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Abstract—Geospatial inference has long been recognized as a
critical topic of research. Modeling approaches in this area can
generally be categorized into two main types, i.e., explicit and
implicit spatial dependence learning. The key difference between
these categories lies in whether spatial information (typically
coordinates) is used as input to a distance function or simply
treated as standard features in a machine learning algorithm.
Traditional geospatial statistical models, such as Geographically
Weighted Regression and Kriging, explicitly model spatial de-
pendence. However, they often suffer from high computational
costs and struggle to balance the trade-off between predictive
performance and efficiency. In this work, we aim to demon-
strate that explicitly modeling geospatial dependence is often
not necessary. Treating coordinates as standard input features
can yield competitive predictive performance while significantly
reducing computational overhead, provided that a sufficiently
capable learner is used. To substantiate our claims, we conduct
an extensive comparison across a wide range of models. As
an extended version of our previous work, we broaden the
scope of models considered and include additional tabular deep
learning models based on the transformer architecture and its
attention mechanism. We also assess the statistical significance of
performance differences across datasets. Furthermore, we include
an interpretability analysis to examine the role of coordinates in
models that learn spatial information either explicitly or implic-
itly. Our results show that even models, which treat coordinates
as standard features can achieve competitive performance, with
substantially lower training costs, while still effectively capturing
spatial dependence. To the best of our knowledge, this is the
first comprehensive study to evaluate both the effectiveness and
efficiency of using coordinate inputs directly in spatial prediction
tasks across a diverse set of modeling paradigms.

Keywords-geospatial regression; tabular deep learning; ensem-
bles modeling; spatial statistics; comparative performance.

I. INTRODUCTION

Spatial inference [1] plays a critical role across various
industries, including environmental science [2] [3], urban
planning [4], and disaster management [5] [6], where pre-
dicting unobserved values at specific locations is essential for
informed decision-making in real-world applications.

To improve geospatial inference performance, researchers
have developed numerous approaches that leverage both spa-
tial and non-spatial information. Broadly, these approaches

fall into two categories: explicit spatial dependence learn-
ing and implicit spatial dependence learning. Explicit spatial
dependence learning relies on the principle that geograph-
ically closer observations are more likely to be similar. It
typically treats location information (e.g., coordinates) as
separate inputs and fits a distance function to estimate the
influence of nearby points on a target location. Prominent
methods such as Kriging [7] [8] and Geographically Weighted
Regression (GWR) [9] embody this principle using variograms
or distance-decay weighting, offering both interpretability and
predictive power, and have been widely adopted for spatial
interpolation and regression tasks.

In contrast, implicit spatial dependence learning does not
explicitly estimate distance functions. Instead, it treats coor-
dinates as regular features, integrating them into the model
alongside other non-spatial features. This category includes
traditional Machine Learning (ML) models such as linear
regressors, Gaussian Processes (GPs), and tree ensembles,
which excel at capturing nonlinear relationships while offering
training efficiency.

Beyond classical ML, Tabular Deep Learning (TDL) has
gained significant attention with the rise of deep learning.
Transformers, in particular, provide powerful solutions for
tabular tasks due to their flexibility and ability to model
complex interactions among heterogeneous features. For ex-
ample, the Prior-Data Fitted Network (PFN) Transformer [10]
enables efficient supervised learning on small datasets without
the need for additional hyperparameter tuning. Other deep
learning models such as Neural Oblivious Decision Ensembles
(NODE) [11] and Gated Additive Tree Ensemble (GATE) [12]
have also shown promising performance in tabular settings.

In addition, there have been efforts to hybridize explicit
and implicit approaches by developing models that combine
geospatial distance functions with powerful ML learners,
achieving promising results by leveraging the strengths of
both paradigms [13] [14]. Despite the growing availability
of modern approaches, however, traditional domains such
as biology and agriculture still heavily rely on statistical
geospatial models that explicitly learn spatial dependencies.
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While these models offer strong interpretability and a theo-
retically sound framework, they often struggle with balancing
predictive accuracy and computational efficiency, especially
when dealing with large datasets or nonlinear patterns.

Conversely, ML and TDL are designed specifically for
large datasets and non-linear distribution learning, which can
offer better predictions more efficiently. Although we consider
ML and TDL as competitive alternatives to explicit learning
approaches, there are still some concerns regarding the hyper-
parameter tuning cost and potential overfitting issues of TDL.
Moreover, due to the inherently spatially correlated nature
of geospatial learning, the effectiveness of ML and TDL,
which assume that instances are independent obviously raises
questions. Therefore, to assess the feasibility of replacing
explicit modeling with implicit learning in geospatial tasks and
to investigate the effectiveness and efficiency across different
model families, we conduct a comprehensive comparison of
geospatial statistical models (e.g., Kriging and GWR), ML
models (with a focus on tree ensembles), hybrid kernel-based
models, and TDL model, e.g., TabPFN, NODE, GATE and
etc.

