
46International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Containerization’s Power Use Overhead in Video Streaming — and the Case for

Optimizing Scheduler Power in Tickless Kernels

Etienne-Victor Depasquale

Department of Communications and Computer Engineering

University of Malta

Msida, Malta

e-mail: edepa@ieee.org

Saviour Zammit

Department of Communications and Computer Engineering

University of Malta

Msida, Malta

e-mail: saviour.zammit@um.edu.mt

Abstract— Containerization of a service enables live migration

and, thereby, consolidation of running service instances onto as

few host platforms as possible. However, containerization’s

operational overhead must be investigated to determine overall

viability. One dimension of this overhead is that of power use,

and this is investigated here. An architecture for a video cache

service at the edge of a Communications Service Provider’s

(CSP) network in the metropolitan area is designed, and a scaled

version is implemented in a laboratory environment. A

comparison is made between power used while streaming videos

in both native and containerized modes of operation.

Containerization is found to incur a low power overhead while

streaming video, compared with streaming video from ffmpeg

running directly on the host operating system. Moreover,

notwithstanding advances with tickless kernels, the kernel’s

scheduling timer routine remains a dominant power consumer.

Power use is measured using hardware instrumentation and

with PowerTOP, a software power meter. Limits on the latter’s

accuracy have been observed.

Keywords- containers; power; video; streaming;

implementation model; tickless kernel; PowerTOP; power

instrumentation.

I. INTRODUCTION

This paper expands upon our earlier study presented at the
Ninth International Conference on Green Communications,
Computing and Technologies (GREEN 2024) [1], where we
investigated the power overheads incurred by containerized
video streaming.

Content Delivery Networks (CDNs) are overlay networks
that are key to controlling the growth in demand for bandwidth
in long-haul communications links. By distributing content to
caches in geographical regions of the world where customers
are located, the number of times which a single item of content
crosses long-haul links between the content origin’s region
and the customer’s region, is reduced to just one. In turn, the
content is distributed several times to customers in the region.
While the function of the CDN, from the customer’s
perspective, is that of reducing latency and avoiding buffer
underrun, the control of bandwidth growth is a function that
has a strategic role in the stability of world-wide
communication. The CDN’s role in bandwidth control
continues to gain attention [2]; a variety of CDN
implementations has been investigated [3], [4] and surveyed
[5], [6] and generalized surveys are of ongoing interest [7],

[8]. The importance of the CDN seems to grant sufficient
ground for study of the impact of its Point of Presence (PoP)
on the information and communication technology of its
environs.

This study seeks to compare power use in containerized
deployment of the media server in a CDN PoP. It focuses on
the power use of the media server as it processes a
representative set of tasks. The media selected for study is
video (henceforth, the media server will be referred to as the
video server), and two reasons support this choice. Video
dominates traffic, whether in the access, aggregation, metro-
core, or long-haul. Moreover, some of the tasks, such as
transcoding, are processor-intensive and serve to indicate the
power capacity required to support CDN PoPs.

The rest of this paper is structured as follows. Section II is
a brief treatise of some of the foundational works in modelling
power use in computer systems. In Section III, the objective
is stated. In Section IV, the implementation model is
presented. This supports reproduction of the test environment.
In Section V, the method is elaborated upon. Section VI
presents the results, and Section VII supports interpretation
through analysis of these results. Section VIII draws a succinct
conclusion on the impact that containerization of a video
service has on power use overhead.

II. BACKGROUND

A. Power models

A better grasp of the impact of containerization on a CDN
PoP’s power use requires understanding of containerization’s
impact on the media server’s use of power. Media servers are
deployed on general purpose computing systems (or:
Commercial-Off-The-Shelf (COTS) computer systems), and
a basic understanding of these systems’ power characteristics
must support further study.

Power used by a computer system has an idle (static, or
leakage) part, an active (dynamic) part and overhead. The
power use referred to here is a system metric: it is an aggregate
that sums all consumers’ (system components) power use,
whether it be of dynamic, static or overhead type. Idle power’s
(𝑃𝑖𝑑𝑙𝑒) relevance depends on perspective. On the one hand,
idle power use is a real and significant cost: from the
perspective of facility managers and sustainability advocates,
it is of interest. On the other hand, it is irrelevant to the way in
which processes exercise a computer system: it is of

47International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

secondary importance in a study of the power required to
deliver a service. It follows, then, that a study of the power
used to operate a CDN PoP’s server systems must primarily
engage with service power use, or, using general terms, with
dynamic power use.

A simple, yet useful, classification of power models
divides them into two: (a) one that treats the computer system
as a black box, and uses workload to predict power in real
time, and (b) another that exploits knowledge of
microarchitecture and architecture [9]. They represent two
different levels of abstraction (see [10, p. 42] for a more
detailed distinction) of a computer system.

1) The affine relationship between aggregate power and

utilization
The affine relationship is a well-known example of the

black-box class. A typical representation of workload may be
one or more parameters of utilization (e.g., MIPS (millions of
instructions per second) and IOPS (input/output operations
per second). The affine relationship between power use and
utilization [9] is well suited to describing legacy network
equipment [11]. The general form is reproduced as equation
(1):

 𝑃(𝜌) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃(𝜌 = 1) − 𝑃(𝜌 = 0)) 𝜌 (1)

where P(ρ) expresses power at utilization ρ.

Equation (1) expresses power in terms of generalized
utilization, but particular forms like processor load in MIPS or
switching throughput in bits per second may be used (where
the model holds true). Note that equation (1) refers to the idle
power (𝑃𝑖𝑑𝑙𝑒), but not to the overhead. The static part and
overhead are significant and cannot be ignored. However, idle
power use has no correlation with the computer system’s load.
Furthermore, while the overhead (such as fan power use) can
indeed be expected to relate to load (it is not a constant type
of overhead), power used by these overheads can be expected
to have much longer response times than that of power used
by silicon. For example, a fan’s speed will increase when the
temperature in a thermally instrumented zone increases; heat
capacity is clearly a factor that will affect temperature rise, as
well as temperature drop. Therefore, fan speed will not follow
silicon loading and inclusion of fans’ power use in
measurements will obfuscate the dynamics of power use by
silicon under load.

2) Limitations of the affine relationship
Accuracy of the affine relationship has been shown to

worsen when the processor does not dominate dynamic power
[9]. Apart from processor utilization, system power models
have been developed to handle other system components like
primary (silicon dynamic random-access memory) and
secondary storage (disks) [12]. Furthermore, processor power
and frequency are quadratically related [13]. One approach to
handling frequency variability is given in [14], where the
affine relationship is modified and takes the form shown in
equation (2):

 𝑃(𝜌) = 𝑃𝑖𝑑𝑙𝑒
(𝑓)

+ (𝑃(𝑓)(𝜌 = 1) − 𝑃(𝑓)(𝜌 = 0)) 𝜌 (2)

In equation (2), the frequency index in 𝑃𝑖𝑑𝑙𝑒
(𝑓)

 and

(𝑃(𝑓)(𝜌 = 1) − 𝑃(𝑓)(𝜌 = 0)) serves to denote the

dependence of intercepts (static/leakage/idle power) and
gradients on frequency of operation. Evidently, the affine
model expressed in equation (1) does not describe a computer
system’s processor’s power use when the processor is
operating under dynamic adaptation of voltage and frequency
(Dynamic Voltage and Frequency Scaling (DVFS)).
However, system power measurements must be adjusted by a

baseline that includes 𝑃𝑖𝑑𝑙𝑒
(𝑓)

. A corresponding measure will be

dealt with in considerations of measurement methodology.

3) Relevance of the architectural models
Power architectural models predict power use as a linear

function of several activity indicators. These indicators regard
the activity of aspects of architecture and microarchitecture of
a system. Therefore, models that harness microarchitectural
activity indicators tend to be bound to specific hardware
models. Activity indicators are commonly referred to as
performance counters. Architectural models are well suited to
the task of measuring dynamic power use. Performance
counters compiled by the operating system are architectural;
those compiled by the hardware in dedicated registers, are
microarchitectural. System software can abstract
microarchitectural counters by a layer that returns these
counters through method calls.

