
19International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementation of a Predictive AI to Feed Simulation

Carlo Simon, Merlin Hladik, and Natan Georgievic Badurasvili
Hochschule Worms

Erenburgerstr. 19, 67549 Worms, Germany
e-mail: {simon,hladik,natan.badurasvili}@hs-worms.de

Abstract—This paper extends a former version presented at
the SIMUL 2024 conference. Its topic resulted from a remark
of an industry partner dissatisfied with the result of a traffic
simulation of a warehouse. Although the simulation was a replica
of the behavior on base of the current order data, it deviated from
the real situation since many distributors do not adhere to their
orders. Methods of predictive artificial intelligence and especially
machine learning have been identified to adapt the simulation
input on the base of past schedules. The paper answers the
question on how to extend the previous simulation model by a
suitable forecast component and explains the implementation in
more detail than the original paper. Unfortunately, the industry
partner does not collect the data needed for such a forecast.
Therefore, test data was generated which is explained, too. By
the example of a real-world warehouse scenario, the simulation
of its traffic and the information needed for this is demonstrated.
Afterwards, the necessary extensions of the data set are explained
and how to set up a machine learning component to predict
future deviations of schedules. The adapted schedules can then be
simulated to create alternative schedules. Like in a construction
manual, the implementation is explained step by step.

Keywords-Predictive Artificial Intelligence; Neural Networks;
Machine Learning; Simulation; Petri Nets.

I. INTRODUCTION

The idea to use AI to feed a simulation [1] was initiated
by discussions during the SIMUL 2023 conference [2]. The
participants had various imaginations about the impact
of currently discussed Artificial Intelligence (AI) methods
like transformers on simulation. While simulation is about
causality, many AI methods are about correlation. The
participants generally doubted that AI will substitute current
simulation methods. However, there is still the possibility
to pair both approaches.

This discussion occurred at the right time, as there was a
need to address a problem that had arisen in an industry
project using alternative methods. They could simulate the
incoming and outgoing traffic of a large warehouse for
registered transports as described in Section II with the aid
of a high-level Petri net. But this did not take into account
that the registered (planned) arrival time and the actual
arrival time of the transports often do not match.

An investigation began into possible reasons for late
transports, such as transport distance, the shipping agent,
the producer, or current weather conditions. None of these
factors were considered during the actual simulation of the
warehouse’s inbound and outbound traffic.

Unfortunately, the industry partner does not collect infor-
mation about delays and, hence, cannot provide empirical
values. Nonetheless, there was a desire to further develop the

simulation environment by incorporating AI technologies.
This idea led to the research question:

How can we extend our simulation model by a
forecast component based on machine learning?

A demonstration of the feasibility of this approach has
been presented at the SIMUL 2024 conference [1]. The
extension within this paper explains the implementation in
detail.

Before explaining the new AI specific components of the
simulation environment, the paper continues in Section II
with a description of the high-level Petri net simulation
model for the inbound and outbound traffic of a warehouse.
Particular attention is given to the data required for simula-
tion. Afterwards, in Section III, a brief introduction is given
to the necessary Machine Learning (ML) methods. Both
topics are combined in Section IV to define the structure of
a possible ML data set for the problem first and to explain
the ML approach in Section V next. The implementation of
the ML component is explained in three steps in Sections
VI, VII, and VIII. Section IX demonstrates how to integrate
the ML approach into the existing environment. The paper
ends in Section X with a conclusion and an outlook on
future work.

II. REAL-WORLD PROBLEM

The industry partner at an industrial park (Industriepark
Höchst, ISL) provides logistics services for chemical, phar-
maceutical and healthcare industries and currently expands
its logistics services. Freely published information show the
size of this venture [3]:

• Space for more than 21,000 pallets
• 9 separate warehouse sections
• Storage of multiple hazardous material storage classes for

chemicals and pharmaceutics
• A wide temperature range from -6 to 20 degrees Celsius

in the different sections of the warehouse

As depicted in Figure 1, the warehouse can be accessed
via ramps (2). Each section has a loading zone (3) and
the actual storage zone (6).

During planning and go live, the inbound and outbound
traffic of this warehouse has to be simulated to objectify
assumptions made during the conceptual phase. A typical
inbound process is conducted as follows: before approaching
the industrial park, the shipping agent books a time slot
in advance. When trucks arrive, the drivers register with

20International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the gatekeeper in the office (1). Afterwards, they dock at
the ramp they have been assigned to (2). Then, the goods
are picked by standard forklifts (called VHS) and placed in
the staging zone (3). After the truck has left, the goods
are carried through the driving zone (4) and dropped on
a handover point (5). Finally, narrow aisle forklifts (called
SGS) pick the goods and store them in the high rack storage
area (6).

Outbound processes are executed in reverse order, except
that the goods are provided in the staging zone before trucks
arrive.

n 1

2

3

4

5

6

Figure 1. Sketch of the Warehouse.

Various specifics may be excluded from the simulation,
such as the commissioning of certain goods. Furthermore,
the precise positioning of goods within the warehouse,
and consequently the exact driving times, hold diminished
importance. In lieu of this, reasonable average times have
been selected to replicate typical operational norms.

Model and simulation have been described in detail in
[2] and [4]. The model consists of state machines for the
inbound and outbound processes and a high-level Petri
net to execute these state machines in parallel. Also, time
constraints and restricting resources are taken into account.

