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Abstract—This paper addresses the challenge of neural state
estimation in power distribution systems. We identified a research
gap in the current state of the art which lies in the inability of
models to adapt to changes in the power grid, such as loss of
sensors and branch switching, in a zero-shot fashion. We designed
benchmarks to evaluate the robustness of models to different
changes in grid topology and used them to test models with
different architectures. The observed results strongly suggest the
existence of a trade-off between accuracy and robustness.
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I. INTRODUCTION

This work extends the results of our conference paper
[1], which considered the problem of zero-shot Neural State
Estimation (NSE) with a focus on the relationship between
model complexity and performance. This extension provides
better benchmarks and evaluations, focusing on the apparent
trade-off between accuracy and generality of NSE models. It
also expands the set of tested models to include non-graph-
based architectures and a non-parametric baseline.

We begin by reviewing relevant prior work in Section II,
followed by a formal statement of our research question in
Section III. Section IV details the methodology, model selec-
tion, and experimental setup. The results of the experiments
are presented in Section V. Finally, Section VI summarizes
our findings and suggests directions for future work.

II. STATE OF THE ART

Power System State Estimation (PSSE) is the task of
inferring the “state” of an electrical power grid from real-
time data collected by various sensors distributed throughout
the system. The “state” in this context generally refers to the
voltage magnitudes and phase angles at each bus in the grid.

For many years, PSSE was mainly performed for trans-
mission grids using simplifying assumptions such as near-DC
power flow and computational methods with poor scalability
[2]. This is enabled by balanced operation with a relatively
simple, predominantly linear topology of transmission grids,
given their scale and structure.

This approach cannot be extended to distribution grids
that transport electricity from substations to end consumers.

Their unbalanced nature, radial or weakly meshed topology,
high R/X ratios, and above all, cost inefficiency to achieve
sufficient sensor coverage complicate the state estimation
process. Initially designed with transmission systems in mind,
conventional methods often struggle to provide accurate state
estimation in more complex, dynamic, and less predictable
distribution systems [2].

However, with the proliferation of Distributed Energy Re-
sources (DERs) and other complex consumers, grid operators
are faced with the need to perform PSSE for distribution
grids. Furthermore, §14a of the German Energy Industry Act
effectively requires operators to develop observability in dis-
tribution grids in order to align consumption with production
from renewable energy sources, which requires PSSE.

A. Conventional methods

The traditional and most widely used approach for PSSE
is the Weighted Least Squares (WLS) method [3]. This algo-
rithm minimizes the sum of the squared differences between
the observed and estimated measurements, with each term
being weighed inversely proportionally to the square of the
measurement error standard deviation.

What limits the direct application of WLS in distribution
systems is the minimum number of measurements required
for the convergence of WLS. Assuming the grid contains n
buses, it is then described by 2n variables, namely n voltage
magnitude values and n voltage angles. A slack bus serves
as the reference; its voltage angle is set to zero or a known
constant, and therefore does not need to be estimated. The
voltage angles of the other network buses are relative to the
voltage angle of the connected slack bus. Therefore, the state
estimation must find 2n−k variables, where k is the number of
defined slack buses. The minimum amount of measurements
mmin needed for the WLS method to work is therefore:
mmin = 2n− k

However, in order to perform well, the number of redundant
measurements should be higher. A value of m ≈ 4n is
often considered reasonable for practical purposes. This level
of observability is unachievable in distribution grids due to
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economic constraints and the sheer number of elements that
must be monitored.

Another problem is that the WLS algorithm is computa-
tionally intensive. Assuming a dense system matrix, its time
complexity is generally considered to be O(N3), where N is
the number of buses. This is due to the need for matrix inver-
sions and solving linear equations. This complexity becomes
a limitation for large-scale distribution grids with thousands
of buses, leading to significant computational burden and time
constraints, especially when real-time estimates are required.
Additionally, WLS assumes that all error distributions are
Gaussian, a condition that may not always hold in practice.

