last reference surface (dt(Tk

w,T
n0
w ) or
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dR(T
k
w,T

n0
w )) exceeds a threshold configured by the user or

when no reference surface is found:

dt(T
k
w,T

n0
w ) = ∥Wpos · (tk − tn0)∥ (5)

dR(T
k
w,T

n0
w ) = 2 · arccos (qk · qn0) (6)

Where t is the position component, q the orientation in the
form of unitary quaternion and Wpos is a set of weights to
adjust axis sensibility if needed. This metric is designed to
ensure tracking continuity and decrease the accumulation of
errors product of the projection pixel-discretization.

Secondly, there is the overlap criterion Õcommon:

Õcommon =
|On0 ∩ Ok|

|On0|
≥ τ (7)

Here, Ok represents the occupied pixels in the grid of Sk

and τ is an user defined threshold. This policy exits to ensure
continuity of the mapping operation, specially during the first
stages of the mission. Since there is few information stored in
the map, the lack of overlap can cause the DVO module to fail,
even if the distance traveled is not long. With this criterion,
the graph is prone to detect when new zones are discovered
to ensure sufficient conditions for the DVO module to work.
At the same time the distance threshold can be set higher to
reduce unnecessary node creation.

Then there is the resolution criterion w̃px:

w̃px =
1

Jn0

∑wimghimg
j=1 w

(n0)
pxj

1
Jk

∑wimghimg
j=1 w

(k)
pxj

(8)

Here, w
(k)
px represents the size of the pixel in milliliters

when projected in the real world (see Figure 2) and Jn0
represents the total count of pixels with valid depth at the
surface Sn0. As the agent evolves in the environment, existing
data can often be observed in better conditions. Since the
objective of the map is to enable precise localization at
close-range, the graph manager prioritizes the creation of new
nodes when the difference of resolution exceeds a threshold
defined by the user. In the current implementation, a resolution
improvement of 50% over the original resolution triggers the
creation of a new node. The computation is similar to the
computation of the ellipsoid shape. The mean pixel size of
the incoming frame is compared to the mean pixel size of the
closest reference surface as long as the overlap between them
is greater than a user defined threshold. This ensures that the
new node genuinely represents an improvement in resolution
and overrides the distance criterion when necessary. In this
special case, ellipsoids are overwritten with new information
mixed from previous observations but prioritizing the storage
of the new high resolution data to redefine existing data.

B. Performance

The current implementation of the mapping thread processes
each frame in 355 seconds, with most of this time spent

on creating and manipulating point instances. While most
operations take few milliseconds, the creation of point instances
and the application of geometric transformations alone account
for 181 seconds of the total processing time. The remaining
execution time is distributed between image rasterization (11
seconds) and the odometry implementation (30 seconds), both
of which are slowed by the creation of intermediate surface
structures. Odometry time includes not only the operations of
the DVO module but also pose estimation iterations, virtual
surface creation. Each iteration also requires a rasterization
call, further contributing to the processing time. While similar
operations on arrays of data points can be up to 30 times faster,
the need to maintain consistent point references across different
surfaces limits the use of certain Python optimization tools.

As SLAM systems require an execution time close to the real
time for deployment in robotic applications, this algorithm still
needs to improve its execution time to be able to be deployed
in a real drone. However, this execution time can be greatly
improved when implemented in proper conditions. The current
version has been written in Python 3, data manipulation is
done with the numpy library accelerated with the help of the
numba library in some operations.

A significant limitation of the prototype comes from im-
plementation language. The first issue is that Python usually
executes a single tread process which is not adequate for the
application. While threading is possible at big scale (i. e.,
running tracking and mapping in parallel), many potentially
parallelizable tasks remain executed sequentially. The majority
of the operations are constrained to a single thread due to
numba’s compatibility only with native numpy objects and a
limited subset of operators. Furthermore, at the beginning of
the call, the interpreter still has to execute the numba overhead
to use the compiled executable of the code. Although this
overhead is shorter than running un-optimized Python code, it
remains slower than a fully multi-threaded implementation in
a compiled language.

