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Abstract—Water stress is a major factor limiting the produc-
tivity of soybean (Glycine max L.) worldwide. Early detection is
crucial for implementing timely irrigation strategies. Electronic
noses (E-noses) offer a promising, non-invasive approach for
monitoring plant gas emissions. This work extends our previous
publication and proposes the quantitative use of radar chart
areas as a novel metric to evaluate and compare the sensitivity of
individual E-nose sensors in detecting water stress. By calculating
the polygon area formed by the normalized response peaks of
a six-sensor array, we transform multivariate sensor data into a
single, comparable index. This approach was applied to data from
soybean plants subjected to controlled irrigation and water stress
conditions over 21 days. The results demonstrate that the radar
chart area metric effectively captures the temporal progression
of stress, showing a distinct divergence between irrigated and
non-irrigated plants after the onset of water stress. The proposed
area-based metric provides a comprehensive, quantitative tool for
sensor performance evaluation, enhancing the interpretation of
E-nose data. This methodological advancement not only validates
the radar chart area as a robust indicator of plant stress but also
paves the way for more precise, data-driven decisions in precision
agriculture applications.

Keywords—Radar charts; Electronic nose; Precision agriculture;
Water stress; Volatile Organic Compounds.

I. INTRODUCTION

This work extends our previous publication [1] and builds
upon recent advances that have introduced electronic noses
(E-noses) as innovative tools for monitoring plant health. E-
noses consist of sensor arrays capable of detecting specific
patterns of Volatile Organic Compounds (VOCs) emitted by
plants under stress conditions (see Figure 1). Changes in VOC
profiles, which can serve as early indicators of water stress
even before visual symptoms appear [2], are a key focus of
this extension.

Soybean (Glycine max L.) is a vital crop, serving as a key
source of protein and oil for human consumption and animal
feed. Water stress remains one of the most critical abiotic
stresses affecting soybean growth and yield, leading to global
economic losses. Traditional methods for detecting water stress
involve physiological measurements and visual assessments,
which can be labor-intensive and subjective.

E-nose technology has been extensively evaluated in ex-
periments employing statistical techniques such as Principal
Component Analysis (PCA) and Linear Discriminant Analysis
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Fig. 1. VOCs and factors affecting plant emissions [3].

(LDA) to reduce the dimensionality of the collected data [4].
Among these, the dynamic mode has been a distinguished
method for identifying the most informative features that
distinguish between varying stress levels. In this context,
the peak response values of semiconductor sensors during
VOC adsorption and desorption have been utilized as effective
features for such analysis [2], with radar charts serving as a
visualization tool for this purpose.

A typical E-nose system, as illustrated in Figure 2, consists
of several key components including sensor arrays, signal
transducers, and data processing units.

Also known as a spider plot, star plot, or Kiviat figure [5],
the radar chart is more than just a graphical technique; it
serves as a crucial methodological component in this study.
It provides a straightforward way to display multivariate data
on a two-dimensional plane, facilitating the visualization and
comparison of sensor responses. This visualization ultimately
enables the evaluation of sensor sensitivity [2].

A radar chart presents multivariate data on axes that radiate
outward from a central point. As illustrated in Figure 3, each
axis represents a distinct variable, with data points plotted
along these axes. Connecting these points forms a polygon,
and calculating the area of this polygon can yield valuable
quantitative insights into the dataset [6].
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Fig. 2. Block diagram of an E-nose and its components, including sensors,
signal transducer, electronic system, and data processing.
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Fig. 3. Radar Chart with an Area.

A. Economic and Agricultural Context

Soybean cultivation occupies a strategic position in Brazil-
ian agriculture [7]. This economic importance amplifies the
impact of water stress, which can cause yield losses of up
to 40% in soybean crops [8]. The development of affordable,
non-invasive monitoring tools is therefore critical for sustain-
able agricultural management and food security.

Recent interdisciplinary collaborations combining engineer-
ing, physics, geosciences, plant sciences, ecophysiology, com-
puter science, and instrumentation have advanced non-invasive
phenotyping techniques [9]. Among these, E-nose technology
offers particular promise due to its ability to detect VOCs
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emitted by plants under stress conditions in a non-invasive
setup [10] [11].

B. VOC emissions throughout the day

Plant responses to water stress involve complex physiologi-
cal and biochemical adaptations, including stomatal closure,
growth repression, and activation of respiration pathways
[12]. Recent studies have identified specific biomarkers, such
as isoprene and hexanal, which serve as early, non-visible
indicators that soybean plants are metabolically fighting to
retain water before visible wilting occurs [13]. The relevance
of compounds like hexanal is underscored by post-harvest
studies, where it has been identified as a key marker of lipid
peroxidation and oxidative deterioration in soybean grains,
directly linked to stress-induced damage [14]. These VOC
changes can precede visual symptoms by several days, pro-
viding a critical window for intervention.