B. Feed-forward methods

The most promising path to overcome these limitations
and provide observability in distribution grids is currently
believed to be NSE: data-driven methods that utilize historical
data in addition to real-time measurements. Artificial Neural
Networks (ANNs) may be able to perform the calculation
faster while being robust to insufficient measurements [4][5].
However, like all Machine Learning (ML) methods, the perfor-
mance of ANNs is contingent on the quality and quantity of the
available training data. Therefore, NSE approaches are usually
valid only for the grid they have been trained on. Once the
topology or characteristics of nodes change, the ANN needs
to be retrained. This is known as the problem of Transfer
Learning (TL).

When designing an ANN-based system for solving PSSE,
it is tempting to start with Multi-Layer Perceptrons (MLPs).
Not only are they the easiest ANNs to implement, but they can
approximate any function guaranteed by the universal approx-
imation theorem. In practice, it means that, given sufficient
computing power and training data, such models can achieve
an arbitrarily high level of accuracy. However, feed-forward
models underutilize two important properties of power grids.
The first property is that the grid can be represented as a graph.
The second is that a power grid, like any physical system, is
local, meaning that any interaction between two elements must
propagate through the lines and buses between them. Together,
these properties enable a drastic reduction in the number of
possible interactions that a model needs to consider. The feed-
forward models learn about this locality implicitly, inferring
the grid topology from the data. However, this is a disad-
vantage when a topology change occurs, because the model’s
knowledge of the grid structure and the physical processes
(graph signals) are entangled, leading to huge performance
degradation when anything in the underlying system changes.

The same is true for other fully-connected feed-forward
models that build upon the MLP, such as transformers; hence
the title of this subsection.

C. Geometric methods

A sensible way to overcome this limitation is to use models
that incorporate information about the graph topology into
their calculations. Such models are known under an umbrella
term Graph Neural Networks (GNNs), or, less commonly,

“geometric models”. They are specifically designed to separate
the graph structure from the graph signals and only model the
latter. This means that they also require the topology of the
power grid as input. This can be a barrier if that topology
is not known, as in this case a separate topology estimation
system is required. However, this design drastically reduces the
number of trainable parameters and allows a model trained on
one graph to perform inference on another with little to no
adjustments [1]. In the context of power systems, there are
situations where the grid topology changes due to alterations in
switch states or maintenance of elements, up to and including
islanding, when parts of the grid become isolated from the
greater system. Some of these events can occur suddenly and
the control system must adapt to them in real time, which
necessitates an ability to generalize provided by GNNs. How-
ever, the downside is that GNNs cannot generally approximate
an arbitrary function, which in practice limits their maximum
accuracy.

In this study, we will be using a subset of GNNs known as
Message Passing Networks (MPNs). The most common ex-
amples of MPNs are Graph Convolutional Networks (GCNs),
Graph Attention Networks (GATs), and Graph Isomorphism
Networks (GINs). All of these models are built on the graph
message passing operation, which has the locality property
with respect to the graph geometry.

Expectedly, recent years have seen a high volume of publi-
cations that propose utilizing GNNs for NSE in various ways.

A recent study on GNNs for state estimation [6] came out
of a collaboration between TenneT and Radboud University.
It demonstrates a GCN-based topology control system to
mitigate grid congestion. The model, trained on historical fault
data, dynamically reconfigures the grid topology by opening
or closing circuit breakers in response to overload warnings.

A similar project combining state estimation with active
control is described in [7]. The researchers aimed to develop
data analytics services for predicting localized grid congestion
caused by excessive distributed renewable generation and
eventually prevent it by issuing bids for purchasing energy
flexibility on the market. To achieve this, they used a GNN
model for both state estimation (to detect congestion) and for
generating control signals (in the form of bids). The data used
are live voltages and energy profiles from prosumers with PV
systems, as well as the known grid topology. They note that
GNNs are far more efficient than other tested models and are
more capable of adapting to grid changes, while being slightly
less accurate.

However, to our knowledge, none of these research projects
specifically studied the problem of Zero-Shot Learning (ZSL)
in PSSE. The contribution of this work is in setting up multiple
evaluation scenarios for ZSL in NSE and using them to
evaluate the performance of GNNs against other models.