Another limitation derived from the choice of the program-
ming language is the memory management. To avoid data
redundancy, each ellipsoid is modeled as an object instance
that contains all the information to describe the geometric entity.
When creating a surface, hundreds of thousands of instances
have to be created at each node and this operation consumes
more time and memory than equivalent operations in C or C++.
For instance, with a resolution of 1280x720 pixels, the map
manager takes approximately 60 seconds to create a surface and
initialize it with the information of its neighbors (dependent on
the number of neighbors). This process cannot be parallelized
with numba since this library does not work with Python object
instances. By contrast, implementing this operation in C or
C++ would allow faster indexing by memory allocation and
faster data processing with parallelized processing.

Finally, the implementation of the current version does
not use any graphic computation resources. This means that
operations like the render of the depth and color images could
be greatly accelerated for both tracking and mapping processes.
This omission contributes further to the system’s suboptimal
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performance in its current form. However, with targeted
optimizations in language, threading, memory management,
and GPU utilization, the proposed algorithm shows strong
promise for real-time deployment in robotic systems.

C. Localization

In the next step, the drone is assumed to use the information
of the dense map generated from the first flight and perform a
scanning flight with the measurement payload. This payload
includes any specialized sensing system required for the
inspection and a localization camera, which does not need to
be stereo.

1) Dense visual odometry (DVO): The alignment of the
key-frames and the precise tracking of the system depends on
the DVO module [21], provided by the OpenRox library. This
module uses a reference image and a depth-map to compute
the pose between the reference data and another input image.
To integrate this module into the current implementation, a
Cython wrapper is used to call its functions, as the module
itself is developed in C.

In broad terms, the module minimizes the photometric error
function between the current image and the warped reference
image until it reaches a threshold. The module uses the zero
mean cross-correlation index (ZNCC) to evaluate the quality
of the alignment between the warped image and the input
image. That said, both tracking and mapping threads reject
the estimation if this index falls bellow the 70%. Such a low
correlation is interpreted as insufficient similarity between the
images, indicating that the estimation may be unreliable for
accurate localization.

As mentioned earlier, the module is accessed trough a Python
warper of the OpenROX library, thus, no splatting technique
during the warping operation. Considering that the warping
operation often

2) Pixel splatting: To feed the DVO module either for
tracking or for key-frame alignment, the map must be rendered
into a virtual image plane. In both cases, the map is projected
into the image plane of a virtual camera placed at the last
estimated pose using the method of Elliptical Weighted Average
(EWA) described in [20]. With this method each j point in
the point-cloud has to be associated with a shape matrix
representing an ellipsoid Mj . First, the camera projection
model is linearized around the 3D coordinates of the ellipsoid
center uj . As indicated in the work of Zwicker et al., the
linearized projection model of a pinhole camera around a 3D
point uj can be obtained with the following Jacobian matrix:

Jj =


fpx

(uj)z
0 − fpx(uj)x

(uj)2z

0
fpx

(uj)z
− fpx(uj)y

(uj)2z
(uj)x
|uj |

(uj)y
|uj |

(uj)z
|uj |

 (9)

where fpx is the focal distance of the camera in pixels and
(uj)z is the z component of the 3D point uj . This version
has been modified from the original text to include the camera

intrinsic parameters. Using this matrix, the projected 3D shape
matrix V3Dk

can be obtained with the following equation:

V3Dk
= JkRMkR

TJT
k (10)

Here, R is the rotation matrix in the viewing transformation,
which brings the points into the camera frame. A 2× 2 subset
of the transformed matrix is used to represent the projected
2D ellipse in the image plane. The resulting matrix can now
be used to obtain the size of the ellipsoid in the image plane
thus the size of the splatting kernel.

The splatting operation is performed at a zone defined by
the size of the kernel and the aggregation of color/depth is
done using the radial distance metric to ponder the addition.
For a point in the kernel xi, which lies in the kernel of Mj , the
radial distance from the ellipsoid center x0, can be expressed
as:

ri(x̃) = x̃T
i Qx̃i where x̃i = x0 − xi (11)

Here, Qj is the conic matrix, inverse of the shape matrix
Mj , which defines the geometry of the ellipsoid in the image
plane. To save some computation time, the weights for the
aggregation are precomputed and stored into a lookup table
wtab. To align the radial distance to the indexes in the lookup
table, Qj is scaled to match the size of wtab. If r(x̃) is bigger
than 1 this means that the point is outside the ellipsoid thus
does not have to be considered.