In summary, this work makes the following key contribu-
tions:

• We conduct a comparative study across statistical, ML,
hybrid, and TDL models to assess predictive performance
and training efficiency, with a particular focus on how
coordinates are used as input;

• We analyze the practical implications of training and
tuning these models in real-world geospatial applications,
using a wide range of datasets;

• We perform an exhaustive analysis that includes statistical
significance testing and feature importance interpretation,
shedding light on how explicit and implicit models utilize
spatial information;

• To the best of our knowledge, this is the first benchmark
study to systematically evaluate the use of geographic
inputs across a broad range of models and datasets;

• All source code and datasets used in this study are
publicly available on our GitHub page [15].

This paper is an extended version of our previous pub-
lication [1], presented at GEOProcessing 2025. The overall
structure is as follows: Section II introduces the relevant
methodologies used in geospatial modeling. Section III out-
lines the experimental setup, including datasets, models, hy-
perparameter configurations, evaluation metrics and significant
test. Section IV presents and discusses the results, highlighting
feature contributions in each model. Section V concludes the
paper and outlines directions for future work.

II. METHODOLOGY REVIEW

Prior benchmark studies have evaluated the performance of
various models, ranging from classical ML approaches [16] to
Deep Learning (DL) models [17] [18], across both real-world
and synthetic datasets [19]. The most recent advancement at
the time of writing, TabArena [20], has moreover introduced

a dynamic benchmarking platform for tabular data that con-
tinuously integrates newly released datasets and models.

While these benchmarks provide exhaustive comparisons of
model performance on tabular data, few studies examine how
different types of specific feature inputs, particularly spatial
features in this case, impact learning. In general-purpose
tabular learning, this may not be a critical concern. However,
in geospatial learning, where location information plays a
central role in capturing spatial autocorrelation, the way spatial
features are used becomes highly consequential. To address
this gap, we conduct a benchmark study that focuses on the
utility of coordinate-based features. Specifically, we compare
the effectiveness and efficiency of explicit versus implicit spa-
tial learning paradigms, laying a foundation for understanding
their respective advantages in geospatial inference tasks.

This section presents an overview of the underlying mech-
anisms of the geospatial statistical models, machine learning
approaches, hybrid models, and TDL methods evaluated in
our work, with an emphasis on their distinct strategies for
modeling spatial dependence.

A. Spatial Dependence-Based Models
Kriging and GWR are the most representative models in

this group. Although they both heavily rely on the principle
of spatial dependence, where observations close to each other
are considered more similar than those farther apart, the
emphasis of spatial relationships modeling of these two models
is slightly varied.

1) Kriging: The main goal of Kriging is to quantify spatial
autocorrelation to model and estimate the target values by
using a variogram, based on the assumption of a jointly
Gaussian distribution of the data, followed by computing
optimal weights for predictions by solving a system of linear
equations, generating the linear unbiased estimates.

The Kriging [21] predictor can be defined as:

Ẑ(s0) =

n∑
i=1

λiZ(si),

where:
• Z(si): observed value at location si,
• λi: weight assigned to Z(si), determined by spatial

correlation.
• n: number of observed locations.
The spatial correlation between locations is modeled using

a variogram [22], which is defined as:

γ(h) =
1

2
Var[Z(s)− Z(s+ h)],

where:
• h: distance between two locations,
• γ(h): semi-variance at lag h.
By using the variogram, we can calculate the covariance

matrix to solve the Kriging system:

C(si, sj)Λ = C(si, s0),
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where Λ indicates the weight assigned to known nodes for the
interpolation of an unknown node s0.

Based on the definition above, Kriging provides an estimate
of prediction uncertainty that is defined as:

σ2
Kriging(s0) = C(s0, s0)−

n∑
i=1

λiC(si, s0)− µ.

2) GWR: Compared with Kriging, which focuses on spatial
autocorrelation and estimation of the proximity similarity,
GWR [23] is based on the assumption of spatial heterogeneity.
Though GWR also utilizes the distance matrix as weights to
model the spatial variation, it fits a separate regression model
locally at each location, weighting observations based on their
proximity using a kernel function (e.g., Gaussian or bisquare),
which allows for spatial variation in relationships between
dependent and independent variables.

Essentially, GWR can be defined as a linear combination:

yi = β0(si) +

p∑
k=1

βk(si)xki + ϵi,

where:
• yi: dependent variable at location si,
• β0(si) and βk(si): intercept and coefficient (for the k-th

independent variable) at location si,
• xki: independent variable at location si,
• ϵi: random error term at location si,
• p: number of independent variables.
The regression coefficients β(si) are estimated by solving

the weighted least squares problem, which is expressed as

β(si) =
(
X⊤W(si)X

)−1
X⊤W(si)y,

where W(si) represents the diagonal weight matrix of the
weights assigned to the location, which is close to the point
of interest.

To estimate the weight matrix, two kernel functions are
commonly used:

• Gaussian kernel:

wij = exp

(
−
d2ij
2b2

)
,

• Bisquare kernel:

wij =


(
1−

(
dij

b

)2)2

if dij ≤ b,

0 if dij > b,

where:
• dij : distance between locations si and sj ,
• b: bandwidth parameter controlling the spatial extent of

the weights.
Classical GWR models the local geospatial variation under

the assumption of the same spatial scale, while a modifica-
tion of GWR, namely Multiscale Geographically Weighted
Regression (MGWR) [24], provides a more flexible framework
by allowing different processes to operate at different spatial
scales.

