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Abstract—We introduce a programming language operating
on stacks and a syntactical measure σ, such that a natural
number σ(P) is assigned to each program P. The measure
considers how the presence of loops defined over a size-
increasing (and non-size-increasing) subprogram influences the
complexity of the program itself. Functions computed by a
program of σ-measure n are exactly those computable by
a Turing machine with running time in En+2 (the n + 2-
th Grzegorczyk class). Programs of σ-measure 0 compute the
polynomial-time computable functions. Thus, we have a syntac-
tical characterization of functions belonging to the Grzegorczyk
hierarchy; this result represents an improvement with respect
to previous similar results. We then extend this approach to
the definition of programs with simultaneous time and space
bounds in the same hierarchy.

Index Terms—Polynomial-Time Complexity; Grzegorczyk Hi-
erarchy; Imperative Programming Languages; Stack Programs.

I. INTRODUCTION

In this paper, we expand our earlier work [1] on the
definition of a programming language operating on stacks,
and a syntactical measure σ, such that functions computed
by a program of σ-measure n are exactly those computable
by a Turing machine with running time in the n + 2-th
Grzegorczyk class En+2.

The definition of a class of functions with a given com-
plexity is usually provided by introducing an explicit bound
on time and/or space resources used by a Turing Machine
during the computation of the functions. Other approaches
capture complexity classes by means of some form of limited
recursion; the first characterization of this type has been
given by Cobham [2], who shows that the polynomial-time
computable functions are exactly those that are definable by
bounded recursion on notation, starting from a set of simple
basic functions. In the recent years, a number of charac-
terizations of complexity classes has been given, showing
that they can be captured by means of various forms of
ramified recursion, without any explicitly bounded scheme of
recursion. Initiated by Simmons [3], Bellantoni and Cook [4]
and Leivant [5] - [6], one can find functional characterization
of linear-space/time computable functions LINSPACE and
LOGSPACE [7], polynomial time [8], polynomial space [9]

[10], the elementary functions [10] [11], non-size-increasing
computations [12], among the others.

A different approach can be found in [13] [14] [15] [16];
more recently, in [17] [18]. The properties of imperative
programs (such as complexity, resource utilization, termina-
tion) are now investigated by analyzing their syntax only.
In particular, the properties of a programming language
operating on stacks are studied in [15]; the language supports
loops over stacks, conditionals and concatenation, besides
the usual pop and push operations (see Section II for the
detailed semantics). The natural concept of µ-measure is then
introduced; it is a syntactical method by which one is able
to assign to each program P a number µ(P). It is proved the
following bounding theorem: functions computed by stack
programs of µ measure n have a length bound b ∈ En+2

(the n+ 2-th Grzegorczyk class), that is |f(~w)| ≤ b(|~w|); as
a consequence, stack programs of measure 0 have polynomial
running time, and programs of measure n compute functions
whose time complexity is in the n + 2-th finite level of the
Grzegorczyk hierarchy. This result provides a measure of
the impact of nesting loops on computational complexity;
if a stack Z is updated into a loop controlled by a stack Y
and, afterwards, Y is updated into a loop controlled by Z,
we have a so called top circle in the program; when this
circular reference occurs into an external loop, a blow up in
the complexity of the program is produced. The µ-measure
is a syntactical way to detect top circles; each time one of
them occurs in the body of a loop, the µ measure is increased
by 1 (see below, Section III and definition 3.1).

There are various ways of improving the measure µ
(for instance, see [16]), since it is an undecidable problem
whether or not a function computed by a given stack program
lies in a given complexity class. In this paper, we provide a
refinement of µ, starting from the following consideration: a
program whose structure leads the µ-measure to be equal
to n contains n nested top circles, and this implies, by
the bounding theorem, that the program has a length bound
b ∈ En+2. Suppose now that some of the sequences of pop
and push (or, in general, some of the subprograms) iterated
into the main program leave unchanged the overall space
used; since not increasing programs can be iterated without
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leading to any growth in space, the effective space bound is
lower than the bound obtained via the µ-measure, and it can
be evaluated by an alternative measure σ. While µ grows
each time a top circle appears in the body of a loop, σ
grows only for increasing top circles. In other words, the
new measure does not consider those situations in which
some (potentially harmful) operations are performed, but
their overall balance is negative. We prove a new bounding
theorem using the σ-measure, providing a more appropriate
bound to the complexity of stacks programs.