D. Theoretical limitations of GNNs

While our paper investigates the capabilities and limitations
of GNNs experimentally, several notable papers take a more
rigorous route of building a theoretical understanding of them.



77International Journal on Advances in Systems and Measurements, vol 18 no 3&4, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The capability that is critical to our use case is generalization
across different topologies, which is analyzed by two papers.

The first study to successfully incorporate non-trivial graph
similarities, architectural choices, and loss functions into gen-
eralization analysis is [8]. They analytically derive the bounds
of generalization for GNNs as a function of these factors.
The theoretical results are then verified on real datasets. The
conclusion relevant to this study is that the generalization
ability of GNNs leverages the correlation between graph
structure and node labels.

A later study [9] pushes the theoretical analysis further by
incorporating model complexity into the calculation of gener-
alization bounds and shows that there is a trade-off between
the generalization capability of a model and its complexity.
However, increasing complexity does not necessarily degrade
generalization if it aligns with the task at hand. Quantifying
this alignment is another major contribution of the study, as it
gives new tools for choosing better GNN configurations for a
given problem.

However, model complexity also affects performance of
GNNs in scenarios without topology changes. This brings us
to another important capability of GNNs: scaling, i.e., the
possibility of increasing the accuracy of the model by adding
more layers, as is usually done in feed-forward models.

Unfortunately, this mode of scaling in GNNs is limited
by the oversmoothing phenomenon [10]. It is a consequence
of GNN layers acting as low-pass filters, which effectively
averages the output values over multiple iterations. Eventually,
the model converges to an output where the values at all nodes
of the graph are identical. Therefore, GNN models have a
finite optimal depth that can differ between graphs and model
architectures and, therefore, is usually found empirically.

A deep analysis of the oversmoothing phenomenon is pre-
sented in [11]. They find that the onset of oversmoothing
is related to the graph diameter, which is usually small for
real-life graphs. After the number of layers surpasses the
diameter, for each node, there will be no nodes that have
not been encountered before in message passing and hence
the node representations will tend to homogenize. In contrast
to most other graph datasets, power grids are characterized
by long linear branches and therefore large diameters, which
should make oversmoothing less likely to occur. However, this
structure presents challenges of its own for GNNs.

III. RESEARCH QUESTION

When discussing the ability of a model to generalize to dif-
ferent grid topologies, it is important to differentiate between
homogeneous and heterogeneous modes of TL. In general, the
homogeneous TL mode means that the source and target data
are in the same feature space, while in the heterogeneous TL
mode they are represented in different feature spaces.

In the context of power grids, this is the difference between
two use cases. In the homogeneous case, the power grid
remains the same, but some connections between its nodes
appear or disappear due to changes in switch states or elements
going in and out of service. In the heterogeneous case, the

model trained on one grid is used to make predictions about
a completely different grid [12].

This distinction becomes very important in real-life deploy-
ments. Integrating a new model into the control system of a
real grid naturally takes time, and training the model on that
specific grid could be incorporated into this process without
noticeably slowing it down. On the other hand, changes in
grid topology due to switching can happen suddenly and
unpredictably, and the model must adapt to them in real time.

There is also another way in which the data distribution can
shift in the context of PSSE: the observable subset of buses
can change, which changes the amount of input data points
available to the model. This can also be considered a form of
homogeneous TL.

A subset of TL is Zero-Shot Learning (ZSL). This scenario
excludes the possibility of fine-tuning the model on the new
distribution and evaluates its performance directly after the
transfer. In this project, we specifically focus on ZSL because
it is more representative of real-life situations where a model
must make predictions immediately after a topology change
without access to any training data for fine-tuning. In other
words, the model should be robust to distributional shifts.

Of course, in practice, a model can be fine-tuned to provide
the best performance for the new topology. Still, until this
process is complete, the previous version of the model has to
substitute for it and provide sufficiently good estimates, even
if they are of lower quality.

The research question for this paper is what existing models
in application to the PSSE problem are robust to changes in
the data distribution, specifically:

A To the reduction of the subset of observable buses;
B To grid topology changes resulting from changing switch

states;
C To transfer to a completely different power grid.