Transpiration dynamics play a crucial role in these emis-
sions, with Vapor Pressure Deficit (VPD) influencing stomatal
behavior throughout the day [15]. Studies have shown distinct
patterns between low VPD periods (7-11 AM) and high VPD
periods (11 AM-3 PM), justifying our measurement protocol
at 9:30 AM and 3:30 PM to capture these diurnal variations.

The ability to detect these subtle metabolic shifts through
non-invasive methods like E-nose technology represents a
significant advancement over traditional visual assessments.
Our radar chart area methodology aims to capture these early
VOC pattern changes, enabling proactive rather than reactive
agricultural management.

1) Objectives and structure: Takenaka et al. [16] provided
a method for evaluating the accessibility of a facility location
using the area of a radar chart. The authors argue that the area
of a radar chart is a more stable measure of accessibility than
other metrics.

The main objectives of this investigation are:

1) To develop a method utilizing radar chart areas to
evaluate the sensitivity of E-nose sensors in detecting
water stress in soybean plants;

2) To identify which sensors within the E-nose array are
most responsive to VOC changes associated with water
stress;

3) To assess the effectiveness of radar chart areas as a
quantitative metric for sensor performance in agricul-
tural monitoring applications.

The remainder of this paper is structured as follows. Sec-
tion III presents the materials and methods. Section IV dis-
cusses the experimental results. Finally, Section V concludes
the article and outlines directions for future work.

II. STATE OF THE ART

This section presents a survey of relevant publications and
investigations that situate our work within the current research
landscape.
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A. Bibliographic References for Radar Chart Area Calcula-
tion as Quantitative Result: a Survey

This section provides bibliographic references demonstrat-
ing that the calculation of graphical area in multidimensional
radar charts serves as a quantitative result for performance
measurement, evaluation, and comparison. The references
are organized by methodology and application domain, with
emphasis on papers that explicitly use area calculations as
quantitative metrics.

1) Radar Chart Area Calculations Use:

a) Wind Power Accommodation Evaluation [17]: The
authors proposed an improved radar chart method that replaced
traditional fan-shaped sectors with quadrilateral evaluation re-
gions. They constructed new area and perimeter vectors for the
radar chart to provide comprehensive evaluation metrics. The
area vector represented the aggregation degree of wind power
accommodation ability, while the perimeter vector reflected
the balance degree across different indicators.

This methodology allows for the evaluation of wind power
systems based on both macroscopic indicators (e.g., installed
capacity, power generation) and microscopic indicators (e.g.,
voltage stability, power quality).

b) Estimation Performance Evaluation [18]: The authors
designed a comprehensive measure based on the radar chart’s
fan area and fan arc length, which they formalized into a radar
chart index (RCI) that combines multiple performance mea-
sures through weighted components. Within this framework,
the fan area served as the key quantitative component for
calculating the overall estimation performance index. The pro-
posed mathematical framework defines an index that integrates
multiple otherwise incomprehensive measures, using fan area
and arc length as core quantitative metrics, and is supported
by case studies that demonstrate its utility through numerical
comparisons. In application, this methodology enables the
evaluation of estimation algorithms and statistical estimators
across a range of performance criteria.

c) Principal Component Analysis Integration [19]: The
authors combined PCA with radar charts to create a com-
prehensive evaluation model. Their key innovation was using
the area of the radar chart polygon as a synthetic quantitative
indicator, which they implemented by first applying PCA to
transform and weight the original variables. The methodology
involved applying PCA to reduce dimensionality, construct-
ing a radar chart from the principal components, and then
calculating the polygon area to serve as a comprehensive
evaluation score, enabling ranking and comparison based on
its magnitude. In application, this model facilitates general
comprehensive evaluation and performance assessment across
multiple domains.

d) Mathematical Foundations of Synthetic Indicators
[20]: The authors established rigorous mathematical founda-
tions for radar-chart-based synthetic indicators. They devel-
oped formal notation for radar-map-induced polygons, em-
ployed an analogue of the scalar product of vectors, proved
theorems on polygon fields induced by radar maps, and con-
structed concentration indicators from radar-chart polygonal
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areas. Their key mathematical contributions include formally
proving that radar chart polygons can serve as synthetic
meters, constructing concentration measures (analogous to the
Gini coefficient) from radar areas, and creating a theoretical
framework for comparing alternatives using polygon-derived
metrics. In application, this methodology is designed for
socioeconomic indicator analysis, material deprivation studies,
and country-level comparisons.