Starting from this result, we present in this note a slight
modification of the stack programs, the non-space-increasing
programs. The only general requirement is that each not-
increasing program never adds a digit to a stack without
erasing another one (or more) from the same or from another
stack; thus, a run of a program cannot exceed the overall
length of the registers. Together with the σ-measure, this
restriction allows us to characterize the set of functions which
are computable by a Turing machine with time and space
bounds simultaneously imposed. Indeed, we define the class
of functions Bm,n, that is the class of functions computable
by a stack program P;Q (a run of P followed by a run of
Q), with σ(P) = m, σ(Q) = n, and Q a not-increasing
stack program. We prove that each function in Bm,n can be
simulated by a Turing machine with running time in En+2,
and space not exceeding a bound in Em+2; conversely, each
Turing machine with running time bounded by a function in
En+2 and, simultaneously, with space bounded by a function
in Em+2 can be simulated by a stack program in Bm,n. This
result represents an extension to the space complexity case of
Kristiansen and Niggl’s result (following the problem raised
in [12] and [19]), and a generalization to the finite levels of
the Grzegorczyk hierarchy of our [11]. A sensible sequel
of this note should be the definition of another measure,
depending on σ, that should provide a way to evaluate the
space complexity of the whole set of stack programs.

In Section II, we recall concepts and definitions of stack
programs and of the Grzegorczyk hierarchy. In Section III,
we recall the definition of µ-measure. In Section IV, we
introduce the definition of the new σ-measure and the new
bounding theorem. In Section V, we introduce the definition
of the time/space classes and the related bounding theorems.
Conclusions and future work can be found in Section VI.

II. PRELIMINARIES ON THE GRZEGORCZYK HIERARCHY
AND ON STACK PROGRAMS

In this section, we recall the definition of the Grzegorczyk
hierarchy, and fundamentals on stack programs and their
computations; the reader is referred to [15] [19] [20] [21]
for complete definitions and properties.

Definition 2.1: Given a unary function f , the k-th iterate of
f (denoted with fk) is f0(x) = x and fk+1(x) = f(fk(x)).

Definition 2.2: The principal functions E1, E2, E3, . . . are
E1(x) = x2 + 2 and En+2(x) = Exn+1(2) (the x-th iterate
of En+1).

Definition 2.3: A function f is defined by bounded re-
cursion from functions g, h, and b if for all ~x, y one has
f(~x, 0) = g(~x), f(~x, y) = h(~x, y, f(~x)), and f(~x, y) ≤
g(~x, y).

Definition 2.4: The n-th Grzegorczyk class En is the
least class of functions containing the initial functions zero,
successor, projections, maximum and En−1, and closed under
composition and bounded recursion.

Stack programs operate on variables serving as stacks; they
contain arbitrary words over a fixed alphabet Σ, and they are
manipulated by running a program built from imperatives
push(a,X), pop(X), and nil(X) combined by sequencing, con-
ditional, and loop statements (respectively, P;Q, if top(X)≡a
then [P], and foreach X [P]).

Definition 2.5: The operational semantics of stack pro-
grams are defined as follows:

1) push(a,X) pushes a letter a on the top of the stack X;
2) pop(X) removes the top of X, if any; it leaves X

unchanged, otherwise;
3) nil(X) empties the stack X;
4) if top(X)≡a [P] executes P if the top of the stack X is

equal to a;
5) P1;. . .;Pk are executed from left to right;
6) foreach X [P] executes P for |X| times

with the restriction that no imperatives over X may occur in
the body of a loop foreach X [P] (i.e., in P), and that the
loop is executed call-by-value; X is the control stack of the
loop. |X| stands for the length of the word stored in X.