A particularly useful class of these counters obtains power
use directly. Examples include Intel’s Running Average
Power Limit (RAPL) and AMD’s AMD Energy Driver
(amd_energy). The feature addresses power use through
hardware support and can form part of a measurement
methodology. For example, RAPL’s
MSR_PKG_ENERGY_STATUS register provides a running,
cyclic total of energy used by the CPU (Central Processing
Unit) package (all cores included).

B. Isolation and attribution of dynamic power use

Dynamic power is used during both service idle time and
service delivery time. The power used during service idle time
is not the 𝑃𝑖𝑑𝑙𝑒 in equation (1). Rather, it is the dynamic power
used by system software (whether in user or kernel mode) to
maintain system operation. Service idle time’s power use will
be subtracted from service delivery (during video streaming)
time’s power use, to obtain the differential relevant to this
research. Service idle time’s power use is a tangible
justification of the requirement to use minimalist general-
purpose systems. Since user application and system software
processes and threads are many, then minimization of such
root causes simplifies the process of attribution of dynamic
power use. An illustration of the multiplicity of subsystems of
the computer that are in the scope of power use measurement
may be found in [15]; clearly, detailed inspection is required
to correctly isolate and attribute power use. Two broad classes
of process and thread are identifiable and are briefly described
below. Sub-sections II-B-1 and II-B-2 concern the video
server, but the same considerations readily hold for the virtual
switch’s server too.

1) Kernel operations

48International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are several categories of operation carried out by the
kernel to support the operations of the video service. These
include:

• processing of hardware interrupts when packets
arrive, and concomitant activities like the onerous
requirement for the system call to return to userspace;

• managing the timer, to schedule processor allocation
to processes and threads;

• memory and cache management, and

• processing of system power monitoring instructions.
The detail of which processes to monitor is expected to be

captured in the baseline (see approach-baselining, below). The
power used during service idle time will be subtracted from
power used during service delivery (during video streaming),
to obtain the differential relevant to this research.

2) Service operations
The video streaming service may be tersely described as

one in which:

• a source file is encoded (or transcoded) using a video
codec and an audio codec;

• the codecs’ output is packetized and

• transmitted over a network interface as the payload of
a communication protocol that handles:

o the correct sequencing of the received
content (payload) and

o adaptation of the video quality of the
content to network conditions.

These operations must be matched to specific computing
entities (components such as processes, threads, main memory
and cache) in the computer system and the power use thereof
is to be monitored. In particular, the specific computing
entities are expected to include the video server process
obtained by running the principal executable, and library
functions which it calls to support the three major categories
of operation listed above (encoding, packetization and
sequencing into a stream of adaptable quality).

C. Service scaling

Service scalability is essential to cope cost- and energy-
efficiently with short-term fluctuations in demand. These
fluctuations are commonly referred to as the daily diurnal and
nocturnal crests and troughs In Internet service demand.
Figure 1 [16] illustrates service scaling in a virtualization
infrastructure. The range of service supply varies from
minimum scaleLevel to maximum scaleLevel, stepping with
the size corresponding to a virtual network function
component (VNFC). Higher demand (load) can be met by
spawning one service instance per client. The service instance
may consist solely of a single VNFC.

Figure 1. [16, Fig. 5.1–1] Demand is met by deploying over a range

from minimum to maximum scaleLevel

III. OBJECTIVE

A. Principle

An overhead is expected in the containerized
implementation, and its quantification is sought. The
objective can be articulated in terms of a comparison between
two types of deployment:

• power use in a computer system that runs the service
within containers, with

• power use in a computer system that runs the service
directly on the operating system.

Quantification is sought to control a tradeoff between

native and containerized deployment. The tradeoff may be
succinctly summarized as one of greater operating power per
unit (physical host) versus potential for lower number of
operating units (physical hosts). The following sub-sections
elaborate on this summary.

B. Greater operating power per unit

1) Quiescent operating power
A host (physical server) computer system uses power in

its quiescent state. Quiescence is the condition where the host
has an active operating system and is running a minimal set of
services. Levels of quiescence can be defined, in accordance
with different specifications of the set of services. In all levels,
quiescent power use consists of an idle/leakage/static
component, due solely to physical properties of the hardware,
and a dynamic component, due to execution of software
processes on the hardware. A containerized deployment uses
more power in the quiescent state because its minimal set of
services is a superset of that used by a native deployment.
Therefore, even when no video clients are served, a
containerized deployment has greater operating power.
Moreover, to grasp the difference between operating power of
the two deployments, a service process deployment strategy
must be defined.

2) Full load operating power
As clients appear, service processes must be started to

handle the workflow. Minimally, the video service workflow
consists of the following cyclical process:

• fill a memory buffer queue by copying some initial
large chunk of the file from storage;

• transmit the queue head;

• repeat queue head transmission until some fraction of
the queue is empty;

• re-fill the memory buffer queue from memory
ramdisk and

• repeat the second, third and fourth steps until all of the
file has been read into the queue.

The process, which can be tersely summarized as
streaming, is independent of the file’s encoding format, but
will be extended should real-time transcoding be necessary to
meet the client’s constraints. These observations prompt the
identification of load units, comprising the full amount of
work (in Joules) required to process the workflow. A topmost
classification divides the set of load units into two branches:

49International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one for the case where only streaming is needed, and another
for the case where both streaming and real-time transcoding is
needed. Below this topmost classification, load units can be
identified for every encoding type and bitrate preset. Each
such load unit corresponds to a single resource unit, which is
the bundle of computing and networking resources required to
serve the load unit. Specification of a load unit supports the
analysis of full load operating power, as the latter is used when
no more load units can be taken (subject to some quality of
service (QoS) condition, as described below). This limit can
be articulated better in terms of bin packing, where each
physical host is represented as a bin capable of serving load.
When a load unit is served, the bin is partially filled, and the
corresponding resource unit is removed from the aggregate of
the host’s available resources. As more load units are served,
the bin is progressively filled until no more load units can be
added. This is full load, and the power used under this
condition is the full load operating power.

3) Bin packing
The condition of full load corresponds to the operating

principle of maximization of capacity utilization without
degrading key indicators of quality of service (QoS). That is,
if each server represents a bin of some service capacity C, then
the server is loaded until its capacity is fully utilized without
degrading the QoS. The process of filling the server suggests
modelling using bin-packing algorithms; hence, depiction of
the server as a bin.

Since both capacity, C, and QoS are complex, a
simplification is sought to manage the tractability of the
problem. Let the capacity, C, be the number L of load units U
that a host H in a set of homogenous hosts, can serve without
degrading the received bit rate at any client, below the preset
for U. This specification of C and QoS key performance
indicator (KPI) serves to support specification of other,
different loading conditions for both types of deployment.
This is reserved for future study.

C. Potential for lower number of operating units

Consider the condition of consolidation, obtained by
deploying video service process to the minimum number of
hosts possible. Ideal consolidation is obtained when all N
hosts (bins) in service except for the Nth are packed. Here,
bin-packing corresponds to loading a server until the bit rate
served at one or more of the clients falls below the preset.

Such an idealized consolidation is depicted in Figure 2.
The top part (a) shows ideal consolidation, at some time t = 0.
𝑁(@𝑡 = 0) (henceforth denoted by 𝑁(0)) servers are shown,
of which 𝑁(0) − 1 are filled and 1 is partially filled. One
white segment represents one utilized resource unit. One
context in which this consolidation is achievable is when an
initial set of load units is presented to a dispatching subsystem
for distribution onto a set of idle servers. This context applies
to both the case where the service is running as a User
Application (UA) directly on the host Operating System (OS)
(henceforth shortened to “running as a UA”) and the case
where the service is running in a container.

