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Abstract— Containerization of a service enables live migration 

and, thereby, consolidation of running service instances onto as 

few host platforms as possible. However, containerization’s 

operational overhead must be investigated to determine overall 

viability. One dimension of this overhead is that of power use, 

and this is investigated here.   An architecture for a video cache 

service at the edge of a Communications Service Provider’s 

(CSP) network in the metropolitan area is designed, and a scaled 

version is implemented in a laboratory environment. A 

comparison is made between power used while streaming videos 

in both native and containerized modes of operation. 

Containerization is found to incur a low power overhead while 

streaming video, compared with streaming video from ffmpeg 

running directly on the host operating system. Moreover, 

notwithstanding advances with tickless kernels, the kernel’s 

scheduling timer routine remains a dominant power consumer. 

Power use is measured using hardware instrumentation and 

with PowerTOP, a software power meter. Limits on the latter’s 

accuracy have been observed. 
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I.  INTRODUCTION 

This paper expands upon our earlier study presented at the 
Ninth International Conference on Green Communications, 
Computing and Technologies (GREEN 2024) [1], where we 
investigated the power overheads incurred by containerized 
video streaming. 

Content Delivery Networks (CDNs) are overlay networks 
that are key to controlling the growth in demand for bandwidth 
in long-haul communications links. By distributing content to 
caches in geographical regions of the world where customers 
are located, the number of times which a single item of content 
crosses long-haul links between the content origin’s region 
and the customer’s region, is reduced to just one. In turn, the 
content is distributed several times to customers in the region. 
While the function of the CDN, from the customer’s 
perspective, is that of reducing latency and avoiding buffer 
underrun, the control of bandwidth growth is a function that 
has a strategic role in the stability of world-wide 
communication. The CDN’s role in bandwidth control 
continues to gain attention [2]; a variety of CDN 
implementations has been investigated [3], [4] and surveyed 
[5], [6] and generalized surveys are of ongoing interest [7], 

[8]. The importance of the CDN seems to grant sufficient 
ground for study of the impact of its Point of Presence (PoP) 
on the information and communication technology of its 
environs. 

This study seeks to compare power use in containerized 
deployment of the media server in a CDN PoP. It focuses on 
the power use of the media server as it processes a 
representative set of tasks. The media selected for study is 
video (henceforth, the media server will be referred to as the 
video server), and two reasons support this choice. Video 
dominates traffic, whether in the access, aggregation, metro-
core, or long-haul. Moreover, some of the tasks, such as 
transcoding, are processor-intensive and serve to indicate the 
power capacity required to support CDN PoPs. 

The rest of this paper is structured as follows. Section II is 
a brief treatise of some of the foundational works in modelling 
power use in computer systems. In Section III, the objective 
is stated. In Section IV, the implementation model is 
presented. This supports reproduction of the test environment. 
In Section V, the method is elaborated upon. Section VI 
presents the results, and Section VII supports interpretation 
through analysis of these results. Section VIII draws a succinct 
conclusion on the impact that containerization of a video 
service has on power use overhead. 

II. BACKGROUND 

A. Power models 

A better grasp of the impact of containerization on a CDN 
PoP’s power use requires understanding of containerization’s 
impact on the media server’s use of power.  Media servers are 
deployed on general purpose computing systems (or: 
Commercial-Off-The-Shelf (COTS) computer systems), and 
a basic understanding of these systems’ power characteristics 
must support further study.  

Power used by a computer system has an idle (static, or 
leakage) part, an active (dynamic) part and overhead.  The 
power use referred to here is a system metric: it is an aggregate 
that sums all consumers’ (system components) power use, 
whether it be of dynamic, static or overhead type. Idle power’s 
(𝑃𝑖𝑑𝑙𝑒) relevance depends on perspective. On the one hand, 
idle power use is a real and significant cost: from the 
perspective of facility managers and sustainability advocates, 
it is of interest. On the other hand, it is irrelevant to the way in 
which processes exercise a computer system: it is of 
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secondary importance in a study of the power required to 
deliver a service. It follows, then, that a study of the power 
used to operate a CDN PoP’s server systems must primarily 
engage with service power use, or, using general terms, with 
dynamic power use. 

A simple, yet useful, classification of power models 
divides them into two: (a) one that treats the computer system 
as a black box, and uses workload to predict power in real 
time, and (b) another that exploits knowledge of 
microarchitecture and architecture [9]. They represent two 
different levels of abstraction (see [10, p. 42] for a more 
detailed distinction) of a computer system. 

1) The affine relationship between aggregate power and 

utilization 
The affine relationship is a well-known example of the 

black-box class. A typical representation of workload may be 
one or more parameters of utilization (e.g., MIPS (millions of 
instructions per second) and IOPS (input/output operations 
per second). The affine relationship between power use and 
utilization [9] is well suited to describing legacy network 
equipment [11]. The general form is reproduced as equation 
(1): 

      𝑃(𝜌) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃(𝜌 = 1) − 𝑃(𝜌 = 0)) 𝜌            (1) 

 
where P(ρ) expresses power at utilization ρ. 

Equation (1) expresses power in terms of generalized 
utilization, but particular forms like processor load in MIPS or 
switching throughput in bits per second may be used (where 
the model holds true). Note that equation (1) refers to the idle 
power (𝑃𝑖𝑑𝑙𝑒 ), but not to the overhead. The static part and 
overhead are significant and cannot be ignored. However, idle 
power use has no correlation with the computer system’s load. 
Furthermore, while the overhead (such as fan power use) can 
indeed be expected to relate to load (it is not a constant type 
of overhead), power used by these overheads can be expected 
to have much longer response times than that of power used 
by silicon. For example, a fan’s speed will increase when the 
temperature in a thermally instrumented zone increases; heat 
capacity is clearly a factor that will affect temperature rise, as 
well as temperature drop. Therefore, fan speed will not follow 
silicon loading and inclusion of fans’ power use in 
measurements will obfuscate the dynamics of power use by 
silicon under load. 

2) Limitations of the affine relationship 
Accuracy of the affine relationship has been shown to 

worsen when the processor does not dominate dynamic power 
[9]. Apart from processor utilization, system power models 
have been developed to handle other system components like 
primary (silicon dynamic random-access memory) and 
secondary storage (disks) [12]. Furthermore, processor power 
and frequency are quadratically related [13]. One approach to 
handling frequency variability is given in [14], where the 
affine relationship is modified and takes the form shown in 
equation (2): 

       𝑃(𝜌) = 𝑃𝑖𝑑𝑙𝑒
(𝑓)

+ (𝑃(𝑓)(𝜌 = 1)  −  𝑃(𝑓)(𝜌 = 0))  𝜌     (2) 

 

In equation (2), the frequency index in 𝑃𝑖𝑑𝑙𝑒
(𝑓)

  and 

(𝑃(𝑓)(𝜌 = 1)  − 𝑃(𝑓)(𝜌 = 0)) serves to denote the 

dependence of intercepts (static/leakage/idle power) and 
gradients on frequency of operation. Evidently, the affine 
model expressed in equation (1) does not describe a computer 
system’s processor’s power use when the processor is 
operating under dynamic adaptation of voltage and frequency 
(Dynamic Voltage and Frequency Scaling (DVFS)). 
However, system power measurements must be adjusted by a 

baseline that includes 𝑃𝑖𝑑𝑙𝑒
(𝑓)

. A corresponding measure will be 

dealt with in considerations of measurement methodology. 

3) Relevance of the architectural models 
Power architectural models predict power use as a linear 

function of several activity indicators. These indicators regard 
the activity of aspects of architecture and microarchitecture of 
a system. Therefore, models that harness microarchitectural 
activity indicators tend to be bound to specific hardware 
models. Activity indicators are commonly referred to as 
performance counters. Architectural models are well suited to 
the task of measuring dynamic power use. Performance 
counters compiled by the operating system are architectural; 
those compiled by the hardware in dedicated registers, are 
microarchitectural. System software can abstract 
microarchitectural counters by a layer that returns these 
counters through method calls. 