Two conceptual data models for orders and resources are
needed for this. The resources are discussed, first. Table I
shows the data needed for simulation based on one kind of
resource. This information is spread over several tables (or,
in terms of Petri nets, over several places) for each kind of
resource.

TABLE I. ATTRIBUTES FOR THE RESOURCE PLACES

Attribute Description

id id for resources of this kind
product product group
free available or locked
timestamp timestamp of the latest state change
order assigned order id

Attribute id may identify a specific resource like a
numbered ramp or a dedicated resource of this kind, like
one of the VHS. product describes the resource allocation to
chemical or pharmaceutical. order references to the order
that uses this resource and simplifies joins among the
different data sets.

Table II shows the data needed for orders. Beside an
identifier id and the specification whether the order belongs
to a chemical or pharmaceutical product, the total number
of pallets for the transport is specified. status identifies
the current order’s state and, implicitly, whether this is an
inbound or outbound process.

TABLE II. ATTRIBUTES OF AN ORDER’S STATE

Attribute Description

id order id
product product group
total total amount of pallets requested
status initial or current order status
ramp target ramp
arrival scheduled time of arrival
preparation scheduled time of completed staging
fillHandover amount of pallets in handover areas
fillRamp amount of pallets at target ramp
fillTruck amount of pallets in truck
usedGate used resource gate
usedSGS used resource SGS
usedVHS used resource VHS
timestamp timestamp of the latest state change

One or two times must be defined per order: for both
inbound and outbound, the arrival time of the truck is given
due to its registration. Outbound processes additionally need
a preparation time when staging begins. This staging time
leaves room for optimisation for the warehouse operators.

At the end of the simulation explained in the following, all
changes to orders are exported to a dashboard. A timestamp
traces the moments these changes occur. To simplify the
computing of this visualisation, the allocated resources like
ramp, usedGate, usedSGS, usedVHS are saved. Finally, the
amount of goods at the different places is stored in the
attributes fillHandover, fillRamp, and fillTruck.

Without having an impact on the result, the real process
and the simulated one differ slightly. For the simulation, the
ramps are assigned in advance; in real world the gatekeeper
decides on the ramp based on personal experience.

The Process-Simulation.Center (P-S.C) was chosen for
modelling and simulation [5]. Since the P-S.C is a Petri
net based Integrated Management System, it fulfils further
constraints important for the industry partner among the
pure ability to simulate. Safety and security aspects are of
high priority to ISL. Therefore, access to and visibility of
(real-world) data must be limited.

The P-S.C-Cloud (the P-S.C is only provided via internet)
and the multi-client capability of the P-S.C help to manage
security issues [5]: The tool itself only runs locally in a
browser with data never leaving the system. Sensitive input
data and simulation results can be stored on in-house servers
without the P-S.C-Cloud ever coming in contact.

In addition, the industry partner requires a user interface
(UI) to edit the simulation parameters (orders, times,
resources, priorities) easily. The simulation results ought
to be presented in a descriptive dashboard. Today, such an

21International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interface is called a digital shadow, a piece of software which
maps real-world data and processes to a virtual world [6].

Figure 2 explains the interaction between the P-S.C and
the local UI using CSV-files. Simulation parameters can be
imported this way, too.

local UI ø

P-S.C Å

F Î Æ F

feed visualise

simulate

Figure 2. Coupling of Digital Shadow (local UI) and P-S.C.

The execution of a specific simulation scenario is divided
into three distinct phases:

• feed: The local UI is implemented as a web-based
application that can be used with any internet connected
computer or iPad. It is used to enter the simulation
parameter, priorities and especially the actual order data.

• simulate: The P-S.C loads the data into the browser of the
end user to start the simulation. The P-S.C-Cloud does
not get in touch with it which guarantees full control over
the data. After the simulation has finished, an automatic
download is started and the users can store the results
on local hardware.

• visualise: The downloaded file in turn can now be
uploaded in a dashboard which is also implemented in
the local UI. This helps the end-users to find the best
strategy for driving the warehouse. In particular, workload
spikes, transportation bottlenecks, and staff occupancy
can be analysed and visualised.

This approach is limited to simulate one specific schedule
of orders for one specific period, e.g., one day. It is not
flexible concerning deviations of the transports. The next
sections explain how to extend this environment to handle
this limitation.

III. MACHINE LEARNING FUNDAMENTALS

Artificial Intelligence (AI) is defined in many different
ways. The most common definition of AI is that of a rational
agent. Such an agent tries to provide the best (expected)
outcome, given its inputs. What constitutes the best outcome
remains a matter of definition [7].

If a rational agent is created to improve the provided
output by gaining some sort of experience, this is called
Machine Learning (ML). Figure 3 shows the idea of ML
as described by [8]. The figure depicts the rational agent
as a model. Its task (red) is to compute an output when
presented with input data. The model obtains a mapping
based on training data. Its formation is the learning problem

(blue). Which algorithms are used depends on the chosen
ML model [8].

Learning problem

Task

Domain
objects Features

Data
Model

Output

Training
data

Learning
Algorithm

Figure 3. Machine Learning as explained by [8].

One possible ML model is Deep Learning (DL). A DL
model is an artificial neural network with several (hidden)
layers. A neural network is to mimic the principle of real
neurons. Single neurons are connected by directed, weighted
arcs. If the incoming arcs yield a high enough activation
potential, the activation function in a neuron triggers a
corresponding output. The weighs constitute the main
parameters of this ML model type [9].