Over time, clients drop out (the black gaps represent
unutilized resource units) as their viewing sessions end. While
running as a UA, the service instance supporting dropped cl-

(a) After consolidation

(b) After clients leave (native deployment)

(c) After clients leave and containers are moved

(containerized deployment)

Host

server 1

Host

server 2
Host server

N(0)

Figure 2. Simplified view of power control enabled by

containerization of service application

-ients terminates and leaves a resource gap. However, these
gaps cannot be filled with running instances on other servers,
since UA state cannot be migrated as easily as when it runs
within a container. At some arbitrary time, t, after service
starts, it may not be possible to consolidate the service running
as a UA, but it should always be possible to consolidate the
service running containerized. Therefore:

• while server 𝑘 ∈ {1, 2, … 𝑁(0)} , draws 𝑃𝑘
(𝑐)

>

𝑃𝑘
(𝑢𝑎)

, where 𝑃𝑘
(𝑐)

represents power drawn while

serving a capacity-sized subset from containers and

𝑃𝑘
(𝑢𝑎)

 is the native counterpart, and

• while 𝑁(𝑐)(0) ≥ 𝑁(𝑢𝑎)(0), since 𝐿(𝑐) ≤ 𝐿(𝑢𝑎), where

𝐿(𝑐), 𝐿(𝑢𝑎) are the respective capacities of the
containerized and native service deployments,

there is no predetermined relationship between 𝑁(𝑐)(𝑡) and

𝑁(𝑢𝑎)(𝑡). Moreover, while all but the last of the 𝑁(𝑐)(𝑡) hosts
can (at least periodically) be subjected to consolidation and

thus use power amounting to 𝑃𝑘
(𝑐)

 W, the operating state of

the 𝑁(𝑢𝑎)(𝑡) hosts, and their individual power uses, is
unknown. It thus follows that the relationship between

𝑃
𝑁(𝑐)(𝑡)

(𝑐)
+ (𝑁(𝑐)(𝑡) − 1)𝑃𝑘

(𝑐)
 and ∑ 𝑃𝑘

(𝑢𝑎)𝑁(𝑢𝑎)(𝑡)−1
𝑘=0 is not

evident, and quantification of the overhead 𝑃𝑘
(𝑐)

− 𝑃𝑘
(𝑢𝑎)

due

to containerization, is a necessary prerequisite to
understanding the scale and usage pattern at which

50International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

containerized deployment is energy efficient compared with
native deployment.

IV. IMPLEMENTATION MODEL

An edge cache of a video streaming service is deployed. A
high-level view of the implementational model is shown in
Figures 3 and 4.

• Figure 3 shows an implementation that is easily
portable to a cloud-native infrastructure (henceforth
referred to as the cloud-native implementation), and

• Figure 4 shows an implementation that is a hybrid of
physical (the video server) and virtual network
functions (the switch).

The cloud-native implementation uses containers to host

the video server. Both implementations host a virtual layer 2
switch in the intermediate node.

OvS

VIDEO SERVERINTERMEDIATE NODECONDOMINIUM

CLIENT

CONTAINERS VIRTUAL

SWITCH

SERVICE

CONTAINERS

DIRECT POWER

MEASUREMENT

DIRECT POWER

MEASUREMENT

PowerTOP, RAPL PowerTOP, RAPL

U, T, R/S A10, Vc, S/R ffmpeg-N

Runtime
player-N

player-1

 ffmpeg-1

Runtime

Figure 3. Physical topology of the video streaming service, deployed
in containers. Video Server located in local exchange or Access Node

(AN); Intermediate Note located in street cabinet (subtended AN [17]).

OvS

VIDEO SERVERINTERMEDIATE NODECONDOMINIUM

CLIENT

CONTAINERS VIRTUAL

SWITCH

Native user

applications

DIRECT POWER

MEASUREMENT

DIRECT POWER

MEASUREMENT

PowerTOP, RAPL PowerTOP, RAPL

U, T, R/S A10, Vc, S/R

ffmpeg-N
player-N

player-1
ffmpeg-1

Figure 4. Physical topology of the video streaming service, deployed

on a host operating system.

A. Hardware

The hardware used in this testbed consists of a set of three
HPE (Hewlett Packard Enterprise) ProLiant BL460c Gen9
blade servers [18], hosted in an HPE c7000 blade enclosure.
Connectivity between server and client blades is obtained
through pass-through interconnect bay modules, patched with
single-mode optic fibre cables. These latter modules support
the goal of bypassing c7000 ecosystem interconnect-bay
physical networking devices. Bypass is necessary to introduce
separate, virtual switching hardware. The virtual switch is

implemented on a third HPE Gen9 blade server. The links to
the switch are of type 10GBASE-SR. The video server has a
single Intel® Xeon® CPU E5-2640 v3 (2.60GHz) processor
package. Dynamic Voltage and Frequency Scaling (DVFS) is
under system firmware control.

B. Software

The software consists of:

• an FFmpeg [19]video server. This is representative of
the access node at the edge of the metro-core network;

• a TSDuck [20] receiver. This is representative of end-
user’s video player, and is also used to measure
received bitrate to ensure that Quality of Service
(QoS) (see Section IV-C) is respected;

• the virtual switch software is Open vSwitch [21].

A minimalist operating system was selected for the video

server, to support isolation and attribution in power
measurements. While minimalist operating systems do not
necessarily correlate with minimal noise in power
measurement, it seems useful to reduce the number of possible
sources from the outset. For this reason, Alpine Linux [22]
Standard distribution version 3.19 was chosen.

The container system software selected is Docker [23].
Docker is a mature containerization platform and it is
modular: the runtime daemon (containerd) supports other user
interfaces apart from the Docker user interface (dockerd). For
example, Kubernetes [24] can be used to manage containers
created through the Docker Command-Line Interface (CLI).

V. METHOD

A. Instrumentation

Near-real time measurement of power use can be obtained
from two sources of instrumentation. The blade servers are
equipped with a management processor (known as “integrated
lights-out”, or iLO) that logs a power measurement every 10
seconds and stores a 20-minute history that can be read
through a Redfish®[25] - compliant RESTful
(Representational State Transfer) Application Programming
Interface (API). Selectivity in aggregate power use
measurement is afforded by blade systems, since these
separate power supply to the (blade) computer system from
power supply to two major overhead power drains. Blade
servers use blade chassis services for power supply (where ac
– dc conversion losses occur) and cooling (where blowers use
power as they ventilate from chassis front to chassis rear).
Thus, measurement of power used by the blade server at the
supply voltage rails is free of the problematic, variable
contribution from overheads, and idle power can be measured
to the accuracy afforded by these blade system power
measurement instruments. The measurement datum is of
integer type, obtained by truncation of the decimal part of the
actual measurement. Moreover: since the iLO is not part of
the System Under Test (SUT), it does not alter power
measurement.

While the iLO provides an aggregate power measurement,
process- and thread- level granularity is obtained through

51International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software power meters. Hardware extensions for power
measurement are available in processor models that support
the Intel Running Average Power Limit (RAPL) feature.
PowerTOP [26] is software that enables this level of power
attribution, and it is indeed capable of exploiting RAPL. This
tool complements the aggregate power measurement obtained
by blade sensor instrumentation. PowerTOP uses a top-down
approach [27], (it divides the power measurement over a
period amongst processes and threads in proportion to their
core utilization) and precedes the measurement period by one
of calibration (the utility was run in calibration mode for
several hours before starting the first experiment) in which it
obtains weighting parameters for the attribution process.
Calibration is further refined with use, and PowerTOP saves
its parametric refinement to persistent storage for future
exploitation [28]. PowerTOP was used in its logging mode of
operation, with 10 (ten) – second averaging intervals.
However, PowerTOP has several significant limitations, as
follows: it only measures dynamic power, it does not capture
all power use, and it increases the SUT’s aggregate power use.
These must be mitigated.

B. Baselining

It is necessary to distinguish power used by the video
service from power used by other consumers. This requires
measurement of static (/idle) power use. It is also necessary to
distinguish between dynamic power used during video service
operation time, from dynamic power used when the service is
idle. In essence: service power use can be thought of as an
amount added above that used by the operating system and
system software, which in turn is added above that used to
operate electronic components (static/idle) power. Hence, it is
possible to perceive a baseline to which service power is
added to obtain the total power. Formally:

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓1 + 𝑃𝑞
(𝑜𝑠)

where 𝑃𝑞
(𝑜𝑠)

is the dynamic power corresponding to the OS’s

operation without container system software and without

running User Applications (UAs), and 𝑃𝑖𝑑𝑙𝑒
𝑓1 is the idle/static

power at the frequency 𝑓1 at which the OS is quiescent.