In the original code proposed by Zwicker et al. this weights
come from the Gaussian distribution expression. However, in
this paper it was changed for an exponential decay so the
overlap between two close kernels wont generate any blur,
particularly at the centers of ellipsoids.

Pixel occlusion When a kernel pixel falls inside the ellipse,
the corresponding weight in wtab to determine the weight of
the color/depth value in the aggregation. That said, additional
considerations have to be observed given the particular case of
close-range inspections. Due to the proximity to the surface and
the geometry of the scene, ellipsoids that should be occluded
may incorrectly change the image if they fall in unoccupied
areas of the grid. To deal with the occlusion of ellipses two
new weights are added to the traditional weighted average, the
occluded term (oded) and the occluding term (oing).

oded = min

(
1, exp

(
−1

2

dold − dnew
Vzz

))
(12)

oing = min

(
1, exp

(
−1

2

dnew − dold
Vzz

))
(13)

Where Vzz is the z component in the shape matrix of the
ellipsoid and indicates the sensibility of the decay for this
coefficient, the bigger the ellipsoid, slower the occluded value
will fade. Inversely, the occluding term will gain in weight as
the new point places in front of the old one. Both coefficients
are limited to 1 to avoid the saturation of the values as the
only interest of these terms is to ponder information weights
in the case of occlusion. Once these terms are computed, the
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Figure 6. After the mapping flight, a collection of reference surfaces Sw will
be available. Then, according to the trajectory of the flight, a set of specific
frames Svw is also rendered to save computation time around expected poses.

update of the j pixels in the image can be done by an iterative
weighted average:

cj =
oingwici + odedcj
oingwi + odedwj

(14)

where wvj = wtab(ri(x̃i))) (15)

Here, pixel j of the Image grid is updated with the values
of the kernel pixel i whose weight is defined by its distance
to the center of the ellipse. This approach ensures that both
occluded and occluding points are accounted for appropriately,
preserving the spatial accuracy of the rendered image. A
similar aggregation function is applied for the computation of
the depth image.

3) Scan workflow: After the mapping flight, the collection
of reference surfaces can be exploited for subsequent flights
even with reduced optical capacities (monocular instead stereo
camera). In free mode, each reference surface is rendered at
its position to save computation time. Alternatively, if the user
decides that the drone has to follow a particular trajectory, a
set of mission way-points {Tt∗

w |t = 1, · · · , T} must be fed to
the map manager (see Figure 6 at the left). Using these points
as reference, the map manager can generate a set of virtual
positions that ensure the convergence of the DVO module when
the agent moves along the vicinity of the desired trajectory.
The current implementation takes the shortest path between
each pair of way-points and then samples a set of intermediate
positions based on a overlap criterion. To do this, the virtual
positions are at a user-defined certain distance behind the
trajectory to ensure visibility. Their orientation is assumed to
be perpendicular to the target trajectory.

The overlap is computed by projecting the path between
two way-points and selecting the segment of the path within
in the borders of the virtual camera. The next camera center is
selected in function of the portion of the projected line covered

Figure 7. Example of the images seen by the simulated drone during the scan
flight. As shown in this figure, there are little to no strong details that can

help to formulate a correct pose estimation.

by the virtual camera and the overlap criterion. The camera
FOV overlap is computed assuming the next virtual frame will
cover the same portion of the line. This collection of virtual
frame poses is also included in the global map as a simplified
key-frame, composed only by the color and depth information
Ivk and Dvk.

During the flight, the map manager continuously selects the
closest reference data, key-frame or surface and performs dense
odometry relative to the reference key-frame Svk. The DVO
module is now initialized with the estimated pose between
the reference frame and the last pose estimation T̂i

w. If the
control data of the agent is available, a preparatory dead-
reckoning (DR) step is performed to decrease convergence
time (performed in the feedback loop in Figure 6). The current
actual implementation the DR step is only for initialization
purposes, its implementation into a filtered estimator, such
as a Kalman or Particle filter, could provide smoother pose
estimations and correctly model the its uncertainty.