If the training set includes results, this is called supervised
learning. In this case, the data is considered labelled. The
metric used to examine the model’s quality is to compare
the actual results with the computed ones [10].

Two kinds of problems may be solved with the aid of
artificial neural networks:

• Classification: In mathematical notation, a classifier is a
function y = f (x), where x is the input data item and y
is the output category [11].
Applied to our example of a warehouse, classification could
help to predict which transports may be unpunctual.

• Regression: In regression, we try to understand the data
points by discovering the curve that might have generated
them [11].
Applied to our example of a warehouse, regression could
help to predict how many minutes transports may be
unpunctual.

IV. EXTENDED DATA SET FOR ML

The aim of the presented approach is to correct and
complete future orders and especially to forecast

• which future transports will or will not be in time, i.e., to
solve a classification problem, and

• to forecast the expected deviation of the arrival time of
future transports, i.e., to solve a regression problem.

But which parameters may influence the arrival time of
trucks? And how can this information be coded, such that
it can be processed by a learning algorithm?

22International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

First, it is worth to consider the data used for simulation
already. All “internal“ parameters of the orders like order id,
current timestamp of the simulation, allocated ramp and
other resources (fillHandover, fillRamp, fillTruck, usedGate,
usedSGS, or usedVHS), and the preparation time for outgoing
orders can be ruled out as possible sources.

The probably most valuable source is the planned arrival
time coded as a timestamp consisting of date and time. This
information, which is typically stored as a string, should
be preprocessed for a learning algorithm. The following
information can be extracted and coded as discrete numbers:

• The month or season of arrival, which may have an impact
due to weather conditions.

• The arrival time in hours or at least in categories like early,
in the middle of the day or by the end of the day, which
may have an impact on the transportation conditions like
traffic or the work schedule of the drivers.

• The day of week which may have an impact on the traffic
intensity.

Also, the state attribute may be of interest because it is
used to differ between incoming and outgoing transports.
For outgoing transports, “only“ an empty truck has to arrive
while incoming transports need to be prepared before they
reach the warehouse. This might have an impact on the
arrival time.

Attribute product is not as valuable as supposed by its
name. The simulation only distinguishes between chemical
and pharmaceutical products which is very rough. It is not
obvious that these two categories correlate with a deviation
since there are hundreds of different concrete products that
belong to these two groups.

Finally, the total amount of pallets is a candidate which
might have an impact on the arrival time, especially for
incoming transports. Large amounts of goods may cause
more problems when being loaded compared to smaller
ones.

Further attributes might have an impact which are not
considered during simulation. The following attributes have
been identified:

• The transportation distance, especially if a truck has to
arrive from outside of the industrial park or whether it is
an internal transport.

• The shipping agents may differ concerning their quality
standards and the accuracy of delivery time.

• Finally, the producer might have an impact on the time a
transport can start after being loaded and, hence, whether
it arrives on time.

All remaining values can be enumerated and can hence
be used for training of a neuronal net.

Unfortunately, the industry partner does not track these
additional information. Even the deviation between the
planned and the actual arrival time is not documented.
Hence, the following considerations are only of theoretical
nature.

V. ML FOR PREDICTIVE SCHEDULING

In the context discussed in this paper, Deep Neural
Networks (DNNs) can be used threefold. First, they can
create yet missing data, thus establishing a means to
plan ahead of knowledge. Second, they can predict which
transports may be not on time. Third, they can surmise
time deviations.

A. Neural Nets to Complete the Feed

Data becomes worse - or even non-existent - the farther
the look into the future. Thus, missing but plausible data has
to be integrated into the feed. The corresponding DNN gets
trained with historical data of planned arrival times of trucks.
From this training data, the net creates fictional yet plausible
data entries to complete the fragmentary known data. The
thus enriched data constitutes one possible scenario to be
analysed by simulation. As it is the first fully scheduled data
set, it can be regarded as the base scenario.

B. Neural Nets for Classification

The associated DNN can learn from historical data
which deliveries and dispatches were on time. Thus, it can
predict the probability of a trip to be delayed or advanced.
This is due to the neural nets capability to learn from
underlying correlations. Such correlations may be interpreted
as questions like:

• Are there shipping agents that often are late?
• Are there producers that always are early?
• Are midweek deliveries more reliable than ones on Mon-

days?

After establishing the probabilities of unpunctuality, al-
ternative scenarios can be established. These scenarios
incorporate differing yet still plausible delay and advance
times. The corresponding schedules can then be compared
to the base scenario.

C. Neural Nets for Regression

Knowing which delivery may be late is one side of the
coin. The other is the actual time. The fitting DNN can
make guesses about these times. Again, the capabilities of
neural nets to represent correlations prove useful: Several
different effects may overlap that may add up to massive
delays. An example for this may be an unreliable hauler in
the midst of winter on an early Monday morning. These time
delta represent the last puzzle piece in creating alternative
scenarios.

D. Implementation Insights

As a tool only provided via internet, the architecture of the
P-S.C-Cloud consists of a JavaScript client and a PHP Server.
The prototypical implementation of a ML component to
conduct the previously described tasks is done with Python
instead. The reason for this is the existence of a large number
of ML libraries that can simply be combined. Especially the
following packages are used [12]:

23International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• NumPy provides data types and functions for easier
handling of complex structures, such as vectors and
matrices.