Although Kriging and GWR are widely used for spatial
inference tasks, the application scenarios are slightly different.
Kriging is typically applied in spatial interpolation, such as
estimating soil properties [25], pollutant concentrations [26]
[27], or precipitation levels [28], while GWR is commonly
applied in spatial regression scenarios, such as modeling house
prices [29], predicting socioeconomic factors [30], or environ-
mental influences [31], where relationships vary spatially.

B. Machine Learning Models

Machine learning methods provide a data-driven approach
to modeling, focusing on capturing patterns and relationships
within the data without explicit assumptions about spatial
dependence.

Typically, given a dataset {X,Y } consisting of instances
{xi, yi} from a certain distribution P (Y |X), the goal is to
learn a function f that maps input features x ∈ Rd to an
output y ∈ R. The general objective is:

f̂ = argmin
f

1

n

n∑
i=1

ℓ(yi, f(xi)),

where:
• ℓ(yi, f(xi)): loss function measuring the error between

predicted f(xi) and actual yi,
• n: number of training instances.
To minimize the loss function (e.g., mean squared error for

regression or cross-entropy for classification), a wide range
of optimization algorithms, such as gradient descent and tree-
based heuristics were developed to capture complex linear
or nonlinear relationships between features. Specifically,
tree ensemble models often outperform simpler models on
structured data by building a series of decision trees iteratively
to minimize the overall loss,

fm(x) = fm−1(x) + γmhm(x),

where:
• fm(x): prediction at iteration m,
• hm(x): weak learner (e.g., a shallow decision tree),
• γm: Step size for the weak learner.
Unlike the spatial dependence-based models, which inte-

grate the geospatial information explicitly, ML models are
available for all kinds of tabular data inference tasks, but can
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be easily applied to the geospatial field by simply including
location information (i.e., coordinates in most cases) as fea-
tures, potentially with further feature-engineering efforts (e.g.,
distances to landmarks, elevation, land use types, aggregated
census information, etc.).

C. Hybrid Kernel-Based Models

Recent advances have sought to explore hybrid approaches
to boost the strengths of handling of spatial dependence.
The most straightforward trail is to consider Kriging as an
extension of GWR, but train these two components separately.
Following this basic hybrid idea, Geographically Weighted
Regression Kriging (GWRK) [32] was developed and its
efficiency proven on datasets from different domains [33] [34].

Another possible combination is to merge Kriging with ML
models. By using Kriging as the base model and ML models
as either internal learners for residuals [35] or as a super
learner [13], this hybrid approach helps mitigate the limitations
of both model types, allowing effectively incorporating spatial
relationships while enhancing predictive performance.

Moreover, the variogram function in Kriging or a local
linear function are not the only choices to model geospatial
dependence. GPs can also model spatial dependencies
explicitly through kernel functions and by weighting proximal
observations spatially. The Gaussian kernel is defined as:

k(si, sj) = exp

(
−∥si − sj∥2

2ℓ2

)
,

where:
• k(si, sj): covariance between points si and sj ,
• ℓ: length scale parameter, determining how quickly the

correlation decays with distance,
• ∥si − sj∥: Euclidean distance between points si and sj .
In theory, by embedding spatial correlation into ML work-

flows, these kernel-based methods enhance predictive perfor-
mance while retaining the capacity to model non-linearities
and complex interactions.

D. Tabular Deep Learning

Similar to traditional ML, TDL specifically targets tabular
data using neural networks trained via backpropagation. A
diverse range of model architectures have been developed to
effectively handle the heterogeneous nature of tabular features,
including Bayesian Neural Networks for uncertainty model-
ing, transformer-based architectures and attention mechanisms
for capturing complex feature interactions, and ensemble-
gated models that aim to combine the strengths of tree-
based ensembles with neural networks through learned feature
selection gates. We provide more detailed discussion on these
approaches in the following sections.

1) TabPFN: TabPFN is a Transformer-based model that
is pre-trained to carry out probabilistic inference under a
carefully designed Bayesian-neural-network prior. Building on
the PFN framework [36], it can draw direct samples from, and
thus closely approximate, the posterior predictive distribution.

Unlike classical neural networks or tree ensembles, whose
expressiveness is limited by fixed layer counts or tree depth,
TabPFN [10] enriches its prior with ideas from Bayesian
neural networks [37], [38] and structural causal models [39],
[40]. This combination lets it capture intricate feature depen-
dencies and reason about causal relationships in tabular data.
It’s authors performed a thorough empirical study and showed
that TabPFN delivers state-of-the-art inference accuracy. As a
pre-trained Transformer, at inference time, TabPFN tokenises
every input feature, including coordinates, and processes these
tokens through the Transformer’s feed-forward layers, yielding
calibrated, sample-efficient predictions.

2) NODE: NODE [11] are inspired by gradient-boosted
decision trees and use Oblivious Decision Trees (ODTs) as
the fundamental building block. In ODTs, all nodes at a
given depth split on the same feature and threshold, allowing
for a structured and differentiable representation. Each ODT
in the NODE architecture splits features based on a shared
threshold at a given depth d, and the model outputs the sum
of scaled leaf responses. Unlike traditional tree ensembles,
NODE requires differentiability. Therefore, the discrete
feature-splitting mechanism is replaced by a continuous
variant, defined as:

ˆfi(x) =

n∑
j=1

xj · entmaxα(Fij),

where:

• F : feature selection matrix,
• entmaxα: α-entmax transformation [41].