A particularly useful class of these counters obtains power 
use directly. Examples include Intel’s Running Average 
Power Limit (RAPL) and AMD’s AMD Energy Driver 
(amd_energy). The feature addresses power use through 
hardware support and can form part of a measurement 
methodology. For example, RAPL’s 
MSR_PKG_ENERGY_STATUS register provides a running, 
cyclic total of energy used by the CPU (Central Processing 
Unit) package (all cores included). 

B. Isolation and attribution of dynamic power use 

Dynamic power is used during both service idle time and 
service delivery time. The power used during service idle time 
is not the 𝑃𝑖𝑑𝑙𝑒  in equation (1). Rather, it is the dynamic power 
used by system software (whether in user or kernel mode) to 
maintain system operation. Service idle time’s power use will 
be subtracted from service delivery (during video streaming) 
time’s power use, to obtain the differential relevant to this 
research.  Service idle time’s power use is a tangible 
justification of the requirement to use minimalist general-
purpose systems. Since user application and system software 
processes and threads are many, then minimization of such 
root causes simplifies the process of attribution of dynamic 
power use. An illustration of the multiplicity of subsystems of 
the computer that are in the scope of power use measurement 
may be found in [15]; clearly, detailed inspection is required 
to correctly isolate and attribute power use. Two broad classes 
of process and thread are identifiable and are briefly described 
below. Sub-sections II-B-1 and II-B-2 concern the video 
server, but the same considerations readily hold for the virtual 
switch’s server too. 

1) Kernel operations 
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There are several categories of operation carried out by the 
kernel to support the operations of the video service. These 
include: 

• processing of hardware interrupts when packets 
arrive, and concomitant activities like the onerous 
requirement for the system call to return to userspace; 

• managing the timer, to schedule processor allocation 
to processes and threads; 

• memory and cache management, and 

• processing of system power monitoring instructions. 
The detail of which processes to monitor is expected to be 

captured in the baseline (see approach-baselining, below). The 
power used during service idle time will be subtracted from 
power used during service delivery (during video streaming), 
to obtain the differential relevant to this research. 

2) Service operations 
The video streaming service may be tersely described as 

one in which: 

• a source file is encoded (or transcoded) using a video 
codec and an audio codec; 

• the codecs’ output is packetized and  

• transmitted over a network interface as the payload of 
a communication protocol that handles: 

o the correct sequencing of the received 
content (payload) and  

o adaptation of the video quality of the 
content to network conditions. 

These operations must be matched to specific computing 
entities (components such as processes, threads, main memory 
and cache) in the computer system and the power use thereof 
is to be monitored. In particular, the specific computing 
entities are expected to include the video server process 
obtained by running the principal executable, and library 
functions which it calls to support the three major categories 
of operation listed above (encoding, packetization and 
sequencing into a stream of adaptable quality). 

C. Service scaling 

Service scalability is essential to cope cost- and energy-
efficiently with short-term fluctuations in demand. These 
fluctuations are commonly referred to as the daily diurnal and 
nocturnal crests and troughs In Internet service demand. 
Figure 1 [16] illustrates service scaling in a virtualization 
infrastructure. The range of service supply varies from 
minimum scaleLevel to maximum scaleLevel, stepping with 
the size corresponding to a virtual network function 
component (VNFC). Higher demand (load) can be met by 
spawning one service instance per client. The service instance 
may consist solely of a single VNFC. 

 

 

Figure 1.  [16, Fig. 5.1–1] Demand is met by deploying over a range 

from minimum to maximum scaleLevel 

III. OBJECTIVE 

A. Principle 

An overhead is expected in the containerized 
implementation, and its quantification is sought.  The 
objective can be articulated in terms of a comparison between 
two types of deployment: 

 

• power use in a computer system that runs the service 
within containers, with  

• power use in a computer system that runs the service 
directly on the operating system. 

 
Quantification is sought to control a tradeoff between 

native and containerized deployment. The tradeoff may be 
succinctly summarized as one of greater operating power per 
unit (physical host) versus potential for lower number of 
operating units (physical hosts). The following sub-sections 
elaborate on this summary. 

B. Greater operating power per unit 

1) Quiescent operating power 
A host (physical server) computer system uses power in 

its quiescent state. Quiescence is the condition where the host 
has an active operating system and is running a minimal set of 
services. Levels of quiescence can be defined, in accordance 
with different specifications of the set of services. In all levels, 
quiescent power use consists of an idle/leakage/static 
component, due solely to physical properties of the hardware, 
and a dynamic component, due to execution of software 
processes on the hardware. A containerized deployment uses 
more power in the quiescent state because its minimal set of 
services is a superset of that used by a native deployment. 
Therefore, even when no video clients are served, a 
containerized deployment has greater operating power. 
Moreover, to grasp the difference between operating power of 
the two deployments, a service process deployment strategy 
must be defined. 

2) Full load operating power 
As clients appear, service processes must be started to 

handle the workflow. Minimally, the video service workflow 
consists of the following cyclical process: 

• fill a memory buffer queue by copying some initial 
large chunk of the file from storage; 

• transmit the queue head; 

• repeat queue head transmission until some fraction of 
the queue is empty; 

• re-fill the memory buffer queue from memory 
ramdisk and 

• repeat the second, third and fourth steps until all of the 
file has been read into the queue. 

The process, which can be tersely summarized as 
streaming, is independent of the file’s encoding format, but 
will be extended should real-time transcoding be necessary to 
meet the client’s constraints. These observations prompt the 
identification of load units, comprising the full amount of 
work (in Joules) required to process the workflow. A topmost 
classification divides the set of load units into two branches: 
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one for the case where only streaming is needed, and another 
for the case where both streaming and real-time transcoding is 
needed. Below this topmost classification, load units can be 
identified for every encoding type and bitrate preset. Each 
such load unit corresponds to a single resource unit, which is 
the bundle of computing and networking resources required to 
serve the load unit. Specification of a load unit supports the 
analysis of full load operating power, as the latter is used when 
no more load units can be taken (subject to some quality of 
service (QoS) condition, as described below). This limit can 
be articulated better in terms of bin packing, where each 
physical host is represented as a bin capable of serving load. 
When a load unit is served, the bin is partially filled, and the 
corresponding resource unit is removed from the aggregate of 
the host’s available resources. As more load units are served, 
the bin is progressively filled until no more load units can be 
added. This is full load, and the power used under this 
condition is the full load operating power. 

3) Bin packing 
The condition of full load corresponds to the operating 

principle of maximization of capacity utilization without 
degrading key indicators of quality of service (QoS). That is, 
if each server represents a bin of some service capacity C, then 
the server is loaded until its capacity is fully utilized without 
degrading the QoS. The process of filling the server suggests 
modelling using bin-packing algorithms; hence, depiction of 
the server as a bin. 

Since both capacity, C, and QoS are complex, a 
simplification is sought to manage the tractability of the 
problem. Let the capacity, C, be the number L of load units U 
that a host H in a set of homogenous hosts, can serve without 
degrading the received bit rate at any client, below the preset 
for U. This specification of C and QoS key performance 
indicator (KPI) serves to support specification of other, 
different loading conditions for both types of deployment. 
This is reserved for future study. 

C. Potential for lower number of operating units 

Consider the condition of consolidation, obtained by 
deploying video service process to the minimum number of 
hosts possible. Ideal consolidation is obtained when all N 
hosts (bins) in service except for the Nth are packed. Here, 
bin-packing corresponds to loading a server until the bit rate 
served at one or more of the clients falls below the preset. 