A second baseline, 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
, is required to ensure

experimental reproducibility: it defines known starting and
ending points for each run of experimentation.

𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓2 + 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

Here, 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

 is the dynamic power

corresponding to the OS’s operation with container system
software but without running User Applications (UAs), and

𝑃𝑖𝑑𝑙𝑒
𝑓2 is the idle/static power at the frequency 𝑓2 at which the

Operating System (OS) is quiescent. The state of quiescence
is defined below (see V-D-2).

C. Mitigating errors

The principal source of error is measurement uncertainty
at the iLO, as the iLO rounds to the nearest integer. Since the
iLO rounds [𝑛 − 0.5, 𝑛 + 0.5) to 𝑛, ∈ ℕ , then, without
further information on the probability density function (pdf)
of the error, a fair representation of each measurement is the

value 𝑛 obtained by the iLO. This contrasts with the floor
(round down/truncation) function, where a fair representation
of a measurement 𝑛 would be 𝑛 + 0.5, or the ceil (round up)
function, where 𝑛 − 0.5 would be fair. Of the three
conversions from real to natural number representation,
rounding to the nearest integer has the least maximum error,
and this corresponds to 0.5 W.

The ideal statistical distribution of errors is that of a
uniform Probability Density Function (PDF). If measurement
errors were indeed so distributed, then the mean of actual
measurements can be obtained as the mean of the set of
errored measurements. However, for the specific operating
context of a quiescent operating system, the probability of a
non-uniform distribution cannot be neglected because the
dynamic power is low enough to keep the total power’s range
within half a watt. This is prone to persistent positive bias in
error or persistent negative bias. In such non-uniform PDFs,
the actual mean cannot be obtained; only a range of values
within which the actual mean lies, can be obtained.

Both baselines regard quiescent states. If bias is detected,
mitigation can be pursued through the less biased of the two
baselines. The better baseline can be used to compute the
affected baseline as the arithmetic combination
(addition/subtraction) of the better baseline and the difference
in dynamic power between the two baselines. Therefore, each
measurement of baseline power must be accompanied by a
measure of dynamic power, to support evaluation of the error
in the means obtained through the iLO’s measurements.

This approach notwithstanding, it may still not be possible
to reconcile the two baselines in this manner. In such an
eventuality, the ranges of values within which the actual
means lie can be combined with the difference in dynamic
power between the two baselines. The objective remains that
of reconciling all measurements, within the margin of error
anticipated.

D. Quality of Service

QoS is considered to be satisfied as long as there is
sufficient capacity in the links to keep the overall average
received bitrate of every video stream at or above the video
file’s overall bitrate.

E. Experiments

1) Test conditions
Video service will be delivered from both containerized

and native deployments. The test conditions pertinent to the
video server will be the following.

1. Implementation
a. During containerized operation, each video

service process and the libraries on which it
depends will be operated from a container. One
service process serves one client.

b. During native operation, a new instance of the
video service process will be started for every
new client.

2. Load unit: This will consist of the work required to
process a workflow based upon a video with the
following technical specifications:

52International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a. Overall bitrate = 457 kb/s, = video bitrate of
326 kb/s + audio bitrate of 127 kb/s + mp4
container metadata rate (overhead)

b. Duration = 1h 32m 2.19s (5522.19 s), of which
30 minutes are played, starting at a randomly
selected point in the video.

c. H.264 video codec, Main profile
i. Resolution = 1280 x 720

ii. Frame rate ≈ 23.98 frames/second (fps)
d. Advanced Audio Coding (AAC) audio codec,

Low Complexity profile
i. Sampling rate = 44.1 kHz

e. Client supports same video and audio codec;
hence server does not need real-time
transcoding.

2) Procedure
The power used by the video server is measured at

progressively higher load levels. Two sets of experiments are
carried out: the first set uses containerized video server
instances and the second set uses native video server
instances. A containerized service instance consists of a
container carrying ffmpeg. A single container is created to
deliver a single stream and is destroyed immediately
thereafter. When the container is created, ffmpeg is executed
and listens on a Transmission Control Protocol (TCP) port,
through which it streams 30 minutes of video. A native service
instance is a single instance of the ffmpeg process; it follows
the same lifecycle as the containerized instance.

Management of operations is not trivial, even at the
minimum load level, as it involves the following steps:

1. Reboot the video server, to obtain a common and
reproducible initial state.

2. Wait until the video server quiesces. This is the time
required for server power use to fall to the state
where the iLO measurement persistently shows
baseline 2 usage. Persistence was empirically found
to be ascertained 20 minutes after rebooting.

3. Start the power meters for both total and dynamic
power, for both the video server and the virtual
switch.

4. Wait for a fifteen-minute interval, to capture
behaviour before video streaming.

5. Instantiate and start a container carrying the ffmpeg
listener, poised for real-time playback with
randomized starting point and 30-minute play time.

6. Start a TSDuck client to connect to the container and
measure the bitrate, averaged over 5-second
intervals.

7. Once 30 minutes of video have been played, destroy
the container.

8. Wait for a fifteen-minute interval, to capture
behaviour after video streaming.

For several concurrent streams, steps 5 and 6 must be

repeated for each one of the additional streams. For the native

service instance, step 5 involves the ffmpeg process only and

there is no equivalent to step 7.
It seems evident that manual management is highly prone

to error and is therefore unsuitable. Automated management
using Python scripts and Ansible [29] is employed to handle

the orchestration of the various roles: power meters,
container runtime managers and video clients. This enables
the experiment to be scaled out to levels that are well beyond
the physical limitations of a single human operator.

VI. RESULTS

Denote:

• mean dynamic power measured by PowerTOP by

𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

• mean total power measured by the iLO during a time

period 𝑇𝑥 by 𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅([𝑇𝑥]).

A. Video server’s baseline 1

Figure 5 shows the power used by the video server over an
hour period of measurement, post-onset of quiescence. Since
the iLO truncates decimals in [𝑛, 𝑛 + 1) to 𝑛 , then the
computation of the mean will count the incidences of 45 W
and 44 W and use them as weights to compute a lower limit
to the range of values which the average can take. An upper
limit is obtained by adding the maximum possible error (equal
to 1W) and the mean of the possible range obtained by adding
the mean error (0.5W) to the lower limit of the range. Using
this premise, the mean power measured by the iLO, under the
condition of a quiescent operating system (see Figure 5) is as
follows:

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓1 + 𝑃𝑞
(𝑜𝑠)

= 𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅([10: 31: 49,11: 37: 01])

= 45.4198 W ≅ 45.4 W

B. Mitigation of PowerTOP’s limitations

PowerTOP captures neither static nor dynamic power used
by Hard Disk Drives (HDDs) and Solid-State Disks (SSDs);
this was observed and confirmed through discussion with
PowerTOP’s developers [30]. Indeed, our experiments under
baseline 1 conditions show that if PowerTOP is operated in
logging mode with HDD as destination, iLO aggregate power
use is more than 0.5 W greater on the SUT than the figure
obtained while logging to a RAM (Random-Access-Memory)
disk (see Figure 6). Average aggregate power use increases to
46.05W, compared with 45.4W (see Section VI-A, above). On
the other hand, while logging to RAM disk (under baseline 1
conditions), average aggregate power use only increases to
45.5W (see Figure 7), compared with 45.4W (see Section VI-
A, above) when measurements are taken solely through use of
the iLO’s instrumentation.

C. Video server’s baseline 2

The difference in average dynamic power is added to
baseline 1, to obtain baseline 2:

∆𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_2) − 𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_1)

= 0.7727 − 0.1851 = 0.5876 W

∴ 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓2 + 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

= 𝑃𝑖𝑑𝑙𝑒
𝑓1 + 𝑃𝑞

(𝑜𝑠)
+ ∆𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

= 45.4 + 0.5876 ≅ 45.99 W
This is consistent with the graphical summarization of iLO

measurements shown in Figure 8. This baseline (the graph of
power against time) is essential to obtain a reproducible start-

53International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. PowerTOP logging [11:30:02,12:02:12] to HDD has a

discernable impact on power use

Figure 7. PowerTOP logging [12:57:27,13:29:30] to ramdisk has a

lower impact than logging to HDD.