The output of each layer is composed as a concatenation of
the outputs of m individual trees

[
ĥ1, ĥ2, ĥ3, . . . ĥx

]
.

3) GATE: GATE [12] is a neural tree-based model that
enhances the interpretability and performance of decision trees
by incorporating neural network techniques such as gating
and residual learning. Like NODE, it employs ODTs to learn
nonlinear functions, but instead of averaging outputs, GATE
uses Gated Feature Learning Units (GFLUs) to dynamically
select and weight feature contributions.

The model output is defined as:

ŷ = σ

(
M∑
i=1

ηiYi

)
,

where:

• ŷ: final output,
• η: learnable parameters from gate mechanism,
• Y : the output of each sub-trees.

4) FT-Transformer: FT-Transformer [42] is another influ-
ential Transformer based model, tailored for tabular data.
It combines a feature tokeniser with a transformer encoder,
converting both categorical and numerical features into dense
embeddings before applying multiple Transformer layers.
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Given an input x, each feature xj is first transformed to an
embedding:

Tj = bj + fj (xj) ∈ Rd fj : Xג → Rd

where:
• bj : bias term,
• fj : mapping function to map the feature to an embedding

space.
After concatenating all embeddings for both categorical

and numerical features, a series of Transformer layers Fi are
applied sequentially:

Ti = Fi (Ti−1) ,

producing the final feature representation used for prediction.
5) DANets: DANets [43] build upon the FT-Transformer

architecture by introducing instance-based attention. While
maintaining the transformer backbone, DANets extend the
attention mechanism by incorporating a learnable sparse mask
in their abstract layer, enabling the model to capture complex
and hierarchical feature interactions.

Given an input vector f ∈ Rm where m indicates feature
numbers, a learnable sparse mask M ∈ Rm is used to filter
the features by by element-wise multiplying with the vector
f . The feature selection is defined as,

M = entmaxα (Wmask) , f ′ = M ⊙ f

where:
• entmaxα: α-entmax transformation (same as NODE),
• Wmask: learnable vectors,
• M : a learnable sparse mask.
In conclusion, all models discussed above leverage geospa-

tial dependence by either integrating spatial relationships
through distance matrices, modeling interactions between a
target point and its neighbors, or engineering spatial proximity
as explicit input features, without directly modeling spatial
autocorrelation.

While numerous real-world applications adopt these meth-
ods, the comparative efficiency and benefits of explicitly mod-
eling spatial dependence remain underexplored. Traditional
models such as Kriging and GWR rely heavily on spatial dis-
tance matrices, often leading to high computational costs and
numerical issues, such as singular matrices, which makes them
less scalable. In contrast, ML and TDL approaches avoid solv-
ing systems of equations derived from spatial relationships.
Instead, they learn a direct mapping from feature space to the
target variable, efficiently handling large datasets. However,
they come with their own challenges, such as overfitting risks
and increased computational burden from backpropagation.

To systematically assess the trade-offs, we conduct an exten-
sive benchmark study evaluating each model’s predictive per-
formance and computational efficiency on geospatial inference

tasks. Additionally, we apply feature attribution techniques to
quantify the contribution of spatial features (e.g., coordinates),
providing deeper insights into their role in model performance.
We hope this study helps inform practical model selection
for real-world geospatial applications, especially in light of
increasingly powerful ML and TDL models.

III. EXPERIMENTAL SETUP

In this section, we describe an exhaustive experiment to
compare a wide range of ML models, statistics models, and
TDL models, covering a collection of real-life datasets, with
a complementary explanation of comparison hyperparameters,
significance test and the interpretation approach.

A. Datasets

We utilize a vast collection of public datasets, pri-
marily comprising real estate valuation datasets sourced
from Kaggle, biology-related datasets from the R package
Spatstat.data, and one additional well-known “yield”
dataset [44].

TABLE I
DATASET SUMMARY WITH NUMBER OF INSTANCES AND FEATURES

Dataset Nr. Instances Nr. Features
singapore 9212 6
london 34994 10
melbourne 5759 12
newyork 4170 6
paris 21765 6
beijing 3745 13
perth 30210 9
seattle 20832 15
dubai 406 9
yield 1696 24
anemones 231 2
bronzefilter 678 2
longleaf 584 2
spruces 134 2
waka 504 2

A summary of the datasets used is provided in Table I,
including the number of instances and features. The original
features include both numerical and categorical variables,
though all categorical features were transformed into a nu-
merical format using the CatBoost encoder.

All datasets include spatial coordinates (either geographic
or geometric) along with auxiliary features, such as hedonic
attributes in the case of real estate valuation datasets. To
investigate the impact of different spatial modeling strategies
under different circumstances, we leverage each dataset to
construct two variants: (i) coordinates-only, and (ii) all-features
(original). Models are then trained on both variants to assess
the effectiveness of explicit versus implicit spatial dependence
modeling.