Such an idealized consolidation is depicted in Figure 2. 
The top part (a) shows ideal consolidation, at some time t = 0. 
𝑁(@𝑡 = 0) (henceforth denoted by 𝑁(0)) servers are shown, 
of which 𝑁(0) − 1 are filled and 1 is partially filled. One 
white segment represents one utilized resource unit. One 
context in which this consolidation is achievable is when an 
initial set of load units is presented to a dispatching subsystem 
for distribution onto a set of idle servers. This context applies 
to both the case where the service is running as a User 
Application (UA) directly on the host Operating System (OS) 
(henceforth shortened to “running as a UA”) and the case 
where the service is running in a container. 

Over time, clients drop out (the black gaps represent 
unutilized resource units) as their viewing sessions end. While 
running as a UA, the service instance supporting dropped cl- 

(a) After consolidation

(b) After clients leave (native deployment)

(c) After clients leave and containers are moved 

(containerized deployment)

Host 

server 1

Host 

server 2
Host server 

N(0)

 

Figure 2.  Simplified view of power control enabled by 

containerization of service application 

 
-ients terminates and leaves a resource gap. However, these 
gaps cannot be filled with running instances on other servers, 
since UA state cannot be migrated as easily as when it runs 
within a container. At some arbitrary time, t, after service 
starts, it may not be possible to consolidate the service running 
as a UA, but it should always be possible to consolidate the 
service running containerized. Therefore: 

• while server 𝑘 ∈  {1, 2, … 𝑁(0)} , draws 𝑃𝑘
(𝑐)

>

𝑃𝑘
(𝑢𝑎)

, where 𝑃𝑘
(𝑐)

represents power drawn while 

serving a capacity-sized subset from containers and 

𝑃𝑘
(𝑢𝑎)

 is the native counterpart, and 

• while 𝑁(𝑐)(0) ≥ 𝑁(𝑢𝑎)(0), since 𝐿(𝑐) ≤ 𝐿(𝑢𝑎), where 

𝐿(𝑐), 𝐿(𝑢𝑎)  are the respective capacities of the 
containerized and native service deployments,  

 

there is no predetermined relationship between 𝑁(𝑐)(𝑡) and 

𝑁(𝑢𝑎)(𝑡). Moreover, while all but the last of the 𝑁(𝑐)(𝑡) hosts 
can (at least periodically) be subjected to consolidation and 

thus use power amounting to 𝑃𝑘
(𝑐)

  W, the operating state of 

the 𝑁(𝑢𝑎)(𝑡)  hosts, and their individual power uses, is 
unknown. It thus follows that the relationship between 

𝑃
𝑁(𝑐)(𝑡)

(𝑐)
+ (𝑁(𝑐)(𝑡) − 1)𝑃𝑘

(𝑐)
  and ∑ 𝑃𝑘

(𝑢𝑎)𝑁(𝑢𝑎)(𝑡)−1
𝑘=0  is not 

evident, and quantification of the overhead 𝑃𝑘
(𝑐)

− 𝑃𝑘
(𝑢𝑎)

due 

to containerization, is a necessary prerequisite to 
understanding the scale and usage pattern at which 
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containerized deployment is energy efficient compared with 
native deployment. 

IV. IMPLEMENTATION MODEL 

An edge cache of a video streaming service is deployed. A 
high-level view of the implementational model is shown in 
Figures 3 and 4. 

 

• Figure 3 shows an implementation that is easily 
portable to a cloud-native infrastructure (henceforth 
referred to as the cloud-native implementation), and 

• Figure 4 shows an implementation that is a hybrid of 
physical (the video server) and virtual network 
functions (the switch). 

 
The cloud-native implementation uses containers to host 

the video server. Both implementations host a virtual layer 2 
switch in the intermediate node. 

OvS

VIDEO SERVERINTERMEDIATE NODECONDOMINIUM

CLIENT 

CONTAINERS VIRTUAL 

SWITCH

SERVICE 

CONTAINERS

DIRECT POWER 

MEASUREMENT

DIRECT POWER 

MEASUREMENT

PowerTOP, RAPL PowerTOP, RAPL

U, T, R/S A10, Vc, S/R ffmpeg-N

Runtime
player-N

player-1

 ffmpeg-1

Runtime

 

Figure 3.  Physical topology of the video streaming service, deployed 
in containers. Video Server located in local exchange or Access Node 

(AN); Intermediate Note located in street cabinet (subtended AN [17]). 

 

OvS

VIDEO SERVERINTERMEDIATE NODECONDOMINIUM

CLIENT 

CONTAINERS VIRTUAL 

SWITCH

Native user 

applications

DIRECT POWER 

MEASUREMENT

DIRECT POWER 

MEASUREMENT

PowerTOP, RAPL PowerTOP, RAPL

U, T, R/S A10, Vc, S/R

ffmpeg-N
player-N

player-1
ffmpeg-1

 

Figure 4.  Physical topology of the video streaming service, deployed 

on a host operating system. 

A. Hardware 

The hardware used in this testbed consists of a set of three 
HPE (Hewlett Packard Enterprise) ProLiant BL460c Gen9 
blade servers [18], hosted in an HPE c7000 blade enclosure. 
Connectivity between server and client blades is obtained 
through pass-through interconnect bay modules, patched with 
single-mode optic fibre cables. These latter modules support 
the goal of bypassing c7000 ecosystem interconnect-bay 
physical networking devices. Bypass is necessary to introduce 
separate, virtual switching hardware. The virtual switch is 

implemented on a third HPE Gen9 blade server. The links to 
the switch are of type 10GBASE-SR. The video server has a 
single Intel® Xeon® CPU E5-2640 v3 (2.60GHz) processor 
package. Dynamic Voltage and Frequency Scaling (DVFS) is 
under system firmware control. 

B. Software 

The software consists of: 
 

• an FFmpeg [19]video server. This is representative of 
the access node at the edge of the metro-core network; 

• a TSDuck [20] receiver. This is representative of end-
user’s video player, and is also used to measure 
received bitrate to ensure that Quality of Service 
(QoS) (see Section IV-C) is respected; 

• the virtual switch software is Open vSwitch [21]. 
 
A minimalist operating system was selected for the video 

server, to support isolation and attribution in power 
measurements. While minimalist operating systems do not 
necessarily correlate with minimal noise in power 
measurement, it seems useful to reduce the number of possible 
sources from the outset. For this reason, Alpine Linux [22] 
Standard distribution version 3.19 was chosen. 

The container system software selected is Docker [23]. 
Docker is a mature containerization platform and it is 
modular: the runtime daemon (containerd) supports other user 
interfaces apart from the Docker user interface (dockerd). For 
example, Kubernetes [24] can be used to manage containers 
created through the Docker Command-Line Interface (CLI). 

V. METHOD 

A. Instrumentation 

Near-real time measurement of power use can be obtained 
from two sources of instrumentation. The blade servers are 
equipped with a management processor (known as “integrated 
lights-out”, or iLO) that logs a power measurement every 10 
seconds and stores a 20-minute history that can be read 
through a Redfish®[25] - compliant RESTful 
(Representational State Transfer) Application Programming 
Interface (API). Selectivity in aggregate power use 
measurement is afforded by blade systems, since these 
separate power supply to the (blade) computer system from 
power supply to two major overhead power drains. Blade 
servers use blade chassis services for power supply (where ac 
– dc conversion losses occur) and cooling (where blowers use 
power as they ventilate from chassis front to chassis rear). 
Thus, measurement of power used by the blade server at the 
supply voltage rails is free of the problematic, variable 
contribution from overheads, and idle power can be measured 
to the accuracy afforded by these blade system power 
measurement instruments. The measurement datum is of 
integer type, obtained by truncation of the decimal part of the 
actual measurement. Moreover: since the iLO is not part of 
the System Under Test (SUT), it does not alter power 
measurement. 