The notation {A}P{B} means that if the condition ex-
pressed by the sentence A holds before the execution of P,
then the condition expressed by the sentence B holds after
the execution of P.

Definition 2.6: A stack program P computes a function
f : (Σ∗)n → Σ∗ if P has an output variable O and n input
variables X̄ = Xi1 , . . . ,Xin among stacks X1, . . . ,Xm such
that {X̄ = ~w}P{O = f(~w)}, for all ~w = w1, . . . , wn ∈
(Σ∗)n.

For a fixed program P, two sets of variables are de-
fined: U(P) = {X|P contains an imperative push(a,X)} and
C(P) = {X|P contains a loop foreach X [Q], and U(Q) 6=
∅}. Variables in U(P) can be altered by a push during a run
of P, while variables in C(P) control a loop occurring in P.
The two sets are not disjoint.

Definition 2.7: X controls Y in the program P (denoted
with X ≺P Y) if P contains a loop foreach X [Q], and Y ∈
U(Q); the transitive closure of ≺P is denoted by P→.

Consider the following program:

P1:= foreach X1[. . . foreach Xl [push (a,Y)]]

If words v1 . . . vl, w are stored in X1 . . . Xl, Y, respectively,
before P1 is executed, then Y holds the word wa|v1|...|vl|
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after the execution of P1. The depth of loop-nesting is a
necessary condition for high computational complexity, but
it is not a sufficient condition. Now, consider the following
two programs:

P2:= nil(Y); push(a,Y); nil(Z); push(a,Z);
foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

P3:= nil(Y); push(a,Y); nil(Z);
foreach X [

foreach Y [push(a,Z); push(a,Z); push(a,Y)]]

Even if both P2 and P3 have nesting depth 2, if w is
initially stored in X, then Z holds the word a2|w|

after P2 is
executed, while a|w|(|w|+1) is stored in Z after the execution
of P3. Thus, we see that P3 runs in polynomial time, whereas
P2 has exponential running time. This happens because of
the (control) circle contained inside the outermost loop in
P2: inside the loop governed by X, first Y controls Z (in
that Z is updated via push(a,Z) inside a loop governed by
Y), and then Z controls Y in the same sense. In contrast,
there is no such circle in P3. Stack programs where each
body of a loop statement is circle-free compute exactly the
functions computable within polynomial time, and must be
separated from those programs with loops that cause a blow
up in running time.

III. THE µ-MEASURE ON STACK PROGRAMS

Starting from the previous relation P→, a measure over the
set of stack programs is introduced in [15].

Definition 3.1: Let P be a stack program. The µ-measure
of P (denoted with µ(P)) is defined as follows, inductively:

1) µ(pop) = µ(push) = µ(nil) := 0;
2) µ(if top(X)≡a [Q]) := µ(Q);
3) µ(P; Q) := max(µ(P), µ(Q));
4) µ(foreach X [Q]) := µ(Q) + 1, if Q is a sequence

Q1; . . . ; Ql with a top circle (that is, if there exists Qi

such that µ(Qi) = µ(Q), some Y controls some Z in
Qi, and Z controls Y in Q1; . . . ; Qi−1; Qi+1; . . . ; Ql);
µ(foreach X [Q]) := µ(Q), otherwise.

To focus on the critical case where P is a loop foreach
X [Q], assume that µ(Q) is already determined. Suppose
that Q is a sequence Q1; . . .;Ql, in which case µ(Q) is
max(Q1, . . .,Ql). Then a blow up in running time can only
occur if Q has a top circle, that is, Q has a circle with respect
to a control variable Y of some component Qi of maximal µ-
measure µ(Q). In this case, µ(P) is defined as µ(Q)+1. In all
other cases, µ(P) is defined as µ(Q). Given that all primitive
instructions receive µ-measure 0, one easily verifies for the
examples above that µ(P1)=µ(P3)=0, whereas µ(P2)=1.