• pandas is designed for more complex structures and their
easy handling. One strength is its extensive functionality
for table structures.

• Matplotlib is used for visual analyses and plotting.
• scikit-learn contains many ML algorithms that can be

easily used in your own program.
• Keras can build artificial neural networks.
• TensorFlow extends Keras with additional well performing

functionalities and can handle large and complex data
structures.

With the goal to train a DNN as an example, typical
delivery information including possible delays, have been
guessed in a students’ project. While some of the information
have been randomised, others include pattern like specific
shipping agents always being late. The implementation for
this is explained next in Section VI in more detail.

The numerical representation of the input data is partially
generated in the JavaScript part of the implementation,
others make use of the predefined ML algorithms in Python.

The derived information concerning completed order lists,
classification and regression are currently produced in the
Python environment. They can be stored in CSV files which
can then be integrated into the P-S.C-Cloud via file upload.
The corresponding implementations are explained in Section
VII and Section VIII.

VI. SYNTHETIC DATA

The data generation is the first step of the implementation.
Like the other two steps, the implementation is explained in
great detail ensuring that anyone can rebuild the solution
from scratch.

A. Description of Data

The following categories have been build:

• total: the total number of pallets in a delivery which may
influence the transport time.

• producer: manufacturer of the order delivery which might
affect the departure time of a transport after loading and
hence the punctuality of the arrival.

• carrier: carrier for the delivery of the order, because they
may differ in terms of quality standards and delivery
accuracy.

• weekday: the traffic intensity may vary at the different
days of the week.

• season: seasonal differences of the weather conditions
may influence the traffic.

• distance: the distance of a delivery from the manufacturer
to the destination.

• arrival: the respective delivery time.
• delay: delay times in four classes. The aim is to predict

delays depending on the aforementioned parameters.

The next step is to generate this data as a CSV file using
Python code.

B. Import of Required Modules

The pandas and NumPy modules are to be imported at
the beginning of the code.

1 # Import of required modules
2 import pandas as pd
3 import numpy as np

In this context, NumPy provides the tools for generating
random values to simulate various input features of the data
set.

The pandas library is utilized to organize the generated
data into a structured DateFrame format which resembles a
table. This format is suitable for further processing, exporting
to a CSV file, and use in machine learning workflows. pandas
allows for easy labeling of columns and transformation of
categorical and numerical data into a unified structure.

C. Consistent Data Generation

The size of the data set is determined next. Also, the
random seed is set to 42 to ensure that the generated data
remains consistent each time the program is invoked.

5 # Determination of the size
6 number_of_records = 1000
7 np.random.seed(42)

Afterwards the categories and possible values are defined.

10 _number_of_pallets = np.random.randint(1, 24, size =
number_of_records)

11 _producer_classes = ['prod1','prod2','prod3']
12 _carrier_classes = ['car1','car2','car2']
13 _weekdays = np.random.randint(1, 7, size =

number_of_records)
14 _seasonal_classes = [1, 2, 3, 4]
15 _seasons = []
16 _transport_distance_classes = [250,500,750]
17 _transport_distances = []
18 _arrival_time_classes = ['morning','midday','evening']
19 _arrival_times = []
20 _delay_time_classes = [0,15,30,45]
21 _delay_times = []

In the subsequent phase, the carriers are allocated
according to their associated probabilities. Each carrier is
generated with an identical probability, ensuring an even
distribution.

23 _carriers = np.random.choice(_carrier_classes,
number_of_records, p=[0.3333333333333333,
0.3333333333333333, 0.3333333333333333])

D. Delay Times, Transport Distances, and Arrival Times

After the carriers are assigned, delay times are gener-
ated. The objective is to create shorter delays for car1,
longer delays for car2 and moderate delays for car3. By
creating varying delay times for each carrier, patterns can
be identified in the data, which are essential for the AI’s
predictions.

24International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

27 def generate_delay_time(_carriers):
28 if _carriers == 'car1':
29 return np.random.choice(_delay_time_classes, p=[0.6,

0.2, 0.1, 0.1])
30 elif _carriers == 'car2':
31 return np.random.choice(_delay_time_classes, p=[0.1,

0.1, 0.4, 0.4])
32 elif _carriers == 'car3':
33 return np.random.choice(_delay_time_classes, p=[0.1,

0.4, 0.4, 0.1])
34

35 for i in _carriers:
36 _delay_times.append(generate_delay_time(i))

Next, transport distances are assigned to the different
carriers. car1 records have a transport distance of 250 km,
car2 500 km, and car3 750 km.

39 def generate_transport_distance(_carriers):
40 if _carriers == 'car1':
41 return _transport_distance_classes[0] # 250 km
42 elif _carriers == 'car2':
43 return _transport_distance_classes[1] # 500 km
44 elif _carriers == 'car3':
45 return _transport_distance_classes[2] # 750 km
46

47 for i in _carriers:
48 _transport_distances.append(generate_transport_distance(i

))

The three carriers also vary concerning their arrival times
with car1 deliveries usually arrive in the morning, car2
midday, and car3 in the evening.

