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Abstract—The integration of renewable energy resources trans-
forms traditional energy systems, introducing prosumers entities
that both produce and consume energy as key participants in
modern Smart Grids. Effective load forecasting is mandatory
for optimizing energy resources and grid stability. Federated
Learning has emerged as a promising approach for distributed
training of Machine Learning-based forecasting models. This en-
ables collaborative model optimization across multiple prosumers
while preserving data privacy. However, the impact of unbalanced
data sets across participants remains a critical challenge in
terms of potentially affecting learning convergence and forecast
accuracy. In this work, we define and implement a Federated
Learning system based on real-world electricity consumption
data from a variety of prosumers. Experimental results demon-
strate the trade-off between centralized and federated learning
approaches, providing insights into addressing data heterogeneity
in Federated Learning systems. Additionally, we show that
the models convergence during training with unbalanced data
sets follows a power law function. These insights highlight
the potential of Federated Learning to support the evolution
of distributed energy systems while ensuring data-privacy and
scalability. Furthermore, the results provide actionable insights
for grid operators balancing privacy, efficiency, and accuracy.
Future research directions include other strategies to mitigate
the effect of data imbalances and further improve the efficiency
of federated optimization for dynamic energy systems.

Keywords-Short-Term Load Forecasting; Federated Learning;
Smart Grid; Data Privacy; Distributed Data.

I. INTRODUCTION

This work extends the results of our conference paper [1],
which provides a distributed approach for Short-Term Load
Forecasting (STLF) on residential household level with respect
to data privacy. Accurate load forecasting is mandatory for sta-
ble and reliable Smart Grid (SG) operation. But, the accuracy
of load forecasting models, in particular Machine Learning
(ML) based models, highly depends on the amount and quality
of available training data [2]. Especially on smaller grid levels,
e.g., low-voltage grids, or even residential household levels,
the available electricity consumption data are very limited.
But, with the rise of prosumers – consumers also able to

produce electricity – prediction models on exactly this grid
level are crucial for network management tasks [3].

Even if households are able to record and transmit electricity
consumption data through smart meter utilization, the grid
operator needs sufficient data storage and computational re-
sources to process the data. Otherwise, the gathered data must
be transferred for further processing. This transfer raises data
privacy concerns and is even prohibited by law, e.g., General
Data Protection Regulation [4]. The ability of information and
behavior retrieval based on leakage of electricity consumption
data has already been shown in the past [5], [6], [7].

Here, Federated Learning (FL) seems to be a promising
approach to develop a single ML model for electricity con-
sumption forecasting with distributed data sets – and at the
same time satisfying data privacy regulation [8]. In contrast to
the traditional approach, where the training of the ML model is
done centralized, this task is shifted to each user individually.

In [9], FL was first used by McMahan et al. to train predic-
tion models on mobile devices through users’ keyboard inputs.
Afterwards, applications with FL were proposed in various
fields, e.g., medical and health care, industrial engineering,
finance, transportation [10], [11], [12].

For SG development, various FL approaches were proposed,
too. In [13], FL is used for anomaly detection in terms of
energy usage with a detection rate compared to centralized
approaches. The authors in [14] present a conceptual frame-
work for secure FL usage in SG environments with focus on
vertical and horizontal data distribution over the clients. A
detailed overview of further interesting FL researches in the
field of SGs is given in [15].

Although FL can be a promising approach for distributed
load forecasting, the impact of unbalanced data sets among the
clients is unclear. To evaluate FL in the context of prosumer-
level load forecasting, we present the following contributions
in this work:

• Definition and implementation of FL system composed
of a variety of prosumer based on real-world electricity
consumption data.
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Figure 1. In a Federated Learning approach, all prosumers train their models
locally on their own data.

• Comparison of forecast accuracy between a centralized
and a federated learning approach for model optimization.

• Investigation of the influence of unbalanced data sets
within a federation on the learning convergence and the
overall forecasting error.

• Analysis of the relation between number of unbalanced
clients and training convergence.