The core of [15] is the following bounding theorem.
Lemma 3.1: Every function f computed by a stack pro-

gram of µ-measure n has length bound b ∈ En+2 satisfying
|f(~w)| ≤ b(|~w|), for all ~w. In particular, if P computes

a function f , and µ(P) = 0, then f has a polynomial
length bound, that is, there exists a polynomial p satisfying
|f(~w)| ≤ p(|~w|).

Let Lnµ be the class of all functions which can be computed
by a stack program of µ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|~w|), for some b ∈ En. As a consequence
of the bounding lemma, the following result holds.

Theorem 3.1: For n ≥ 0: Lnµ = Gn+2.

Proof. By mutual simulation. The "⊆" inclusion starts
from an arbitrary stack program Q of µ-measure n. Each
imperative program occurring in Q can be simulated on a
Turing machine in time q(|X|), with q a polynomial. Let
TIMEP (~w) denote the number of steps in a run of P on
~w, and let P] be the result of replacing in P each imperative
imp with imp;push(a,V), for a new variable V. Then the
program TIME(P): ≡ nil(V);P] has µ measure n and is
such that {~X = ~w}TIME(P){|V| = TIMEP (~w)}. By the
bounding theorem, we obtain a length bound b ∈ En+2

satisfying {~X = ~w}TIME(P){|V| ≤ b(|~w|)}. Hence, there
exists a Turing machine which simulates P within time
q(b(|~w|)) · b(|~w|).
The opposite "⊇" inclusion shows that a single-tape Turing
machine running in time b(|~w|) can be simulated by a stack
program with µ-measure n, provided that b ∈ En+2. The
mentioned program has the following form:

P:≡ TIME-BOUND(Y); µ-measure is n
INITIALIZE(L,Z,R); µ-measure is 0
foreach Y [SIM-MOVES]; µ-measure is 0
OUTPUT(R;O); µ-measure is 0

In order to write the first of the four subprograms,
observe that, for each positive n, one can find a
sequence LE[n+1] such that µ(LE[n+1]) = n and
{Y = w}LE[n+1]{|Y| = En+1(|w|)} (that is, LE[n+1]
computes the n+ 1-th function of the sequence of principal
functions E1, E2, . . ., for a given input w); indeed, for some
new variable U , LE[n+1] can be defined by:

LE[n+2]:≡ nil(U); foreach Y [push(a,U)];
nil(Y); push(a,Y); push(a;Y);
foreach U [LE[n+1]]

Recalling that there exists a constant c such that
b(x) ≤ Ecn+1(x), we have

TIME-BOUND(Y):≡ nil(Y);
foreach X [push(a,Y)]
LE[n+1];. . . ;LE[n+1] (c times).

We have that {Y = w}TIME-BOUND(Y){X = w, |Y| =
Ecn+1(|w|)}. We omit the details about the definition of
INITIALIZE (it sets the registers to the initial configuration
of the Turing machine) and OUTPUT (it returns the
result of the computation in a fixed register). The program
SIM-MOVES is in the form MOVE1;. . .;MOVEk, where
MOVEi simulates the i-th move of the Turing machine,
operating on two stacks L and R (one for the left side of
the tape, the other for the right side; see [15] for a detailed
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description of this simulation).

IV. THE σ-MEASURE AND A NEW BOUNDING THEOREM

In the rest of the paper, we denote with imp(Y) an imper-
ative pop(Y), push(a,Y), or nil(Y); we denote with mod(X̄)
a modifier, that is a sequence of imperatives operating on
the variables occurring in X̄ = X1, . . . ,Xn. We introduce a
modified definition of circle, which better matches our new
measure.

Definition 4.1: Let Q be a sequence in the form
Q1; . . . ; Ql. There is a circle in Q if there exists a sequence
of variables Z1,Z2,. . . ,Zl, and a permutation π of {1, . . . , l}
such that Z1

Qπ(1)→ Z2

Qπ(2)→ . . .Zl
Qπ(l)→ Z1. The subprograms

Q1, . . . ,Ql and the variables Z1, . . . ,Zl are involved in the
circle.