51 def generate_arrival_time(_carriers):
52 if _carriers == 'car1':
53 return _arrival_time_classes[0] # midday
54 elif _carriers == 'car2':
55 return _arrival_time_classes[1] # morning
56 elif _carriers == 'car3':
57 return _arrival_time_classes[2] # evening
58

59 for i in _carriers:
60 _arrival_times.append(generate_arrival_time(i))

E. Generating Seasons

Season dependent delay times represent delays caused
by weather conditions.

63 def generate_season(_delay_times):
64 if _delay_times == 45:
65 return _seasonal_classes[3] # Winter
66 elif _delay_times == 30:
67 return _seasonal_classes[2] # Autmn
68 elif _delay_times == 15:
69 return _seasonal_classes[0] # Spring
70 elif _delay_times == 0:
71 return _seasonal_classes[1] # Summer
72

73 for i in _delay_times:
74 _seasons.append(generate_season(i))

F. Creating the Data Structure

To complete the data generation, the data structure is
created as a DataFrame and afterwards exported as a CSV.

77 data = pd.DataFrame({
78 'total' : _number_of_pallets,
79 'firm' : np.random.choice(_producer_classes,

number_of_records),
80 'carrier' : _carriers,
81 'weekday' : _weekdays,
82 'season' : _seasons,
83 'distance' : _transport_distances,
84 'arrival' : _arrival_times,
85 'delay' : _delay_times
86 })
87

88 data.to_csv('delivery_data_auto.csv', index=False)

VII. CLASSIFICATION

The task is to use the previously generated data as training
and test data in order to classify a possible delay in future
deliveries.

A. Import of Required Modules

To implement the neural network and prepare the data set
for training, several essential Python libraries and modules
are utilized:

2 import tensorflow as tf
3 import pandas as pd
4 from sklearn.model_selection import train_test_split
5 from sklearn.preprocessing import LabelEncoder
6 import numpy as np

Section V includes a short description of these libraries.

B. Import CSV Files

To use the previously generated data, the CSV file is
imported as a DataFrame.

9 path1 = "delivery_data_auto.csv"
10 data = pd.read_csv(path1, delimiter=',')
11

12 # Output of the first five rows
13 print(data.head())

Figure 4 shows the first five rows of the data set.

Id total firm carrier weekday season distance arrival delay
0 7 prod1 car2 4 4 500 midday 45
1 20 prod1 car3 3 4 750 evening 45
2 15 prod3 car1 3 2 250 morning 0
3 11 prod2 car2 1 3 500 midday 30
4 8 prod2 car1 6 2 250 morning 0

Figure 4. Output of the first five rows.

Also, the data to which the AI makes a prediction is
imported as a DataFrame as exemplarily shown in Figure
5. The record describes an order of 16 pallets of producer
prod3 carried out by the freight carrier prod2 in winter,
arriving midday on a Wednesday with a delivery-distance
of 500 km.

25International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Id total firm carrier weekday season distance arrival
0 16 prod3 car2 3 4 500 midday

Figure 5. Data to predict.

C. Delay Classes

The next step is to define classes for the various possible
delays. Figure 6 shows the result.

25 classes = data['delay']
26 print('Classes: ' + classes.sort_values(ascending=True).

unique())
27 classes = len(classes.unique())
28 print('Number of output classes: ' + classes)

Classes: [0 15 30 45]
Number of output classes: 4

Figure 6. Output of classes and number of classes.

To predict whether a delay might occur, delays must
be classified. For this, the column with the delays is
separated from the input variables and stored separately in
a normalized form.

32 col_name = 'delay'
33 le = LabelEncoder()
34 col = le.fit_transform(data[col_name])
35

36 data = data.drop([col_name], axis=1)

D. Handling of Non-Numerical Data

Categories with non-numerical values - like firm, carrier
and arrival - need to be converted into numerical values
using one-hot-encoding (ohe). This binary coding increases
the number of input variables for the next step.

39 conv_ohe = ['firm', 'carrier','arrival']
40 data = pd.get_dummies(data, columns=conv_ohe, dtype=float)

E. Training and Test Data

The last preparatory step is to divide the data into training
and test data. A ratio of 80:20 is usually applied, where 80%
are used for training and 20% for testing the model.

58 train_data, test_data, train_col, test_col =
train_test_split(data, col, test_size = 0.2,
random_state = 42)

F. Structure of the Artificial Neural Network

Keras sequential model is used for multi-class classifi-
cation. It consists of a single stack of layers sequentially
connected to each other.

61 model = tf.keras.Sequential([
62 tf.keras.layers.Input(shape=(data.shape[1],)),
63 tf.keras.layers.Dense(32, activation=tf.nn.sigmoid),
64 tf.keras.layers.Dense(64, activation=tf.nn.sigmoid),
65 tf.keras.layers.Dense(classes, activation=tf.nn.softmax)
66])

• The input layer acts as the entry point for the data into
the neural network.

• Two fully connected hidden layers build the inner neuronal
structure. The first layer contains 32 neurons, and the
second has 64. Both use the sigmoid activation function
to map the input values between 0 and 1.

• The output layer has as many neurons as there are
classes in the classification task and the softmax activation
function selects the class with the highest probability as
the predicted output.

G. Configure the Learning Process

The model.compile() function configures the learning
process. This step involves specifying optimizer, loss function
and evaluation metrics. The following setup was used in
this study:

69 model.compile(optimizer='adam', loss='
sparse_categorical_crossentropy', metrics=['accuracy
'])

The network is trained using the Adaptive Moment
Estimation (Adam) optimizer, a widely used gradient-based
optimization algorithm. Adam combines the benefits of
momentum and adaptive learning rates by maintaining
running estimates of both, the first (mean) and second
(uncentered variance) moments of the gradients. This makes
Adam well-suited for training deep neural networks on noisy
or sparse data sets and helps ensure stable convergence.