IV. RESULTS

A. Simulation data

The performance of the system was first tested in simulations
with realistic data collected at the Sainte-Marguerite-sur-Mer
cliff (Normandy), monitored in the framework of the Defhy3geo
project [22]. The scene is composed of a segment of a cliff
model reconstructed using the Agisoft metashape software. The
simulation environment was built from the 3D model of the cliff
generated form aerial geo-referenced images. A mapping flight
was carried on the field, with geo-referenced targets placed to
ensure a model alignment accuracy at centimeter-level. The
visible area covers a 60x20 meter section of the cliff with a
non-structured texture (see Figure 7), providing a challenging
environment for texture-based localization.

This test demonstrates the importance of map consistency,
particularly its role in maintaining reliable localization results.
If the mapping module fails to capture environmental details
accurately, an inaccurate initial pose estimate can cause
the DVO module to deviate significantly from the correct
solution. Despite measures to handle local minima, the lack of
sharp geometric features slows pose convergence, potentially
reducing precision over time. However, the use of a dense
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Figure 8. The video used to test the system presents challenges on multiple
levels. First, the lack of significant gradient variations tests the DVO module’s

performance under extreme conditions. Additionally, the geometry of the
environment makes difficult to locate based only in the shape of the surface.

map and realistic rendering in DRONE-SLAM ensures stable
performance even under these challenging conditions.

B. Real data

The algorithm was evaluated using a set of real-world data
to assess its performance under practical conditions. The test
scenario covers a low-texture facade of a building at the
Cerema Normandie-Centre institute, providing a challenging
environment for visual tracking. Since the drone could not
be equipped with a wide-baseline stereo camera, the map
was generated using a photometric model built with aerial
data from a drone Mavic 3E. This procedure replaces the
key-frame selection step of the mapping workflow, providing
an opportunity to evaluate the system’s ability to exploit
other sources of information as reference. Drone operators
frequently generate 3D models using similar tools for purposes
such as visualization, inspection, or environmental modeling,
consistent with the methods applied in this experiment. This test
demonstrates DRONE-SLAM’s ability to effectively utilize pre-
generated models, enabling rapid deployment even on drones
with limited payload capacity.

The real dataset was not evaluated with ORB-SLAM as the
data collected was not sufficient for a fair comparison. The
Mavic 3E cannot be equipped with a wide-baseline camera
essential for long-range depth estimation during mapping,.
In consequence, the map generated in mapping mode was
insufficient to build a significant map, specially when the
interest regions lack of details.

As outlined in the proposed workflow, the scanning trajectory
and reference data were generated to provide inputs to the
tracking thread for pose estimation during the scanning mission.
The tracking test used a video recorded by the drone’s default
wide-lens monocular camera, flying at a distance of 2.5 meters
from the wall. The test surface was a plain white wall recorded
on a cloudy day (see Figure 8).

The software environment is composed of the following
elements:
• Airsim as the simulation environment [23]
• ROS for communication between different software compo-

nents.
• A Python-based offline registration node for map generation.

• A direct odometry algorithm [21] implemented the OpenROX
library (developed by the ACENTAURI team).

• A mission control module to load the map, generate the
virtual frames and control the drone.

C. Benchmark conditions

As done in [1], ORB-SLAM3[13] is refereed as comparison
method. The principal argument to compare with this method
is that this system is relatively popular in robotics since is fast
and precise enough for mobile robots deployment. For each
scenario, we perform almost the same operation with both
ORB3 and DRONE. First a mapping flight is performed with
a stereo camera in full SLAM mode, far from the structure.
A second flight is performed using the generated map from
the first session. In this step ORB3 is configured to run in
localization mode, which implies that no new information
will be added to the map. That said, is worth noting that the
scanning flight with ORB3 is performed still with the stereo
camera since with the monocular camera the system struggles
to converge. For comparison we take the closest flight to the
surface where ORB3 is able to perform the whole flight. The
test allows ORB3 to get lost but stops when the error gets
above 5 meters without recovery.

