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Abstract—The paper presents a multi-agent simulation using
fuzzy inference to explore the task allocation, collision avoidance,
and battery charging management of mobile baggage conveyor
robots in an airport, in an integrated way. The approach
leverages V2X cooperation to enable real-time communication
between mobile robots and airport infrastructure, enhancing
adaptability thanks to a distributed system, adapting to variations
in the availability of conveyor agents, their battery capacity,
infrastructure resource availability, and awareness of the activity
of the conveyor fleet. Dynamic factors, such as workload
variations and communication between the conveyor agents
and infrastructure are considered as heuristics, highlighting
the importance of flexible and collaborative approaches in
autonomous systems. The results highlight the effectiveness of
adaptive fuzzy multi-agent models to optimize dynamic task
allocation, adapt to the variation of baggage arrival flows,
improve the overall operational efficiency of conveyor agents,
and collision avoidance, and reduce their energy consumption
through V2X-enabled cooperation.

Keywords-autonomous  industrial vehicle; dynamic task
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I. INTRODUCTION

This article significantly extends our previous conference
paper [1], which initially introduced a fuzzy agent-based
simulation of task allocation and battery charge management.
In this extended version, we incorporate collision avoidance
mechanisms, integrate V2X communication for real-time
coordination with infrastructure, and enhance the multi-
agent framework to support richer, more realistic scenarios
with improved adaptability and operational efficiency. The
deployment of Autonomous Industrial Vehicle (AIV) fleets in
the context of Airport 4.0 raises several issues, all related to
their real level of autonomy: acceptance by employees, vehicle
localization, traffic flow, failure detection, collision avoidance
and vehicle perception in changing environments. Simulation
makes it possible to take into account the various constraints
and requirements formulated by manufacturers and future
users of these AIVs. Before starting to test AIV fleet traffic
scenarios in often-complex airport situations, it is wise, if not
essential, to simulate these scenarios [2]. Moreover, one of the
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main advantages of using simulations is that the results can
be used without the need to apply a scaling factor. The main
advantages of simulating mobile robot or AIV operations are:
reducing the time and cost of developing an AIV, minimizing
potential operational risks associated with AIVs, allowing
to assessment of the feasibility of different AIV circulation
scenarios at a strategic or operational level, allowing a rapid
understanding of the operations carried out by AIVs, and
identifying improvements in the layout configurations of the
facilities hosting these AIVs [3]. Simulation also provides
flexibility in terms of AIV deployment and allows studying
the sharing of responsibility between the central server and
the robots (local/global or centralized/decentralized balance)
for the different operational decisions. Another advantage
of simulations is to introduce humans into the scenarios in
order to verify and validate, before the actual deployment
of autonomous mobile robots, the safety of the coexistence
and possible interactions between these AIVs and human
operators [4]. Agent-based approaches are often proposed for
the simulation of autonomous vehicles. They offer simulation
contexts ranging from trajectory planning to optimal task
allocation while allowing collision and obstacle avoidance [5].
Our current research focuses on the use of fuzzy agents to
handle the levels of imprecision and uncertainty involved in
modeling the behavior of simulated vehicles [6]. Indeed, fuzzy
set theory is well suited to the processing of uncertain or
imprecise information that must lead to decision-making by
autonomous agents, used in activities such as the simulation
of AIVs in an airport or product design [7]. Fuzzy agents
can track the evolution of fuzzy information from their
environment and from agents [8]. By interpreting the fuzzy
information they receive or perceive, fuzzy agents interact
within the multi-agent system of which they are a part. For
example, a fuzzy agent can discriminate a fuzzy interaction
value to assess its degree of affinity (or interest) with another
fuzzy agent [9]. Thus, we develop a comprehensive study
on utilizing fuzzy inference within multi-agent simulations
to optimize task allocation and battery management for
mobile baggage conveyor robots in airports. The proposed
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simulation approach is designed to be highly adaptable,
considering dynamic factors such as workload variations,
battery capacities, and communication between agents and
infrastructure. The results demonstrate that this adaptive
fuzzy multi-agent model can significantly improve operational
efficiency, adapt to variations in baggage arrival flows, and
reduce energy consumption. This article is structured as
follows: first in Section II, we present a state-of-the-art
review of major concepts of fleets of AIV: task allocation,
obstacle avoidance, battery recharging, V2X cooperation,
and fuzzy agent-based simulation. Then, in Section III, we
introduce a case study on fuzzy agent-based simulations of
mobile baggage conveyors in an airport, where we present
the simulation framework, the use of V2X cooperation, and
task allocation strategies, both basic and fuzzy. We also
integrate collision avoidance and speed adaptation into the
simulations. In Section IV, we propose three improvements
using fuzzy heuristics. Finally, we conclude on the proposed
fuzzy dynamic task allocation strategies and present future
research directions.