Prior to training, we first clean all datasets by converting
all categorical features to encoded numerical ones (see remark
above). We then continue by removing duplicates and rescaling
features to the [0, 1] range to assure an equal playing ground.
For those datasets containing timestamps, we then apply a
temporal split (i.e., chronological partitioning) to construct
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training, validation, and test sets. For datasets without any
temporal information, we perform a random split strategy. In
either cases, we allocate 70% of the data for training, 10% for
validation to be used for hyperparameter tuning, and 20% for
testing and establish final performance metrics.

To ensure reliable geospatial inference, we carefully pre-
process spatial coordinates as follows. All coordinates are
converted into a Cartesian coordinate system, tailored to
the geographic location of each dataset. This transformation
standardizes the spatial input for all models and avoids dis-
tortions that may occur with spherical geometries, which is
particularly relevant for statistical models relying on distance
matrices. Specifically, for GWR and Kriging, these Cartesian
coordinates remain unscaled to preserve accurate Euclidean
distance computations whenever this distance metric is used,
whilst for ML and TDL models, the coordinates are scaled in
the same way as the other features. For the sake of notation,
the unscaled Cartesian coordinates will be denoted as “lat”
and “lon”, whereas the scaled ones will be labeled as “x” and
“y” henceforth.

B. Models

We select a broad set of models for inclusion in our
comparative study, spanning traditional ML, TDL, kernel-
based methods, and geospatial statistical models. Serving as
statistical baselines, Kriging [45] [46] [47] and GWR [23] are
naturally included.

Alongside, we evaluate machine learning models, including
the representative Linear Regression of Ridge regulariza-
tion [48], and Support Vector Machines (SVM) [49] [50] [51].
In particular, we place special emphasis on tree ensemble
methods, including Random Forest (RF) [52], XGBoost [53],
LightGBM (LGBM) [54], and CatBoost [55]. These models
have demonstrated consistently strong performance in practice,
and in many benchmark studies on tabular data, they have even
outperformed deep learning approaches [56].

To assess the benefit of hybrid kernel-based architectures,
we include Kriging-LGBM [35], a two-stage model that uses
a LightGBM regressor as the primary learner and applies
Kriging to fit the residuals. Additionally, we include Gaussian
and Power Tweedie. These two models are based on para-
metric assumptions about the target distribution (e.g., normal,
Poisson-Gamma), while GPs explicitly incorporate spatial cor-
relation using kernel functions that capture similarity between
coordinate-based inputs.

The final group focuses on TDL models. As an extension
of our previous work (where we focused solely on TabPFN),
this study expands the scope to a much broader range of
TDL architectures, including FT-Transformer, DANet, Gated
Adaptive Network for Deep Automated Learning of Features
(GANDALF) [57], GATE, and NODE.

To ensure a fair comparison across all models, we conduct
an exhaustive hyperparameter tuning process. The hyperpa-
rameter grid used for all models is detailed in Table II.
It is worth noting that not all models support or require
extensive tuning. For instance, TabPFN, being a pre-trained

model, is designed to achieve competitive results out-of-
the-box by leveraging pre-trained weights without additional
tuning. Moreover, other TDL models utilize an automatic
learning rate optimization mechanism by default and are hence
not listed separately.

C. Evaluation

All models are evaluated from two complementary perspec-
tives: (i) predictive performance and (ii) computational cost
(i.e., training time).

For predictive performance, we adopt Root Mean Square
Error (RMSE) as the primary evaluation metric. Each model
is initially trained on the training set, followed by systematic
hyperparameter tuning on the validation set using RMSE as
the selection criterion. The best-performing configuration is
then used to evaluate the resulting final model’s predictive
performance on the unseen test set. All models share identical
data partitions and are assessed using the same consistent
evaluation procedure.

To further investigate the role of spatial information in
predictive performance, we evaluate each model under two
distinct data configurations, as mentioned above, either using
only spatial coordinates as features (“Coordinates-only”), or
incorporating both coordinates and all additional attributes,
when available (“All-features”). This comparison aims to high-
light the importance of spatial information and to evaluate the
models’ ability to capture spatial dependence, either explicitly
or implicitly.

In terms of computational cost, we record the total training
time required for each model across the entire hyperparameter
tuning process, along with the number of tuning rounds. We
then calculate the average training time per tuning round as
the final comparison metric. This analysis provides insights
into the computational efficiency of each method, enabling
a comprehensive assessment of the trade-off between model
accuracy and training overhead.

All the experiments are conducted on a standard workstation
equipped with an Intel Core i9-13900 (13th Gen) CPU, 64
GB RAM, and an NVIDIA RTX A5000 GPU. All traditional
machine learning models are trained using CPU resources,
while the TDL models are trained with GPU acceleration.

D. Statistical Testing

To compare the performance of multiple algorithms
across multiple datasets, we adopt the widely used Demšar
method [58]. This approach is designed to assess whether
the differences in performance among models are statistically
significant by computing average ranks and visualizing them
with a Critical Difference (CD) diagram.

Compared to parametric alternatives such as the paired
t-test or ANOVA, the Demšar analysis is non-parametric,
making no assumptions about data distribution and being
especially suited for small-sample evaluations and providing
robustness from its reliance on rank ordering rather than
raw values. The method starts from ranking each model’s
performance on every dataset, and then calculating average
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TABLE II
OVERVIEW OF MODELS AND THEIR HYPERPARAMETERS USED IN THE COMPARISON.