D. Experimental results

As presented in [1], the system’s performance is evaluated
across three aspects: mapping precision, rendered image quality,
and localization accuracy. This organization is retained to
clearly illustrate the improvements introduced by this method

1) Mapping precision: The first aspect is computed as
the distance of the center of the ellipsoids in the map to
the reference model. For this we computed a KD-tree to
obtain the distances of each surface to the model. To avoid an
unfair comparison, points in the ground plane were ignored
so the distance represents only the quality of the structure
reconstruction. To better appreciate the quality of the map, the
distance is expressed in two formats: the quantity of ellipsoid
centers that fall into three constraints of precision and the mean
distance error of all the points.

TABLE I. MAPPING PRECISION METRICS.

Difficulty Lab Cliff
Hard (< 10 cm) 89.33 % 49.04 %
Medium (< 20 cm) 10.19 % 37.10 %
Light (< 30 cm) 0.46 % 0.13 %
Mean Error Distance 5.17 cm 12.40 cm

2) Rendering: DRONE-SLAM implements improvements to
the rasterization method presented in [1], focusing on enhanced
rendering accuracy and noise reduction. In [1], a parameter was
introduced to define the shape of the weight table, addressing
the overlap of Gaussian distributions. In this work, the ellipsoid
formulation has been redefined to provide a more accurate
representation of the environment. The new implementation
uses a splatting method for surface initialization and updates,
effectively reducing noise in ellipsoid positioning, enabling a
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Figure 9. 3D renderings of maps generated by the mapping module (left)
with corresponding ground truth models (right). Point colors in the generated

maps indicate the distance from the ground truth models. The reference
models were generated using geo-referenced images captured during a

photometric data-acquisition flight with an average accuracy of approximately
5cm, derived from the GPS-RTK accuracy.

Figure 10. ORB-SLAM3 absolute translation error (ATE) in meters during
the scan path with stereo camera. Following the 2 step workflow,

ORB-SLAM3 manages to approach up to 5 m close to the cliff surface.

smoother and more consistent data integration. As a result, the
mapping method more effectively captures subtle surface details
and improves the alignment of data clouds. DRONE-SLAM
continues to address the challenges of reduced and uneven
point density during close-range observations. However, the
need for a custom weight distribution to avoid blurring has
been significantly reduced, thanks to improvements in point
cloud merging strategies.

3) Localization: simulations: The system’s performance is
evaluated based on its localization precision during close-range
flights to a structure. For this, DRONE-SLAM is compared to
ORB-SLAM3 as the baseline in the first simulated scenario.
During the scan flight, ORB-SLAM3 initially shows an increase
in localization error as the drone approaches the cliff (Figure
10). The system nearly loses tracking capability in the proximity
phase. However, as the images contain more informative
regions, ORB-SLAM3 recovers. Almost at the end of the
flight, a new error peak appears, consequence of a low texture
region with oblique geometry that is quickly occluded as the
drone follows its path.

Figure 11. DRONE-SLAM absolute translation error (ATE) in meters during
the scan path with monocular camera. The red lines represent the standard
deviation cumulated over the time as a from to show the precision of the

system. This flight was performed 2 meters away from the cliff.

In contrast, we observe a stable behavior from DRONE-
SLAM. The localization error maintains over the different
regions of the map. The peak of the end is due to a poor
performance of the masked SSIM metric to trigger new nodes
when small but relevant regions are discovered. Compared
to the performance presented in [1], DRONE SLAM shows
more precision since the variations of its estimations remains
coherent with the movement of the drone during the scan.
Moreover, the peak of error that affected both methods is no
longer observed in the case of DRONE (see Figure 11).