II. MAJOR CONCEPTS
A. Task Allocation

Task Allocation (TA) consists of optimally assigning a
set of tasks to be performed by agents, actors, robots, or
processes, grouped and organized within a cohesive system.
This is the case for mobile multi-robot systems [10], AIV
fleets [11], and applications in airports [12]. In the field
of mobile robotics, the taxonomy presented in [13] has
been defined to better characterize allocation and assignment
functions to robots: Single Task for a Single Robot (STSR),
Multiple Tasks for a Single Robot (MTSR), and Multiple
Tasks for Multiple Robots (MTMR). These classifications
enable tasks to be assigned to one or multiple robots, with
various tasks being allocated to heterogeneous or multitasking
robots. Moreover, De Ryck et al. [13] defined also: allocation
modalities, such as instantaneous allocation or allocation
extended in time. This last is linked to synchronization and
precedent or time window constraints. As many combinations
as exhaustively detailed by numerous surveys on the issue of
multi-robot TA. Different solution models have been proposed
for TA: based on optimization: exact algorithms, dynamic
programming, (meta-)heuristics [10]; based on the Contract
Net Protocol: inside an agent-based system, an initiating
agent sends a call for proposals to all agents, chooses the
best proposal received, and then informs all agents [11];
based on the concept of the market: announcement by an
auctioneer, submission by bidders, selection by the auctioneer
and award by the auctioneer [14]. Furthermore, different
types of optimization objectives can be defined for this task
allocation [13]: cost objectives (travel costs, such as time,
distance, or fuel consumption), behavior objectives (ability
of a robot to perform a task), reward objectives (payoff for
performing a task), priority objectives (urgency to perform
a task), and utility objectives (subtracting the cost from the
reward or fitness). Task allocation and planning are often
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managed centrally, even semi-centrally when global and local
planning are differentiated [15]. For the proper functioning
of autonomous and dynamic systems, the requirements
of flexibility, robustness and scalability, lead to consider
decentralized mechanisms to react to unexpected situations.
Autonomy and decentralization are two excessively linked
notions to the extent that an autonomous system operates
and makes decisions autonomously [16]. The problem of task
allocation can also be thought of in a decentralized way [13].
For reasons of flexibility, robustness and scalability necessary
in an Industry 4.0 or Airport 4.0 context, we are interested
in decentralized task allocation solutions. These solutions,
decomposed below, must be able to assign tasks to a fleet of
robots. Particularly, solutions based on the market concept can
easily be applied in a distributed context, where each mobile
robot can become an auctioneer [17]. For each situation, a
single mobile robot is appointed auctioneer and retains this
role until the situation is definitively managed.

B. Obstacle Avoidance

Obstacle avoidance is a critical challenge in the
deployment of AIV fleets, especially in dynamic and
complex environments such as airports. It ensures safe and
efficient navigation by preventing collisions with static and
dynamic obstacles while maintaining operational efficiency.
Currently, avoidance strategies are often implemented on a per-
robot basis [18], without a coordinated collective approach.
However, in the context of AIV fleets, a collective approach
that incorporates multi-robot communication and coordination
can significantly enhance adaptability and efficiency. Effective
obstacle avoidance strategies must integrate three key
components:

o Obstacle perception/detection: AIVs rely on onboard
sensors (e.g., LiDAR, cameras, ultrasonic sensors) and
perception algorithms to detect obstacles [19]. For this
study, we assume that robots are already equipped with
effective sensors and algorithms for detecting obstacles.

o Rerouting/trajectory planning: Once an obstacle is
detected, AIVs must compute an alternative trajectory.
While various rerouting methods exist, we focus on
broader strategic decisions rather than specific algorithms
of path planning or path finding [20, 21].

o Overall strategy decisions: Effective obstacle avoidance
requires real-time decision-making mechanisms that
adapt to both static and dynamic obstacles. This is the
key focus of our study, as we are primarily interested
in high-level decision-making mechanisms that enable
effective obstacle avoidance in multi-robot systems. This
includes multi-robot communication and coordination
strategies, as well as real-time decision-making processes
and algorithms.