For sake of simplicity, we will consider π(i) = i, that is
the case Z1

Q1→ Z2
Q2→ . . .Zl

Ql→ Z1; proofs and definitions
holds in the general case too.

Definition 4.2: Let P be a stack program and let Y be
a given variable. The σ-measure of P with respect to Y
(denoted with σY(P)) is defined as follows, inductively (with
sg(z) = 1 if z ≥ 1, sg(z) = 0 otherwise):

1) σY(mod(X̄)) := sg(
∑
σ̂Y(imp(Y))), for each imp(Y) ∈

mod(X̄), where
σ̂Y(push(a,Y)) := 1;
σ̂Y(pop(Y)) := −1;
σ̂Y(nil(Y)) := −∞;
σ̂Y(imp(X)) := 0, with Y6=X;

2) σY(if top Z ≡a[P]) := σY(P);
3) σY(P1;P2) := max(σY(P1), σY(P2)), with P1;P2 not a

modifier;
4) σY(foreach X [Q]) := σY(Q)+1, if there exists a circle

in Q, and a subprogram Qi s.t.
(a) Y and Qi are involved in the circle;
(b) σY(Q) = σY(Qi);
(c) the circle is increasing;
σY(foreach X [Q]) := σY(Q), otherwise,

where a circle is not increasing if, denoted with
Q1,Q2,. . . ,Ql and with Z1,Z2,. . . ,Zl the sequences of sub-
programs and, respectively, of variables involved in the circle,
we have that σZi

(Qj) = 0, for each i := 1 . . . l and
j := 1 . . . l. If the previous condition does not hold, we say
that the circle is increasing.

Note that the σY-measure of a modifier (see (1) in the
previous definition) is equal to 1 only when, in absence of
nil’s, the overall number of push’s over Y is greater than the
number of pop’s over the same variable, that is, only when a
growth in the length of Y is produced. Moreover, note that the
"otherwise" case in (4) can be split in three different cases.
First, there are no circles in which Y is involved. Second,
Y is involved, together with a subprogram Qi, in a circle
in Q, but it happens that σY(Qi) is lower than σY(Q) (this
means that there is a blow-up in the complexity of Y in

σY(Qi), but this growth is still bounded by the complexity
of Y in a different subprogram of Q). Third, Y is involved
in some circles in Q, but each of them is not increasing
(that is, according to the previous definition, each variable
Zi involved in each circle does not produce a growth in
the complexity of the subprograms Qj involved in the same
circle). This implies that the space used during the execution
of the external loop foreach X [Q] is basically the same used
by Q (this is not a surprising fact: one can freely iterate a
not increasing program without leading an harmful growth).
In all three cases the σ-measure must remain unchanged:
it is increased only when an increasing top circle occurs
and when at least one of the variables involved in that
circle causes a growth in the space complexity of the related
subprogram, simultaneously (that is, if there exists a p such
that σZp(Qp) > 0).

In the following definition, we extend the measure to the
whole set of variables occurring in a stack program.

Definition 4.3: Let P be a stack program. The σ-measure
of P is σ(P) := σ̃(P)−̇1, where −̇ is the usual cut-off
subtraction, and

1) σ̃(mod(X̄)) := 0
2) σ̃(if top Z ≡a [P]) := max(σY(if top Z ≡a [P])), for

all Y occurring in P;
3) σ̃(P1;P2) := max(σY(P1;P2)), for all Y occurring in

P, with P1;P2 not a modifier;
4) σ̃(foreach X [Q]) := max(σY(foreach X [Q])), for all

Y occurring in P.
Note that σ(P) ≤ µ(P), for each stack program P. Note

also that we are using the previously defined σ̂Y to detect all
the increasing modifiers, for a given variable Y (this is done
setting σ̂Y equal to 1); but, once detected, we don’t have to
consider them in the evaluation of the σ-measure. This is the
reason of the "−̇1" part in the previous definition.

In the rest of the paper we introduce a reduction procedure
between stack programs, denoted with  , and we prove a
new bounding theorem.