Category Type Model Hyperparameters

Geospatial Statistics
Geospatial Heterogeneity GWR best bandwidth for kernel
Geospatial Autocorrelation Kriging nlags: [30, 60, 90, 120]

variogram model: [“gaussian”, “linear”]

Machine Learning

Linear
Ridge LR α: [0.1, 0.2,. . . , 0.9]
SVM C: [1, 11,. . . , 101]

ϵ: [0.1, 0.2,. . . , 0.9]

Tree Ensemble

RandomForest min samples split: [2, 3, 5]
min samples leaf: [3, 5, 10]

XGBoost learning rate: [0.1, 0.01, 0.005]
reg alpha: [0.0, 0.1,. . . , 1.0]
reg lambda: [0.0, 0.1,. . . , 1.0]

LGBM learning rate: [0.1, 0.01, 0.005]
reg alpha: [0.0, 0.1,. . . , 1.0]
reg lambda: [0.0, 0.1,. . . , 1.0]

CatBoost iterations: [100, 200]
learning rate: [0.001, 0.005, 0.01, 0.05, 0.1]
l2 leaf reg: [0.1, 0.5, 1, 5]

Kernel-Based
Gaussian Gaussian Process kernel: C(1.0) * RBF( length scale bounds=(1e-2, 1e2))

alpha: [0.1, 0.2,. . . , 0.9]
Power Tweedie power: [0, 1, 1.2, 1.5, 1.8, 2, 3]

alpha: [0.0, 0.1,. . . , 0.9] + [2, 5, 8, 10]
ML Kernel Kriging LGBM Kriging parameters (same as base Kriging):

nlags = [30, 60, 90, 120]
variogram model: [“gaussian”, “linear”]

LGBM parameters:
reg alpha: [0.0, 0.5, 1.0]
reg lambda: [0.0, 0.5, 1.0]
learning rate: [0.1, 0.01, 0.005]

Deep Learning

Tabular DL TabPFN —
FT-Transformer num heads: [4, 8, 16]

attn dropout: [0.0, 0.1, 0.2, 0.4]
DANet n layers: [8, 20]; k: [3, 5, 8]

dropout rate: [0.1, 0.2, 0.3]
GANDALF gflu stages: [2, 4, 6, 8, 10]

gflu dropout: [0, 0.1, 0.2, 0.3]
GATE gflu stages: [2, 4, 6, 8, 10]

gflu dropout: [0, 0.1, 0.2, 0.3]
NODE num layers: [1, 2, 4]

num trees: [8, 16, 32, 64]
depth: [3, 4, 6]
input dropout: [0, 0.1, 0.2, 0.3]
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ranks across all datasets. Next, a Friedman test is applied to
assess whether there are any overall differences between the
models. If such significance is detected, a post-hoc Nemenyi
test is conducted to compare all pairs of models. Two models
are considered significantly different if the difference in their
average ranks exceeds a computed CD:

CD = qα ·
√

m(m+ 1)

6n

where:
• qα: critical value from the Studentized range distribution

in Nemenyi test,
• m: number of all models,
• n: number of all datasets,
• α: significance level.
We employ this framework to visualize outperforming mod-

els, with the detailed results presented in Section IV below.

E. Interpretation

To further investigate the role of individual features,
particularly geographical coordinates, in geospatial learning,
we conducted an interpretation analysis using SHAP (SHapley
Additive exPlanations) values [59]. SHAP, grounded in game
theory, provides a consistent method to quantify how much
each feature contributes to a model’s prediction by treating
each feature as a player in a cooperative game and computing
its marginal contribution across all feature subsets, which can
be simply defined as a linear combination,

f(x) = ϕ0 +

M∑
i=1

ϕi

where:
• f(x): the prediction function,
• ϕ0: average predictions of the model,
• M : number of all features,
• ϕi: shap values of each feature i.
And the Shapley values ϕi is defined as:

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
(f̂(S ∪ {i})− f̂(S))

where:
• S: all possible subsets with all features except the ith

one,
• M : number of all features,
• f̂(S): predictions on subset.

IV. RESULTS

In this section, we present our experimental results, encom-
passing both predictive performance and computational cost
across multiple geospatial datasets. Additionally, we include
a statistical model ranking analysis. A dedicated subsection
is also provided for interpretability, using SHAP values to

explore the contributions of different features to model pre-
dictions.

A. Performance & Cost

1) Performance: Table III reports the results across all
datasets under the two configurations of the datasets: (i) co-
ordinates and additional features (denoted as “Dataset (All)”),
and (ii) only spatial coordinates (denoted as “Dataset (Co-
ord)”).

Among all models, TabPFN consistently achieves the low-
est RMSE across both data configurations. Particularly for
datasets with additional features, TabPFN outperforms all
other models in nearly all cases, highlighting its strong gen-
eralization ability and effectiveness in handling geospatial
inference tasks.

By comparison, other TDL architectures, namely FT-
Transformer, DANet, GANDALF, and GATE, fall short of
TabPFN’s accuracy. Only NODE shows competitive behavior,
outperforming the baseline on two coordinate-only settings.
These findings imply that TDL models are not inherently
superior, especially on the small, data-sparse problems typical
of geospatial analysis. At the same time, TabPFN’s recency
highlights the considerable headroom that still exists for TDL
methods in this setting.