Simulations play a crucial role in evaluating and optimizing
obstacle avoidance strategies before real-world deployment.
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C. Battery Recharging

Effective energy management is crucial for AIVs as it
directly affects their operational efficiency and autonomy.
Managing energy resources involves monitoring battery status,
detecting technical anomalies, and performing necessary
maintenance, as highlighted by [22]. Optimizing energy
consumption requires a holistic approach that considers
operational availability, energy efficiency [23], collaboration
with dynamic infrastructure, and adaptation to changing
conditions. Battery recharging in AIVs must balance
individual and collective energy needs to maximize system
efficiency. This balance is achieved through two key decision-
making principles: 1. Local Equilibrium — Each AIV optimizes
its own recharging schedule to maintain operational readiness.
An AIV may initiate recharging when its battery level
drops below a predefined threshold, ensuring it can complete
assigned tasks without disruptions. 2. Global Equilibrium —
This approach considers the energy demands of the entire
fleet and the surrounding infrastructure [24]. Coordinating
fleet-wide energy consumption prevents congestion at charging
stations, reduces power spikes, and improves overall system
efficiency. Strategies such as staggered recharging schedules,
shared infrastructure utilization, and workload-based energy
distribution help maintain global equilibrium. To ensure
effective energy management, AIVs must strike a balance
between these two levels: - Individual Decision-Making:
Each AIV must autonomously determine its recharging
needs based on real-time energy levels, workload, and
immediate operational requirements [22]. This minimizes
the risk of energy depletion while maintaining vehicle
autonomy. - Collective Coordination: Simultaneously, AIVs
must communicate and synchronize their charging needs
with one another and with the infrastructure. This prevents
bottlenecks caused by simultaneous charging demands and
enhances overall system efficiency. A key objective in battery
recharging is to optimize recharging cycles to minimize
energy costs and avoid excessive power consumption during
low-demand periods. Poor anticipation of energy needs can
lead to inefficiencies and reduced system availability. Since
AIV workloads fluctuate—alternating between high-activity
and low-intensity phases—aligning energy consumption
with operational demand ensures continuous and efficient
performance. Reducing energy consumption is a major
challenge for mobile robots, requiring optimization through
well-defined cost functions. Power consumption is often
modeled based on parameters such as speed and motor force
[25, 26]. Various optimization techniques have been proposed
such as:

o Genetic Algorithms — Methods such as those in
[27] utilize genetic algorithms to minimize energy
consumption through an optimal fuzzy logic controller.

o Fuzzy Logic Optimization — Mamdani fuzzy logic [28]
optimizes speed profiles (trapezoidal/triangular) for both
straight and curved paths to reduce power consumption.

« Pontryagin’s Maximum Principle (PMP) — Applied in the
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railway sector [29], this principle optimizes train speed
trajectories based on braking distance and can be adapted
for AIV movement strategies.

o Power Integral Functions — These models refine AIV
movement strategies to minimize overall energy usage
by optimizing acceleration and deceleration patterns.

D. V2X Cooperation

To effectively complete assigned tasks, AIVs must
coordinate, cooperate, and exchange information on
environmental perceptions. This cooperation relies on Vehicle-
to-Everything (V2X) communication, which encompasses
three key communication modes:

1) Vehicle-to-Vehicle (V2V) Communication — Direct
information exchange between AIVs enhances
coordination and task execution efficiency. While
extensively studied in the literature, specific
applications include decentralized intersection traffic
light synchronization [30], cooperative lane-change
simulations [31], and traffic light optimization strategies
[32]. V2V enables AIVs to share navigation data and
obstacle detection information, facilitating adaptive
decision-making.

2) Vehicle-to-Infrastructure (V2I) Communication — AIVs
communicate with the surrounding infrastructure, such
as smart warehouses, to receive real-time updates on
environmental changes [33]. This mode enhances safety
and efficiency by allowing AIVs to receive alerts about
obstacles, traffic flow modifications, and operational
constraints, thereby optimizing navigation and avoiding
collisions.

3) Vehicle-to-Pedestrian (V2P) Communication - In
environments shared with humans, AIVs leverage V2P
communication to ensure safety and seamless human-
robot collaboration [34]. This interaction is crucial
when an AIV encounters obstacles requiring human
intervention, as it enables efficient coordination between
human operators and autonomous systems.