Figure 8. Baseline 2 video server aggregate power

-ing state for all video service operation experiments.

D. Orchestration of containerized streaming

Results from running experiments on 1, 2, 5, 10, 20, 40
and 80 instances are presented. The result items consist of:

1. Mean aggregate power use (iLO instrumentation).
Due to the integer type of the measurement, actual average
iLO power use can lie in the range of ± 0.5 W of the
reported result.
2. Mean dynamic power use (PowerTOP
instrumentation). Dynamic power data is added to baseline
1 and the sum is plotted on the same Cartesian axes as the
total power data.

PowerTOP was used to attribute dynamic power to

processes, and these were sorted in descending order.
Graphical representations of the power used were produced
too. These results are presented in the Github online repository
at [31] and in Section VI-F (containerized operation only).
Measurements of received stream bitrates are also available in
this repository.

1) Single instance
Table I shows the mean power use; Figure 9 shows

PowerTOP’s measurements offset by baseline 1 and laid over
the iLO's measurements. Time is shown in the format
hh:mm:ss, where hh, mm and ss stand for hour-of-day,
minutes in the hour and seconds in the minute, respectively.
The larger post-operation (post-op) average power is due to
activity undertaken by an instance of containerd (the container
runtime) after the container is destroyed (post-ops). However,
well after operations end, the iLO's measurements return to
the baseline 2 profile. Pre-operations (pre-ops), both meters
(iLO and PowerTOP) are in good agreement (PowerTOP’s
measurements would all be rounded down to 45W).
Moreover, the average power used during operations as
estimated by PowerTOP is 46.99 W (baseline_1, = 45.4, +
1.5940), whereas the iLO estimates 47.03W. The ten-second

Figure 5. Power used by the video server, with a quiescent OS.

54International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

averages’ dissimilarity increases during and post-operations
but is still good. Notably, the spike in power use at the
beginning and end of operations is captured by both meters,
albeit not being measurements of the same magnitude.

2) Two instances
Table II and Figure 10 show the results pertinent to two

containerized video server instances. As is the case with the
single instance, for pre-ops and post-ops, both meters are in
good agreement (the spike at about 09:29:00 is probably due
to HDD input/output operations while loading PowerTOP).
During operations, the average total power estimated by
PowerTOP is 48.02 W (baseline_1 + 2.6162), whereas the
iLO estimates 47.06W. The discrepancy is an overestimate by
about 1W.

An interpretation of the discrepancy between operating
period averages is visible in the graph (Figure 8) showing real
time measurements. When the iLO measures 46W, the actual
value is in the range [46,47), and the rate of change between
46W and 47W is much larger than the single-instance case.

TABLE I. MEAN POWER USE – SINGLE SERVICE INSTANCE

a. Average.

TABLE II. MEAN POWER USE – TWO SERVICE INSTANCES

PowerTOP’s real time measurements are consistently

higher than 47W, revealing that several of the 10-second
measurement intervals are in certain disagreement, albeit
small (< 2/46, i.e., < 5%).

3) Five, ten, twenty, forty and eighty instances
The results for five (Table III, Figure 11), ten (Table IV,

Figure 12), twenty (Table V, Figure 13), forty (Table VI,
Figure 14) and eighty instances (Table VII, Figure 15) are
shown below.

Conditions pre-operations are similar, but PowerTOP’s
average error estimation increases as power use increases. The
numbers shown in the list are PowerTOP’s estimate vs iLO’s
maximum estimate, for N instances (Ni):

• 5i: 50.14 vs 48.66W

• 10i: 54.38 vs 50.10W

• 20i: 60.77 vs 51.74W

• 40i: 64.59 vs 53.90W

• 80i: 60.92 vs 56.80W
Inspection of the online supplementary data on process – level
power attribution suggests that PowerTOP overestimates
across all processes on our test platform.

Power type Description Avga (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[14: 47: 05,15: 03: 00]
Before starting the
service instance

45.65

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 03: 00,15: 33: 05]
During the service

instance’s operation
47.03

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 33: 05,15: 52: 17]
After the service
instance ended

46.17

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[14: 48: 17,15: 03: 00]

Mean dynamic power

before service instance
operation

0.8593

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 03: 00,15: 33: 05]

Mean dynamic power

during service instance
operation

1.5940

Figure 9. One instance. Video server’s power use during
containerized service operation. Baseline 1 added to powertop

measurements.

Figure 10. Two instances. Video server’s power use during

containerized service operation. Baseline 1 added to powertop

measurements. Power type Description Avg (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[09: 24: 01,09: 44: 27]
Before starting the
service instance

45.60

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[09: 44: 27,10: 14: 37]
During the service

instance’s operation
47.06

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[10: 14: 37,10: 29: 23]
After the service

instance ended
46.12

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[09: 29: 27,09: 44: 27]

Mean dynamic power
before the service

instances’ operation

0.9693

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[09: 44: 27,10: 14: 37]

Mean dynamic power

during the service
instances’ operation

2.6162

55International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. MEAN POWER USE – FIVE SERVICE INSTANCES

Power type Description Avg, (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[11: 29: 41,11: 49: 59] Before starting the
service instance

45.79

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[11: 49: 59,12: 20: 15] During the service

instance’s operation

48.16

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[11: 35: 00,11: 49: 59] Mean dynamic power

before service

instances’ operation

0.9970

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[11: 49: 59,12: 20: 15] Mean dynamic power

during the service

instances’ operation

4.7421

TABLE IV. MEAN POWER USE – TEN SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 06: 49,15: 27: 03] Before starting the

service instance

45.60

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 27: 03,15: 57: 27] During the service

instance’s operation

49.60

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 12: 03,15: 27: 03] Mean dynamic power

before service

instances’ operation

0.8759

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 27: 03,15: 57: 27] Mean dynamic power

during the service

instances’ operation

8.9781

Figure 12. Ten instances, containerized operations, baseline 1.

TABLE V. MEAN POWER USE – TWENTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[17: 56: 58,18: 17: 08] Before starting the
service instance

45.76

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 17: 08,18: 48: 00] During the service

instance’s operation

51.24

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 02: 08,18: 17: 08] Mean dynamic power

before service

instances’ operation

0.8913

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 17: 08,18: 48: 00] Mean dynamic power

during the service

instances’ operation

15.3720

Figure 13. Twenty instances, containerized operations, baseline 1.

TABLE VI. MEAN POWER USE – FORTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[12: 57: 37,13: 17: 40] Before starting the

service instance

45.56

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 17: 40,13: 49: 15] During the service

instance’s operation

53.40

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 02: 42,13: 17: 40] Mean dynamic power

before service

instances’ operation

0.7206

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 17: 40,13: 49: 15] Mean dynamic power

during the service

instances’ operation

19.1873

Figure 14. Forty instances, containerized operations, baseline 1

Figure 11. Five instances, containerized operations, baseline 1.

56International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. MEAN POWER USE – EIGHTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 19: 21,18: 39: 20] Before starting the
service instance

45.53

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 39: 30,19: 13: 53] During the service

instance’s operation

56.30

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 24: 31,18: 39: 30] Mean dynamic power

before service

instances’ operation

0.7435

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 39: 30,19: 13: 53] Mean dynamic power

during the service

instances’ operation

15.5243

E. Orchestation of native streaming

A similar set of experiments was run for native video
servers. The results are presented in this section, and are
structured in the same manner as that used in Section VI-D.

1) Single instance

TABLE VIII. MEAN POWER USE – ONE SERVICE INSTANCE

Figure 16. One instance, native operation, baseline 1

2) Two instances

TABLE IX. MEAN POWER USE – TWP SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 28: 42,15: 48: 48] Before starting the

service instance

45.525

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 48: 48,16: 18: 56] During the service
instance’s operation

46.79

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 33: 47,15: 48: 48] Mean dynamic power

before service
instances’ operation

0.2390

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 48: 48,16: 18: 56] Mean dynamic power

during the service

instances’ operation

1.6653

Figure 17. Two instances, native operation, baseline 1

3) Five, ten, twenty, forty and eighty instances
The results for five (Table X, Figure 18), ten (Table XI,

Figure 19), twenty (Table XII, Figure 20), forty (Table XIII,
Figure 21) and eighty instances (Table XIV, Figure 22) are
shown below.