Meanwhile, tree ensemble models, notably LightGBM,
RMF, and CatBoost, exhibit consistently strong performance,
frequently ranking first or second. Their competitive perfor-
mance, even compared to TDL models, underscores the robust-
ness of ensemble-based learners for tabular geospatial data.
Indeed, this finding is in line with general prior studies [56]
that conform the strength of these models, but highlights in
our context that they are well capable to treat coordinates as
any other feature.

In contrast, linear models, such as Ridge Regression, gener-
ally perform worse than statistical geospatial models like Krig-
ing and GWR. This further confirms the limitation of simple
linear assumptions in order to capture spatial heterogeneity.

The statistical models, GWR and Kriging, however, do
not outperform TabPFN or ensemble models overall but do
demonstrate notable effectiveness in the coordinates-only set-
ting. This aligns with their theoretical strengths in capturing
explicit spatial autocorrelation, particularly when supplemen-
tary features are unavailable.

In summary, TabPFN offers state-of-the-art performance
across both feature configurations, proving its capacity to im-
plicitly learn spatial dependencies. This finding is in line with
our previous work [1], but our exhaustive study performed here
shows that other TDL approaches do not achieve the same
result. Next, tree ensemble models remain highly effective
and computationally efficient alternatives, especially when
training data is limited. Finally, statistical models (GWR and
Kriging) do retain their relevance in coordinate-only scenarios,
validating their role in explicitly modeling spatial structure.

More importantly, it is notable that the comparison between
datasets with and without additional features confirms the
importance of complementary information. We see that across
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Figure 1. All features: visualizations of Demšar analysis on performance
significance.

nearly all models, the inclusion of additional attributes leads
to substantially lower RMSE, emphasizing the necessity of
domain-specific features being available, and the benefit of
rich feature engineering in geospatial learning.

2) Significance: To support our comparison results, we
conduct a statistical significance analysis using the method
proposed by Demšar [58]. First, the average rank of each
model was computed across all datasets. After confirming the
significance of a Friedman test, We then applied a Nemenyi’s
post-hoc test for pairwise comparisons, identifying statistically
significant differences between models based on whether the
difference in their average ranks exceeded the CD threshold.

The results are visualized in Figure 1 and Figure 2, where
the X and Y-axes denote the model names. Each grid cell
is color-coded to reflect the level of statistical significance
between each model pair.

When using datasets with both coordinates and additional
features, TabPFN significantly outperforms all other models,
including both statistical models (GWR and Kriging) and other
deep learning techniques. Whereas tree ensemble models (e.g.,
LightGBM, Random Forest, and CatBoost) do not achieve
statistically significant improvements over GWR or Kriging,
they do significantly outperform weaker models such as Gaus-
sian Process and Tweedie Regressor, both of which explicitly
encode spatial distance in their modeling.

For datasets with only spatial coordinates, fewer statistically
significant differences are observed across models. Even the
best-performing model, TabPFN, is not significantly better
than Kriging, though it still significantly outperforms GWR.
This result reinforces the value of explicit spatial modeling
techniques (e.g., Kriging) when no additional features are
available.

We also present two CD diagrams in Figure 3 (for datasets
with all features) and Figure 4 (for coordinates-only datasets),
which illustrate the average rank of each model across all
datasets. As a refresher: models are ordered from best (left)
to worst (right) along the X-axis. Each model is marked with
a star to indicate its rank. Horizontal bars are used to group
models that do not differ significantly from each other.

In the all-feature setting, TabPFN achieves the highest aver-

Figure 2. Coordinate features: visualizations of Demšar analysis on perfor-
mance significance.

age rank and is significantly better than statistical models. The
family of tree ensemble models follow closely and, although
not statistically superior to TabPFN, are substantially better
than linear models, most TDL models and statistical models,
which occupy the lowest ranks.

In the coordinates-only setting, TabPFN again ranks first but
is not significantly better than Kriging, corroborating earlier
findings that explicit spatial models remain competitive when
limited to spatial coordinates alone.

3) Computational Cost: We assess computational cost in
terms of training time, as shown in Figure 5 and Figure 6.
Training efficiency is a critical factor for the deployment
of geospatial models in practice, especially in large-scale or
resource-constrained environments.

Traditional geospatial statistical models, such as GPs, Krig-
ing, and GWR, incur significantly higher computational costs,
with training time increasing exponentially as dataset size
grows. These models consistently record the longest training
durations across all experiments, primarily due to their reliance
on spatial dependence structures and costly matrix operations.

In contrast, TabPFN achieves high efficiency owing to its
pre-trained foundation model, requiring reasonable training
and tuning time when used on a new dataset. This, combined
with its superior predictive accuracy, positions TabPFN as a
highly effective model that balances both performance and
efficiency.

While other TDL models (e.g., transformer-based or
attention-based architectures) benefit from GPU acceleration,
they still exhibit considerably higher training costs compared
to traditional machine learning models. Despite this, TDL
models generally outperform statistical baselines when addi-
tional features are included.

Among traditional machine learning models, tree ensemble
methods (e.g., LightGBM, Random Forest, CatBoost) demon-
strate a favorable trade-off between computational cost and
predictive accuracy. These models benefit from optimized
implementations and efficient tree construction algorithms,
leading to relatively low training times even on larger datasets.