While the iLO provides an aggregate power measurement, 
process- and thread- level granularity is obtained through 
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software power meters. Hardware extensions for power 
measurement are available in processor models that support 
the Intel Running Average Power Limit (RAPL) feature. 
PowerTOP [26] is software that enables this level of power 
attribution, and it is indeed capable of exploiting RAPL. This 
tool complements the aggregate power measurement obtained 
by blade sensor instrumentation. PowerTOP uses a top-down 
approach [27], (it divides the power measurement over a 
period amongst processes and threads in proportion to their 
core utilization) and precedes the measurement period by one 
of calibration (the utility was run in calibration mode for 
several hours before starting the first experiment) in which it 
obtains weighting parameters for the attribution process. 
Calibration is further refined with use, and PowerTOP saves 
its parametric refinement to persistent storage for future 
exploitation [28].  PowerTOP was used in its logging mode of 
operation, with 10 (ten) – second averaging intervals. 
However, PowerTOP has several significant limitations, as 
follows: it only measures dynamic power, it does not capture 
all power use, and it increases the SUT’s aggregate power use. 
These must be mitigated. 

B. Baselining 

It is necessary to distinguish power used by the video 
service from power used by other consumers. This requires 
measurement of static (/idle) power use. It is also necessary to 
distinguish between dynamic power used during video service 
operation time, from dynamic power used when the service is 
idle. In essence: service power use can be thought of as an 
amount added above that used by the operating system and 
system software, which in turn is added above that used to 
operate electronic components (static/idle) power. Hence, it is 
possible to perceive a baseline to which service power is 
added to obtain the total power. Formally: 

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓1 + 𝑃𝑞
(𝑜𝑠)

 

where 𝑃𝑞
(𝑜𝑠)

is the dynamic power corresponding to the OS’s 

operation without container system software and without 

running User Applications (UAs), and 𝑃𝑖𝑑𝑙𝑒
𝑓1  is the idle/static 

power at the frequency 𝑓1  at which the OS is quiescent. 

A second baseline, 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
, is required to ensure 

experimental reproducibility: it defines known starting and 
ending points for each run of experimentation. 

𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓2 + 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

 

 

Here, 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

 is the dynamic power 

corresponding to the OS’s operation with container system 
software but without running User Applications (UAs), and 

𝑃𝑖𝑑𝑙𝑒
𝑓2  is the idle/static power at the frequency 𝑓2  at which the 

Operating System (OS) is quiescent. The state of quiescence 
is defined below (see V-D-2).  

C. Mitigating errors 

The principal source of error is measurement uncertainty 
at the iLO, as the iLO rounds to the nearest integer. Since the 
iLO rounds [𝑛 − 0.5, 𝑛 + 0.5)  to 𝑛, ∈ ℕ , then, without 
further information on the probability density function (pdf) 
of the error, a fair representation of each measurement is the 

value 𝑛  obtained by the iLO. This contrasts with the floor 
(round down/truncation) function, where a fair representation 
of a measurement 𝑛 would be 𝑛 + 0.5, or the ceil (round up) 
function, where 𝑛 − 0.5  would be fair. Of the three 
conversions from real to natural number representation, 
rounding to the nearest integer has the least maximum error, 
and this corresponds to 0.5 W. 

The ideal statistical distribution of errors is that of a 
uniform Probability Density Function (PDF). If measurement 
errors were indeed so distributed, then the mean of actual 
measurements can be obtained as the mean of the set of 
errored measurements. However, for the specific operating 
context of a quiescent operating system, the probability of a 
non-uniform distribution cannot be neglected because the 
dynamic power is low enough to keep the total power’s range 
within half a watt. This is prone to persistent positive bias in 
error or persistent negative bias. In such non-uniform PDFs, 
the actual mean cannot be obtained; only a range of values 
within which the actual mean lies, can be obtained. 

Both baselines regard quiescent states. If bias is detected, 
mitigation can be pursued through the less biased of the two 
baselines. The better baseline can be used to compute the 
affected baseline as the arithmetic combination 
(addition/subtraction) of the better baseline and the difference 
in dynamic power between the two baselines. Therefore, each 
measurement of baseline power must be accompanied by a 
measure of dynamic power, to support evaluation of the error 
in the means obtained through the iLO’s measurements.  

This approach notwithstanding, it may still not be possible 
to reconcile the two baselines in this manner. In such an 
eventuality, the ranges of values within which the actual 
means lie can be combined with the difference in dynamic 
power between the two baselines. The objective remains that 
of reconciling all measurements, within the margin of error 
anticipated. 

D. Quality of Service 

QoS is considered to be satisfied as long as there is 
sufficient capacity in the links to keep the overall average 
received bitrate of every video stream at or above the video 
file’s overall bitrate. 

E. Experiments 

1) Test conditions 
Video service will be delivered from both containerized 

and native deployments. The test conditions pertinent to the 
video server will be the following. 

1. Implementation 
a. During containerized operation, each video 

service process and the libraries on which it 
depends will be operated from a container. One 
service process serves one client. 

b. During native operation, a new instance of the 
video service process will be started for every 
new client. 

2. Load unit: This will consist of the work required to 
process a workflow based upon a video with the 
following technical specifications: 
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a. Overall bitrate = 457 kb/s, = video bitrate of 
326 kb/s + audio bitrate of 127 kb/s + mp4 
container metadata rate (overhead) 

b. Duration = 1h 32m 2.19s (5522.19 s), of which 
30 minutes are played, starting at a randomly 
selected point in the video. 

c. H.264 video codec, Main profile 
i. Resolution = 1280 x 720 

ii. Frame rate ≈ 23.98 frames/second (fps) 
d. Advanced Audio Coding (AAC) audio codec, 

Low Complexity profile 
i. Sampling rate = 44.1 kHz 

e. Client supports same video and audio codec; 
hence server does not need real-time 
transcoding. 

2) Procedure 
The power used by the video server is measured at 

progressively higher load levels. Two sets of experiments are 
carried out: the first set uses containerized video server 
instances and the second set uses native video server 
instances. A containerized service instance consists of a 
container carrying ffmpeg.  A single container is created to 
deliver a single stream and is destroyed immediately 
thereafter. When the container is created, ffmpeg is executed 
and listens on a Transmission Control Protocol (TCP) port, 
through which it streams 30 minutes of video. A native service 
instance is a single instance of the ffmpeg process; it follows 
the same lifecycle as the containerized instance. 

Management of operations is not trivial, even at the 
minimum load level, as it involves the following steps: 

1. Reboot the video server, to obtain a common and 
reproducible initial state. 

2. Wait until the video server quiesces. This is the time 
required for server power use to fall to the state 
where the iLO measurement persistently shows 
baseline 2 usage. Persistence was empirically found 
to be ascertained 20 minutes after rebooting. 

3. Start the power meters for both total and dynamic 
power, for both the video server and the virtual 
switch. 

4. Wait for a fifteen-minute interval, to capture 
behaviour before video streaming. 

5. Instantiate and start a container carrying the ffmpeg 
listener, poised for real-time playback with 
randomized starting point and 30-minute play time. 

6. Start a TSDuck client to connect to the container and 
measure the bitrate, averaged over 5-second 
intervals. 

7. Once 30 minutes of video have been played, destroy 
the container.  

8. Wait for a fifteen-minute interval, to capture 
behaviour after video streaming. 

For several concurrent streams, steps 5 and 6 must be 

repeated for each one of the additional streams. For the native 

service instance, step 5 involves the ffmpeg process only and 

there is no equivalent to step 7. 
It seems evident that manual management is highly prone 

to error and is therefore unsuitable. Automated management 
using Python scripts and Ansible [29] is employed to handle 

the orchestration of the various roles: power meters, 
container runtime managers and video clients. This enables 
the experiment to be scaled out to levels that are well beyond 
the physical limitations of a single human operator. 