This work is organized as following. First, the necessary
background information as well as notation and terminologies
are given in Section II. Second, the proposed FL approach is
described in detail and the different experiments conducted are
described in Section III. Third, the experiment results are pre-
sented, compared, and subsequently evaluated and discussed
w.r.t. forecasting accuracy in Section IV. Fourth, limitations
of the proposed work and solutions are presented in Section
V. Fifth and last, the insights gained from the experiments’
results are summarized and starting points for further research
are given in Section VI.

II. BACKGROUND

Before further detailing the conducted experiments in Sec-
tion III, we give the respective problem formulation (Section
II-A) and background information on FL (Section II-B) as well
as an overview of related work (Section II-C).

A. Problem Formulation

Basically, the load forecasting problem can be categorized
into three groups based on the forecast horizon: (i) short-term,
(ii) middle-term and (iii) long-term load forecasting. In this
work, attention is paid on STLF, since we are interested in a
household’s next-day electricity consumption.

Traditionally, STLF has been addressed using both statisti-
cal and ML techniques. Early approaches include time series
models such as Autoregressive Integrated Moving Average
(ARIMA) and its variants [16]. With the increasing availability
of high-resolution smart meter data, ML methods have gained
more focus. Here, the more recent advances rely on neural

networks with deep learning architectures [17]. In particular,
Long-Short Term Memory Neural Network (LSTM) networks
and Gated Recurrent Units (GRU) are widely used for their
ability to capture temporal dependencies, whereas Convo-
lutional Neural Networks (CNNs) and hybrid CNN-LSTM
models leverage spatial and temporal features [18], [19]. In
the following, the fundamental problem formulation for STLF
is given.

Let xd = (x
(0)
d , ..., x

(T )
d ) ∈ RT be a household’s con-

sumption of day d divided into T time intervals. Further, let
yd = (y

(0)
d+1, ..., y

(T )
d+1) ∈ RT be the next day’s electricity

consumption, then D = {(xi,yi)|i = 0, ..., D} is the data
set composed of input-output pairs for a total of D days.
Now, a supervised learning approach approximates a function
yd ≈ f̂(xd) for the following optimization problem:

argmin
f̂∈H

1

n

n∑
i=1

L(f̂(xi),yi) (1)

where L(·) is the desired cost function to be minimized.
Typically, in a centralized learning setting, this is done by

collecting each household’s data and subsequently by training
a combined forecasting model, which is afterwards distributed
to every household. Indeed, this rises all of the problems
and concerns described earlier (see Section I) and FL is a
promising approach to tackle all of them.

B. Federated Learning

Contrary to the centralized learning, a FL approach guaran-
tees data-privacy by preserving prosumers’ consumption data
locally. A collaboration of prosumer – a so-called federation
– trains a STLF model by only exchanging respective model
parameters. Typically, the participants within a federation are
called clients but in this work the terms clients, prosumers
and households are used interchangeably. Let P = {p(i)|i =
0, ..., N} be the set of N prosumers then FL procedure
involves the following steps:

1) Distribution of the initial global model to all prosumers
which are part of the federation p ∈ P .

2) Training of the global model by adjusting it’s parameters
based on the local data set of every prosumer.

3) Returning the adjusted model parameters to a central
unit, e.g., trusted 3rd party, data center, one of the
participants.

4) Aggregation of all received parameters by a predefined
aggregate-function and integration into the global
model.

This whole procedure, also depicted in Figure 1, is repeated
over a defined number of communication rounds r. Interest-
ingly, reducing the number C of clients participating in every
learning round increases the communication efficiency without
loss of prediction accuracy [9]. So, in every round a prosumer
subset P ′

r ⊆ P with |P ′
r| = C is randomly chosen to take part

in the training task in step 2.
Beside the number of prosumers involved in training, the

used aggregate-function offers additional flexibility. In [9],
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the author introduces FedSGD and FedAvg, where the later
is the common approach for solving the FL problem by
calculating the (weighted) average (often mean) per param-
eter. Other aggregation approaches are, e.g., federated adap-
tive optimizers (FedAdam, FedAdagrad, FedYogi) [20],
momentum-based variance-reduced technique (FAFED) [21],
heterogeneity focused (FedProx [22], SCAFFOLD [23]).
There are plenty more proposed aggregate-methods, and
the related questions in terms of, e.g., applicability, optimality,
generalization, are major research topics.