2) Radar Charts for Quantitative Shape Analysis:

a) Biomechanics and Materials Science [21]: The au-
thors used permuted radar charts to create closed polygonal
profiles representing multi-property mechanical performance
and applied shape descriptors to these polygons for quanti-
tative comparison. Specifically, they utilized polygon area as
a measure of overall performance and shape metrics to com-
pare performance distributions. This method is designed for
application in comparative biomechanics, biological materials
performance assessment, and functional morphology studies.

b) Construction Industry Performance [22]: The authors
applied the radar chart to evaluate the performance of construc-
tion companies. Their quantitative method used radar chart
areas to measure and compare operational performance across
multiple dimensions, and they demonstrated how substituting
traditional line or bar charts with area-based radar representa-
tions could provide holistic performance metrics.

3) Multi-Criteria Decision Making Applications:

a) Visual Filtering and Decision Support [23]: The
authors constructed radial graphic representations with nor-
malization to enable quantitative visual filtering of alternatives.
Their system utilized radar-like plots with area-based compar-
isons to filter alternatives based on threshold criteria, provide
quantitative filtering reductions, and support interactive multi-
criteria selection. This approach was developed for application
in multi-criteria decision support systems and alternative se-
lection.

b) Educational Assessment [24]: The authors employed
radar-like visual profiles for multi-competency comparison and
quantitative assessment. Their tool used radar chart repre-
sentations to provide numerical comparisons across student
attributes and capabilities, making it applicable for student
capability assessment and educational performance measure-
ment.

4) Additional Supporting References:

a) Eco-efficiency Index Development [25]: The authors
used radar charts as part of developing composite eco-
efficiency indices, treating the visual representation as a quan-
titative tool for environmental performance comparison. Their
methodology was designed for application in environmental
performance assessment and sustainability metrics.

5) Mathematical Foundations and Area Calculation Meth-
ods:

a) General Polygon Area Formula: For a radar chart with
n dimensions, where each dimension has a normalized value
v; (typically scaled 0-1 or 0-100) at angle 6; = 27i/n, the
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polygon area can be calculated as:

n

Z (Ui X Vi1 X Sin<9i+1 — 91)) (1)

i=1

Area =

N |

For equally-spaced axes (regular polygon case):

n . 2T n
Area = 0 X sin <) X Z(vZ X Vit1) 2)

n :
=1

where v, +1 = v (closing the polygon).
b) Alternative Formulations: Several papers reference
alternative area-based metrics:

e Fan Area Method [18]: Calculates area of individual
sectors/fans and aggregates them with weights

o Vector-Based Area [17]: Constructs area vectors repre-
senting aggregation across multiple sub-regions

e Normalized Area Index: Area ratio comparing actual
performance polygon to maximum possible area (all
dimensions at maximum value)

6) Key Findings and Conclusions: The survey demonstrates
that radar chart area calculations constitute a robust quanti-
tative metric. This rigor stems from a formal mathematical
foundation, including proofs and theorems that establish its
theoretical validity. Its practical utility is corroborated by
successful applications across diverse fields of study. Further-
more, the area metric provides distinctive comparative power,
enabling objective numerical analysis among different alter-
natives. Ultimately, its principal virtue lies in its aggregation
capability, efficiently synthesizing complex, multi-dimensional
data into a single, interpretable quantitative indicator.

a) Application Domains: Radar chart area calculations
have been validated as robust quantitative metrics through
their successful application across diverse research domains.
Within Engineering, they are utilized for evaluating wind
power systems and estimation algorithms. In Biomechanics,
these calculations assess the performance of biological ma-
terials. The field of Economics employs them to analyze
socioeconomic indicators and derive concentration measures,
while Education applies them for student capability assess-
ment. Furthermore, in Business contexts, they facilitate the
evaluation of construction company performance and eco-
efficiency metrics. Finally, in Decision Science, radar chart
areas provide foundational support for multi-criteria decision-
making and systematic alternative selection.

b) Methodological Advantages: This survey highlights
several distinct advantages of employing radar chart area
as a quantitative metric, primarily its capacity for visual-
quantitative integration, which merges intuitive graphical rep-
resentation with objective numerical measurement. It further
enables multi-dimensional synthesis by aggregating multiple
disparate criteria into a single, comparable index. Crucially,
the derived area exhibits sensitivity to balance, reflecting both
the magnitude and the relative distribution of values across
dimensions. The method demonstrates strong normalization
compatibility, functioning effectively with standardized data,
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and provides comparative clarity by facilitating the straightfor-
ward ranking and benchmarking of alternatives. Collectively,
this comprehensive bibliographic foundation firmly establishes
radar chart area calculation as a quantitatively robust method-
ological approach, thereby justifying its application in this
study to evaluate E-nose sensor sensitivity to water stress in
soybean plants.