VI. RESULTS 

Denote: 

• mean dynamic power measured by PowerTOP by 

𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

 

• mean total power measured by the iLO during a time 

period 𝑇𝑥 by 𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅([𝑇𝑥]). 

A. Video server’s baseline 1 

Figure 5 shows the power used by the video server over an 
hour period of measurement, post-onset of quiescence. Since 
the iLO truncates decimals in [𝑛, 𝑛 + 1)  to 𝑛 , then the 
computation of the mean will count the incidences of 45 W 
and 44 W and use them as weights to compute a lower limit 
to the range of values which the average can take. An upper 
limit is obtained by adding the maximum possible error (equal 
to 1W) and the mean of the possible range obtained by adding 
the mean error (0.5W) to the lower limit of the range. Using 
this premise, the mean power measured by the iLO, under the 
condition of a quiescent operating system (see Figure 5) is as 
follows: 

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓1 + 𝑃𝑞
(𝑜𝑠)

=  𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅([10: 31: 49,11: 37: 01])

= 45.4198 W ≅ 45.4 W 

B. Mitigation of PowerTOP’s limitations 

PowerTOP captures neither static nor dynamic power used 
by Hard Disk Drives (HDDs) and Solid-State Disks (SSDs); 
this was observed and confirmed through discussion with 
PowerTOP’s developers [30]. Indeed, our experiments under 
baseline 1 conditions show that if PowerTOP is operated in 
logging mode with HDD as destination, iLO aggregate power 
use is more than 0.5 W greater on the SUT than the figure 
obtained while logging to a RAM (Random-Access-Memory) 
disk (see Figure 6). Average aggregate power use increases to 
46.05W, compared with 45.4W (see Section VI-A, above). On 
the other hand, while logging to RAM disk (under baseline 1 
conditions), average aggregate power use only increases to 
45.5W (see Figure 7), compared with 45.4W (see Section VI-
A, above) when measurements are taken solely through use of 
the iLO’s instrumentation.  

C. Video server’s baseline 2 

The difference in average dynamic power is added to 
baseline 1, to obtain baseline 2: 

∆𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_2) − 𝑝𝑑𝑦𝑛
(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_1)

= 0.7727 − 0.1851 = 0.5876 W 

∴ 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
= 𝑃𝑖𝑑𝑙𝑒

𝑓2 + 𝑃𝑞
(𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑)

= 𝑃𝑖𝑑𝑙𝑒
𝑓1 + 𝑃𝑞

(𝑜𝑠)
+ ∆𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅

= 45.4 + 0.5876 ≅ 45.99 W 
This is consistent with the graphical summarization of iLO 

measurements shown in Figure 8. This baseline (the graph of 
power against time) is essential to obtain a reproducible start-  
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Figure 6.  PowerTOP logging [11:30:02,12:02:12] to HDD has a 

discernable impact on power use 

 

Figure 7.  PowerTOP logging [12:57:27,13:29:30] to ramdisk has a 

lower impact than logging to HDD. 

 

 

Figure 8.  Baseline 2 video server aggregate power 

 
-ing state for all video service operation experiments. 

D. Orchestration of containerized streaming 

Results from running experiments on 1, 2, 5, 10, 20, 40 
and 80 instances are presented. The result items consist of: 

 
1. Mean aggregate power use (iLO instrumentation). 
Due to the integer type of the measurement, actual average 
iLO power use can lie in the range of ± 0.5 W of the 
reported result. 
2. Mean dynamic power use (PowerTOP 
instrumentation). Dynamic power data is added to baseline 
1 and the sum is plotted on the same Cartesian axes as the 
total power data. 
 
PowerTOP was used to attribute dynamic power to 

processes, and these were sorted in descending order. 
Graphical representations of the power used were produced 
too. These results are presented in the Github online repository 
at [31] and in Section VI-F (containerized operation only). 
Measurements of received stream bitrates are also available in 
this repository. 

 

1) Single instance 
Table I shows the mean power use; Figure 9 shows 

PowerTOP’s measurements offset by baseline 1 and laid over 
the iLO's measurements. Time is shown in the format 
hh:mm:ss, where hh, mm and ss stand for hour-of-day, 
minutes in the hour and seconds in the minute, respectively. 
The larger post-operation (post-op) average power is due to 
activity undertaken by an instance of containerd (the container 
runtime) after the container is destroyed (post-ops). However, 
well after operations end, the iLO's measurements return to 
the baseline 2 profile. Pre-operations (pre-ops), both meters 
(iLO and PowerTOP) are in good agreement (PowerTOP’s 
measurements would all be rounded down to 45W). 
Moreover, the average power used during operations as 
estimated by PowerTOP is 46.99 W (baseline_1, = 45.4, + 
1.5940), whereas the iLO estimates 47.03W. The ten-second 

 

Figure 5.  Power used by the video server, with a quiescent OS. 
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averages’ dissimilarity increases during and post-operations 
but is still good. Notably, the spike in power use at the 
beginning and end of operations is captured by both meters, 
albeit not being measurements of the same magnitude. 

 

2) Two instances 
Table II and Figure 10 show the results pertinent to two 

containerized video server instances. As is the case with the 
single instance, for pre-ops and post-ops, both meters are in 
good agreement (the spike at about 09:29:00 is probably due 
to HDD input/output operations while loading PowerTOP). 
During operations, the average total power estimated by 
PowerTOP is 48.02 W (baseline_1 + 2.6162), whereas the 
iLO estimates 47.06W. The discrepancy is an overestimate by 
about 1W. 

An interpretation of the discrepancy between operating 
period averages is visible in the graph (Figure 8) showing real 
time measurements. When the iLO measures 46W, the actual 
value is in the range [46,47), and the rate of change between 
46W and 47W is much larger than the single-instance case. 

TABLE I.  MEAN POWER USE – SINGLE SERVICE INSTANCE 

 

a. Average. 

TABLE II.  MEAN POWER USE – TWO SERVICE INSTANCES 

 
PowerTOP’s real time measurements are consistently 

higher than 47W, revealing that several of the 10-second 
measurement intervals are in certain disagreement, albeit 
small (< 2/46, i.e., < 5%). 

 
 
 

3) Five, ten, twenty, forty and eighty instances 
The results for five (Table III, Figure 11), ten (Table IV, 

Figure 12), twenty (Table V, Figure 13), forty (Table VI, 
Figure 14) and  eighty  instances  (Table VII, Figure 15)  are  
shown below. 

Conditions pre-operations are similar, but PowerTOP’s 
average error estimation increases as power use increases. The 
numbers shown in the list are PowerTOP’s estimate vs iLO’s 
maximum estimate, for N instances (Ni): 

• 5i: 50.14 vs 48.66W 

• 10i: 54.38 vs 50.10W 

• 20i: 60.77 vs 51.74W 

• 40i: 64.59 vs 53.90W 

• 80i: 60.92 vs 56.80W 
Inspection of the online supplementary data on process – level 
power attribution suggests that PowerTOP overestimates 
across all processes on our test platform. 

Power type Description Avga (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[14: 47: 05,15: 03: 00] 
Before starting the 
service instance 

45.65 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 03: 00,15: 33: 05] 
During the service 

instance’s operation 
47.03 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 33: 05,15: 52: 17] 
After the service 
instance ended 

46.17 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[14: 48: 17,15: 03: 00] 

Mean dynamic power 

before service instance 
operation 

0.8593 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 03: 00,15: 33: 05] 

Mean dynamic power 

during service instance 
operation 

1.5940 

 

Figure 9.  One instance. Video server’s power use during 
containerized service operation. Baseline 1 added to powertop 

measurements. 