At this point, it is worth noting that additional security
mechanism are needed to guarantee some desired security
level. Although, FL offers a framework for data-privacy in
distributed learning, data leakage or reconstruction attacks are
still possible [24]. Privacy enhancing techniques applicable for
FL settings are, e.g., differential privacy and homomorphic
encryption [25].

In the next section, we give an overview of existing FL
research with focus on STLF.

C. Related Work

After describing the FL approach in general, we give an
overview of existing FL research conducted in the field of
residential STLF. Here, we limit the related work explicitly to
(i) residential households and (ii) maximum 24-hour forecast
horizon.

A comparison between FedAvg and FedSGD with different
forecast horizons (1 h and 24 h) is given in [26]. They showed
that their proposed FL model with FedAvg reaches higher
accuracy than a centralized and a personalized model.

In [27], the authors compare the forecasting accuracy of a
FL model on prosumers involved in training and on hold-out
prosumers. They choose this approach to evaluate how well
the global model fit for non-participating prosumers. Here,
the non-participant prosumers fine tune the pre-trained model
for 5 epochs locally. They conclude that this fine tuning step
improves the forecast accuracy compared to the global model.

In terms of unbalanced client data distribution, Liu et al.
proposed the closest approach [28]. Here, clients are divided
into 5 groups based on the resolution of their available
consumption data ranging from 300 s to 1.800 s.

A hybrid CNN-LSTM model is used in a FL setting in [29].
To handle the consumption heterogeneity, the authors propose
a model fine-tuning step after the weight aggregation based
on multiple kernel variant of maximum mean discrepancies.
Furthermore, all clients are involved in every training and the
number of data samples are equal over all clients.

The authors in [30] compare the accuracy of a centralized
model with a FL one, a FL plus clustering, and FL plus
clustering and subsequently local fine tuning. Here, the last
approach reaches the highest accuracy. But, to manage all
experiment permutations the evaluations are done with fixed
C = 0.1.

A personalized FL approach is presented by Rahman et al.
[31]. Here, a meta-learning-based strategy is applied such that
each client trains their local LSTM with different learning
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Figure 2. Mean electricity consumption of all selected households from the
SmartMeterInLondon data set.

rates. This strategy is developed to address data heterogeneity
among the clients. The provided simulations show that their
personalized approach reach higher prediction accuracy than
traditional LSTM as well as FL approaches.

All of the mentioned related work are summarized with their
respective training and model parameters in Table I. It can be
seen that the related work in terms of unbalanced data sets is
non existing – as far as we know – for the STLF problem on
residential prosumer level.

III. METHODOLOGY

To evaluate our proposed FL approach, different exper-
iments are conducted in this work. Therefore, we build a
federation composed of prosumers represented by household
data taken from public available real-world electricity records
(see Section III-A).

A. Used Data Set

In this work, residential household data are taken from the
SmartMetersInLondon [32] data set, which is a refac-
tored version of the “Low Carbon London Project” data. This
data set contains electricity consumption records for 5, 567
London households between November 2011 and February
2014. In the following, the conducted data preprocessing
and preparation steps as well as the selection of suitable
households is described.

a) Household Selection: Since the date range differs
between prosumers in the data set, only houses with the
most overlap are selected. Furthermore, households with more
than three consecutive hours of missing values are removed –
otherwise, missing values are linearly interpolated. In total,
20 households are selected suitable for further usage. The
hourly mean electricity consumption is depicted for every day
in the training set in Figure 2. Subsequently, the respective
consumption data is preprocessed for every selected household
in the following.
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TABLE I. OVERVIEW AND SUMMARY OF RELATED WORK FOR FEDERATED LEARNING (FL) APPROACHES FOR RESIDENTIAL SHORT-TERM LOAD
FORECASTING (STLF).