7) Recommended Core References: For researchers seeking
to use radar chart area calculations as quantitative results, the
core references summarized in Table I provide the strongest
evidence across different domains.

III. MATERIALS AND METHODS

Below are presented all the materials and methods used in
this work, as well as the equations used to obtain the results.

A. Plant Material and Experimental Design

Soybean seeds (Glycine max L.) were germinated and grown
in controlled greenhouse conditions at 25.0 & 2.0 (°C), relative
humidity of 60-70 (%), and a 14-hour photoperiod. Plants
were cultivated in pots containing a standardized soil mixture
and watered regularly to maintain optimal moisture levels.

Measurements were taken up to the V3 phenological stage
of plant development. During the experiment (21 days), the
plants were divided into two groups:

o Irrigated (10 days): Continued to receive regular irriga-
tion to maintain field capacity.

o Non-irrigated (11 days): Subjected to water stress by
withholding irrigation to reduce soil moisture content
gradually.

The techniques and methods involve the direct manipulation
of water availability, observation of dehydration symptoms
(loss of turgor), quantification of growth response (biomass),
and analysis of underlying physiological mechanisms (proteins
and soluble sugars). Furthermore, environmental factors affect-
ing water demand (such as humidity, a component of VPD)

are considered crucial for accurate modeling of water stress.
[26] [27]

B. Electronic Nose Setup

The E-nose system used was an Alpha Fox™ 2000,
equipped with an array of six Complementary Metal-Oxide
Semiconductor (CMOS) sensors. These sensors operate on the
metal-oxide semiconductor principle illustrated in Figure 4,
where gas adsorption/desorption processes induce measurable
resistance changes through electron transfer mechanisms.

The specific equipment used in this study, shown in Fig-
ure 5, features a controlled sample injection system and
integrated data acquisition interface, enabling precise VOC
measurements under standardized conditions.

The Alpha Fox system employed a six-sensor array with
specific sensitivities to different VOC classes, as detailed in
Table II.
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TABLE I
CORE REFERENCES FOR RADAR CHART AREA AS QUANTITATIVE METRIC
Category Author Key Contribution
Mathematical Foundation Borkowski et al. [20]  Formal proofs for radar chart polygons as synthetic meters
Engineering Peng et al. [18] Radar Chart Index (RCI) with area metrics
Li et al. [17] Area/perimeter vectors for wind power evaluation
Biomechanics Porter & Niksiar [21]  Polygon area for biological materials performance

Statistical Methods Wang et al. [19]

PCA integration with polygon area indicator
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Fig. 4. Operating principle of metal-oxide semiconductor (MOS) sen-
sors showing adsorption/desorption processes and corresponding resistance
changes. Red arrows indicate electron transfer during gas detection [29].

Fig. 5. Commercial Alpha Fox™ 2000 electronic nose system used in
experiments [29].

TABLE II
THE SENSORS INSTALLED IN THE E-NOSE AREA [28].

No. Sensor Sensitivity property Reference Materials

S1 T30/1 Organic compounds Organic compounds

S2 P10/1 Combustible gas Hydrocarbon

S3 P10/2 Inflammable gas Methane

S4 P40/1 Oxidizing gas Fluorine

S5 T70/2  Aromatic compounds  Methyl benzene, xylene
S6 PA/2 Organic compounds  Ammonia, amines, ethyl

and toxic gas alcohol

C. Chamber Design and Instrumentation

The experimental setup included a specially designed cham-
ber (Figure 6) with dimensions d=25.0 cm, height=57.0 cm,
and volume=27.93 L, equipped with complementary sensors
for monitoring environmental parameters [2]. The chamber,
constructed from Poly(methyl methacrylate) (PMMA) with
92% transmittance in the visible range [30], was instrumented
to measure:

e Temperature (T in °C) using digital thermometers with

0.1°C resolution

o Relative humidity (RH in %) with 0.5% resolution sen-

sors

e CO; concentration (0-2,000 ppm range) using Vaisala

probes

« Natural light intensity (0.001-19.9 K lumen/m?)