Collectively, these three communication modes form
the V2X framework [35], enabling AIVs to operate
efficiently in dynamic environments through real-time data
exchange and cooperative decision-making. The European
Telecommunication Standards Institute (ETSI) has established
standardized communication protocols for Intelligent
Transport Systems (ITS), which have been adapted for AIV
cooperation [36]. Two key message types support autonomous
decision-making and coordination:

e Decentralized Environmental Notification Messages
(DENM) - Defined by ETSI EN 302 637-3 [37],
these messages serve as alerts during unexpected
events, allowing AIVs to broadcast real-time incident
notifications within a specific geographic area.

o Cooperative Perception Messages (CPM) — Standardized
in ETSI TR 103 562 [38], CPMs facilitate situational
awareness by transmitting obstacle detection and
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navigation updates. AIVs receiving CPMs can
dynamically adjust their routes, preventing disruptions
and optimizing task execution. Beyond these existing
standards, emerging V2V communication approaches
further enhance cooperation. For example, a multi-
agent control strategy for connected urban buses [39]
enables real-time movement adjustments based on
downstream traffic conditions. By integrating enhanced
V2X communication strategies, AIV fleets can achieve
higher resilience, adaptability, and operational efficiency
in dynamic environments.

E. Fuzzy Agent-Based Simulation

Many agent-based approaches are proposed for the
simulation of autonomous vehicles. They offer simulation
contexts ranging from trajectory planning [40] to optimal task
allocation while allowing collision and obstacle avoidance
[41]. Our current research focuses on the use of fuzzy agents
to handle the levels of imprecision and uncertainty involved
in modeling the behavior of simulated vehicles [6]. Fuzzy
set theory is well suited to the processing of uncertain or
imprecise information that must lead to decision-making by
autonomous agents [7]. Most of the control tasks performed
by autonomous mobile robots have been the subject of
performance improvement studies using fuzzy logic [42]:
navigation [43], obstacle avoidance [44], path planning [45],
motion planning [46], localization of mobile robots [47], and
intelligent management of energy consumption [48, 49]. An
agent-based system is fuzzy if its agents have fuzzy behaviors
or if the knowledge they use is fuzzy [50]. This means that
agents can have: 1) fuzzy knowledge (fuzzy decision rules,
fuzzy linguistic variables, and fuzzy linguistic values); 2)
fuzzy behaviors (the behaviors adopted by agents because of
fuzzy inferences); and 3) fuzzy interactions, organizations,
or roles. Table I below proposes a model of fuzzy agents
corresponding to the principles stated above.

ITII. CASE STUDY: FUZZY AGENT-BASED SIMULATION OF
MOBILE BAGGAGE CONVEYORS IN AN AIRPORT

This case study proposes the simulation of mobile robots
conveying baggage fleet in an airport (we will keep the name
”AIV” for these conveyors). Fig. 1 shows the simulator’s
Human Computer Interface (HCI), which allows on the one
hand, to visualize the arrival of baggage and the movements of
5 AIVs, and on the other hand, to follow the evolution of the
different levels of indicators of the simulation (energy level,
baggage level, charge level, and time level). The circulation
scenario is detailed with a distance-oriented graph presented
in Fig. 2.

Effective management of these AIVs requires an integrative
approach that considers several factors, including the baggage
arrival flow, the operational availability of the AIVs, their
energy consumption, their communication, among themselves
and with the infrastructure, and their adaptation to changing
environmental conditions. In the case study, we analyze the
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TABLE I
FuzzY AGENT MODEL USED IN THE SIMULATIONS

Mo = (A, I,P,0) (1

Aisa set of fuzzy agents; I'is a set of fuzzy interactions between fuzzy
agents; P is a set of fuzzy roles that fuzzy agents can perform; O is a
set of fuzzy organizations defined for fuzzy agents (subsets of strongly
linked fuzzy agents).

ai = (Pra;), Paa;)» ;) Ka;) (@)

Pri(a,): is the &;’s function of observation; ®a (g,): is the ay’s
function of decision; ®r(g,): is the a;’s function of action; Kg,: is
the set of knowledge of the fuzzy agent &;.

Pn(a,) ¢ (Ba; Ulg;) x Xg, — g, 3
(I:‘A(&i) : Hai X Eai — Aai (4)
@F(&i) : A&i XX — F&i 5)

Eg,: is the a;’s the set of fuzzy observed events; I, : is the cx;’s set
of fuzzy interactions; 3 g, : is the a;’s set of fuzzy states; Ilg,: is the
a;’s set of fuzzy perceptions; Ag;: is the a;’s set of fuzzy decisions;
Tg,: is the a;’s set of fuzzy actions; X: is the state of fuzzy agent-based
system M.

Uy = (@s, @, e) (6)

l;: is a fuzzy interaction; avs: is the fuzzy agent source of a fuzzy
interaction; a,: is the fuzzy agent receiver of a fuzzy interaction; ~e:
is a fuzzy communication act (inform, diffuse, ask, reply, and confirm, are
used in the basic model).
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Recharges AIV1 8 Missions AIV4 : 01:01:24
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Recharges AIVA: 8 AlV2 => baggage_87
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Recharges AIV5 : AIV4 => baggage_94AIV3 => baggage_96AIV1 =>A

Figure 1. HCI of the simulation application

TA performed by a supervisor who questions AIVs to know
their task completion costs.