Related Work #Clients C ML-Model Data Set Balanced Data Aggregation

Taïk and Cherkaoui [27] 200 5, 10 LSTM AUSTIN yes FedAVG
Fekri et al. [26] 19 6 LSTM non-public yes FedSDG, FedAVG
Liu et al. [28] 50 10 iQGRU AUSTIN semi FedAVG

Shi and Xu [29] 10 10 CNN-LSTM LONDON yes FedAVG
Briggs et al. [30] 100 0.1 LSTM LONDON yes FedAVG

Rahman et al. [31] 5 5 LSTM FRANCE both FedAVG
our work [1] 20 1, 2, 5, 10, 20 MLP LONDON no FedAVG

b) Data Preprocessing: Since the date ranges of avail-
able data varies tremendously across all prosumers, we select
the time between 1st January 2013 and 28th February 2014 with
the most overlapping data. This interval is further divided into
train and test data (Dtrain and Dtest), whereas the whole year
2013 is used for training and the remaining data for testing.
This leads to |D(p)

train| = 8, 760 and |D(p)
test| = 1, 416 samples

for every prosumer. For every prosumer, both data sets are
rescaled individually with the standardization given by

x′ =
x− σ

µ
, (2)

where x′ is the transformed consumption time series with
mean (µ) of 0 and standard deviation (σ) of 1 (unit variance).

c) Look-back and Forecast Horizon: The accuracy of
time series forecasting depends on both, the chosen look-back
window as well as the forecast horizon. In the related work
(Section II-C), those parameter differ across studies. Here, our
proposed forecasting model uses the last 24 h as input to pre-
dict the next 24 h. Although, additional features, e.g., weather,
holiday, weekday/weekend, can reduce the forecast error, we
restrict our model to the raw consumption values. In [33], we
evaluate the FL model with further feature engineering. So
this leads to an input vector x = (xt, xt−1, ..., xt−23) ∈ R24

and an output vector y = (yt+1, yt+2, . . . , yt+24) ∈ R24 for
every day and for each prosumer in the data set.

After the household selection and necessary preprocessing
steps, the used ML model architecture, as well as further
details on the overall development process is given in the next
part.

B. System Setting

In this section, we give all the relevant information about
the model architecture and used hyperparameters. Afterwards,
a definition for different kinds of learning prosumers within
the federation based on the ability to store training data is
presented. A description of the used federation, as well as the
training procedure is given in the third part.

a) Model and Hyperparameters: In this work, we choose
a vanilla Multi-Layer Perceptron (MLP) as model architecture,
similar to the proposed model in [9]. This architecture allows
an easy implementation and training on lightweight devices
with limited computational resources. This fully connected
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Figure 3. Network architecture used in this work. Fully connected MLP with
2 hidden layers, 200 neurons each and ReLU activation function. The input
x = (xt−24, . . . , xt) .

MLP has two hidden layers with 200 neurons each and uses
a Rectified Linear Unit (ReLU) as activation function.

ReLU = max(0, x) =

{
x if x > 0

0x ≤ 0.
(3)

The final model architecture used in this work for every
experiment is illustrated in Figure 3.

b) Weak and Strong Prosumer: We introduce the terms
strong and weak prosumer, to describe two different types of
prosumers based on the amount of available training data. The
two types are defined the following way:

Definition 1. Let p ∈ P be a prosumer only able to store
training data between two consecutive communication rounds,
then it is called a weak prosumer pweak.

Definition 2. Let p ∈ P be a prosumer with no storage
limitations, then it is called a strong prosumer pstrong.

Based on the Definitions 1 and 2, we define the fraction of
strong prosumers within a federation as the so-called strong-
prosumer-fraction:

Definition 3. Let |pweak|, |pstrong| be the number of weak
respective strong prosumers in P , then the strong-prosumer-
fraction is defined as φ =

|pstrong|
|pweak|+|pstrong| .
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This allows a straightforward distinction between prosumers
within a federation and introduces another parameter for the
overall training procedure.

c) Training Procedure: For all conducted experiments,
with or without strong and weak prosumers, the respective
training procedure takes r = 100 communication rounds in
total. At r = 0 the global model’s weights w are randomly
initialized. After every round, the global model’s weights are
updated by a weighted FedAvg aggregation function, given
as

wr+1 ←
∑
p∈P′

r

np

n
w(p)

r , (4)

where np, n is the number of sample per prosumer respec-
tive the number of all samples. The local weights w

(p)
r are

calculated locally for every p ∈ P ′
r in parallel by

w(p)
r ← wr − η∇wL(wr;xi,yi) (5)

for a single epoch with a learning rate of η = 0.001 and the
Mean Squared Error (MSE) as loss function L(·)

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (6)

where n is the number of test set samples and ŷi, yi is the
predicted respective actual consumption value.