TABLE X. MEAN POWER USE – FIVE SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[17: 49: 44,18: 09: 58] Before starting the

service instance

45.5

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 09: 58,18: 40: 10] During the service
instance’s operation

47.71

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[17: 54: 57,18: 09: 58] Mean dynamic power

before service
instances’ operation

0.2546

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 09: 58,18: 40: 10] Mean dynamic power

during the service
instances’ operation

3.7906

Figure 18. Five instances, native operation, baseline 1

Figure 15. Eighty instances, containerized operations, baseline 1.

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 17: 42,13: 37: 55] Before starting the
service instance

45.54

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 37: 55,14: 08: 02] During the service

instance’s operation

46.38

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 22: 55,13: 37: 55] Mean dynamic power

before service

instances’ operation

0.2080

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 37: 55,14: 08: 02] Mean dynamic power

during the service

instances’ operation

0.8675

57International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. MEAN POWER USE – TEN SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[19: 21: 06, 19: 41: 12] Before starting the
service instance

45.54

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[19: 41: 12, 20: 11: 32] During the service

instance’s operation

49.33

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[19: 26: 11, 19: 41: 12] Mean dynamic power

before service

instances’ operation

0.2466

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[19: 41: 12, 20: 11: 32] Mean dynamic power

during the service

instances’ operation

7.4315

Figure 19. Ten instances, native operation, baseline 1

TABLE XII. MEAN POWER USE – TWENTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[20: 52: 00, 21: 12: 09] Before starting the

service instance

45.52

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[21: 12: 09, 21: 42: 48] During the service
instance’s operation

51.27

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[20: 57: 09, 21: 12: 09] Mean dynamic power

before service
instances’ operation

0.1819

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[21: 12: 09, 21: 42: 48] Mean dynamic power

during the service
instances’ operation

14.3948

Figure 20. Twenty instances, native operation, baseline 1

TABLE XIII. MEAN POWER USE – FORTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[22: 26: 05,22: 46: 20] Before starting the
service instance

45.54

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[22: 46: 20, 23: 17: 43] During the service

instance’s operation

53.27

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[22: 31: 19, 22: 46: 20] Mean dynamic power

before service

instances’ operation

0.1780

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[22: 46: 20, 23: 17: 43] Mean dynamic power

during the service

instances’ operation

19.2853

Figure 21. Forty instances, native operation, baseline 1

TABLE XIV. MEAN POWER USE – EIGHTY SERVICE INSTANCES

Power type Description Avg. (W)

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[00: 08: 35, 00: 28: 47] Before starting the
service instance

45.52

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[00: 28: 47, 01: 02: 39] During the service

instance’s operation

55.81

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[00: 13: 46, 00: 28: 47] Mean dynamic power

before service

instances’ operation

0.1874

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[00: 28: 47, 01: 02: 39] Mean dynamic power

during the service

instances’ operation

15.1443

Figure 22. Eighty instances, native operation, baseline 1

58International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Breakdown of dynamic power by process, containerized

operation

Process power components are sorted in descending order
of the mean process power over the period of measurement,
until some percentage of the mean total dynamic power over
the period of measurement, is obtained. Typical percentages
are 50 (the 50th percentile) and 80 (80th percentile). Higher
percentiles are avoided, as plots showing the largest power
users up to, say, 90% are too dense. Plots and tables are
presented to summarize these results.

1) Single instance

Figure 23. 1 instance – process power use, up to 50th percentile

Figure 24. 1 instance – process power use, up to 75th percentile

TABLE XV. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 94TH
 PERCENTILE OF TOTAL

Description PW Estimate (mW)

[PID 3893] containerd --config

/var/run/docker/containerd/containerd.toml 368.73

tick_sched_timer 322.31

[PID 4376] ffmpeg -re -ss 841 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts

pipe:1 66.54

[3] net_rx(softirq) 61.61

[PID 3922] containerd --config
/var/run/docker/containerd/containerd.toml 59.21

[PID 3920] containerd --config

/var/run/docker/containerd/containerd.toml

53.03

[PID 3898] containerd --config
/var/run/docker/containerd/containerd.toml

50.45

[PID 3894] containerd --config

/var/run/docker/containerd/containerd.toml

40.07

[PID 3907] containerd --config
/var/run/docker/containerd/containerd.toml

39.92

toggle_allocation_gate 38.15671

2) Two instances

Figure 25. 2 instances – process power use, up to 50th percentile

Figure 26. 2 instances – process power use, up to 75th percentile

TABLE XVI. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 87TH
 PERCENTILE OF TOTAL

Description PW Estimate (mW)

tick_sched_timer 511.72

[PID 3882] containerd --config

/var/run/docker/containerd/containerd.toml

427.66

[3] net_rx(softirq) 114.67

[PID 3890] containerd --config
/var/run/docker/containerd/containerd.toml

69.27

[PID 4440] ffmpeg -re -ss 2211 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts
pipe:1

68.03

[PID 4446] ffmpeg -re -ss 801 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts

pipe:1

67.18

[PID 3888] containerd --config

/var/run/docker/containerd/containerd.toml

66.81

[PID 3884] containerd --config

/var/run/docker/containerd/containerd.toml

64.70

[PID 18] [rcu_preempt] 58.79

[PID 3887] containerd --config
/var/run/docker/containerd/containerd.toml

54.53

[PID 3895] containerd --config

/var/run/docker/containerd/containerd.toml

42.70

[PID 3897] containerd --config

/var/run/docker/containerd/containerd.toml

38.57

toggle_allocation_gate 38.15

[PID 3898] containerd --config

/var/run/docker/containerd/containerd.toml

32.94

[PID 3900] containerd --config
/var/run/docker/containerd/containerd.toml

22.35

59International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Five instances

Figure 27. 5 instances – process power use, up to 50th percentile

Figure 28. 5 instances – process power use, up to 80th percentile

TABLE XVII. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 85TH
 PERCENTILE OF TOTAL

Description PW Estimate

(mW)

tick_sched_timer 1123.59

[PID 3884] containerd --config

/var/run/docker/containerd/containerd.toml

479.49

[3] net_rx(softirq) 249.06

[PID 17] [rcu_preempt] 99.97

[PID 3886] containerd --config

/var/run/docker/containerd/containerd.toml

73.31

[PID 4810] ffmpeg -re -ss 1950 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

67.32

[PID 4808] ffmpeg -re -ss 1629 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

66.53

[PID 4806] ffmpeg -re -ss 2297 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

66.24

[PID 4804] ffmpeg -re -ss 1746 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

66.13

[PID 4812] ffmpeg -re -ss 2792 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

65.24

[PID 4098] containerd --config
/var/run/docker/containerd/containerd.toml

60.39

[PID 3895] containerd --config

/var/run/docker/containerd/containerd.toml

59.62

[PID 3889] containerd --config
/var/run/docker/containerd/containerd.toml

49.85

[PID 3894] containerd --config

/var/run/docker/containerd/containerd.toml

47.33

[PID 3893] containerd --config
/var/run/docker/containerd/containerd.toml

45.44

[PID 3887] containerd --config

/var/run/docker/containerd/containerd.toml

44.97

4) Ten instances

Figure 29. 10 instances – process power use, up to 50th percentile

Figure 30. 10 instances – process power use, up to 80th percentile

TABLE XVIII. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 83RD
 PERCENTILE OF TOTAL

Description

PW Estimate

(mW)

tick_sched_timer 2340.38

[3] net_rx(softirq) 528.77

[PID 3885] containerd --config

/var/run/docker/containerd/containerd.toml

524.29

[PID 17] [rcu_preempt] 164.66

[PID 3896] containerd --config

/var/run/docker/containerd/containerd.toml

83.20

[PID 3899] containerd --config

/var/run/docker/containerd/containerd.toml

76.19

[PID 4102] containerd --config
/var/run/docker/containerd/containerd.toml

72.04

[PID 5403] ffmpeg -re -ss 589 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

65.28

[PID 5400] ffmpeg -re -ss 202 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

65.14

[PID 5407] ffmpeg -re -ss 2453 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.91