Overall, our results suggest that explicit spatial modeling
is not always necessary, particularly when strong predictive
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Figure 3. All features: visualizations of Demšar analysis on performance ranking.

Figure 4. Coordinate features: visualizations of Demšar analysis on performance ranking.

Figure 5. All features: visualizations of training time (s) per hyperparameter
run across different models in log scale.

models and additional contextual features are available, as is
often the case in real-life settings. Tabular learners, including
TabPFN and tree ensembles, are capable of implicitly cap-
turing spatial dependencies from coordinate inputs alone. By
treating spatial coordinates as standard input features rather
than modeling geospatial dependencies explicitly, one can
significantly reduce computational overhead while preserving
or even improving predictive accuracy. This efficiency advan-
tage is especially valuable for scalable geospatial applications
where frequent retraining or rapid deployment is required.

Figure 6. Coordinate features: visualizations of average training time (s) per
hyperparameter run across different models in log scale.

B. Interpretation

Due to the architectural diversity across models, we adopted
model-specific SHAP approximations. For deep learning mod-
els, we applied Gradient SHAP [59], which is tailored to
differentiable models and estimates SHAP values by comput-
ing the expectation of gradients relative to randomly sampled
baselines. For the other models, including tree ensembles,
linear models, and statistical baselines, we employed the
Kernel SHAP explainer [59], a model-agnostic method that
perturbs inputs and fits a locally weighted linear model to



222International Journal on Advances in Systems and Measurements, vol 18 no 3&4, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Feature attributions using the Beijing property dataset.
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approximate each feature’s contribution.
To elaborate this analysis, we select the “Beijing” property

dataset and randomly sample 1000 instances as a represen-
tative test set. Feature attributions were then computed for
all models and ranked based on their importance scores. For
models explicitly leveraging geospatial dependencies (e.g.,
GWR, Kriging), spatial coordinates are labeled as “lat” and
“lon”. For models treating coordinates as standard tabular
features, the coordinate inputs are denoted “x” and “y”.

As shown in Figure 7, most models effectively utilize
spatial information, either implicitly or explicitly. Noteworthy
is that models with weaker predictive performance, such as
NODE and Ridge Regression, assign lower importance to
coordinate features, indicating their limited ability to extract
spatial patterns. In contrast, strong-performing models, such as
TabPFN, tree ensembles, and Kriging, consistently rank spatial
features amongst the most influential.

These findings reinforce the notion that explicit spatial
modeling is not strictly necessary for successful geospatial
inference. Modern tabular learners, when sufficiently expres-
sive, can implicitly learn geospatial patterns from coordi-
nate features without specialized geospatial mechanisms. This
highlights a promising alternative to traditional geo-statistical
modeling, particularly when working with feature-rich tabular
datasets.

V. CONCLUSIONS

The primary goal of this work was to explore the distinction
between explicit and implicit spatial learning in the context of
geospatial inference. Traditionally, statistical models such as
Kriging and GWR capture spatial autocorrelation explicitly
through distance-based functions. However, instead of relying
on these computationally intensive distance-based modeling
approaches, an alternative is simply to treat coordinates as
standard input features and leverage them within ML or TDL
models, given that they are strong enough. This implicit
strategy can yield competitive predictive performance while
significantly reducing computational costs.

To support this argument, we conducted a comprehensive
evaluation across a wide range of models for geospatial
regression tasks, including traditional statistical approaches,
linear and ensemble-based ML methods, and recent TDL
architectures. Our benchmark considered both datasets with
only coordinate features and those augmented with additional
geospatial attributes. The results reveal clear distinctions in
predictive accuracy, training efficiency, and interpretability
across these different model families.

Our findings indicate that whilst geo-statistical models do
remain relevant for specific coordinate-only settings, general-
purpose tabular learners, particularly TabPFN and ensemble
tree models, emerge as powerful, scalable, and interpretable
alternatives for modern geospatial learning. Furthermore, the
SHAP-based feature attribution analysis demonstrates that top-
performing models such as TabPFN and tree ensembles are
capable of leveraging spatial features effectively, and do so
without explicit spatial modeling. In contrast, weaker models

tend to underutilize spatial information, reinforcing the impor-
tance of model capacity in capturing geospatial dependencies.

In summary, our results call for a re-evaluation of the
traditional spatial learning paradigm. They demonstrate the
feasibility and efficiency of treating location information
as standard input features, empowering both ML and TDL
models to perform robust geospatial inference in real-world
applications.

We strongly extended the scope of models and datasets
compared to our previous research. Nevertheless, further work
is needed and invited to solidify these findings. Due to the
limited availability of large-scale public datasets, we were un-
able to fully assess TDL models in extreme data-rich settings,
where deep learning typically thrives. Additionally, most of
our evaluations were conducted in highly urbanized areas,
offering limited insight into how these learning paradigms
perform in sparsely populated or rural regions. Future research
could also explore more hybrid models, or zoom into upcom-
ing transformer-based architectures. Finally, a best-effort fair
choice was made in this study in terms of hyperparameter
tuning, which could be optimized further across all models to
potentially enhance top-performance levels.
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