To evaluate the proposed FL approach and also to analyze
the impact of unbalanced data sets, various experiments are
conducted, which are further detailed in the following section.

C. Experiment Settings

The proposed FL approach for residential STLF is evaluated
in different experiments. The evaluation is based on the MSE
error metric given in Equation 6. In total, we run the following
three experiments:

I Benchmark A centralized model – as well as one local
model for every prosumer – is trained over r epochs.

II Number of Learners Since a new subset of learning
prosumers is selected in every round (see Section II-B),
we evaluate the model’s forecast accuracy for different
number of learners C = {1, 3, 5, 7, 10, 20}.

III Strong Prosumer Fraction With the introduction of
weak and strong prosumers, we evaluate our FL approach
based on unbalanced data sets. For C = {1, 10, 20} the
strong-prosumer-fraction φ = {0.05, 0.25, 0.5, 0.75, 1} is
considered. Here, the unbalanced data set evolves over
the communication rounds r = {1, 2, . . . , 100} by:

weak: D(p)
r = D(p)

r−1:r (7)

strong: D(p)
r = D(p)

0:r . (8)

So, for strong prosumer the training samples increase by
n = b |D|

r c in every round, whereas for weak prosumer
the samples have a fixed size of n.

The experiments I-III are repeated for N = 10 times to handle
the randomness via model initialization and prosumer sam-
pling with C, φ. Our proposed FL approach is implemented

TABLE II. TEST SET ERROR FOR EXPERIMENT I. MSE IS CALCULATED
OVER ALL 20 PROSUMERS

Model ↓ MSE (µ± σ) min max won

centralized 0.181± 0.13 0.030 0.545 3 out of 20
personalized 0.166± 0.13 0.021 0.514 17 out of 20
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C = 10(0.182± 0.001)

C = 20(0.181± 0.001)

Figure 4. Experiment II: Train loss and test set error with mean and standard
deviation over 10 repetitions for different values of C.

in Python=3.9 with PyTorch and model training was
executed on a local machine with a Nvidia Geforce RTX 2080
graphic card. The experiments’ results are listed in the next
section.

IV. EXPERIMENT RESULTS & DISCUSSION

The results of the various experiments are presented in
the same order as defined in Section III-C. The respective
results are provided below, followed by a detailed analysis
and discussion.

Figure 4 illustrates the training loss across all communi-
cation rounds r as well as the test set error in the legend.
For the different values of C = {1, 3, 5, 10, 20}, the test set
error is given as mean with standard deviation over all 10
repetitions. Similar to experiment I, the MSE is calculated
over all prosumers p ∈ P without individual examination.

For experiment III, results are given in two ways. First,
the average training loss over all runs is depicted in Figure
5. Second, Table III lists the test set errors. In addition
to numerical values over all prosumers, the MSE is also
calculated separately for the sets of pweak and pstrong. The
minimum and maximum MSE values are determined over all
10 runs combined for each combination of C- and φ-values.

In this work, a FL approach was proposed for the STLF
problem at residential prosumer level. Three experiments were
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TABLE III. TEST SET ERROR FOR EXPERIMENT III. ERROR IS GIVEN AS MSE WITH MEAN AND STANDARD DEVIATION OVER ALL 10 REPETITIONS.