Continuous monitoring was performed at 5S-minute intervals,
creating a comprehensive environmental database alongside
E-nose measurements [2]. The chamber design included a
computer fan to simulate wind (28.32 L/min) and an irrigation
system that allowed water administration without compromis-
ing chamber insulation.

D. Soil Specifications and Isolation

The experiment utilized dystrophic Red Yellow Latosol
(LVAd) with specific granulometry: 369 g/kg clay, 54 g/kg
silt, and 577 g/kg sand. Soil moisture was maintained at field
capacity (0.295 cm?/cm® at 10 kPa) during irrigation phases
and reached the permanent wilting point (0.134 cm’/cm? at
-1,500 kPa) during stress phases.

To isolate transpiration effects, the soil was covered with
aluminum foil, effectively eliminating gas exchange between
the rhizosphere and the chamber atmosphere. This isolation
method, consistent with approaches validated for soybean tran-
spiration studies [31], ensured that measured VOC emissions
originated primarily from plant physiological processes rather
than soil microbial activity.
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Fig. 6. Experimental chamber design for soybean VOC monitoring. Key
specifications: 250 mm internal diameter x 570 mm height (27.93 L volume).
Components shown: (A) Dimensional schematic, (B) Base plate with sen-
sor/irrigation interfaces, (C) Assembly diagram, (D) Operational setup with
plant specimen.

E. Gas Sampling Using the Headspace Protocol

The headspace sampling technique using a 2,500 pL syringe
with PTFE seal provided precision of ; £1% volume accuracy.
Baseline measurements from the empty chamber over three
days established reference conditions: temperature variation
of 4.0°C (23.0-27.0°C), relative humidity variation of 9.0%
(16-25%), and CO, variation of 20.0 ppmv (250-270 ppmv).
These controlled baseline measurements ensured that subse-
quent plant-emitted VOC detections were not confounded by
chamber artifacts.

The sampling volume of 500 puL at a flow rate of 150
mL/min was optimized to balance signal intensity with cham-
ber disturbance minimization, based on preliminary sensitivity
tests.

F. Applications in Electronic Nose

The sensitivity S' (%) for each sensor was calculated using
Equation (3):

R— Ry

S(%) = ( " > x 100 (%) 3)

where:

o Ry — Initial electrical resistance ({2);
e R — Electrical resistance varying over time ({2).

To analyze the data obtained from the E-nose, we utilized
both radar charts and radar area charts to represent the peak
sensitivity (S (%)) for each of the six sensors: S1 T30/1, S2
P10/1, S3 P10/2, S4 P40/1, S5 T70/2, and S6 PA/2. This data
was normalized using Equation (3) and is shown in Figure 7.
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A radar area chart is a specific type of radar chart that
illustrates the values by displaying the area enclosed by
the lines connecting the data points. Figure 8 presents the
representation of both the radar chart and the radar area chart
for the peak sensitivity (S (%)) across all sensors. Radar
charts are particularly useful for visualizing multiple variables
simultaneously [32].

m P40/1
m T70/2
PA/2
| T30/1
P10 /1
H P10/2

R®) - R
} sensitivity (%) = % x 100
0 Time (s)

f _
Integral = >, }% x 100
t=0 0

Peak= min (R(tI)ZA_Rz X 100)
0

1
1
1
Adsorption | Desorption
1

Fig. 7. The variation in sensitivity, using Equation (3), of each of the six
sensors in relation to time, depending on the gas sampled and measured in
the E-nose.

Sensor 2

Peak

Radar area

Sensor 5

Fig. 8. The radar chart and the radar area chart from the sensitivity (%) peak
for the six sensors (S1: T30/1; S2: P10/1; S3: P10/2; S4: P40/1; S5: T70/2;
and S6: PA/2) from the E-nose.

G. Data Processing from E-Nose Responses

1) Data Processing from E-Nose Responses: The transfor-
mation of raw sensor signals into quantitative metrics followed
the workflow depicted in Figure 9. This systematic approach
ensured consistent feature extraction across all measurements.

The raw E-nose data, consisting of resistance-time curves
for each of the six sensors during 240-second adsorp-
tion/desorption cycles, was processed to extract quantitative
features. For each sensor response curve r;(t), where i =
1,...,6 represents the sensor index and ¢ represents time in
seconds, two key metrics were computed (Figures 7 and 8):
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Fig. 9. Data processing workflow from raw sensor responses to derived metrics. Steps include: (1) Raw resistance-time curves for six sensors, (2) Calculated
sensitivity profiles, (3) Peak detection and area calculation, (4) Radar chart construction from normalized peaks.