The analysis is driven by three objectives aimed at
optimizing TA: minimize x, maximize y, and minimize z.
Where:

e x is the number of AIVs,

o y is the baggage throughput per hour,

e z is the recharge time of an AIV (in ideal conditions
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with:

e Mazx(x) is the maximum number of AIVs.

e Ly, is the average length of the circuit.

« d is the safety distance between two AIVs.

o Chy is the average capacity of a battery.

e to is the average charging time of a battery.

e 17 is the average waiting time for a battery recharge.

e T, is the average number of revolutions made by an
AIV during one hour.

e Uy, I8 the average speed of AIVs on the circuit.

Through 8 scenarios, we will progressively introduce fuzzy
inferences to determine the costs of task completion, battery
recharging and speed adjustment.

A. The Simulation Framework

Fig. 3 presents the agent model proposed to test our
dynamic task allocation strategies for AIVs in simulation. The
objective is to have an agent-based modeling and simulation
system designed generically to test different scenarios, but
also different types of circulation plans. An infrastructure is
deployed in the environment. It is composed of a circulation
plan and active elements, such as beacons, tags, the two
charging stations and the two types of treadmill for baggage
entry and exit. Static or dynamic obstacles (e.g., operators)
may be present in the environment. AIV fuzzy agents perform
missions defined by paths on the traffic plan. AIV fuzzy
agents are equipped with a radar to avoid collisions and

International Journal on Advances in Systems and Measurements, vol 18 no 1 & 2, year 2025, http://www.iarigjournals.org/systems_and_measurements/ 12

have knowledge about the environment and other agents to
operate and cooperate. AIV fuzzy agents communicate with
each other with different types of standardized messages. AIV
fuzzy agents have fuzzy and uncertain knowledge, but also
incomplete and fragmented, in order to adapt to situations that
are themselves uncertain. Baggage are objects managed by the
environment: arrival flow on the entry treadmill, tracking of
its localization, and exit from the circuit on the exit treadmill.

B. V2X Cooperation in the Simulations

To successfully complete their assigned tasks, AIVs must
coordinate, cooperate, and share information about their
tasks and environmental perceptions. They rely on ETSI
messages, as described in Section II.D, to communicate their
localization using CAM and report perceived obstacles using
CPM and DENM, helping to prevent unexpected events. An
additional type of V2V communication could further enhance
cooperation among AIVs in task execution. For instance,
if an AIV becomes blocked by an obstacle, breaks down,
or is otherwise unable to complete its assigned task, it
automatically sends a DENM. However, it would be beneficial
for the AIV to also send a cooperative message, enabling it
to delegate its task by providing the necessary information.
In [42], we propose two new Cooperative Task Messages
(CTM) designed specifically for task delegation. Similarly,
[51] introduces a protocol with four new message types,
including the Cooperative Response Message (CRM), which
is used to communicate responses to cooperation requests. In
our simulation model, AIV agents will use CRM messages
as feedback to CTM messages, confirming their willingness
to take on a delegated task. During the simulations, the
sequence of communications between the supervisor, the AIV
auctioneer, and multiple AIVs during the task allocation and
reallocation process is illustrated in Fig.4. The supervisor
initiates the process by sending a Cooperative Task Message
(CTM) containing clustered tasks to an AIV acting as an
auctioneer. The auctioneer then distributes these tasks by
further clustering and auctioning them to other AIVs. This is
done by sending a CTM [clustered auctioned tasks] to potential
AlVs capable of performing the assigned duties. Once the
auctioning phase is complete, the auctioneer allocates specific
tasks by transmitting a CTM [allocated tasks] to the chosen
AlIVs. Each receiving AIV acknowledges the task assignment
by sending a Cooperative Response Message (CRM) back to
the auctioneer, confirming acceptance. Additionally, the same
allocation mechanism is utilized for task reallocation. If an
AIV encounters an obstacle, breaks down, or is unable to
complete its assigned task, it can initiate a re-auction. In this
scenario, the AIV itself takes on the role of an auctioneer,
redistributing its pending tasks through CTM messages. The
AIV that submits the most suitable bid will then integrate the
reallocated tasks into its workload.