C φ
↓ MSE (µ± σ)

all strong weak min max

1

0.05 0 .215 ± 0 .14 0.192± 0.12 0.216± 0.14 0.026 0.674
0.25 0.193± 0.12 0.209± 0.15 0.188± 0.11 0.039 0.597
0.5 0.194± 0.12 0.202± 0.13 0.186± 0.12 0.037 0.565

0.75 0.196± 0.12 0.194± 0.12 0.199± 0.13 0.038 0.587
1 0.201± 0.13 0.201± 0.13 – 0.036 0.626

10

1 0 .223 ± 0 .15 0.142± 0.07 0.227± 0.15 0.029 0.750
0.25 0.186± 0.12 0.187± 0.13 0.186± 0.11 0.033 0.540
0.5 0.184± 0.12 0.182± 0.12 0.187± 0.12 0.038 0.550

0.75 0.181± 0.12 0.185± 0.12 0.170± 0.10 0.038 0.525
1 0.180± 0.12 0.180± 0.12 – 0.041 0.527

20

1 0 .198 ± 0 .13 0.205± 0.13 0.198± 0.13 0.034 0.711
0.25 0.190± 0.12 0.193± 0.13 0.189± 0.12 0.035 0.591
0.5 0.183± 0.12 0.173± 0.11 0.192± 0.13 0.040 0.546

0.75 0.181± 0.12 0.172± 0.11 0.208± 0.12 0.038 0.523
1 0.179± 0.11 0.179± 0.11 – 0.042 0.516

Note: lowest error is in bold, highest in italic.
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Experiment III: Average Training Loss and Test Set Error for different Values of C and ϕ

Figure 5. The training loss and test set error for different fractions of strong prosumer φ evaluated for C = 1 (left), C = 10 (middle), and C = 20 (right).

conducted to analyze the impact of unbalanced data distribu-
tion among prosumers within the federation.

The first experiment compared a centralized MLP trained
on all prosumers’ data with a personalized MLP trained
individually for each prosumer. Of 20 households in total, 17
times the personalized model reaches a higher accuracy (see
Table II). This indicates a strong distribution of consumption
behaviour across the prosumers since more data does not
guarantee better results.

The second experiment examined the effect of different

numbers of learners. As shown in Figure 4, test set errors
show minimal variation for C > 1, with nearly identical
training loss reduction. However, lower C-values introduce
more variance, emphasizing trade-off between distribution
computational resources and learning efficiency.

In real-world scenarios, training data availability varies
among prosumers due to recording and storage capabilities as
well as temporal offsets in joining the federation. To address
this, the third experiment introduced the distinction between
weak and strong prosumers, defined by storage capability.
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TABLE IV. SUMMARY OF COMMUNICATION ROUNDS TO REACH TARGET
MSE FOR 10 RUNS WITH MEAN (µ) AND STANDARD DEVIATION (σ).

C φ
Rounds to target MSE

Mean (µ) STD (σ) Min Max

10

0.05 64 14 48 84
0.25 31 6 24 42
0.5 24 2 22 27
0.75 21 3 16 26

1 18 2 15 22

20

0.05 60 16 48 98
0.25 34 8 26 55
0.5 26 2 20 28
0.75 22 2 20 26

1 31 2 29 35

The strong prosumer fraction φ represents the proportion of
strong prosumers within a federation. Figure 5 indicates slower
training convergence with a decreasing number of strong
prosumers, irrespective of C-values. However, reducing φ to
0.75 or 0.5 did not significantly impact training speed or test
set error. This finding is relevant for practical applications,
suggesting that not all prosumers need to contribute learning
resources to maintain overall performance. This is further
discussed in the following part.

A. Impact of Strong Prosumer Fraction

To evaluate the impact of stron prosumer fraction φ on
the overall training convergence, we introduce a target error
MSEtarget = 0.20. This value is chosen based on the test
set error from Table III, where all lowest errors are below
this threshold. Afterwards, we determine the communication
rounds needed to reach the desired train error MSEtrain <
MSEtarget. This is repeated for all φ-values and every single
run. The mean (µ) numbers of needed communication rounds
are listed in Table IV with respective standard deviations (σ).
Where, we only consider C = 10 and C = 20 since for the
C = 1 case, the variance over all runs is too high to get
meaningful results.

From Table IV, we can see that with increasing φ-value the
number of communication rounds to reach the target MSE is
decreasing. This finding is also the case for both experiments
with C = 10 and C = 20 which indicates some degree of
relation between needed communication rounds and amount of
strong prosumers within the federation. This relation is further
analyzed in the following part.