IV. METHODOLOGY

Before we proceed to describe the models we investigate,
please note that our model implementations may not be ideal
and therefore may not provide the most accurate results in
absolute terms. This study should not be taken as an attempt to
rank different models and determine the best performing ones,
but rather to observe the impact of graph topology changes on
the models’ performance. This metric should theoretically be
more robust to imperfections in model implementations, since
it reflects the more fundamental structural properties of the
models in question.

A. GNN models

We are comparing four GNN models using the implemen-
tations provided by the PyTorch Geometric framework [13]:

1) Graph Convolutional Network (GCN) as proposed in [14]
2) Graph Attention Network (GAT) as proposed in [15]
3) Graph Isomorphism Network (GIN) as proposed in [16]
4) Graph Sample and Aggregate (GraphSAGE) as proposed

in [17]
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Each model is tested with a variable number of layers
ranging from 1 to 10 as a hyperparameter. This is needed to
empirically determine the optimal depth of a GNN where it is
sufficiently expressive but not yet affected by oversmoothing.
Later in Section V the models will be labeled by a concatena-
tion of the architecture name with the number of layers, i.e.,
“GAT3” is a GAT model with 3 layers.

The models are trained to predict two features: the real and
imaginary parts of the complex voltage for every node. The
number of features in the hidden layers is the same. We use the
Huber loss function [18], a dropout probability of 0.5 and the
GraphNorm normalization method from [19]. The optimizer
is Adam with a learning rate of 0.001.

B. MLP models

Although the most recent research on NSE focuses primarily
on GNNs, the classic MLP architecture is also considered
for this role, and experiments with them provide a valuable
perspective.

One of the most cited models of this type is Physics-Aware
Neural Network (PAWNN), proposed in [20]. The idea of it is
to use the classic perceptron as a building block but prune
its synapses according to the graph adjacency matrix, i.e.,
the grid topology. These perceptrons are stacked in a variable
number of layers, equal to the maximum diameter of a vertex-
cut partition of the original graph.

There also exists an improved derivation of this model,
proposed in [21]. The improvement is based on the observation
that designing the ANN architecture based on the adjacency
matrix, as in the original PAWNN, may lead to unnecessary
connections between layers. The Pruned Physics-Aware Neural
Network (P2N2) cuts out those unnecessary connections and
uses separate weight matrices for the individual parts of the
ANN, depending on the grid topology.

Another approach is the Prox-Linear Network (PLN) model
proposed in [22], which is based on a prox-linear solver for
state estimation using the Least Absolute Value (LAV) method.
The main idea is to split the nonlinear state estimation problem
into several blocks that are proximally linear. The PLN is built
by unfolding these blocks. In practice, this structure reduces
to a MLP.

For this project, we reproduced the P2N2 and PLN models
from their descriptions in the corresponding papers. This
means that the implementation may not be entirely faithful to
what the authors intended, but this is an unavoidable limitation
caused by the lack of reference implementations.

C. Baseline

Choosing a baseline method for NSE is made difficult by
the absence of a single commonly accepted method that works
under the condition of partial observability (which excludes
WLS). The solution we chose is the non-parametric feature
propagation algorithm from [23], which interpolates missing
node-level features by solving a heat equation with known
features as boundary conditions. This results in a smooth
interpolation of features between known nodes. Of course, this

algorithm is not designed for PSSE and is not expected to
perform well, but it gives a deterministic solution that is easy
to grasp intuitively, which makes it a suitable baseline.

D. Graph representations of power systems

A successful application of GNN models naturally depends
on how well the underlying data can be represented in the
graph format. The most obvious representation, and the one
used in this paper, is known as the bus-branch model. In it,
buses are represented as nodes of the graph, while lines and
transformers (branches) are its edges, with branch admittances
as edge weights. Voltages normalized to local reference values
are the node features.

Admittances are chosen as edge weights because the graph
Laplacian operator assumes higher edge weights to mean a
higher correlation between nodes. This operator is, in turn,
used in both the GNN models and the feature propagation
algorithm. It should be noted that the models in question
support neither complex-valued weights nor multidimensional
weights, so we have to use the magnitude of the true complex
impedance.