 

Figure 10.  Two instances. Video server’s power use during 

containerized service operation. Baseline 1 added to powertop 

measurements. Power type Description Avg (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[09: 24: 01,09: 44: 27] 
Before starting the 
service instance 

45.60 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[09: 44: 27,10: 14: 37] 
During the service 

instance’s operation 
47.06 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[10: 14: 37,10: 29: 23] 
After the service 

instance ended 
46.12 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[09: 29: 27,09: 44: 27] 

Mean dynamic power 
before the service 

instances’ operation 

0.9693 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[09: 44: 27,10: 14: 37] 

Mean dynamic power 

during the service 
instances’ operation 

2.6162 
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TABLE III.  MEAN POWER USE – FIVE SERVICE INSTANCES 

Power type Description Avg, (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[11: 29: 41,11: 49: 59] Before starting the 
service instance 

45.79 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[11: 49: 59,12: 20: 15] During the service 

instance’s operation 

48.16  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[11: 35: 00,11: 49: 59] Mean dynamic power 

before service 

instances’ operation 

0.9970 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[11: 49: 59,12: 20: 15] Mean dynamic power 

during the service 

instances’ operation 

4.7421 

 

TABLE IV.  MEAN POWER USE – TEN SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 06: 49,15: 27: 03] Before starting the 

service instance 

45.60 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 27: 03,15: 57: 27] During the service 

instance’s operation 

49.60  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 12: 03,15: 27: 03] Mean dynamic power 

before service 

instances’ operation 

0.8759 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 27: 03,15: 57: 27] Mean dynamic power 

during the service 

instances’ operation 

8.9781 

 

 

Figure 12.  Ten instances, containerized operations, baseline 1. 

 

TABLE V.  MEAN POWER USE – TWENTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[17: 56: 58,18: 17: 08] Before starting the 
service instance 

45.76 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 17: 08,18: 48: 00] During the service 

instance’s operation 

51.24  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 02: 08,18: 17: 08] Mean dynamic power 

before service 

instances’ operation 

0.8913 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 17: 08,18: 48: 00] Mean dynamic power 

during the service 

instances’ operation 

15.3720 

 

 

Figure 13.  Twenty instances, containerized operations, baseline 1. 

TABLE VI.  MEAN POWER USE – FORTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[12: 57: 37,13: 17: 40] Before starting the 

service instance 

45.56 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 17: 40,13: 49: 15] During the service 

instance’s operation 

53.40  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 02: 42,13: 17: 40] Mean dynamic power 

before service 

instances’ operation 

0.7206 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 17: 40,13: 49: 15] Mean dynamic power 

during the service 

instances’ operation 

19.1873 

 

 

Figure 14.  Forty instances, containerized operations, baseline 1 

 

Figure 11.  Five instances, containerized operations, baseline 1. 
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TABLE VII.  MEAN POWER USE – EIGHTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 19: 21,18: 39: 20] Before starting the 
service instance 

45.53 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 39: 30,19: 13: 53] During the service 

instance’s operation 

56.30  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 24: 31,18: 39: 30] Mean dynamic power 

before service 

instances’ operation 

0.7435 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 39: 30,19: 13: 53] Mean dynamic power 

during the service 

instances’ operation 

15.5243 

E. Orchestation of native streaming 

A similar set of experiments was run for native video 
servers. The results are presented in this section, and are 
structured in the same manner as that used in Section VI-D. 

1) Single instance 

TABLE VIII.   MEAN POWER USE – ONE SERVICE INSTANCE 

 
 

 

Figure 16.  One instance, native operation, baseline 1 

2) Two instances 

TABLE IX.  MEAN POWER USE – TWP SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 28: 42,15: 48: 48] Before starting the 

service instance 

45.525 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[15: 48: 48,16: 18: 56] During the service 
instance’s operation 

46.79 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 33: 47,15: 48: 48] Mean dynamic power 

before service 
instances’ operation 

0.2390 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[15: 48: 48,16: 18: 56] Mean dynamic power 

during the service 

instances’ operation 

1.6653 

 

 

Figure 17.  Two instances, native operation, baseline 1 

3) Five, ten, twenty, forty and eighty instances 
The results for five (Table X, Figure 18), ten (Table XI, 

Figure 19), twenty (Table XII, Figure 20), forty (Table XIII, 
Figure 21) and eighty instances (Table XIV, Figure 22) are 
shown below. 

TABLE X.  MEAN POWER USE – FIVE SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[17: 49: 44,18: 09: 58] Before starting the 

service instance 

45.5 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[18: 09: 58,18: 40: 10] During the service 
instance’s operation 

47.71 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[17: 54: 57,18: 09: 58] Mean dynamic power 

before service 
instances’ operation 

0.2546 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[18: 09: 58,18: 40: 10] Mean dynamic power 

during the service 
instances’ operation 

3.7906 

 

 

Figure 18.  Five instances, native operation, baseline 1 

 

Figure 15.  Eighty instances, containerized operations, baseline 1. 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 17: 42,13: 37: 55] Before starting the 
service instance 

45.54 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[13: 37: 55,14: 08: 02] During the service 

instance’s operation 

46.38  

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 22: 55,13: 37: 55] Mean dynamic power 

before service 

instances’ operation 

0.2080 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[13: 37: 55,14: 08: 02] Mean dynamic power 

during the service 

instances’ operation 

0.8675 



57International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI.  MEAN POWER USE – TEN SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[19: 21: 06, 19: 41: 12] Before starting the 
service instance 

45.54 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[19: 41: 12, 20: 11: 32] During the service 

instance’s operation 

49.33 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[19: 26: 11, 19: 41: 12] Mean dynamic power 

before service 

instances’ operation 

0.2466 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[19: 41: 12, 20: 11: 32] Mean dynamic power 

during the service 

instances’ operation 

7.4315 

 

 

Figure 19.  Ten instances, native operation, baseline 1 

TABLE XII.  MEAN POWER USE – TWENTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[20: 52: 00, 21: 12: 09] Before starting the 

service instance 

45.52 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[21: 12: 09, 21: 42: 48] During the service 
instance’s operation 

51.27 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[20: 57: 09, 21: 12: 09] Mean dynamic power 

before service 
instances’ operation 

0.1819 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[21: 12: 09, 21: 42: 48] Mean dynamic power 

during the service 
instances’ operation 

14.3948 

 

 

Figure 20.  Twenty instances, native operation, baseline 1 

 
 

TABLE XIII.  MEAN POWER USE – FORTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[22: 26: 05,22: 46: 20] Before starting the 
service instance 

45.54 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[22: 46: 20, 23: 17: 43] During the service 

instance’s operation 

53.27 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[22: 31: 19, 22: 46: 20] Mean dynamic power 

before service 

instances’ operation 

0.1780 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[22: 46: 20, 23: 17: 43] Mean dynamic power 

during the service 

instances’ operation 

19.2853 

 

 

Figure 21.  Forty instances, native operation, baseline 1 

TABLE XIV.  MEAN POWER USE – EIGHTY SERVICE INSTANCES 

Power type Description Avg. (W) 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[00: 08: 35, 00: 28: 47] Before starting the 
service instance 

45.52 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[00: 28: 47, 01: 02: 39] During the service 

instance’s operation 

55.81 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[00: 13: 46, 00: 28: 47] Mean dynamic power 

before service 

instances’ operation 

0.1874 

𝑝𝑑𝑦𝑛

(𝑝𝑡𝑜𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
[00: 28: 47, 01: 02: 39] Mean dynamic power 

during the service 

instances’ operation 

15.1443 

 

 

Figure 22.  Eighty instances, native operation, baseline 1 
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F. Breakdown of dynamic power by process, containerized 

operation 

Process power components are sorted in descending order 
of the mean process power over the period of measurement, 
until some percentage of the mean total dynamic power over 
the period of measurement, is obtained. Typical percentages 
are 50 (the 50th percentile) and 80 (80th percentile). Higher 
percentiles are avoided, as plots showing the largest power 
users up to, say, 90% are too dense. Plots and tables are 
presented to summarize these results. 