Given that the delay classes are encoded as integers,
the sparse_categorical_crossentropy loss func-
tion computes the cross-entropy loss between the integer-
encoded true labels and the probability distributions pre-
dicted by the network’s softmax output layer.

The model’s performance during training and evaluation
is measured using it’s accuracy. The metric calculates the
proportion of correctly predicted delay classes relative to the
total number of predictions. Accuracy provides an intuitive
measure of the model’s ability to correctly classify future
delay categories based on the input features.

H. Execution of the Training Process

The training process of the neural network is conducted
using the model.fit() function, which initiates the
learning phase. The following configuration is applied:

72 model.fit(train_data, train_col, epochs=60)

The model is trained with the input feature matrix
(train_data) and the target vector train_col contain-
ing the integer-encoded delay categories.

26International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The training runs for 80 epochs to optimize the model’s
internal weights, reduce classification error, and avoid
underfitting. Over successive epochs, the model is expected
to converge to a solution that generalizes well to unseen
data, and accurately classifying future delay categories based
on new feature inputs.

Figure 7 provides a summary of the model’s performance
during the final five training epochs.

Epoch 75/80
25/25 [==============================] - 0s 1ms/step - loss

: 0.2887 - accuracy: 0.9488
Epoch 76/80
25/25 [==============================] - 0s 1ms/step - loss

: 0.2816 - accuracy: 0.9563
Epoch 77/80
25/25 [==============================] - 0s 1ms/step - loss

: 0.2733 - accuracy: 0.9638
Epoch 78/80
25/25 [==============================] - 0s 1ms/step - loss

: 0.2634 - accuracy: 0.9762
Epoch 79/80
25/25 [==============================] - 0s 983us/step -

loss: 0.2551 - accuracy: 0.9762
Epoch 80/80
25/25 [==============================] - 0s 1ms/step - loss

: 0.2507 - accuracy: 0.9850

Figure 7. Output of the training process.

The final training epochs show a consistent decrease
in categorical crossentropy loss and a steady increase in
classification accuracy. By the end of training, a training
accuracy of 98.50% was acieved, indicating effective learning
and convergence.

I. Testing

To complete the training, the model was evaluated on a
test data set to assess its generalization performance. This
evaluation was conducted using the following configuration.
Figure 8 depicts the result of the test process.

75 test_loss, test_acc = model.evaluate(test_data, test_col)
76 print('Test accuracy:', test_acc)

7/7 [==============================] - 0s 975us/step - loss
: 0.2226 - accuracy: 0.9800

Test accuracy: 0.9800000190734863

Figure 8. Output of the test process.

model.evaluate() computes the final loss and clas-
sification accuracy on the test data. These metrics provide
insight into how well the model performs on previously
unseen samples and help determine whether the network
has successfully generalized beyond the training set.

The test accuracy reflects the proportion of correctly
predicted delay categories in the test data set. This step is

crucial to validate that the high training accuracy observed
during the final epochs is not a result of overfitting.

The model achieved a test accuracy of 98.00% with a
corresponding test loss of 0.2226 which indicates that the
model has successfully generalized beyond the training set.

J. Make a Prediction

To evaluate the usability of the trained model, a separate
test data set (delivery_test_ohe.csv) was used.

79 path2 = "../Data/delivery_test4.csv"
80 data_to_predict = pd.read_csv(path2, delimiter=';')
81

82 print('Data to predict: ')
83 print(data_to_predict)

To verify the correct alignment of feature values with the
expected schema, the test data sample used for predictions
was printed to the console as shown in Figure 9.

Data to predict:
total weekday season transport-distance firm_prod1

firm_prod2 \
0 16 3 4 500 0.0

0.0

firm_prod3 carrier_car1 carrier_car2 carrier_car3 \
0 1.0 0.0 1.0 0.0

arrival-time_evening arrival-time_midday arrival-
time_morning

0 0.0 1.0
0.0

1/1 [==============================] - 0s 58ms/step

Figure 9. Output of the customised CSV file for the prediction

The test data set was manually created and aligned with
the one-hot-encoding-training data. Now, it could be used
to perform a prediction:

86 pred = model.predict(data_to_predict)
87

88 print('prediction in %: ', pred)

The neural network returns a probability distribution
across all output classes, indicating the model’s confidence
in each potential delay-time category. Figure 10 shows the
prediction for the given input:

prediction in %: [[4.4574207e-03 3.2497539e-06 1.8211146e
-01 8.1342787e-01]]

Figure 10. Output of the prediction in per cent.

The array contains four floating-point values that sum
approximately to 1.0. Each value represents the predicted
likelihood of the input belonging to the respective class, i.e.,
0.45% for class 0, 0.0003% for class 1, 18.21% for class 2, and

27International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

81.34% for class 3 indicating that the order will be 45min
late.

The highest probability value of the prediction array was
determined using the NumPy function argmax() and the
result is shown in Figure 11.

1 # Determination of the index of the largest number
2 num = np.argmax(pred)
3 print('Index value: ', num)
4 print('_' * 75)

Index value: 3

Figure 11. Output of the prediction as an index value.