« Area under the curve: A, = 3220 %L repre-

senting the cumulative response intensity over the mea-
surement period
ege_ o . i (t)—r; 0
o Peak sepsmvnty: Pl-.: minge o 240] %@() x 100%,
representing the maximum response amplitude

These metrics were computed for all three replicates (3
x 500 pL samples) taken during each measurement session
(morning and afternoon). The radar chart area A,, was subse-
quently calculated from the normalized peak sensitivity values
P; of all six sensors, providing a composite measure of overall
Sensor array response.

The processing pipeline ensured robust feature extraction
by:

1) Computing baseline resistance 7;(0) from stable pre-

injection measurements

2) Normalizing responses across sensors to account for

differential sensitivities

3) Averaging triplicate measurements to reduce sampling

variability

4) Validating data quality through response curve shape

analysis

H. Experimental Protocol Refinements

The methodology evolved through three experimental
phases, as summarized in Table III. These iterative refinements
enhanced measurement reliability while addressing technical
challenges identified in earlier trials.

The study incorporated iterative protocol improvements
across multiple experimental iterations with six soybean spec-
imens:

o Sample volume optimization: Increased from single 500
puL samples to 1,500 uL samples (3 x 500 pL replicates)
for improved statistical robustness and outlier detection

o Temporal coverage: Expanded from single daily mea-
surements to both morning (9:30 AM) and afternoon
(3:30 PM) sessions to capture diurnal variability

« Environmental controls: Implemented dry air purging
systems in later experiments to maintain consistent cham-
ber humidity levels

+ Extended monitoring: Prolonged irrigation periods for
selected specimens to decouple plant developmental age
from water stress effects

These refinements, developed through systematic experi-
mentation, enhanced data quality and enabled more robust
pattern recognition in subsequent analyses while maintaining
the non-invasive nature of the measurements.

L. Calculating the Area of a Radar Chart

A radar chart is a graphical representation that effectively
illustrates multidimensional data by expressing the values of
each attribute in a clear and concise manner. Its 2D visual-
ization provides a comprehensive view of the data, making it
easier to analyze and understand its various dimensions [33].
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The method of radar chart for Multidimensional Data: X =
{X1,Xs,...,X;,--- X,,} is a multi-dimensional data set, and
X; ={xu, Ti2, T3, ..., xin } is @ N-dimensional vector. Use
the radar chart when N > 3 [33].

A method for evaluating the accessibility of a facility
location using the area of a radar chart was provided by
Takenaka et al. [16]. The authors argue that the area of a
radar chart is a more stable measure of accessibility than other
measures.

The radar values were calculated using the absolute value
of the minimum values in Equation (3) for each sensor, where:

Xi = 8; = {51(%), 52(%), S3(%), S4(%), S5(%), S6(%0) }
“)
To calculate the area (A,,) of the polygon formed in a radar
chart:

1) Convert Polar Coordinates to Cartesian Coordinates.
Each data point is defined by:

o 7;: The distance from the center to the data point
along axis ¢ (the normalized value of the variable).
o 0;: The angle corresponding to axis 4 .

The Cartesian coordinates (x;, y;) are related to the polar
coordinates (r;,6;) by the formulas:

x; =71;c080;, y;=r;sinb; (®)]

2) Apply the Shoelace Formula: The area of the polygon
can be calculated using the Shoelace Formula (6):

n

1

An =3 > (@iyis1 — vigyi)

i=1

(%% (©

where z,,+; = x1 and y,41 = y; to complete the loop.
The formula sums the cross-products of vertex coordinates
in a specific order [2].

J. S-Norm: Geometric Interpretation of the Radar Area

The area of the polygon is crucial because the square of the
vector’s S-norm is equal (minus a multiplicative constant) to
the area of the polygon formed by the radar graph of these
vectors.

a) Definition of the S-Scalar Product and the S-Norm:
The formalism relies on the concept of the S-operator (.5),
which is an S-shift (displacement) operator defined for a

vector x = (21,Z2,...,2,) € X = R" as Sz :=
(2,23, ..., Tpn,T1).
The S-scalar product is defined by the formula:
(z,y)s = (z, Sy) (N

where (-) represents the standard scalar product.
The S-norm of a vector x (denoted ||x||s) is defined by

Formula (8) as:
n 1/2
> wprrg ) ®)
k=1

, %), and 1 is defined as ;.