However, using admittance instead of impedance as edge
weights becomes a problem for representing closed switches,
which have zero impedance and, therefore, infinite admittance.
This problem is solved by fusing buses connected by closed
bus-to-bus switches into one bus. This is complicated because
multiple closed switches are often connected to the same
bus, so a naive approach of fusing adjacent buses in random
order does not work. Instead, we use an iterative algorithm
inspired by [24]. Firstly, we build an auxiliary graph of just the
closed bus-to-bus switches with buses as nodes and switches
as edges. In this graph, nodes with a degree of one can be
safely removed (fused with their adjacent buses). This, in turn,
will lower the degree of the adjacent node. Eventually, every
node will reach a degree of one and can be fused until every
connected component of the auxiliary graph is fused into a
single node.

However, it should be noted that the bus-branch model is not
the only power grid representation that exists in the literature.
For example, in [25], the authors used a more granular
representation: they model each grid element as a separate
node, with the addition of extremity nodes for connecting
elements such as lines or transformers. The main limitation of
this approach and the reason we choose not to use it is that it
requires training data to include voltage values not only for the
buses but also for all grid elements and their extremities, which
is rarely available in real datasets; therefore, it is confined to
simulations in practice.

An even more interesting factor-graph-like representation
was developed in [26]. In general, a factor graph is a bipartite
graph consisting of factor and variable nodes, where factor
nodes represent measurement types (e.g., bus voltage and
branch current), while variable nodes capture state variables
(voltages). This structure allows for easy inclusion/exclusion
of different measurement types and sidesteps problems with
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Figure 1. A visualization of the SimBench 1-MV-urban–1-sw grid.

the initialization of missing features. However, it is outside the
scope of our study.

E. Datasets

The main dataset used in this project is the SimBench 1-
MV-urban–1-sw, a 147-node, 10 kV medium voltage grid [27]
depicted in Figure 1. It is composed of a grid model and a per-
bus complex (active and reactive) power yearly time series.
To calculate the resulting grid state, we performed a power
flow calculation using the SIMONA energy system simulation
software [28]. The resulting dataset comprises the base data
and a year of complex voltage time series with a 15-minute
temporal resolution. This dataset is hereafter called PQ.

Most grid branches in this model are of the open loop type,
which means an open switch (depicted as a square in Figure
1) connects two separate branches. To simulate a realistic
topology change, we made a line in one of the open loop
branches inoperable, resembling a line fault, and closed the
loop switch to resupply all nodes. Performing this operation
on different branches resulted in multiple variations of the
base grid topology. Afterward, we reran the simulation for
each variation to obtain a topology change dataset, which is
hereafter referenced as TC.

Unfortunately, the base dataset did not contain information
about measurement devices. Therefore, we had to choose
observable nodes randomly based on an observability level
of 50%, which we assume is realistic for distribution grids.

Figure 2. A visualization of the CIGRE medium voltage distribution
network.

This means that the state estimator has access to true voltage
values for half of the grid buses.

An auxiliary dataset used in the heterogeneous ZSL exper-
iments is based on the CIGRE medium voltage distribution
network from [29], pictured in Figure 2. It is a much smaller
grid with only 15 nodes, which allows us to study how the
complexity of the grids affects the performance of ZSL. The
voltage data for it are generated using the Midas simulation
framework [30]. The shorthand name for this dataset is MV.

V. EXPERIMENTS

Our experiments are composed of three benchmarks that we
call use cases. They correspond to the three subquestions of
the main Research question.

Our main evaluation criterion is Median absolute deviation
(MAD) across all snapshots in a dataset, which is used to
estimate the average performance of models. For the ZSL
experiments, we also define another metric called Performance
Drop (Degradation) Ratio (PDR) as

MAD train −MAD test

MAD train
.

It normalizes the generalization gap, making it comparable
between models or datasets. Lower PDR indicates strong
generalization; higher values indicate poor generalization.

A. Static performance

Before experimenting with ZSL, we first evaluate the mod-
els without it. Here, the PQ dataset is split equally into training
and testing subsets. After training on the first subset, we
calculate the MAD on the second one and the PDR between
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TABLE I. BEST MODEL CONFIGURATIONS FOR PQ.