Definition 4.4: P and Q are space equivalent if {X̄ =
~w}P{|X̄| = m} implies that {X̄ = ~w}Q{|X̄| = O(m)}. This
is denoted with P≈sQ.

Definition 4.5: Let A be a stack program such that µ(A) =
n+ 1, and σ(A) = m, with m < n+ 1; the program  A is
obtained as follows:

1) if A is foreach X [R], with µ(R) = σ(R) = n, and
denoted with C1, . . . , Cl the top circles in R, and with
Ai1, . . . ,Aip the variables involved in Ci, for each i, we
have that  A is the result of changing each imp(Aij)
into nop(Aij) (a no-operation imperative);

2) if A is foreach X [R], with µ(R) > σ(R), , we have
that  A is equal to foreach X [ R];

3) if A is A1;A2 and max(µ(A1), µ(A2)) = µ(A1), we
have that  A is equal to  A1;A2;
simmetrically, if max(µ(A1), µ(A2)) = µ(A2), we
have that  A is equal to A1; A2;
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if µ(A1) = µ(A2), we have that  A is equal to
 A1; A2;

4) if A is if top(X)≡a [R], we have that  A is equal to
if top(X)≡a [ R].

Lemma 4.1: Given a stack program P, with µ(P) = n+ 1
and σ(P) = n, there exists a stack program  P such that
µ( P) = n, σ( P) = n, and P≈s P.
Proof. (by induction on n). Base. Let µ(P) = 1 and σ(P) =
0. In the main case, P is in the form foreach X [Q], with
a not-incresing circle occurring in Q. Applying  to P, we
obtain a program P′ whose σ-measure is still 0, and whose
µ-measure is reduced to 0, because  has broken off the
circle in P that leads µ from 0 to 1 (i.e., in P′, there are no
more push’s on the variables involved in the circle). Note
that P can decrease the length of the stacks involved in the
circle, while P′ does not perform any operation in the same
circle. Thus, P′ can increase its variables only by a linear
factor; indeed, if {X̄ = ~w}P{|X̄| = m} we have that {X̄ =
~w}P′{|X̄| = cm}, where c is a constant depending on the
structure of P: thus, P≈sP′.
Step. Let µ(P) = n+ 2 and σ(P) = n+ 1. Let P be in the
form foreach X [Q], and let C be a top circle occurring in
Q, with µ(Q) = n+1; we have two cases: (1) σ(Q) = n+1,
or (2) σ(Q) = n.
(1) In this case C is a not-increasing circle, because it has
been detected by µ, but not by σ. Applying  to P, we
obtain a program P′ such that σ(P′) = n+1, µ(P′) = n+1,
and P≈sP′.
(2) In this case C is an increasing circle, detected by µ and
σ. We have that (by the inductive hypothesis) there exists a
program Q′ such that µ(Q′) = n, σ(Q′) = n, and Q≈sQ′.
Starting from P, we build a new program P′=foreach X [Q’]
. We have that µ(P′) = µ(Q′)+1 = n+1, σ(P′) = σ(Q′)+
1 = n+ 1, and P≈sP′ as expected.
The cases P1;P2;. . . ;Pk and if top(X)≡a [P] can be proved
in a similar way.

Theorem 4.1: Every function f computed by a stack
program P such that µ(P) = n and σ(P) = m, with n > m,
has a length bound b ∈ Em+2 satisfying |f(~w)| ≤ b(|~w|).
Proof. Let k be µ(P) − σ(P). Then by k applications of
Lemma 4.1, we obtain a sequence P =: P0,P1, . . . ,Pk of
stack programs such that, for all i < k,

µ(Pi+1) = µ(P)− i, σ(Pi) = σ(Pi+1), and Pi ≈s Pi+1.

By Kristiansen and Niggl’s bounding theorem, Pk has a
length bound in Eσ(P)+2, and so does P, by transitivity of
≈s.

Let Lnσ be the class of all functions that can be computed
by a stack program of σ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|~w|), for some b ∈ En. As a consequence
of Theorem 4.1, and similarly to what has been recalled in
Section III, the following result holds.