.: 2 _ (1
|z = |(z,)s] (n

where = (x1, xo, . ..
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b) Geometric Interpretation and Area Formula: Assum-
ing that the vector = (z1, a2, ...,Z,) € R™ has coordinates
1 > x; > 0, the graphical representation utilizes an n-regular
polygon inscribed in a unit circle (radius » = 1) with the center
at the origin. The coordinates x; are represented as points x;
on the 0; axes emanating from the center.

By connecting the points in order (z1 to xo, 22 to 3, ...,
T, to x1), an n-polygon is obtained.

The area (S7) of this polygon (induced by vector z) is
defined by the formula:

"1 C(2n
S1 = Z 5 TiTit1 sin (n> )
i1

This formula can be rewritten in terms of the squared S-
norm:

1 92 n 1 2
Sy = 5 sin (;) ;xixiﬂ = gnsin (;) )& (10)

where T,41 1= 1.

IV. RESULTS AND DISCUSSION

The average values and standard deviations derived from
radar measurements of both irrigated and non-irrigated soy-
bean samples are illustrated in Figure 10.

A. Temporal Variability and Diurnal Patterns

TABLE III
EXPERIMENTAL ITERATIONS AND PROTOCOL REFINEMENTS ACROSS SIX
SOYBEAN SPECIMENS

Specimen Sampling Pro- Environmental Key
tocol Controls Refinements
Plants 1-3  Single 500 p.  Basic chamber Baseline
samples monitoring methodology
establishment
Plant 4 3 x 500 pL Dry air purging Improved sta-
replicates implemented tistical robust-
ness
Plants 5-6  Morning/afternoonOpen chamber Diurnal pattern
sessions periods capture

The experimental design captured distinct diurnal patterns in
VOC emissions, with measurements taken at 9:30 AM (morn-
ing) and 3:30 PM (afternoon) [2]. Morning measurements
consistently showed lower standard deviations in radar area
calculations and more stable sensor response patterns. In con-
trast, afternoon measurements exhibited increased variability,
particularly in response to environmental fluctuations such as
light intensity changes.

This temporal variability is evident in Figure 10, where
afternoon sessions show greater standard deviations. The most
pronounced variation occurred on the 22nd day, characterized
by overcast conditions with intermittent rain, resulting in
luminosity variations of approximately 77% during afternoon
measurements compared to 39% in the morning [2].
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TABLE IV
MACHINE LEARNING CLASSIFICATION PERFORMANCE FOR WATER STRESS
DETECTION.
Algorithm Major Accuracy Obtained (%)
Decision Tree 93.6
k-NN (k=3) 80.7
Logistic Regression 78.2

B. Environmental Parameter Correlations

Complementary environmental measurements revealed sig-
nificant patterns [2]:

e Chamber temperature consistently exceeded laboratory
environment by 2-4°C, with maximal differences ob-
served in afternoon measurements.

e CO, concentrations inside the chamber were typically
50-100 ppm lower than external levels during active
photosynthesis periods.

o Relative humidity within the chamber exceeded external
levels by 15-25% during morning measurements.

These environmental interactions, consistent with plant
physiological responses to water stress [34], [35], contextu-
alize the E-nose responses and highlight the importance of
standardized measurement conditions for agricultural applica-
tions.

C. Synthesis with Machine Learning Validation

The radar area methodology developed in this study aligns
with and complements machine learning approaches applied
to the same experimental system. Comparative performance
analysis of three machine learning algorithms (Table IV)
achieved 93.6% classification accuracy using Decision Tree
algorithms on comprehensive datasets incorporating both E-
nose responses and environmental parameters [36].

1) Machine Learning Pipeline Implementation: A compre-
hensive machine learning pipeline was implemented using the
WEKA toolkit (Figure 11), incorporating:

1) Data balancing: Equalizing irrigated and non-irrigated
samples to prevent classifier bias

2) Feature normalization: Scaling all numerical features
to [0,1] range for algorithm compatibility

3) Algorithm evaluation: Comparative testing of Decision
Trees, k-Nearest Neighbors (KNN), and Logistic Re-
gression

4) Validation strategies: Three-fold validation using train-
ing set evaluation, cross-validation, and independent test
set validation

D. Analysis of Measurement Variability

The data reveal a marked difference between the measure-
ments taken in the morning and those taken in the afternoon,
with the greatest standard deviation observed during the after-
noon sessions.

This pronounced variation may be attributed to several
influencing factors, including the physiological state of the
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plants, which can change due to water uptake and nutrient
availability.