 

1) Single instance 

 

Figure 23.  1 instance – process power use, up to 50th percentile 

 

Figure 24.  1 instance – process power use, up to 75th percentile 

TABLE XV.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 94TH
  PERCENTILE OF TOTAL 

Description PW Estimate (mW) 

[PID 3893] containerd --config 

/var/run/docker/containerd/containerd.toml  368.73 

tick_sched_timer 322.31 

[PID 4376] ffmpeg -re -ss 841 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts 

pipe:1  66.54 

[3] net_rx(softirq) 61.61 

[PID 3922] containerd --config 
/var/run/docker/containerd/containerd.toml  59.21 

[PID 3920] containerd --config 

/var/run/docker/containerd/containerd.toml  

53.03 

[PID 3898] containerd --config 
/var/run/docker/containerd/containerd.toml  

50.45 

[PID 3894] containerd --config 

/var/run/docker/containerd/containerd.toml  

40.07 

[PID 3907] containerd --config 
/var/run/docker/containerd/containerd.toml  

39.92 

toggle_allocation_gate 38.15671 

2) Two instances 

 

Figure 25.  2 instances – process power use, up to 50th percentile 

 

Figure 26.  2 instances – process power use, up to 75th percentile 

TABLE XVI.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 87TH
  PERCENTILE OF TOTAL 

Description PW Estimate (mW) 

tick_sched_timer 511.72 

[PID 3882] containerd --config 

/var/run/docker/containerd/containerd.toml  

427.66 

[3] net_rx(softirq) 114.67 

[PID 3890] containerd --config 
/var/run/docker/containerd/containerd.toml  

69.27 

[PID 4440] ffmpeg -re -ss 2211 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts 
pipe:1  

68.03 

[PID 4446] ffmpeg -re -ss 801 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts 

pipe:1  

67.18 

[PID 3888] containerd --config 

/var/run/docker/containerd/containerd.toml  

66.81 

[PID 3884] containerd --config 

/var/run/docker/containerd/containerd.toml  

64.70 

[PID 18] [rcu_preempt] 58.79 

[PID 3887] containerd --config 
/var/run/docker/containerd/containerd.toml  

54.53 

[PID 3895] containerd --config 

/var/run/docker/containerd/containerd.toml  

42.70 

[PID 3897] containerd --config 

/var/run/docker/containerd/containerd.toml  

38.57 

toggle_allocation_gate 38.15 

[PID 3898] containerd --config 

/var/run/docker/containerd/containerd.toml  

32.94 

[PID 3900] containerd --config 
/var/run/docker/containerd/containerd.toml  

22.35 
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3) Five instances 

 
Figure 27.  5 instances – process power use, up to 50th percentile 

 
Figure 28.  5 instances – process power use, up to 80th percentile 

TABLE XVII.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 85TH
  PERCENTILE OF TOTAL 

Description PW Estimate 

(mW) 

tick_sched_timer 1123.59 

[PID 3884] containerd --config 

/var/run/docker/containerd/containerd.toml  

479.49 

[3] net_rx(softirq) 249.06 

[PID 17] [rcu_preempt] 99.97 

[PID 3886] containerd --config 

/var/run/docker/containerd/containerd.toml  

73.31 

[PID 4810] ffmpeg -re -ss 1950 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

67.32 

[PID 4808] ffmpeg -re -ss 1629 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

66.53 

[PID 4806] ffmpeg -re -ss 2297 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

66.24 

[PID 4804] ffmpeg -re -ss 1746 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

66.13 

[PID 4812] ffmpeg -re -ss 2792 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

65.24 

[PID 4098] containerd --config 
/var/run/docker/containerd/containerd.toml  

60.39 

[PID 3895] containerd --config 

/var/run/docker/containerd/containerd.toml  

59.62 

[PID 3889] containerd --config 
/var/run/docker/containerd/containerd.toml  

49.85 

[PID 3894] containerd --config 

/var/run/docker/containerd/containerd.toml  

47.33 

[PID 3893] containerd --config 
/var/run/docker/containerd/containerd.toml  

45.44 

[PID 3887] containerd --config 

/var/run/docker/containerd/containerd.toml  

44.97 

4) Ten instances 

 

Figure 29.  10 instances – process power use, up to 50th percentile 

 

Figure 30.  10 instances – process power use, up to 80th percentile 

TABLE XVIII.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 83RD
  PERCENTILE OF TOTAL 

Description 

PW Estimate 

(mW) 

tick_sched_timer 2340.38 

[3] net_rx(softirq) 528.77 

[PID 3885] containerd --config 

/var/run/docker/containerd/containerd.toml  

524.29 

[PID 17] [rcu_preempt] 164.66 

[PID 3896] containerd --config 

/var/run/docker/containerd/containerd.toml  

83.20 

[PID 3899] containerd --config 

/var/run/docker/containerd/containerd.toml  

76.19 

[PID 4102] containerd --config 
/var/run/docker/containerd/containerd.toml  

72.04 

[PID 5403] ffmpeg -re -ss 589 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

65.28 

[PID 5400] ffmpeg -re -ss 202 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

65.14 

[PID 5407] ffmpeg -re -ss 2453 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.91 

[PID 5411] ffmpeg -re -ss 121 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.74 

[PID 5395] ffmpeg -re -ss 1012 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.58 

[PID 5401] ffmpeg -re -ss 235 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.48 

[PID 5397] ffmpeg -re -ss 2679 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.42 

[PID 5405] ffmpeg -re -ss 1856 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

64.37 
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5) Twenty instances 

 

Figure 31.  20 instances – process power use, up to 50th percentile 

 

Figure 32.  20 instances – process power use, up to 80th percentile 

TABLE XIX.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 78TH
  PERCENTILE OF TOTAL 

Description 

PW Estimate 

(mW) 

tick_sched_timer 4230.06 

[3] net_rx(softirq) 980.63 

[PID 3882] containerd --config 

/var/run/docker/containerd/containerd.toml  

526.42 

[PID 17] [rcu_preempt] 171.73 

hrtimer_wakeup 89.09 

[PID 3793] /usr/bin/dockerd  85.50 

[PID 3897] containerd --config 

/var/run/docker/containerd/containerd.toml  

72.29 

[PID 6622] ffmpeg -re -ss 2972 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

61.28 

[PID 6542] ffmpeg -re -ss 2862 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

60.94 

[PID 6592] ffmpeg -re -ss 893 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

60.90 

[PID 6586] ffmpeg -re -ss 990 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

60.68 

[PID 6550] ffmpeg -re -ss 1550 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

60.62 

[PID 6562] ffmpeg -re -ss 99 -i /videos/chosen.mp4 

-t 1800 -c copy -f mpegts pipe:1  

60.57 

[PID 6616] ffmpeg -re -ss 924 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

60.53 

[PID 6610] ffmpeg -re -ss 2989 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1 
 

60.52 

6) Forty instances 

 

Figure 33.  40 instances – process power use, up to 50th percentile 

 

Figure 34.  40 instances – process power use, up to 80th percentile 

TABLE XX.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 80TH
  PERCENTILE OF TOTAL 