B. Curve Fitting

The rounds per φ-value to reach the target MSE from Table
IV are shown in Figures 6a and 6b for C = 10 respective C =
20. In this figure, the decreasing trend with increased φ-value
is clearly recognizable. Furthermore, it seems that the first
few additional strong prosumers lead to the highest reduction
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Figure 6. Curve fitting results for (a) C = 10 and (b) C = 20 with R2-score
metrics for exponential (red) and power law (blue) functions.

in communication rounds and therefore a non-linear relation is
possible. In the following, we examine two feasible functions,
namely exponential and power law, defined as:

rexp = a ∗ exp(φ ∗ b), (9)

rpow = a ∗ φb. (10)

Here, the dependent variable φ is the strong prosumer
fraction and the independent variable r is the number of
communication rounds. To estimate the functions’ parameters
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TABLE V. GOODNESS OF FIT METRICS FOR THE CURVE FITTED MODELS:
EXPONENTIAL AND POWER LAW.

C Model ↑ R2 ↓ RMSE ↓ AIC ↓ BIC

10 exponential 0.86 6.38 22.53 21.75
power law 0.99 0.65 -0.24 -1.02

20 exponential 0.64 7.99 24.79 24.01
power law 0.91 4.09 18.12 17.33

Θ = [a, b], we employ a curve fitting based on non-linear least
squares fitting approach.

r̂exp,10 = 63.179 · exp(−0.086·φ) (11)

r̂pow,10 = 57.005 · φ−0.377 (12)

r̂exp,20 = 55.216 · exp(−0.053·φ) (13)

r̂pow,20 = 59.196 · φ−0.313. (14)

Given the observed data from Table II, the fitting process
estimates a parameter vector Θ∗ that maximizes the sum of
squared residuals

Θ∗ = argmin
Θ

N∑
i=1

(ri − f(φ,Θ))2. (15)

This minimization problem is solved using the Levenberg-
Marquardt algorithm [34], [35], which is suitable for small-
to medium-sized problems with smooth, differentiable models.
After solving the optimization problem, the following func-
tions are estimated

The curve fitting is performed with the Python package
scipy.optimize. In Figure 6, the fitted functions are
shown in dashed red (power law) and blue (exponential) lines.
Figure 6 suggests that a power law function describes the data
points more accurate than the exponential function. But to
quantify the results, goodness of fit metrics are applied in the
following part.

C. Goodness of Fit

To evaluate the performance of the fitted models and their
abilities to explain the observed data (see Table IV), we assess
the goodness of fit using the coefficient of determination,
known as R2 metric. This metric provides a normalized
measure of how much the total variance in the observed data is
accounted by the respective model. Originally, the R2 metric
was developed for linear regression models, but it is widely
used and applicable in non-linear context as an indicative
summary statistic [36]. Formally, the R2-score is defined as:

R2 = 1− SSR

SST
= 1−

∑n
i=1(ri − r̂i)∑n
i=1(ri − r̄i)

, (16)

where SSR is the residual sum of squares and SST is the
total sum of squares. Thus, a R2 score of 1 indicates a
perfect fit. Conversely, an R2 score of 0 indicates that the
model performance is worse than a predicting the mean of the
observed data.

Although, R2 is useful for summarizing model fit, it should
not be the only metric for model evaluation, especially in non-
linear settings. Therefore, we further calculate the Root Mean
Squared Error (RMSE) given as:

RMSE =
√
MSE, (17)

and the Akaike Information Criterion (AIC) as well as the
Bayesian Information Criterion (BIC):

AIC = n · log SSR

n
+ 2k (18)

BIC = n · log SSR

n
+ k · log n, (19)

where k is the number of parameters and n the number of data
points. The various metrics are listed in Table V. Based on the
provided metrics, the power law models are able to describe
the observed data more precise than the exponential ones. The
implications are discussed in the next section.