Theorem 4.2: For n ≥ 0: Lnσ = Gn+2.

V. RESTRICTIONS TO TIME-SPACE COMPLEXITY

In this section, we introduce some syntactical restrictions
to the stack programming language, and we prove that, when
combined with the σ-measure, they allow us to evaluate the
time and (simultaneously) the space complexity of a program
written according to the new syntax. In particular, we define
Bm,n as the class of functions computable by a stack program
in the form P;Q (a run of P followed by a run of Q), where
σ(P) = m, σ(Q) = n, and where Q is a not-increasing
stack program (see below for the definition). As we promised
in the introduction, we prove that each function in Bm,n
can be simulated by a Turing machine with running time
in En+2, and space in Em+2, and, conversely, each Turing
machine with running time bounded by a function in En+2

and, simultaneously, with space bounded by a function in
Em+2 can be simulated by stack programs in Bm,n.

Definition 5.1:
1) Given a modifier M and a stack X the rate of growth

of M with respect to X is the difference between
the number of push(a,X) and the number of pop(X)
occurring in M.

2) A non-space-increasing stack program is built from
modifiers by sequencing, conditional and loop state-
ments, provided that the rate of growth of each modifier
with respect to each stack is negative, or equal to 0.

The following lemma shows that a not-increasing program
cannot increase, as expected, the overall length of the reg-
isters on which it operates (except for a constant c which
depends only on the structure of the modifiers occurring into
the program).

Lemma 5.1: Let P be a not-increasing stack program; there
exists a constant c ≥ 0 such that

{~X = ~w}P{|~X| ≤ |~w|+ c}.

Proof. Given the definition of not-increasing programs, it
is natural to observe that they cannot add digits to their
inputs; there is only one exception to this fact, that is when
one or more of the stacks on which a program operates
are empty (and thus, some of the pop’s occurring into
the program have no effect). In this case, only a con-
stant number of digits can be added to some stack, hence
the constant c of the theorem; in particular, c =

∑
X cX,

with cX the maximum number of push(a,X) occurring into
the modifiers of the program. For example, consider P:≡
pop(X);pop(X);push(a,X);push(a,X), with X equal to the
empty word. In this case the first two pop have no effect
on X, while the rest of the program pushes two a’s into X,
returning a value whose length is greater than the input’s
length, notwithstanding P is still not-increasing. If P occurs
into a loop, the number of digits added at the end of the loop’s
run is still two, since each run of pop(X);pop(X) erases two
digits from X, and each run of push(a,X);push(a,X) adds
two digits to X.
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The proof proceeds by induction on the structure of the
program. The base case is obvious, given the definition of
modifiers with negative rate of growth. As for the step, let
P and Q two not-increasing programs, operating on ~X. By
the inductive hypothesis, {~X = ~w}P{|~X| ≤ |~w| + c1}, and
{~X = ~w}Q{|~X| ≤ |~w| + c2}; the sequence P;Q is such that
{~X = ~w}P;Q{|~X| ≤ |~w|+ max{c1, c2}}. The same happens
for the conditional and the loop cases.

Definition 5.2: Let h and k be two natural numbers.
1) Bh,k denotes the class of all functions computable by

a stack program in the form P;Q, where σ(P) = h,
σ(Q) = k, and Q is a non-space-increasing stack
program.

2) If k ≤ h ≤ k + 1, Gh,k denotes the class of functions
computable by a Turing machine on input ~w within
time t(|~w|) (with t ∈ Eh), and in space s(|~w|) (with
s ∈ Ek), simultaneously.

The "=" in the following theorem stands for the mutual
inclusion between two classes of functions. In this case,
between the class of functions computed by our version of
stack programs and the class of functions computable by
Turing machines with given time and space bounds.

Theorem 5.1: For m and n two natural numbers (m ≤
n ≤ m+ 1), we have Bm,n = Gn+2,m+2.
The result comes from the next two lemmas.