To decode the index it must be mapped back to its
original string using the inverse transformation of the
LabelEncoder:

1 # Determination of the result as string
2 spec = le.inverse_transform([num])
3 print('Maximum expected delay time: ', spec, 'min')
4 print('_' * 75)

le refers to the previously fitted LabelEncoder in-
stance, and num is the predicted class index obtained via
np.argmax(pred). inverse_transform[num] con-
verts this numerical index back into its original categorical
form. The result is shown in Figure 12.

Maximum expected delay time: [45] min

Figure 12. Output of the prediction.

This completes the model inference pipeline, converting
raw input data into a meaningful delay-time prediction.

The models decision is influenced by multiple factors in
the input:

• Carrier car2 was associated with a significantly higher
probability of delay (30 or 45 minutes).

• The season value of 4 corresponds to winter with further
potential delays.

• The arrival time of “midday“ which frequently co-occurred
with car2 deliveries and longer delays.

• A transport distance of 500 km which was also character-
istic of car2 deliveries in the synthetic data.

VIII. REGRESSION

A regression model is implemented to predict continuous
numerical values - specifically, the expected delivery delay
in minutes. The foundation for this model is based on
the previously developed classification pipeline. With minor
modifications it can be adapted to perform regression tasks.

A. From Classification to Regression

Data preprocessing from the classification section remains
unchanged. This includes label encoding, one-hot-encoding
for categorical features, and splitting the data set into
training and test sets. Only the configuration of the artificial
neural network and the loss function require adjustments.
While input and inner layers stay unchanged, the output
layer is defined as a single neuron without an activation
function in order to predict continuous values.

2 model = tf.keras.Sequential([
3 tf.keras.layers.Input(shape=(data.shape[1],)),
4 tf.keras.layers.Dense(32, activation=tf.nn.sigmoid),
5 tf.keras.layers.Dense(64, activation=tf.nn.sigmoid),
6 tf.keras.layers.Dense(1)
7])

B. Configuration of the Learning Process

Also, the learning process uses the Adam optimizer for
regression. Now, mean-absolute-error (mae) is chosen as loss
function. It measures the absolute, average magnitude of
the errors between predicted and actual values. mae is also
used as the performance metric to monitor the accuracy:

10 model.compile(optimizer='adam',loss='mae',metrics=['mae'])

C. Training Process

The training process is almost initiated in the same way
as for classification. Except the epoch number is raised to
80 for a better adjustment of internal weights for regression.
The training performs as shown in Figure 13.

13 model.fit(train_data, train_col, epochs=80)

Epoch 75/80
25/25 ------------------ 0s 1ms/step - loss: 0.2938 - mae:

0.2938
Epoch 76/80
25/25 ------------------ 0s 1ms/step - loss: 0.3143 - mae:

0.3143
Epoch 77/80
25/25 ------------------ 0s 1ms/step - loss: 0.3102 - mae:

0.3102
Epoch 78/80
25/25 ------------------ 0s 1ms/step - loss: 0.2562 - mae:

0.2562
Epoch 79/80
25/25 ------------------ 0s 1ms/step - loss: 0.2742 - mae:

0.2742
Epoch 80/80
25/25 ------------------ 0s 1ms/step - loss: 0.2950 - mae:

0.2950

Figure 13. Output of the prediction as an index value.

These results indicate that the model achieved a relatively
stable and low mae during the final training phase, sug-
gesting effective convergence. The fluctuations in the mae
values are minor and typical for this type of training.

28International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Testing

The model’s performance was evaluated on beforehand
unseen test data. Figure 14 shows the result.

16 test_loss, test_mae = model.evaluate(test_data, test_col)
17 print('Test mae:', test_mae)

7/7 ------------------ 0s 4ms/step - loss: 0.2826 - mae:
0.2826

Test mae: 0.2971033751964569

Figure 14. Output of the prediction as an index value.

For 7 batches, the output shows a loss of 0.2826. This
indicates that the average absolute difference between
predicted and actual delay times is approximately 0.2826
minutes per instance. Also the test_mae metric delivers
a comparable value. The small deviation between the two
values stems from internal rounding variances.

E. Make a Prediction

Once the hyperparameters for a regression have been
adjusted and the model has been trained and tested, the AI
is ready to make predictions.

20 path2 = "../Data/delivery_test4.csv"
21 data_to_predict = pd.read_csv(path2, delimiter=';')
22

23 print('Data to predict: ')
24 print(data_to_predict)
25

26 # Make a prediction
27 pred = model.predict(data_to_predict)
28

29 print('delay time in min: ', pred)

Data to predict:
total weekday season transport-distance firm_prod1

firm_prod2 \
0 16 3 4 500 0.0

0.0

firm_prod3 forwarder_car1 forwarder_car2
forwarder_car3 \

0 1.0 0.0 1.0
0.0

arrival-time_evening arrival-time_midday arrival-
time_morning

0 0.0 1.0
0.0

1/1 ---------------- 0s 46ms/step

delay time in min: [[3.0888479]]

Figure 15. Output of the prediction in minutes.

IX. ML EXTENDED SIMULATION

It is the aim to integrate the ML solution presented in the
previous sections into the formerly introduced simulation
environment as shown in Figure 16. After the trusted orders
are entered for simulation, a new phase refurbish is executed
which makes use of the ML model.

local UI ø

P-S.C Å

F Î Æ F

feed refurbish

simulate

visualise

Figure 16. Simulation environment extended by ML.