Model MAD PDR

P2N2 0.03 -0.00
PLN 0.15 0.01
Baseline 0.36 -0.01
GIN1 0.47 -0.01
GraphSAGE1 0.53 -0.01
GraphSAGE2 0.62 -0.01
GIN2 0.63 0.00
GIN5 0.63 0.00
GraphSAGE3 0.65 -0.00
GIN6 0.67 -0.00

TABLE II. BEST MODEL CONFIGURATIONS FOR MV.

Model MAD PDR

P2N2 0.03 0.01
PLN 0.07 -0.00
GIN1 0.31 0.00
GraphSAGE1 0.31 0.00
GCN2 0.34 0.01
GCN3 0.35 0.00
GraphSAGE2 0.35 0.00
GAT2 0.37 0.00
GAT4 0.37 0.01
GraphSAGE10 0.37 0.00

them. The resulting values are presented in Table I. The same
evaluation for the MV dataset can be found in Table II.

The near-zero PDR values for all models indicate that they
can generalize to unseen data with the same topology. We
can also observe that the MLP models are starting with a
huge advantage, being an order of magnitude more accurate
compared to GNN models, which all fall below the baseline.
We acknowledge that this is not necessarily representative,
as many other papers discussed in Section II are able to
achieve much better performance by using different graph
representations and other methods. As already mentioned, the
goal of this study is not to replicate the state of the art, but
rather to examine the performance changes in ZSL scenarios,
which brings us to the next experiments.

As for the baseline feature propagation method, we hypoth-
esize that it works better in higher-resolution grids where the
voltage levels between nodes change more smoothly, which in
our case is the PQ grid.

Comparing the performance between PQ and MV datasets,
we can see that MV presents an easier task for all methods
except the baseline one.

B. Observability degradation

In the first use case corresponding to subquestion A, we
train the models on the grid with a baseline level of ob-
servability and then linearly reduce it to zero at testing time.
Of course, the model performance decreases along with this

Figure 3. Performance degradation with observability reduction.

reduction. The shorthand name of this use case is observability
degradation (OD). This process is pictured in Figure 3. For
readability, we limit the displayed GNN models to only the
four best performing ones.

The results are unsurprising: all models behave similarly,
and their performance smoothly drops from the reference
values shown in Table I to the same final value at the end. GNN
models maintain the reference performance longer, whereas
other models lose performance immediately as the number of
observable nodes decreases.

C. Homogeneous topology changes

The second use case corresponds to subquestion B and tests
ZSL for homogeneous topology changes. In it, we split the
TC dataset into 11 subsets according to the number of distinct
topologies, meaning that the topology within each subset is
static. We then perform a full 10-fold cross-validation, training
the models on 10 subsets and testing on the remaining one. We
then calculate the PDR for each fold. The resulting values are
displayed as a box plot in Figure 4 to visualize the reliability
of models in a ZSL setting.

The main observation from this graph is that the models that
showed the best static performance before are now the worst
performing, in terms of both averages and variation. To test
if there is indeed a negative correlation, we use a scatter plot
(Figure 5) of model performance on the two metrics (static
MAD and median PDR in the current scenario.

The point spread suggested the existence of a Pareto front.
To investigate further, we selected the non-dominated points
with respect to both metrics, obtaining a bounding line that is
plotted in red in Figure 5. We then computed Spearman’s rank
correlation on these points, which confirmed a strong negative
monotonic correlation (ρ ≈ −1, p ≈ 0). The existence of
such a clear empirical Pareto front strongly suggests a trade-
off between the static accuracy of models and their robustness
to homogeneous topology changes.
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Figure 4. Cross-validation box plot.

Figure 5. Cross-validation scatter plot.

The next aspect of this trade-off we wanted to analyze is
the spatial error distribution that the aggregate metrics above
do not capture. For this purpose, in Figure 6, we plot the
comparison of the nodal error distribution between a static
topology (labeled as PQ) and the switching scenario (labeled
as TC). Since these plots are less space-efficient, we opted to
show three cases: the MLP models (P2N2 and PLN) and an
average across all GNN models, since the error distributions
for these models were similar. Observable nodes are plotted
as white. Note that the TC topology looks different and has a
lower number of nodes due to the bus fusion transformation
explained in Section IV-D.