Lemma 5.2: For m and n two natural numbers (m ≤ n ≤
m+ 1), we have Bm,n ⊆ Gn+2,m+2.
Proof. Let S be a stack program in the form P;Q, with
µ(P) = m, µ(Q) = n, and Q a not-increasing program.
Let TIMES(~w) denote the number of steps in a run of the
program S on ~w (a step is an execution of an imperative),
and let SPACES(~w) denote the overall number of registers’
cells used by S during a run.
By theorem 3.1 one obtains a Turing machine which sim-
ulates P on input ~w within time bounded by b(|~w|), with
b ∈ Em+2; hence, the space used by the Turing machine
simulating P is bounded by b(|~w|). Let ~v the sequence of
variables such that {~X = ~w}P{~X = ~v}; Q runs on ~v.
By theorem 3.1 there exists a Turing machine simulating
Q on ~v, in time b′(|~v|), with b′ ∈ En+2. The overall
time is TIMEP+TIMEQ ≤ b(|~w|) + b′(|~v|)≤ b′(|~v|) (being
m ≤ n), with b′ ∈ En+2. As for the evaluation of the space
complexity, note that Q is a not-incresing program, then it
uses SPACEQ(~v) ≤ |~v|+ c; hence, the overall space used by
S is bounded by b(|~w|), with b ∈ Em+2. The sequence of
the two Turing machines gives us the desired result.

Lemma 5.3: For m and n two natural numbers (m ≤ n ≤
m+ 1), we have Gn+2,m+2 ⊆ Bm,n.
Proof. Let M be an arbitrary Turing machine belonging
to Gn+2,m+2, that is running (on input ~w) in time t(|~w|),
with t ∈ En+2, and in space s(|~w|), with s ∈ Em+2. M
can be simulated by two Turing machines, MP and MQ,
respectively time-bounded by s(|~w|) and t(|~v|); MP delimits
(in s(|~w|) steps) the space that MQ will use during its run.

Moreover, MQ does not exceed its input.
By theorem 3.1 there exists a program P which simulates
MP , and such that σ(P ) = m; for the same reason, there
exists a program Q which simulates MQ, with σ(Q) = n. We
cannot use this program in our proof, since it is an increasing
program; indeed, according to the second part of theorem
3.1, Q contains a subprogram LE[n+2] which stores into Y
the number of times that the SIM-MOVES related to MQ

will be executed. We are looking for an alternative procedure
to define, for each n and for each input x, the appropriate
sequence of En(x) SIM-MOVES needed in order to simulate
MQ correctly. This is done by following the definition of
the program LE[n+2] in [15]; the intended output of our
procedure is the appropriate number of sequenced SIM-
MOVES.
LE(n+2) :≡ for each x do {u:=u+1; SIM-MOVES};

x:=2;
for each u do LE(n+1).

The sequence of SIM-MOVES we obtain executing c times
LE(n+2) is a not-incresing stack program, since each SIM-
MOVES never pushes a digit into a stack without popping
another digit from the other one. The reader should note
that LE is not a stack program, but its outputs are. Setting
M :≡ SIM-MOVES; . . . ; SIM-MOVES (Ecn(x) times), and
setting Q :≡ INITIALIZE;M;OUTPUT, we have that the
stack program P;Q is in Bm,n, by definition 5.2.

VI. CONCLUSIONS

We have defined a syntactical measure σ that considers
how the iteration of imperative stack programs affects the
complexity of the programs themselves. In particular, this
measure only counts those loops in which programs with a
size-increasing effect (w.r.t. the final length of the result) are
iterated. Each time such a loop is built over other loops,
the σ-measure is increased by 1. Other measures detect
potentially harmful loops, but are not able to distinguish
between size-increasing and non-size-increasing loops. It is
undecidable to know if a function computed by a given stack
program lies in a given complexity class, but our measure
represents an improvement when compared to previously
defined measures. We can assign a function computed by a
stack program of σ-measure n to the n+2− th Grzegorczyk
class, and this class is lower in the hierarchy, when compared
to the class obtained via other measures. We have extended
this idea to the classification of programs that computes
functions with simultaneous time and space bounds in the
same hierarchy.
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