4) Localization: real data: Real data tests confirmed that
increased resolution, achieved by generating the photometric
model at a lower altitude than in the cliff scenario, enhances
system performance. In this scenario, the performance com-
ments will be done wrt to the GPS-RTK data synchronized with
the video images. As seen at the top of the Figure 12, the pose
estimation closely follows the GPS-RTK position estimation. A
continuous offset is observed, potentially caused by delays in
GPS updates. This observation emerges from the shape of the
GPS path that sometimes seems slightly off with respect to the
movement observed in the camera. Moreover, the error metric
of the odometry seems to increase when these abrupt changes
occur. That said, further study on the test conditions has to be
done but for the moment, the GPS RTK will be considered as
the groundthruth data.

The ATE metric shows a mean error of 17 cm (Figure 13),
with stable performance even in low-texture regions. The system
performs slightly better during lateral movements compared
to vertical movements. As stated before, the lack of geometry
features contributes to the ambiguity of the solutions, thus
undermining precision. Another factor affecting precision is
the use of masks for reference data. Since the reference data
consists only of valid map renderings, background elements
are often masked and ignored, reducing available visual cues
for localization. As a result, the DVO module may observe
only planar regions with minimal texture variation, such as
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Figure 12. Path followed during the lab flight. GPS-RTK positions are
showed in green and DRONE estimations in red. The drone first made a

flight at 4 meters from the wall and then another one at around 2m from the
wall. The second part of the flight was not completed for KF graph issues.

Figure 13. DRONE-SLAM ATE in meters during wall inspection. The system
showed better behavior in this structured scenario. The higher performance of
the depth estimation module seems to improve the capacity of the mapping

module to register subtile details in the texture, which is complicate to
perform with relatively noisy estimations like StereoBM.

a uniform wall surface, instead of building edges. These
conditions demand high precision to capture subtle texture
changes; otherwise, the risk of non-convergence significantly
increases.

The system’s accuracy heavily depends on the availability
of virtual keyframes during the scan step, as these provide
essential reference points for pose estimation. This is because
the DVO module can diverge if the distance between the
reference and the input image are too far. To address this,
the system is designed to generate new reference frames
when needed, but the mission planner must trigger keyframe
generation opportunely. At the end of the sequence, during
the flight at 2 meters from the wall, the system failed due
to an inadequate keyframe generation strategy in previously
unexplored regions. The system performs smoothly in regions
where the path planner has pre-generated virtual keyframes,
but its performance degrades in unplanned areas. The current
implementation relies on inter-keyframe distance criteria to

mitigate these issues. However, there are some cases that need
a more robust keyframe generation criterion to ensure stability.

V. CONCLUSION

This paper presented a custom mapping and localization
framework, designed for close-range inspection scenarios. The
evaluation metrics show that DRONE-SLAM can successfully
generate a high resolution dense model of the environment
tailored for this use case. Thanks to this dense map and
the rendering technique, the system can achieve accurate
localization with simple equipment such as monocular cameras.
Additionally, the rendering method compensates the perspective
narrowing problems while preserving robustness face to low-
texture data.

The system’s performance was measured across three aspects:
First, the quality of the map reconstruction. Secondly, the
quality of the custom render method and its compatibility with
the DVO module. Finally, the localization accuracy in different
scenarios.

While the performance of the system shows an improvement
in the quality of estimation in close-range scenarios, some
challenges remain. First, the framework must achieve real-
time execution to meet the practical requirements of field
deployment. Analysis of the execution time profile reveals that
the main issues lie in the implementation language and its lack
of direct memory access.

Second, the mapping method can improve its robustness in
outdoors scenarios. While naive color fusion may work under
optimal conditions, the system must reliably handle varying
weather. Ongoing work focuses on surface luminance mapping
to enable localization with non-uniform lighting. Likewise, this
can also improve the multi-session performance of the system
as it will allow the use of the map in different conditions and
even simulate specific lighting scenarios.

Finally, further research is needed to improve the criteria
for generating virtual reference frames. Progress in this aspect
will both enhance system stability and extend the utility of
dense maps for navigation and mission planning. Simulations
show that DRONE-SLAM is more accurate at proximity to
the surface with reduced equipment. The test with realistic
data demonstrate that this performance is maintained even in
extreme low texture conditions. In summary, DRONE-SLAM
delivers pose estimation accuracy comparable to GPS-RTK
without its inherent limitations, such as dependency on signal
availability and sensibility to obstacles.
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