D. Curve Fitting Implications

The observation that a power law model provides a better
fit to the data than an exponential model carries important
implications about the underlying system dynamics. In this
case, the highest decrease in communication rounds happens
within the first few additional strong prosumers. All further
additions have only diminishing returns. This insight is of
great interest for power grid operators and the development of
distributed smart micro grids since only a few strong clients,
e.g., households, are enough to accelerate training duration
and therefore improve forecast accuracy for all clients within
the federation.

V. LIMITATIONS

While experiment results highlight the potential of FL
for the STLF problem at residential household level, several
limitations need to be acknowledged. First, the provided study
relied on a MLP neural network architecture with FedAvg as
aggregation method. Although, this was a planned choice to
ensure comparability with prior work and to enable imple-
mentation on distributed micro computers, it excludes more
advanced model architectures, e.g., Long-Short Term Memory
Neural Network (LSTM), Transformer-based models, GRU,
and aggregation strategies, e.g., FedProx, FedAdam, which
could yield higher forecasting accuracy. Future work should
validate whether the observed power law convergence persists
across those architectures. Second, the experiments were con-
ducted with a single data set (SmartMetersInLondon, see
Section III-A). While this data set is publicly available and
also provides sufficient diversity across multiple households,
it is limited to a specific geographic, temporal, and regulatory
setting. Other regions may reveal different consumption pat-
terns. Therefore, the generalization to rural grids, microgrids,
or regions with higher renewable energy resources remains
uncertain. Third, our proposed model restricted the input space
to past consumption data without including exogenous features
as weather data, calendar effects, or socio-economic indicators
(see Section III-A). While the experiment design focused on
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unbalanced data distribution among the clients within the
federation, the true forecasting potential of FL models may
not be exhausted.

Despite these limitations and constraints, the findings pro-
vided by this study hold relevant implications for both research
and practical application. For grid operators, the observation
that only a small fraction of strong prosumers is necessary to
accelerate convergence suggests that FL can be made efficient
without universal data in high-resolution. This reduces infras-
tructure requirements and communication overhead. For pro-
sumers, FL provides a possibility to contribute to a forecasting
model without disclosing privacy-sensitive consumption data,
which aligns with regulations such as the GDPR. In summary,
while the presented experiments have clear methodological
boundaries, they provide valuable evidence that FL can bal-
ance accuracy, efficiency, and privacy in real-world smart grid
environments. The listed limitations also provide promising
directions for advancing future research areas.

VI. CONCLUSION & FUTURE WORK

This work developed a ML-based model for the STLF prob-
lem at residential prosumer level. Given that high-resolution
electricity consumption data contain behavioral information,
data privacy concerns arise when transferring and processing
such data. To address this, FL was incorporated as a viable
approach to train ML models on distributed data without
requiring direct data exchange. Three experiments were de-
signed and conducted to evaluate the proposed FL approach.
The results demonstrated that FL can achieve competitive
forecasting accuracy while preserving data privacy. The trade-
off between the number of learners and computational effi-
ciency was also analyzed, along with the effects of strong
and weak prosumers on training convergence and performance.
Additionally, limitations of our provided work are discussed
and possible solutions in future work are given.

In future work, we will focus on extending and improv-
ing the proposed FL approach. This study primarily ad-
dressed unbalanced data sets within a federation, adopting
constraints such as a lightweight MLP architecture, state-of-
the-art FedAvg weight aggregation, and the exclusion of ex-
ternal features. To enhance overall forecasting accuracy, these
constraints should be revisited. Preliminary results indicate
the utilizing more complex LSTM models and incorporating
weather information can reduce forecasting errors. Addition-
ally, this study did not explicitly implement a security layer.
Future research will explore methods to ensure data privacy
and prevent information leakage while integrating insights
from this study. Furthermore, the potential of Transformer-
based models for STLF remains an unexplored area, warrant-
ing future investigation.

Additionally, future research could explore the integration
of transfer learning techniques, where forecasting knowledge
gained in one region or community is transferred to another.
This allows FL models trained on areas with sufficient data
to support rural or emerging smart grid regions. Another
promising direction is the study of incentive mechanisms for

prosumers. Since FL requires active participation, especially
from strong prosumers, future work should consider incen-
tives that reward households for contributing computational
resources and data.
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