This structured communication process, visualized in Fig. 4,
ensures effective task management and dynamic reallocation,
enabling seamless cooperation among AIVs in an automated
environment.
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Figure 4. CTM and CRM exchanged during task allocation

C. Task Allocation with Basic Strategies

In this section, we provide a comparative analysis of three
basic types of auction-based task allocation strategies: random
TA, FIFO TA, and AIV availability-based TA. Each of these
strategies is tested in a scenario:

e Scl (Random) is a TA scenario where missions are
assigned to the AIV agents only randomly.

o Sc2 (FIFO) is a TA scenario where missions are assigned
to AIV agents using a queuing mechanism.

e Sc3 (Available) is a TA scenario where missions are
assigned to the most available AIV agents.

We simulated these three scenarios for 100 bags. We seek

to minimize the maximum number of pending bags at a given
time, the total simulation time, the average time to complete
a mission per AIV agent, the number of missions completed
per AIV agent during the simulation, and the activity rate per
AIV agent. The simulation results are presented in Table II.

Random strategy: the maximum number of pending bags
(19) is high, the simulation time is also high, and the allocation
of missions and the activity rates of AIV agents are poorly
balanced (the average activity rate at 0.72 is low). The random
strategy does not allow allocation to AIV agents that are a
priori available, which very quickly leads to pending bags
being processed and therefore poor results.

FIFO strategy: this strategy brings a clear improvement
in the results. The maximum number of pending bags (4) is
very low, the simulation time is very correct, the allocation
is almost uniform (only the stops for recharging the batteries
cause imbalances), and the occupancy rate of the AIV agents
is much better (0.84).

Available strategy: this strategy produces the best results,
except for the maximum number of pending bags (8).
Allocating a mission to an AIV agent that is more available
than the others, improves the results. However, it is necessary
to better manage the allocation based on pending bags and
energy consumption to consolidate (or even optimize) this
strategy.

D. Task Allocation with Fuzzy Strategies

In this section, we propose an analysis of task allocation by
auction based on a fuzzy inference approach. As a reminder,
fuzzy logic allows us to better understand natural, uncertain,
imprecise and difficult to model phenomena by relying on the
definition of if-then fuzzy rules and membership functions
(linguistic variables) to fuzzy sets [52]. Two scenarios are
studied. The first, Sc4, implements a TA strategy in which each
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TABLE 11
TASK ALLOCATION SIMULATION RESULTS IN SCENARIOS SC1, SC2, AND
Sc3, FOR 100 BAGS

Scenarios Random FIFO Available
Maximum number
of pending bags 19 4 8
Simulation time (s) 2270 1942 1846
Average mission [81, 81, 83, [80, 82, 83, [81, 80, 81,
time per AIV (in s) 83, 81] 81, 83] 83, 81]
Number of mission [26, 26, 14, [21, 21, 19, [22, 21, 20,
completed by AIV 14, 20] 21, 18] 19, 18]

Work rate [0.93, 0.93, 0.51, [0.87, 0.89, 0.81, [0.97, 0.91, 0.88,

per AIV 0.51, 0.71] 0.88, 0.77] 0.85, 0.79]

AIV agent uses a fuzzy model with 3 linguistic input variables
(availability of the AIV agent, distance from the baggage drop-
off location, energy level of the AIV agent) to determine the
cost of handling a mission (picking up and dropping off a
baggage). The second, Sc5, takes the strategy of Sc4 and adds
energy management with a second fuzzy model. With this new
fuzzy model, the AIV agents determine whether they will need
to recharge during a mission, which allows them to refine the
calculation of the mission cost. The linguistic variables used
in this scenario are: availability of the AIV agent, distance
from the baggage drop-off location, energy level of the AIV
agent, and distances of the 2 charging stations.

Fuzzy strategy in Sc4. The results presented in Table III
and Table IV, with this new strategy are generally good:
low maximum number of pending bags (6), good overall
simulation time, good distribution of missions between AIV
agents and good average AIV activity rate (0.88). However,
a few elements of uncertainty are considered (3 linguistic
variables at the input and one at the output). The introduction
of other fuzzy elements (nuances in the simulation parameters)
should improve the results, particularly in terms of maximum
number of pending bags and management of battery recharges.
Fuzzy strategies in Sc5. In this new scenario, the raw results
of the TA are slightly worse, as shown in Table III and
Table IV, than in Sc4: same maximum number of pending bags
(6), slightly longer overall simulation time, worse distribution
of missions between AIV agents and worse average AIV
occupancy rate (0.82). However, the overall recharge time is
lower in this scenario, which can allow a greater availability of
AIV agents (an area of improvement for the next scenarios).