Description 

PW Estimate 

(mW) 

tick_sched_timer 5402.63 

[3] net_rx(softirq) 1265.36 

hrtimer_wakeup 663.73 

[PID 3882] containerd --config 

/var/run/docker/containerd/containerd.toml  

405.74 

[PID 18] [rcu_preempt] 104.85 

[PID 3795] /usr/bin/dockerd  100.95 

[PID 3899] containerd --config 
/var/run/docker/containerd/containerd.toml  

44.12 

[PID 3884] containerd --config 

/var/run/docker/containerd/containerd.toml  

42.31 

[PID 3887] containerd --config 
/var/run/docker/containerd/containerd.toml  

40.81 

[PID 7927] ffmpeg -re -ss 1413 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

36.60 

[PID 7969] ffmpeg -re -ss 237 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

36.52 

[PID 3898] containerd --config 

/var/run/docker/containerd/containerd.toml  

36.22 

[PID 7933] ffmpeg -re -ss 60 -i /videos/chosen.mp4 
-t 1800 -c copy -f mpegts pipe:1  

36.21 

[PID 7993] ffmpeg -re -ss 2988 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

36.15 

[PID 7913] ffmpeg -re -ss 1714 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1 

  

36.07 
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7) Eighty instances 

 

Figure 35.  80 instances – process power use, up to 50th percentile 

 

Figure 36.  80 instances – process power use, up to 80th percentile 

TABLE XXI.  SINGLE INSTANCE: PROCESSES IN DESCENDING ORDER OF 

MEAN POWER USE, UP TO 79TH
  PERCENTILE OF TOTAL 

Description 

PW Estimate 

(mW) 

tick_sched_timer 4038.35 

[3] net_rx(softirq) 1449.76 

hrtimer_wakeup 935.01 

[PID 3882] containerd --config 

/var/run/docker/containerd/containerd.toml  

251.19 

[PID 3794] /usr/bin/dockerd  103.59 

[PID 18] [rcu_preempt] 68.98 

[PID 3881] containerd --config 

/var/run/docker/containerd/containerd.toml  

37.20 

[PID 3892] containerd --config 

/var/run/docker/containerd/containerd.toml  

29.13 

toggle_allocation_gate 28.56 

[PID 3897] containerd --config 

/var/run/docker/containerd/containerd.toml  

24.14 

[7] sched(softirq) 23.67 

[PID 8262] ffmpeg -re -ss 1711 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

20.19 

[PID 3893] containerd --config 
/var/run/docker/containerd/containerd.toml  

19.72 

[PID 9089] ffmpeg -re -ss 247 -i 

/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

19.58 

[PID 11433] ffmpeg -re -ss 415 -i 
/videos/chosen.mp4 -t 1800 -c copy -f mpegts pipe:1  

 

19.02 

 

VII. ANALYSIS 

Various characterizations of power use are considered and 
plotted in Figure 37. In the notation shown below, the (𝑛) 
symbol indicates dependence of power used on number of 
streaming containers. 

1. total power during operations, 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛), and 

2. differential total power, where the difference is 

between operations and quiescence, 𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛) −

𝑃𝑞
𝑖𝐿𝑂 . 

Figure 37 illustrates the results in graphical form. The top 
row of graphs compares total power and differential total 
power, respectively, for containerized and native operations. 
The bottom row shows the difference between total power and 
differential total power. The non-monotonic behaviour seen in 
the bottom row is due to the error introduced by the rounding 
of iLO instrumentation. 

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
 (45.4W) was used as the offset for dynamic 

power obtained using PowerTOP, at every instance count. The 

value of 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 (45.99W), obtained by adding the increment 

in dynamic power inferred by PowerTOP (see Section VI-C), 
was larger than that measured as 

𝑝(𝑖𝐿𝑂)̅̅ ̅̅ ̅̅ ̅[𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒]  for any of the instance 

counts. If, however, 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 is obtained in the same way as 

𝑃𝑏1

(𝑣𝑖𝑑𝑒𝑜)
, by averaging 𝑝(𝑖𝐿𝑂)  over the relevant period of time, 

attainment of 𝑃𝑏2

(𝑣𝑖𝑑𝑒𝑜)
 supports well the purpose of good 

known starting and ending events for a run of 
experimentation.  

Dynamic power measurements as a function of streaming 
videos are not shown in Figure 37, as PowerTOP’s 
measurements do not produce consistent, intelligible results 
on our platform. Estimates are insufficiently accurate. 
PowerTOP is capable of capturing power change behaviour 
(see, notably, Figure 36), but it requires further development 
before its estimates can be used for quantitative analysis. 

On the other hand, notwithstanding PowerTOP’s 
problematic scaling, its capability to capture power change 
suggests that its relative attribution of power consumption to 
processes is sound. Basing upon this understanding, it is 
possible to detect that, notwithstanding the potential to save 
power consumption through use of tickless kernels, the 
tick_sched_timer function is easily the largest power 
consumer (see Figures 27, 29, 31, 33 and 35). 

VIII. CONCLUSION AND FUTURE WORK 

The objective set out in Section III was to quantify the 
overhead incurred by operating the video service 
containerized, instead of as an application running directly on 
the host operating system (native operation). An access 
network of the Active Ethernet type was constructed and a 
video cache deployed in an access node to stream videos to 
the access node’s service area. An implementation model 
describing the access network was included. 

The results obtained have shown that the overhead is 
negligible and that the benefit of running the video source in 
a container comes at little cost. The possibility of 
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consolidating video streaming containers can be pursued with 
confidence. 

No discernable cause for concern was found in the power 
measurement instrumentation embedded in the HPE Gen9 
platform. Documentation on interfacing with the Integrated 
Lights-Out (iLO) server management was readily available. 
For detail beyond typical interest, HPE readily divulged 
information on this tool when contacted for help, including, 
for example, the method used to round the power 
measurement into an integer [32]. 

On the other hand, PowerTOP’s accuracy poses a 
problem. The various graphs of power against time have 
shown that it captures changes well but significantly 
overestimates them. In the light of these errors, works that 
have investigated containerization’s overhead with the use of 
this tool (e.g., [15]) may need to be reviewed for the 
implications of inaccuracies introduced by the tool, perhaps 
by using external, physical power meters to calibrate 
PowerTOP’s measurement. 

Baselines have been obtained for both the video server and 

the virtual switch. In particular, 𝑃𝑏2
𝑣𝑖𝑑𝑒𝑜 has been found useful 

in obtaining a reproducible starting point for experiments; to 

a lesser extent, 𝑃𝑏1
𝑣𝑖𝑑𝑒𝑜has been found useful in providing an 

offset for power obtained through tools that measure dynamic 
power. This segues well into an observation that merits 
particular attention. Even with 80 concurrent streams, the 
static power has dwarfed the dynamic power. The importance 
of this observation pertains to the importance of the benefit of 
containerization as an enabler of consolidation of physical 
hosts. It can readily be stated that the overhead incurred in 
providing the service framework of containerization poses 
no obstacle to exploration of exploitation of this benefit. 

PowerTOP’s limitations invite researchers to explore its 
causes, as the demand for software power meters is pressing 
in multi-tenant hosting. Future work would do well to assess 
the relative accuracy of PowerTOP with Scaphandre [33] 
prior to embarking on the use of either within power 
instrumentation.

 

  

Figure 37.  Comparison: native vs containerized streaming. Clockwise from top left:  𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛),   𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛) − 𝑃𝑞
𝑖𝐿𝑂,     𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛𝑐𝑜𝑛𝑡) −  𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛𝑛𝑎𝑡𝑖𝑣𝑒) and   

(𝑃𝑜𝑝𝑠
𝑖𝐿𝑂(𝑛𝑐𝑜𝑛𝑡) − 𝑃𝑞

𝑖𝐿𝑂

𝑐𝑜𝑛𝑡
) − (𝑃𝑜𝑝𝑠

𝑖𝐿𝑂(𝑛𝑛𝑎𝑡𝑖𝑣𝑒) − 𝑃𝑞
𝑖𝐿𝑂

𝑛𝑎𝑡𝑖𝑣𝑒
).      
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