Environmental conditions at the time of sample extraction
also likely played a significant role; the fluctuating tempera-
tures, humidity levels, and light intensity throughout the day
can affect the plants’ responses. Furthermore, the specific
growth stage of the soybeans—whether they are in vegetative
growth or nearing maturation—can impact how they interact
with their environment. Additionally, potential errors in the
syringe headspace during sampling could introduce variability
in the measurements.

It is particularly noteworthy that the highest standard devi-
ation was recorded during the afternoon. On the 22nd day of
the experiment, specific weather conditions were present, char-
acterized by overcast skies, intermittent rain, and significant
cloud cover. These factors likely influenced the plants’ physi-
ological responses, contributing to the observed variability in
the data.
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Fig. 10. E-nose measurements of gas samples taken from a chamber
containing soybeans during the Days After Sowing (DAS), using the average
radar area and standard deviation (n = 3). The measurements are presented
based on the time of day, either in the morning (9:30 a.m.) denoted by red
circles or in the afternoon (3:30 p.m.) denoted by black squares. Moreover,
the measurements are obtained from both irrigated and non-irrigated plants.
For each DAS, gas samples are measured three times in both periods, i.e., the
morning and afternoon, to obtain the radar area measurement.

E. Sensor Performance Analysis

Individual sensor analysis revealed differential sensitivity
patterns: sensors P10/1 (combustible gas/hydrocarbon) and
P40/1 (oxidizing gas/fluorine) showed the highest responsive-
ness to water stress-induced VOC changes. During irrigated
conditions (DAS 11-21), peak sensitivity for P10/1 was -
27.97% + 4.36%, while during water stress (DAS 22-32) it
was -28.62% =+ 3.26%. For P40/1, corresponding values were
-28.30% * 4.87% and -28.88% * 3.59%.

The negative sensitivity values indicate decreased electrical
resistance upon gas exposure, reflecting increased sensor con-
ductivity in response to specific VOC compounds emitted by
water-stressed plants.
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Fig. 11. WEKA (Waikato Environment for Knowledge Analysis) software
interface showing the machine learning workflow [37].

F. Methodological Validation and Limitations

The experimental approach addressed several methodologi-
cal challenges:

o Chamber design minimized environmental interference
while maintaining plant viability

« Soil isolation controlled for non-plant VOC sources

o Temporal standardization reduced diurnal variability ef-
fects

o Multiple measurement replicates (n=3 per time point)
ensured statistical robustness

Notably, the 22nd day of experimentation presented unique
conditions with overcast skies and intermittent rain, resulting
in the highest observed standard deviations. These conditions
provided valuable insight into environmental sensitivity and
highlight the importance of meteorological considerations in
field applications.

V. CONCLUSION AND FUTURE WORK

The radar area chart is a specialized variant of the radar
chart that utilizes the area enclosed by the connecting lines of
data points to visually represent and compare values. Figure 8
illustrates this radar chart format, specifically highlighting the
radar area at the sensitivity peak (S (%)), which indicates the
maximum responsiveness of the variables in question.

Radar area charts are particularly valuable tools when
analyzing and comparing the overall performance of distinct
data groups, for example, across different experimental con-
ditions. This visual representation facilitates the interpretation
of complex multivariate sensor data, enabling researchers to
quickly identify patterns and trends relevant to plant stress
detection. The area can be used as a valid metric to rank data.

The key findings demonstrate that:

o The radar chart area metric effectively distinguished

irrigated from non-irrigated soybean plants, showing a
clear divergence after the onset of water stress.
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o Sensor-specific analysis identified S2 (P10/1) and S4
(P40/1) as the most responsive to water-stress-induced
VOC changes.

o Measurements exhibited significant diurnal variability,
with morning sessions (9:30 AM) providing more stable
and consistent radar area values compared to afternoon
sessions (3:30 PM), underscoring the importance of stan-
dardized sampling times.

o The geometric interpretation of the area, supported by
the mathematical formalism of the S-norm, provides a
solid theoretical foundation for using polygon area as a
synthetic indicator of overall sensor array response.

The integration of this area-based metric with machine
learning validation (achieving up to 93.6% classification ac-
curacy) confirms its utility as a discriminative feature for
automated stress detection systems. By capturing early, non-
visible VOC pattern shifts, this methodology enables a proac-
tive approach to irrigation management, potentially preventing
yield losses before visual symptoms appear.

Future work directions include integrating the method with
equipment in a mobile unit to facilitate field use and applying
the methodology to study thermal and water stress.

Initial studies with wheat, aimed at investigating water
stress, are being carried out using the proposed technique and
methodology, and are not limited to soybeans.
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