From the figure, we can see different patterns of error
propagation between the MLP and GNN models. For P2N2,
errors under topology change conditions increase not just
in magnitude but also in variance: the distribution of errors
between nodes becomes noisy. For other models, the increase
is more uniform, although certain nodes adjacent to switches
pose a much harder challenge than the others. In general,

failures of GNNs are less localized and instead “smeared”
across the entire graph.

All models exhibit lower accuracy in long branches, which
is explainable by two factors. First, switch changes mainly
affect outward branches, because that is where most switches
are located. Second, the outward branches are represented as
path graphs, which are difficult to efficiently sample from and
therefore require more sensors for robust signal reconstruction
with GNNs [31].

D. Heterogeneous topology changes

The third use case corresponds to subquestion C and covers
the heterogeneous ZSL scenario. Here, we transfer the model
between the PQ and MV datasets in both directions, that is,
training on one and then testing on another. The scenario
where the model is trained on PQ and tested on MV has
the shorthand name “PQ2MV”, and the other “MV2PQ”. We
compute PDR for both transfers and present the results in the
form of a scatter plot in Figure 7.

Note that it is impossible to test the MLP models in this
scenario because their number of input and output features is
fixed at training time, but the number of nodes between the
two topologies is different. Therefore, we only test the GNN
models here.

We can immediately see a significant difference between the
two scenarios. Most GNNs handle PQ2MV, i.e., the transfer
from a larger to a smaller network, much better than the
reverse. Of course, this is in large part explainable by the
fact that the MV dataset is simply an easier task, as shown
above in the static performance evaluation.

A possible conjoint explanation is that the effective number
of data points in a dataset for a GNN is equal to the number
of snapshots multiplied by the number of nodes in the graph.
Although the number of snapshots in the PQ and MV datasets
is the same, the former contains more training data (and likely
also more diverse data) than the latter. To test this hypothesis,
we trained another series of models on a reduced PQ dataset
where the number of data points is equalized with the MV
dataset, and then reran the PQ2MV experiment. This increased
PDR on average by 0.187, which supports the hypothesis but
is not enough to fully explain the gap between PQ2MV and
MV2PQ, suggesting that both factors are contributing to it.

VI. CONCLUSION AND FUTURE WORK

Overall, the current state of the art can be represented as
a three-way trade-off between conventional methods, feed-
forward, and geometric models (GNNs). Conventional meth-
ods like WLS, based on the physical equations governing
power systems, can provide reliably accurate results and
are not affected by topology changes, as opposed to data-
driven methods that infer the current state of the system from
historical data. However, as we established in Section II, the
amount of measurement data required for them to work is
unattainable in distribution grids. But as we switch to NSE
methods, we are faced with a choice between accurate feed-
forward models that cannot generalize to different topologies,
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Figure 6. Nodal error comparison between static and dynamic topologies.
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Figure 7. Heterogeneous transfer scatter plot.
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Figure 8. The three-way trade-off between conventional methods,
feed-forward, and geometric models.

and GNNs, which can generalize but are not as accurate. We
can therefore identify three desirable characteristics of PSSE
methods:

• Robustness to low observability: how well does the
method cope with limited measurement data, or how
many sensors can be lost before the method becomes
unreliable. This characteristic will be referred to as “In-
terpolation” in Figure 8.

• Accuracy: how closely can the method approximate
ground truth data, assuming that there are enough data
to fully utilize its expressive capacity.

• Generality: how well can the method adapt to changes
in the grid topology without requiring retraining.

The trade-off between these characteristics is illustrated in
Figure 8 and arises because no currently existing method has
all three characteristics simultaneously.

Representing the problem in this way outlines the research
gap: to create a method that combines performance, accuracy,
and generality. This will be the direction of our future work.

AVAILABILITY OF DATA AND SOURCE CODE

The source code and datasets for this project are publicly
available at the following repository:

https://gitlab.com/transense/nse-tl-paper
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