E. Integration of Collision Avoidance and Speed Adaptation

Managing traffic situations on the circuit sometimes requires
speed adaptations for AIVs. This is particularly the case
for managing intersections between AIVs or for managing
distances between AIVs. Obstacle avoidance may also need
to be managed. However, although we have considered it in
previous studies [41], we do not address it in this study. Fuzzy
AlVs agents have fuzzy knowledge to adapt their speeds. This
knowledge is mainly activated to respect the priority to the
right when exiting baggage claim areas, when exiting baggage
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TABLE III
TASK ALLOCATION SIMULATION RESULTS IN SCENARIOS SC4 AND ScC5,
FOR 100 BAGS

Scenarios Sc4 Sc5

Maximum number
of pending bags 6 6

Simulation time (s) 1843 2000

Average mission

time per AIV (s) [80, 81, 80, 81, 82] | [81, 80, 81, 84, 83]

Number of missions

completed by AIV [21, 21, 21, 19, 18] | [23, 19, 21, 19, 18]

Work rate [0.91, 0.92, 0.91, [0.93, 0.76, 0.85,
per AIV 0.84, 0.80] 0.80, 0.75]
TABLE IV
RECHARGE SIMULATIONS RESULTS IN SCENARIOS SC4 AND SC5, FOR 100
BAGS

Scenarios Sc4 Sc5
Recharge time (s) 546 490
Waiting time for recharges (s) 34 16
Number of recharges 39 33
Distribution of recharges per AIV | [8, 8, 8,8,7] | [8, 6,7, 6, 6]

drop-off areas and when exiting battery charging areas. For
this, four fuzzy linguistic variables were defined, three for the
inputs to the fuzzy inference system (7, 8, 9) and one for the
output (10):

o AIV _right_distance (near, medium, far) (7)

o AIV_distance (near, medium, far) (8)

o AI_speed (slow, medium, fast) (9)

o AIV _speed_adaptation (slow, medium, fast) (10)

The AIVs fuzzy inference system for adapting their speeds
works through the activation of 15 fuzzy rules such as the
following (11):

IF AIV_right_distance IS near AND AIV_distance
IS far AND AIV_speed IS medium THEN
AIV_speed_adaptation IS slow (11)

IV. IMPROVEMENT USING FUZZY HEURISTICS

Now, we propose to increase the relevance of previous
auction TA scenarios based on a fuzzy inference approach,
by integrating other types of realistic constraints concerning
battery recharging and AIV agent speed adjustment made
possible by a stronger knowledge of the fleet traffic and
mission management context (increased awareness). Three
scenarios are studied (Sc6, Sc7 and Sc8) to show that specific
heuristics allow us to treat certain situations quite finely and to
increase the collective/global performances of the AIV agents.
The results are presented in Table V for task allocation and
Table VI for battery recharging. Sc6 consists of completing
scenario Sc5 to determine in which station the AIV agents can
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recharge in order to minimize the waiting times for recharging,
based on knowledge of the context of occupation of the
stations and the needs of the other AIV agents (therefore more
awareness for the agents). The linguistic variables used in this
sixth scenario are the following: the availability of the AIV
agent, the distance from the baggage drop-off location, the
energy level of the AIV agent, the distances of the 2 recharging
stations and the availability of the recharging stations. Sc7
takes up the strategy of Sc6 and adapts the recharging rate
(80 or 100%) in order to increase their availability if the flow
of incoming baggage increases and therefore if the number
of pending bags is likely to increase. The linguistic variables
used in this seventh scenario are: the availability of the AIV
agent, the distance from the baggage drop-off location, the
energy level of the AIV agent, the distances from the 2
charging stations, the availability of the charging stations and
a variable energy charge rate (80 or 100%). Sc8 consists of
increasing Sc7 by adapting/regulating the speed of the AIV
agents according to the flow of baggage arrivals and therefore
the potential increase in the number of pending bags to be
processed, but also according to the speed, the proximity
of other AIV agents (use of observed and safety distances).
The linguistic variables used in this eighth scenario are as
follows: the availability of the AIV agent, the distance from
the baggage drop-off location, the energy level of the AIV
agent, the distances of the 2 charging stations, the availability
of the charging stations, a variable charging rate (80 or 100%)
and urgency in relation to the number of pending bags.
Results of fuzzy inferences in Sc6. This is the
implementation of a first heuristic to improve the TA but also
the recharge decision. The objective is to minimize the waiting
time for a recharge when an AIV agent must be available to
take baggage. The results for TA are slightly better than in Sc5:
the same maximum number of pending bags, a slightly shorter
overall simulation time, a rather homogeneous average mission
completion time, a better distribution of missions between AIV
agents, and an average AIV activity rate that is roughly the
same (0.82). However, if the overall recharge time is the same,
the waiting time for recharges is significantly lower (14s).
Results of fuzzy inferences in Sc7. The second heuristic
proposed in order to increase the availability of AIV agents
so that they can take baggage according to their arrival flow
while minimizing the waiting time for their recharges. In this
scenario, the results for TA are significantly better than in the
Sc6 scenario: the same maximum number of pending bags, but
a shorter overall simulation time, a more homogeneous average
mission completion time, a better distribution of missions
between AIV agents and a higher average AIV activity rate
(0.84). Regarding battery recharges, the results are of the same
order for both scenarios: an identical overall recharge time,
with in Sc7, a slightly higher waiting time for recharges (18s).
Results of fuzzy inferences in Sc8. A third heuristic
was proposed in order to adjust speed of the AIV agents to
minimize the maximum number of pending bags when the
flow of baggage arrivals increases. The results for TA are much
better than in Sc7: the same maximum number of pending
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bags, but a much lower overall simulation time (a consequence
of the adaptation of speeds of AIV agents when necessary), an
average time of completion of the missions and a distribution
of the missions between the AIV agents always homogeneous,
and finally, a lower average occupancy rate of the AIV agents
(0.79), because the last two AIV agents are less requested due
to the adaptation of the speeds of the first 3, in particular their
increase in speed to respond to the increase in the flow of
baggage arrivals. As for the battery recharges, the results are
less good: the increase in the speeds of the AIV agents has an
energy cost!