With the goal to improve the ramp allocation, simulation
is conducted in two phases. Figure 17 shows the improved
planning approach.

ML corrected orders æ Ramp allocations

Actual orders
(possibly ML completed) æ

Deviation stable
ramp allocations

Figure 17. Two-Phase approach for ramp allocation.

A. Simulation of a Planned Schedule

In the first iteration, the orders are simulated for the case
that all transports arrive as planned. If further orders are
expected for the simulation period, the ML algorithm is able
to generate plausible orders with respect to the known order
history.

The simulation is conducted with the goal to find an
optimal ramp allocation which reduces idle times for the
shipping companies combined with a minimal labour
utilisation. Different ramp allocations may lead to almost
same results.

B. Simulation of a Planned Schedule plus (DNN) Delays

During the second phase, the orders are corrected with
respect to the assumed deviations of transport times. The
ramp allocation strategies found in the first phase are applied

29International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/systems_and_measurements/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to these adapted schedules and evaluated with respect to
the optimisation criteria. These simulation results are used
as a filter to find that allocation strategy which fits best to
the original and the adapted orders.

C. Preliminary Work of Industry Partners

As mentioned before, the industry partner does not collect
information needed for the machine learning approach. To
prepare a data collection, the training data mentioned before
is divided into three classes:

• Available: timestamp of the planned arrival; incoming vs.
outgoing transports; amount of pallets

• Not available but collectable: the delay of transports;
transportation distance in the sense of transports inside
the industry park or nor; the shipping agent; the producer

• Not available and not collectable: in advance, the
transportation distance in length

This classification reinforces the appraisal that the intro-
duced approach can be conducted. It’s application depends
on the willingness of the industry partners.

X. CONCLUSION AND OUTLOOK

As initially stated, the goal of this research is to provide
an environment to improve simulation in logistics. It uses
machine learning based techniques to create schedules
that are (mostly) indifferent to deviations from the original
planning. Thus, a good schedule performs at least as good
on the original data as the original schedule; but it performs
as good as possible under differing scenarios.

A prototypical environment has been implemented, but
the parts are not fully integrated yet. The reason for this is
that the industry partner does not collect information of the
deviation of planned and actual arriving time of the trucks.
Also, other information that could help to train a neural net
are not considered by the partner. The possibility to do so,
has been explained above.

This represents the next important research step: check
the approach with real-world data! Afterwards it makes
sense to develop the integration further. The necessary
implementation details have been uncovered in this article.

Even with this approach it is not possible to know which
transports will be late in the future. But the developed
scenario is more stable with respect to delays in delivery
without degrading the initial plan. And for checking this
plan, simulation is still needed. Purely statistical estimations
are insufficient for processes in logistics.

REFERENCES

[1] C. Simon, S. Haag, and N. G. Badurasvili, “Predictive AI To
Feed Simulation”, in SIMUL 2024: The Sixteenth International
Conference on Advances in System Simulation, Venice (Italy),
2024, pp. 58–63.

[2] L. Zakfeld, C. Simon, M. Hladik, and S. Haag, “Real World
Case Study To Teach Simulation”, in SIMUL 2023: The
Fifteenth International Conference on Advances in System
Simulation, Valencia (Spain), 2023, pp. 19–24.

[3] Infraserv Logistics GmbH, Overview hazardous substances
warehouse, https://www.infraserv-logistics.com/en/isl/news/
news/ (last accessed 08.2024), 2023.

[4] C. Simon and S. Haag, “Pairing Finite Automata and Petri
nets - Simulation of Processes in Logistics”, in ECMS 2024:
38th International ECMS Conference on Modelling and
Simulation, D. Grzonka, N. Rylko, and G. S. V. Mityushev,
Eds., Krakow (Poland), 2024, pp. 474–480.

[5] C. Simon, S. Haag, and L. Zakfeld, “The Process-
Simulation.Center”, in SIM-SC: Special Track at SIMUL 2022:
The Fourteenth International Conference on Advances in
System Simulation, F. Herrmann, Ed., Lisbon (Portugal), 2022,
pp. 74–77.

[6] T. Bergs et al., “The Concept of Digital Twin and Digital
Shadow in Manufacturing”, Procedia CIRP, vol. 101, pp. 81–
84, 2021, 9th CIRP Conference on High Performance Cutting,
ISSN: 2212-8271.

[7] S. Russell and P. Norvig, Artificial Intelligence - A Mordern
Approach, 4th ed. London: Pearson, 2021.

[8] P. Flach, Machine Learning - The Art and Science of Al-
gorithms that Make Sense of Data, 9th ed. Cambridge:
Cambridge University Press, 2012.

[9] J. Howard and S. Gugger, Deep Learning for Coders with
fastai & PyTorch. Sebastopol: O’Reilly, 2020.

[10] A. Géron, Hands-on Machine Learning with Scikit-Learn,
Keras & TensorFlow. Sebastopol: O’Reilly UK Ltd., 2019.

[11] C. Mattmann, Ed., Machine Learning with TensorFlow,
2nd ed. Shelter Island, NY: Manning, 2020.

[12] M. Karatas, Development of AI applications (in German:
Eigene KI-Anwendungen programmieren). Bonn: Rheinwerk
Computing, 2024.