[PID 5411] ffmpeg -re -ss 121 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.74

[PID 5395] ffmpeg -re -ss 1012 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.58

[PID 5401] ffmpeg -re -ss 235 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.48

[PID 5397] ffmpeg -re -ss 2679 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.42

[PID 5405] ffmpeg -re -ss 1856 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

64.37

60International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5) Twenty instances

Figure 31. 20 instances – process power use, up to 50th percentile

Figure 32. 20 instances – process power use, up to 80th percentile

TABLE XIX. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 78TH
 PERCENTILE OF TOTAL

Description

PW Estimate

(mW)

tick_sched_timer 4230.06

[3] net_rx(softirq) 980.63

[PID 3882] containerd --config

/var/run/docker/containerd/containerd.toml

526.42

[PID 17] [rcu_preempt] 171.73

hrtimer_wakeup 89.09

[PID 3793] /usr/bin/dockerd 85.50

[PID 3897] containerd --config

/var/run/docker/containerd/containerd.toml

72.29

[PID 6622] ffmpeg -re -ss 2972 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

61.28

[PID 6542] ffmpeg -re -ss 2862 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.94

[PID 6592] ffmpeg -re -ss 893 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.90

[PID 6586] ffmpeg -re -ss 990 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.68

[PID 6550] ffmpeg -re -ss 1550 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.62

[PID 6562] ffmpeg -re -ss 99 -i /videos/chosen.mp4

-t 1800 -c copy -f mpegts pipe:1

60.57

[PID 6616] ffmpeg -re -ss 924 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.53

[PID 6610] ffmpeg -re -ss 2989 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

60.52

6) Forty instances

Figure 33. 40 instances – process power use, up to 50th percentile

Figure 34. 40 instances – process power use, up to 80th percentile

TABLE XX. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 80TH
 PERCENTILE OF TOTAL

Description

PW Estimate

(mW)

tick_sched_timer 5402.63

[3] net_rx(softirq) 1265.36

hrtimer_wakeup 663.73

[PID 3882] containerd --config

/var/run/docker/containerd/containerd.toml

405.74

[PID 18] [rcu_preempt] 104.85

[PID 3795] /usr/bin/dockerd 100.95

[PID 3899] containerd --config
/var/run/docker/containerd/containerd.toml

44.12

[PID 3884] containerd --config

/var/run/docker/containerd/containerd.toml

42.31

[PID 3887] containerd --config
/var/run/docker/containerd/containerd.toml

40.81

[PID 7927] ffmpeg -re -ss 1413 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

36.60

[PID 7969] ffmpeg -re -ss 237 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

36.52

[PID 3898] containerd --config

/var/run/docker/containerd/containerd.toml

36.22

[PID 7933] ffmpeg -re -ss 60 -i /videos/chosen.mp4
-t 1800 -c copy -f mpegts pipe:1

36.21

[PID 7993] ffmpeg -re -ss 2988 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

36.15

[PID 7913] ffmpeg -re -ss 1714 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

36.07

61International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) Eighty instances

Figure 35. 80 instances – process power use, up to 50th percentile

Figure 36. 80 instances – process power use, up to 80th percentile

TABLE XXI. SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF

MEAN POWER USE, UP TO 79TH
 PERCENTILE OF TOTAL

Description

PW Estimate

(mW)

tick_sched_timer 4038.35

[3] net_rx(softirq) 1449.76

hrtimer_wakeup 935.01

[PID 3882] containerd --config

/var/run/docker/containerd/containerd.toml

251.19

[PID 3794] /usr/bin/dockerd 103.59

[PID 18] [rcu_preempt] 68.98

[PID 3881] containerd --config

/var/run/docker/containerd/containerd.toml

37.20

[PID 3892] containerd --config

/var/run/docker/containerd/containerd.toml

29.13

toggle_allocation_gate 28.56

[PID 3897] containerd --config

/var/run/docker/containerd/containerd.toml

24.14

[7] sched(softirq) 23.67

[PID 8262] ffmpeg -re -ss 1711 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

20.19

[PID 3893] containerd --config
/var/run/docker/containerd/containerd.toml

19.72

[PID 9089] ffmpeg -re -ss 247 -i

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

19.58

[PID 11433] ffmpeg -re -ss 415 -i
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1

19.02

VII. ANALYSIS

Various characterizations of power use are considered and
plotted in Figure 37. In the notation shown below, the (𝑛)
symbol indicates dependence of power used on number of
streaming containers.

1. total power during operations, 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛), and

2. differential total power, where the difference is

between operations and quiescence, 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛) −

𝑃𝑞
𝑖𝐿𝑂 .

Figure 37 illustrates the results in graphical form. The top
row of graphs compares total power and differential total
power, respectively, for containerized and native operations.
The bottom row shows the difference between total power and
differential total power. The non-monotonic behaviour seen in
the bottom row is due to the error introduced by the rounding
of iLO instrumentation.

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
 (45.4W) was used as the offset for dynamic

power obtained using PowerTOP, at every instance count. The

value of 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 (45.99W), obtained by adding the increment

in dynamic power inferred by PowerTOP (see Section VI-C),
was larger than that measured as

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒] for any of the instance

counts. If, however, 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 is obtained in the same way as

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
, by averaging 𝑝(𝑖𝐿𝑂) over the relevant period of time,

attainment of 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 supports well the purpose of good

known starting and ending events for a run of
experimentation.

Dynamic power measurements as a function of streaming
videos are not shown in Figure 37, as PowerTOP’s
measurements do not produce consistent, intelligible results
on our platform. Estimates are insufficiently accurate.
PowerTOP is capable of capturing power change behaviour
(see, notably, Figure 36), but it requires further development
before its estimates can be used for quantitative analysis.

On the other hand, notwithstanding PowerTOP’s
problematic scaling, its capability to capture power change
suggests that its relative attribution of power consumption to
processes is sound. Basing upon this understanding, it is
possible to detect that, notwithstanding the potential to save
power consumption through use of tickless kernels, the
tick_sched_timer function is easily the largest power
consumer (see Figures 27, 29, 31, 33 and 35).

VIII. CONCLUSION AND FUTURE WORK

The objective set out in Section III was to quantify the
overhead incurred by operating the video service
containerized, instead of as an application running directly on
the host operating system (native operation). An access
network of the Active Ethernet type was constructed and a
video cache deployed in an access node to stream videos to
the access node’s service area. An implementation model
describing the access network was included.

The results obtained have shown that the overhead is
negligible and that the benefit of running the video source in
a container comes at little cost. The possibility of

62International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

consolidating video streaming containers can be pursued with
confidence.

No discernable cause for concern was found in the power
measurement instrumentation embedded in the HPE Gen9
platform. Documentation on interfacing with the Integrated
Lights-Out (iLO) server management was readily available.
For detail beyond typical interest, HPE readily divulged
information on this tool when contacted for help, including,
for example, the method used to round the power
measurement into an integer [32].

On the other hand, PowerTOP’s accuracy poses a
problem. The various graphs of power against time have
shown that it captures changes well but significantly
overestimates them. In the light of these errors, works that
have investigated containerization’s overhead with the use of
this tool (e.g., [15]) may need to be reviewed for the
implications of inaccuracies introduced by the tool, perhaps
by using external, physical power meters to calibrate
PowerTOP’s measurement.

Baselines have been obtained for both the video server and

the virtual switch. In particular, 𝑃𝑏2
𝑣𝑖𝑑𝑒𝑜 has been found useful

in obtaining a reproducible starting point for experiments; to

a lesser extent, 𝑃𝑏1
𝑣𝑖𝑑𝑒𝑜has been found useful in providing an

offset for power obtained through tools that measure dynamic
power. This segues well into an observation that merits
particular attention. Even with 80 concurrent streams, the
static power has dwarfed the dynamic power. The importance
of this observation pertains to the importance of the benefit of
containerization as an enabler of consolidation of physical
hosts. It can readily be stated that the overhead incurred in
providing the service framework of containerization poses
no obstacle to exploration of exploitation of this benefit.