TABLE V
TASK ALLOCATION SIMULATION RESULTS IN SCENARIOS SC6; SC7 AND
Sc8 FOR 100 BAGS

Scenarios Sc6 Sc7 Sc8
Maximum number of
pending bags 6 6 6
Simulation time (s) 1964 1896 1675
Average mission [79, 79, 80, [79, 80, 80, [67, 65, 67,
time per AIV (s) 80, 81] 80, 80] 65, 67]
Number of missions [22, 22, 20, [22, 22, 21, [22, 22, 22,
completed by AIV 16, 20] 18, 17] 19, 15]
Work rate [0.88, 0.88, 0.81, [0.92, 0.93, 0.89, [0.88, 0.85, 0.88,
per AIV 0.65, 0.82] 0.76, 0.72] 0.74, 0.6]
TABLE VI
COMPARISON OF SCENARIOS SC6, SC7, AND SC8
Scenarios Sc6 Sc7 Sc8
Recharge time 490 490 736
Wait time
for recharges 14 18 119
Number of
recharges 33 33 49
Distribution of
recharges per AIV [7,7,7,5,7] [7,7,17, 6, 6] [11, 11, 11,9, 7]

V. CONCLUSION

We developed a multi-agent simulation platform to test
different scenarios of task allocation management for mobile
baggage conveyor robots (AIVs) in the context of Airport
4.0. This approach offers a flexible adaptation to the different
aspects of AIV autonomy management and facilitates possible
adjustments needed for deployment at an airport site. The
use of a distributed multi-agent system provides temporary
autonomy in case of central infrastructure failure, and can
improve the management of individual AIV functions, such
as task allocation, battery charging, collision avoidance, speed
regulation, etc. To establish a basis for comparison of auction-
based task allocation strategies with the fuzzy approach we
wanted to develop, we started by defining three basic scenarios
implementing random, FIFO and AIV availability strategies.
We then tested a task allocation scenario with a basic
fuzzy model incorporating cooperative V2X communication
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and collision avoidance mechanisms. Then, we made several
improvements to this scenario by extending the AIV’s fuzzy
decision model to: (1) recharging the AIVs batteries, (2)
determining the recharging station, (3) determining the most
relevant recharging rate, and (4) regulating the speed of the
AlVs so that they adapt to the variation of the baggage arrival
flow. The simulation results show that integrating adaptive
fuzzy multi-agent models for managing task allocation, energy
recharging management, determining the most favorable
infrastructure elements (charging stations), cooperative task
allocation through V2X, and speed adaptation with collision
avoidance, can improve the operational efficiency of AIV
fleet. The adaptive model not only improves task allocation
and energy management but also ensures safer and more
coordinated operations by dynamically adjusting speed and
preventing collisions. These results highlight the importance
of flexible and collaborative approaches to improve the
performance of autonomous systems in dynamic environments.
We plan to continue integrating fuzzy models into AIV agent
behavior simulations and to add learning capabilities (e.g.,
based on neural networks [53]) to them in order to increase
the relevance and efficiency of their decisions in the collective
management of their autonomies. Moreover, to ensure our
simulations better reflect real-world operations, we also plan to
study the impact of unexpected events, such as security attacks
or mis-behavior of AIVs, and to integrate corresponding
mechanisms into our scenarios.
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