PowerTOP’s limitations invite researchers to explore its
causes, as the demand for software power meters is pressing
in multi-tenant hosting. Future work would do well to assess
the relative accuracy of PowerTOP with Scaphandre [33]
prior to embarking on the use of either within power
instrumentation.

Figure 37. Comparison: native vs containerized streaming. Clockwise from top left: 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛), 𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛) − 𝑃𝑞
𝑖𝐿𝑂, 𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛𝑐𝑜𝑛𝑡) − 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛𝑛𝑎𝑡𝑖𝑣𝑒) and

(𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛𝑐𝑜𝑛𝑡) − 𝑃𝑞

𝑖𝐿𝑂

𝑐𝑜𝑛𝑡
) − (𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛𝑛𝑎𝑡𝑖𝑣𝑒) − 𝑃𝑞
𝑖𝐿𝑂

𝑛𝑎𝑡𝑖𝑣𝑒
).

REFERENCES

[1] E.-V. Depasquale and S. Zammit, ‘Containerization’s Power

Use Overhead in Video Streaming’, in Proceedings of the
Ninth International Conference on Green Communications,
Computing and Technologies (GREEN 2024), Nice, France:
IARIA, 2024, pp. 1–9. [Online]. Available:

https://www.thinkmind.org/articles/green_2024_1_10_80008.
pdf

[2] A. Teker, A. H. Örnek, and B. Canberk, ‘Network Bandwidth
Usage Forecast in Content Delivery Networks’, in 2020
International Conference on Broadband Communications for
Next Generation Networks and Multimedia Applications
(CoBCom), Jul. 2020, pp. 1–6. doi:
10.1109/CoBCom49975.2020.9174180.

63International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch,
and G. Caire, ‘FemtoCaching: Wireless Content Delivery
Through Distributed Caching Helpers’, IEEE Trans. Inf.
Theory, vol. 59, no. 12, pp. 8402–8413, Dec. 2013, doi:
10.1109/TIT.2013.2281606.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung,
‘Cache in the air: exploiting content caching and delivery
techniques for 5G systems’, IEEE Commun. Mag., vol. 52, no.
2, pp. 131–139, Feb. 2014, doi:
10.1109/MCOM.2014.6736753.

[5] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W.
Wang, ‘A Survey on Mobile Edge Networks: Convergence of
Computing, Caching and Communications’, IEEE Access, vol.
5, pp. 6757–6779, 2017, doi:
10.1109/ACCESS.2017.2685434.

[6] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J.
Morrow, and P. A. Polakos, ‘A Comprehensive Survey on Fog
Computing: State-of-the-Art and Research Challenges’, IEEE
Commun. Surv. Tutor., vol. 20, no. 1, pp. 416–464, 2018, doi:
10.1109/COMST.2017.2771153.

[7] J. Zhao, P. Liang, W. Liufu, and Z. Fan, ‘Recent Developments
in Content Delivery Network: A Survey’, in Parallel
Architectures, Algorithms and Programming, H. Shen and Y.
Sang, Eds., Singapore: Springer, 2020, pp. 98–106. doi:
10.1007/978-981-15-2767-8_9.

[8] B. Zolfaghari et al., ‘Content Delivery Networks: State of the
Art, Trends, and Future Roadmap’, ACM Comput. Surv., vol.
53, no. 2, p. 34:1-34:34, Apr. 2020, doi: 10.1145/3380613.

[9] S. Rivoire, P. Ranganathan, and C. Kozyrakis, ‘A comparison
of high-level full-system power models’, in Proceedings of the
2008 conference on Power aware computing and systems, in
HotPower’08. USA: USENIX Association, Dec. 2008, p. 3.

[10] E.-V. Depasquale, F. Davoli, and H. Rajput, ‘Dynamics of
Research into Modeling the Power Consumption of Virtual
Entities Used in the Telco Cloud’, Sensors, vol. 23, no. 1, Art.
no. 1, Jan. 2023, doi: 10.3390/s23010255.

[11] K. Hinton, F. Jalali, and A. Matin, ‘Energy consumption
modelling of optical networks’, Photonic Netw. Commun., vol.
30, no. 1, pp. 4–16, Aug. 2015, doi: 10.1007/s11107-015-0491-
5.

[12] W. Lin, H. Wang, and W. Wu, ‘A power monitoring system
based on a multi-component power model’, Int. J. Grid High
Perform. Comput., vol. 10, no. 1, pp. 16–30, Jan. 2018.

[13] B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. de
Supinski, ‘Practical performance prediction under Dynamic
Voltage Frequency Scaling’, in 2011 International Green
Computing Conference and Workshops, Jul. 2011, pp. 1–8.
doi: 10.1109/IGCC.2011.6008553.

[14] T. Guérout, Y. Gaoua, C. Artigues, G. Da Costa, P. Lopez, and
T. Monteil, ‘Mixed integer linear programming for quality of
service optimization in Clouds’, Future Gener. Comput. Syst.,
vol. 71, pp. 1–17, Jun. 2017, doi: 10.1016/j.future.2016.12.034.

[15] R. Bolla, R. Bruschi, F. Davoli, C. Lombardo, and N. S.
Martinelli, ‘Analyzing the Power Consumption in Cloud-

Native 5/6G Ecosystems’, in 2023 IEEE International
Conference on Communications Workshops (ICC
Workshops), May 2023, pp. 611–617. doi:
10.1109/ICCWorkshops57953.2023.10283755.

[16] Environmental Engineering (EE); Green Abstraction Layer
(GAL); Power management capabilities of the future energy
telecommunication fixed network nodes; Enhanced Interface
for power management in Network Functions Virtualisation
(NFV) environments, Sophia Antipolis, France., Jan. 2024.

[17] Multi-service Broadband Network Architecture and Nodal
Requirements, TR-178 Issue 2, Broadband Forum., Sep. 2017.
[Online]. Available: https://www.broadband-
forum.org/technical/download/TR-178_Issue-2.pdf

[18] Hewlett Packard Enterprise, ‘HPE ProLiant BL460c Gen9
Server Blade’, PSNow. Accessed: Jun. 17, 2024. [Online].
Available: https://www.hpe.com/psnow/doc/c04347343

[19] ‘FFmpeg’. Accessed: Jun. 17, 2024. [Online]. Available:
https://ffmpeg.org/

[20] ‘TSDuck’. Accessed: Jun. 17, 2024. [Online]. Available:
https://tsduck.io/

[21] ‘Open vSwitch’. Accessed: Jun. 17, 2024. [Online]. Available:
https://www.openvswitch.org/

[22] ‘index | Alpine Linux’. Accessed: Jun. 17, 2024. [Online].
Available: https://alpinelinux.org/

[23] ‘Docker: Accelerated Container Application Development’.
Accessed: Jun. 17, 2024. [Online]. Available:
https://www.docker.com/

[24] ‘Kubernetes Documentation’, Accessed: Sep. 03, 2019.
[Online]. Available: https://kubernetes.io/docs/home/

[25] DMTF Redfish Forum, Redfish Specification, DSP0266, Apr.
03, 2024. Accessed: Jun. 17, 2024. [Online]. Available:
https://www.dmtf.org/sites/default/files/standards/documents/
DSP0266_1.20.1.pdf

[26] ‘Powertop - ArchWiki’. Accessed: Feb. 20, 2024. [Online].
Available: https://wiki.archlinux.org/title/powertop

[27] A. van de Ven, ‘PowerTOP running average interval and
display update interval’, Apr. 08, 2024.

[28] A. van de Ven, ‘PowerTOP running average interval and
display update interval (update)’, Apr. 08, 2024.

[29] Ansible Community Documentation, ‘User Guide’. Accessed:
Jun. 17, 2024. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/index.html

[30] A. van de Ven, ‘PowerTOP running average interval and
display update interval (2nd update)’, Apr. 30, 2024.

[31] edepa, edepa/video_streaming_power_use. (Jun. 18, 2024).
Accessed: Mar. 15, 2025. [Online]. Available:
https://github.com/edepa/video_streaming_power_use

[32] J. Sultana, ‘Power measurement - Gen9’, May 24, 2024.

[33] ‘Introduction - Scaphandre documentation’. Accessed: Mar.
15, 2025. [Online]. Available: https://hubblo-
org.github.io/scaphandre/book/

